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Abstract. An algebra S is called a Skolem-Noether algebra (SN algebra for short)

if for every central simple algebra R, every homomorphism R→ R⊗ S extends to an

inner automorphism of R ⊗ S. One of the important properties of such an algebra

is that each automorphism of a matrix algebra over S is the composition of an inner

automorphism with an automorphism of S. The bulk of the paper is devoted to finding

properties and examples of SN algebras. The classical Skolem-Noether theorem implies

that every central simple algebra is SN. In this article it is shown that actually so is

every semilocal, and hence every finite-dimensional algebra. Not every domain is SN,

but, for instance, unique factorization domains, polynomial algebras and free algebras

are. Further, an algebra S is SN if and only if the power series algebra S[[ξ]] is SN.

1. Introduction

Our main motivation for this work is the celebrated Skolem-Noether theorem. We

will state its version as given, for example, in [Her68]. But first, a word on conventions.

All our algebras are assumed to be unital algebras over a fixed field F , subalgebras are

assumed to contain the same unity, and all homomorphisms send 1 to 1.

Theorem 1.1. (Skolem-Noether) Let A be simple artinian algebra with center F .

If R is a finite-dimensional simple F -subalgebra of A and ϕ is an F -algebra homo-

morphism from R into A, then there exists an invertible element c ∈ A such that

ϕ(x) = cxc−1 for all x ∈ R. (In other words, ϕ can be extended to an inner automor-

phism of A.)

Recall that an algebra is said to be central if its center consists of scalar multiples

of unity. As usual, we will use the term central simple algebra for an algebra that

is central, simple, and also finite-dimensional.
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Definition 1.2. An algebra S is a Skolem-Noether algebra (SN algebra for short)

if for every central simple algebra R and every homomorphism ϕ : R → R ⊗ S there

exists an invertible element c ∈ R ⊗ S such that ϕ(x) = cxc−1 for every x ∈ R. (Here,

R is identified with R⊗ 1).

The Skolem-Noether theorem, together with the well-known fact that the class of

central simple algebras is closed under tensor products, implies that every central simple

algebra S is an SN algebra. A partial converse is also true: the assertion that central

simple algebras are SN algebras implies an important special case of the Skolem-Noether

theorem where A is a central simple algebra and R is its central simple subalgebra. This

is because, under these assumptions, A is isomorphic to R⊗S where S is also a central

simple subalgebra of A [Bre14, Corollary 4.49].

SN algebras naturally arise from the problem of understanding automorphism groups

of tensor products of algebras. Unlike the case of derivations on tensor products [Bre17],

the general solution to this problem seems far out of reach. For instance, while auto-

morphisms of univariate and bivariate polynomial algebras are well understood [Jun42],

already the trivariate case is wild [SU03]. In another direction, functional analysts con-

sider the question when the flip automorphism A ⊗ A → A ⊗ A is (approximately)

inner for operator algebras A, see [Sak75, ER78, Izu17]. In this paper we settle the

following special case of the above problem. If S is an SN algebra and R is a central

simple algebra, then automorphisms of R ⊗ S are just compositions of inner automor-

phisms and automorphisms of S; see Proposition 3.3. While the class of SN algebras

looks restrictive, our main results show that various classical and important families

of algebras satisfy the SN property, for example semilocal (in particular artinian and

finite-dimensional) algebras, unique factorization domains, free algebras, etc.

Some of the readers might be interested only in the case where R = Mn(F ), the

algebra of n×n matrices with entries in F . Let us therefore mention that since Mn(F )⊗
S can be identified with Mn(S), the condition that S is an SN algebra implies that every

homomorphism from Mn(F ) into Mn(S) can be extended to an inner automorphism of

Mn(S). Moreover, we show in Proposition 2.1 that the latter condition implies the SN

property. However, this does not lead to any simplifications of our proofs, so we persist

with central simple algebras as in Definition 1.2.

Main results and guide to the paper. The short Section 2 on preliminaries includes

Proposition 2.1: S is an SN algebra if and only if all homomorphisms Mn(F )→Mn(S)

extend to inner automorphisms. Section 3 positions SN algebras into a wider context

of automorphisms of tensor products. For instance, Proposition 3.3 proves that given

an SN algebra S and a central simple algebra R, every automorphism of R ⊗ S is the

composition of an inner automorphism and an automorphism of S. In particular, this

applies to matrix algebras over SN algebras.

We then identify classes of algebras which satisfy the SN property. In Section 4

we derive Lemma 4.1, which is the main technical tool for proving subsequent results.
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Section 5 culminates in Theorem 5.5 showing that semilocal algebras are SN. Hence

all artinian algebras and thus all finite-dimensional algebras are SN. Section 6 refines

the latter result. Namely, every homomorphism from a central simple subalgebra R

of a finite-dimensional algebra A into A extends to an inner automorphism of A (see

Theorem 6.1). In Section 7 we give examples of domains which are SN algebras, such as

unique factorization domains (UFDs) and free algebras, see Corollary 7.2 and Corollary

7.4. Section 8 uses the Quillen-Suslin theorem to prove that matrix algebras over

polynomial algebras are SN. The paper concludes with Section 9, where we show that

an algebra S is SN if and only if the formal power series algebra S[[ξ]] is SN.

2. Preliminaries

The purpose of this section is to introduce the notation and terminology, and prove

a proposition that yields a characterization of SN algebras.

Let R be a central simple algebra. Given w, z ∈ R, we define the left and right

multiplication operators Lw, Rz : R→ R by

Lw(x) = wx and Rz(x) = xz.

As is well-known, every linear map from R into R can be written as a sum of maps of

the form LwRz, w, z ∈ R [Bre14, Lemma 1.25]. Accordingly, given a basis {r1, . . . , rd}
of R, there exists wj, zj ∈ R such that h =

∑
j Lwj

Rzj satisfies h(r1) = 1 and h(rk) = 0,

k 6= 1. That is,

(2.1)
∑
j

wjr1zj = 1 and
∑
j

wjrkzj = 0 if k > 1.

We will be mostly concerned with tensor product algebras R ⊗ S. Here R, S are

algebras over a field F and the tensor product is taken over F . As usual, we identify

R by R ⊗ 1, and, accordingly, often write r ⊗ 1 ∈ R ⊗ 1 simply as r. Let us point out

an elementary fact that will be used freely without further reference. If the ri’s are

linearly independent elements in R, then for all pj ∈ R and sj, ti ∈ S,

(2.2)
∑
i

ri ⊗ ti =
∑
j

pj ⊗ sj

implies that each ti lies in the linear span of the sj’s [Bre14, Lemma 4.9]. Similarly,

assuming that the ti’s are linearly independent, it follows from (2.2) that each ri lies in

the linear span of the pj’s.

By rad(S) we denote the Jacobson radical of the algebra S. Recall that S is called

a semilocal algebra if S/rad(S) is a semisimple algebra, i.e., isomorphic to a finite

direct product of simple artinian algebras. In the special case where S/rad(S) is a

division algebra, S is called a local algebra. Finally, we say that S is a stably finite

algebra if for all n ≥ 1 and all x, y ∈Mn(S), xy = 1 implies yx = 1.

To conclude the section we give an alternative characterization of the SN property.

In order to show that S is an SN algebra it suffices to verify the condition of Definition
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1.2 for R = Mn(F ), i.e., all F -algebra homomorphisms Mn(F ) → Mn(S) are given by

conjugation.

Proposition 2.1. An algebra S is SN if and only if for every n ∈ N and a homomor-

phism ϕ : Mn(F ) → Mn(S) there exists c ∈ Mn(S) such that ϕ(x) = cxc−1 for every

x ∈ R.

Proof. The implication (⇒) holds by definition, so consider the direction (⇐). Let R

be a central simple algebra and ϕ : R → R ⊗ S a homomorphism. Let Rop denote the

opposite algebra of R and consider

ϕ̃ = id⊗ ϕ : Rop ⊗R→ Rop ⊗R⊗ S.

Since

Rop ⊗R ∼= M(dimR)(F ),

by assumption there exists c ∈ Rop⊗R⊗S such that ϕ̃(x) = cxc−1 for every x ∈ Rop⊗R.

We can write c as

c =
∑
i,j

aij ⊗ ri ⊗ sj

for some aij ∈ Rop and linearly independent sets {ri}i ⊂ R and {sj}j ⊂ S. If x = x1⊗1

for x1 ∈ Rop, then ϕ̃(x)c− cx = 0 becomes∑
i,j

(x1aij − aijx1)⊗ ri ⊗ sj = 0.

Since the elements ri ⊗ sj form a linearly independent set in R ⊗ S, we conclude that

x1aij = aijx1 for all aij ∈ Rop and x1 ∈ Rop. As Rop is central we have aij ∈ F and

therefore c ∈ 1⊗ R ⊗ S ∼= R ⊗ S. Consequently ϕ(x) = cxc−1 for every x ∈ R. Hence

S is an SN algebra. �

While Proposition 2.1 seemingly facilitates demonstrating that S is an SN algebra,

it does not simplify our proofs in the sequel.

3. SN algebras and automorphisms

In this section we give a few motivating results and prove that every automorphism

of a matrix algebra over an SN algebra S is an inner automorphism composed with an

automorphism of S, see Corollary 3.4.

We begin with a proposition which justifies the requirement in Definition 1.2 that

the algebra R is central simple.

Proposition 3.1. Let R be a subalgebra of an algebra S. If the homomorphism x⊗1 7→
1⊗ x from R = R⊗ 1 into R⊗ S can be extended to an inner automorphism of R⊗ S,

then R is a central simple algebra.
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Proof. By assumption, there exists an invertible element a ∈ R⊗ S such that

1⊗ x = a(x⊗ 1)a−1

for all x ∈ R. Let us write a =
∑m

i=1 ui ⊗ vi and a−1 =
∑n

j=1wj ⊗ zj. Accordingly,

1⊗ x =
( m∑

i=1

ui ⊗ vi
)

(x⊗ 1)
( n∑

j=1

wj ⊗ zj
)

(3.1)

=
m∑
i=1

n∑
j=1

uixwj ⊗ vizj.

This implies that every x ∈ R lies in the linear span of all vizj, i = 1, . . . ,m, j = 1, . . . , n.

Thus, R is finite-dimensional. On the other hand, (3.1) implies that for every nonzero

x ∈ R, 1 lies in RxR. This means that R is simple. Finally, if z lies in the center of R,

then 1 ⊗ z = a(z ⊗ 1)a−1 = z ⊗ 1, which readily implies that z is a scalar multiple of

1, as desired. �

The question of when the automorphism x⊗y 7→ y⊗x of R⊗R is inner was initiated

by Sakai [Sak75] in the C∗-algebra context, and investigated further by Bunce [Bun74].

The following corollary is an extension of [Bun74, Theorem 2].

Corollary 3.2. Let R be an arbitrary algebra. The homomorphism x⊗1 7→ 1⊗x from

R = R⊗ 1 into R⊗R can be extended to an inner automorphism of R⊗R if and only

if R is a central simple algebra.

Proof. If R is a central simple algebra, then so is R⊗R [Bre14, Corollary 4.44], and so

every homomorphism from R into R ⊗ R can be extended to an inner automorphism

by the Skolem-Noether theorem. The converse follows from Proposition 3.1. �

The next proposition yields another motivation for considering SN algebras.

Proposition 3.3. Let R be a central simple algebra and let S be an SN algebra. Then

every automorphism ϕ of R ⊗ S is the composition of an inner automorphism and an

automorphism of the form idR ⊗ σ where σ is an automorphism of S.

Proof. By assumption, the restriction of ϕ to R can be extended to an inner automor-

phism x 7→ cxc−1 of R ⊗ S. Considering the automorphism x 7→ c−1ϕ(x)c we thus see

that there is no loss of generality in assuming that ϕ acts as the identity on R. Note

that the proposition will be proved by showing that ϕ maps 1 ⊗ S into itself. Pick

s ∈ S. We can write ϕ(1 ⊗ s) as
∑

j pj ⊗ sj where the sj’s are linearly independent.

Since 1⊗ s commutes with x⊗ 1 for every x ∈ R it follows that so does ϕ(1⊗ s). This

implies that ∑
j

(pjx− xpj)⊗ sj = 0.
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As the sj’s are linearly independent it follows that pjx − xpj = 0 for each j and each

x ∈ R. Hence, since R is central, each pj is a scalar multiple of 1. Consequently,

ϕ(1⊗ s) ∈ 1⊗ S. �

If R = Mn(F ), then R ⊗ S can be identified with Mn(S), and the proposition gets

the following form.

Corollary 3.4. If S is an SN algebra, then every automorphism ϕ of Mn(S) is of the

form

ϕ
(
(sij)

)
= c
(
σ(sij)

)
c−1

where c is an invertible element in Mn(S) and σ is an automorphism of S.

This result is known in the case where S is either an artinian algebra [BO81, Theorem

3.13], a UFD [Isa80, Corollary 15], or a commutative local algebra (see, e.g., [Kov73,

p. 163]). As we will see, all these algebras are SN algebras. On the other hand,

[Isa80] shows that the commutative domain Z[
√
−5] does not satisfy the conclusion of

Corollary 3.4. We give an algebra with the same property in Example 7.6.

We do not know if matrix algebras over SN algebras are SN or, more generally, if the

tensor product of an SN algebra with a central simple algebra is again SN.

4. Basic lemma

All our main results will be derived from the following technical lemma. Its proof will

use some ideas from the proof of the (special case of) Skolem-Noether theorem given

in [Bre14, pp. 13–14].

Lemma 4.1. Let R be a central simple algebra with basis {r1, . . . , rd} and let S be an

arbitrary algebra. Then ϕ : R → R ⊗ S is a homomorphism if and only if there exist

c1, . . . , cd ∈ R⊗ S such that

(a) ϕ(x) =
∑d

k=1 ckxrk for all x ∈ R,

(b) ϕ(x)ck = ckx for all x ∈ R and all 1 ≤ k ≤ d, and

(c)
∑d

k=1 ckrk = 1.

Moreover, writing ck =
∑d

l=1 rl ⊗ skl, we have that for each k and l there exists bkl ∈
R⊗ S such that

bklck = 1⊗ skl.
Accordingly, if S is stably finite and there exist k and l such that skl is invertible in S,

then c = ck is invertible in R⊗ S and

ϕ(x) = cxc−1

for all x ∈ R.

Proof. Since R is finite-dimensional, there exist finitely many si ∈ S and linear maps

fi : R→ R such that

ϕ(x) =
∑
i

fi(x)⊗ si
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for all x ∈ S. By [Bre14, Lemma 1.25] there exist wij, zij ∈ R such that

fi =
∑
j

Lwij
Rzij .

Consequently, for every x ∈ R we have

ϕ(x) =
∑
i

(∑
j

wijxzij

)
⊗ si

=
∑
i

∑
j

(wij ⊗ si)xzij.

Writing each zij as a linear combination of r1, . . . , rd we see that ϕ is of the form

described in (a).

We now use the multiplicativity of ϕ, i.e., ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ R. In view

of (a) we can rewrite this as

(4.1)
d∑

k=1

ckxyrk =
d∑

k=1

ϕ(x)ckyrk.

Pick wj, zj ∈ R such that (2.1) holds. Setting y = wj in (4.1), multiplying the identity,

so obtained, from the right by zj, and then summing up over all j we get∑
j

d∑
k=1

ckxwjrkzj =
∑
j

d∑
k=1

ϕ(x)ckwjrkzj,

that is,
d∑

k=1

ckx
(∑

j

wjrkzj

)
=

d∑
k=1

ϕ(x)ck

(∑
j

wjrkzj

)
.

By (2.1) this reduces to c1x = ϕ(x)c1. Of course, the same proof applies to every ck,

so (b) holds. Finally, (c) follows from ϕ(1) = 1.

A direct verification shows that (a), (b), and (c) imply that ϕ is a homomorphism.

Let us write c1 =
∑

l rl ⊗ s1l, and let wj, zj be as above. Using (b) we obtain∑
j

wjϕ(zj)c1 =
∑
j

wjc1zj

=
∑
j

∑
l

wj(rl ⊗ s1l)zj

=
∑
l

(∑
j

wjrlzj

)
⊗ s1l

= 1⊗ s11.

Thus, b11 =
∑

j wjϕ(zj) satisfies b11c1 = 1⊗ s11. Similarly we find other bkl’s.

Finally, assume that skl is invertible in S for some k and l. Then (1⊗ s−1kl )bkl is a left

inverse of ck. If S is stably finite, then the result by Montgomery [Mon83, Theorem
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1] implies that this element is also a right inverse. Therefore, (b) shows that c = ck
satisfies ϕ(x) = cxc−1 for all x ∈ R. �

We continue with a simple application of Lemma 4.1, showing that local algebras

are SN. This result will be generalized to semilocal algebras (with a considerably more

involved proof) in the next section, see Theorem 5.5.

Corollary 4.2. Every local algebra is an SN algebra.

Proof. Let rk, skl be elements from Lemma 4.1. From (c) it follows that∑
k,l

rlrk ⊗ skl = 1⊗ 1.

This implies that 1 lies in the linear span of skl. Consequently, at least one skl does

not lie in rad(S). Since S is local it follows that skl is invertible in S. As S is stably

finite [Lam01, Theorem 20.13], the last assertion of Lemma 4.1 shows that there exists

c ∈ R⊗ S such that ϕ(x) = cxc−1 for all x ∈ R. �

5. Semilocal algebras

The main result of this section is Theorem 5.5 showing that semilocal algebras are

SN. We begin with a simple lemma.

Lemma 5.1. If S1 and S2 are SN algebras, then so is their direct product S1 × S2.

Proof. Recall that R ⊗ (S1 × S2) can be identified with (R ⊗ S1) × (R ⊗ S2). Take a

homomorphism

ϕ : R→ (R⊗ S1)× (R⊗ S2).

Writing

ϕ(x) = (ϕ1(x), ϕ2(x))

it is immediate that ϕi is a homomorphism from R into R⊗Si, i = 1, 2. By assumption,

there exist ci ∈ R⊗ Si such that ϕi(x) = cixc
−1
i for all x ∈ R, i = 1, 2. Hence,

c = (c1, c2) ∈ (R⊗ S1)× (R⊗ S2)

satisfies ϕ(x) = cxc−1 for all x ∈ R. �

As mentioned in the introduction, the Skolem-Noether theorem implies that every

central simple algebra is an SN algebra. With a little extra effort we can extend this

to semisimple algebras.

Lemma 5.2. Every semisimple algebra is an SN algebra.

Proof. In view of Lemma 5.1 it suffices to consider the case where S is simple artinian.

Let R be a central simple algebra. The algebra R⊗ S is then simple [Bre14, Theorem

4.42]. We claim that it is also artinian. Indeed, considering R ⊗ S as a left S-module

in the natural way we see that it is isomorphic to the left S-module Sd where d is the

dimension of R, and that a descending chain of left ideals of R⊗S is also a descending
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chain of left S-submodules. The desired conclusion thus follows from the fact that Sd

is artinian.

Let K be the center of S. The center of R ⊗ S is equal to 1 ⊗K [Bre14, Corollary

4.32], which we identify with K. Consider R ⊗ K as an algebra over K in the usual

way. Clearly, it is finite-dimensional and, again by [Bre14, Theorem 4.42], simple.

Now, given a homomorphism ϕ : R→ R⊗ S, we define

Φ : R⊗K → R⊗ S

by

Φ(x⊗ k) = ϕ(x)(1⊗ k).

Note that Φ is a K-algebra homomorphism. The Skolem-Noether theorem thus tells

us that there exists c ∈ R ⊗ S such that Φ(x⊗ k) = c(x⊗ k)c−1 for all x ∈ R, k ∈ K.

Setting k = 1 we get the desired conclusion. �

Our goal is to show that semilocal algebras are SN algebras by reducing the general

case to the semisimple case. We will actually prove a general reduction theorem whose

possible applications are not limited to semilocal algebras. To this end, we need the

following lemma. From its nature one would expect that it is known, but we were

unable to find a good reference. We include a short proof for the sake of completeness.

Lemma 5.3. If R is a central simple algebra, then rad(R⊗ S) = R⊗ rad(S) for every

algebra S.

Proof. As an ideal of R⊗ S, rad(R⊗ S) is necessarily of the form R⊗ I for some ideal

I of S [Bre14, Theorem 4.42]. We will show that I ⊆ rad(S), by making use of the

following characterization of rad(A): v ∈ rad(A) if and only if 1 − vx is invertible for

every x ∈ A. Take u ∈ I. Since 1⊗ u ∈ rad(R⊗ S) it follows that

1⊗ (1− ux) = 1⊗ 1− 1⊗ ux = 1⊗ 1− (1⊗ u)(1⊗ x)

is invertible in R⊗S for every x ∈ S. However, this is possible only if 1−ux is invertible,

implying that u ∈ rad(S). Thus, I ⊆ rad(S), and so rad(R⊗ S) ⊆ R⊗ rad(S).

As the lemma is well-known if R = Mn(F ) (see, e.g., [Lam01, pp. 57-58]), we will

establish the converse inclusion by reducing the general case to this one. Take a splitting

field K for R which is a finite separable extension of F (see, e.g., [GS06, Proposition

4.5.4]). Then K ⊗ R may be identified with Mn(K) for some n ≥ 1, and, therefore,

K ⊗ R ⊗ S may be identified with Mn(K ⊗ S). Thus, by what we pointed out at the

beginning of the paragraph, we have

rad(K ⊗R⊗ S) = Mn(rad(K ⊗ S)).

By [Lam01, Theorem 5.17], rad(K ⊗ S) = K ⊗ rad(S), so that

(5.1) rad(K ⊗R⊗ S) = Mn(K)⊗ rad(S).
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According to [Lam01, Theorem 5.14],

rad(R⊗ S) = (R⊗ S) ∩ rad(K ⊗R⊗ S),

and hence, by (5.1),

rad(R⊗ S) = (R⊗ S) ∩ (Mn(K)⊗ rad(S)).

Since both R ⊗ S and Mn(K) ⊗ rad(S) readily contain R ⊗ rad(S), it follows that

R⊗ rad(S) ⊆ rad(R⊗ S). �

We can now prove the announced reduction theorem.

Theorem 5.4. If an algebra S is stably finite and S/rad(S) is an SN algebra, then S

is an SN algebra.

Proof. Let R be central simple and write

J = R⊗ rad(S).

Take a homomorphism ϕ : R→ R⊗ S. We define

Φ : R→ (R⊗ S)/J

by

Φ(x) = ϕ(x) + J.

Since (R⊗S)/J is canonically isomorphic to R⊗ (S/rad(S)), and S/rad(S) is assumed

to be an SN algebra, it follows that there exists an invertible element a ∈ (R ⊗ S)/J

such that

Φ(x) = a(x+ J)a−1 for all x ∈ R.

As J is, by Lemma 5.3, the Jacobson radical of R ⊗ S, it follows that there exists an

invertible element b ∈ R⊗ S such that a = b+ J . Obviously, we have

ϕ(x)− bxb−1 ∈ J for all x ∈ R,

that is,

b−1ϕ(x)b− x ∈ J for all x ∈ R.

Replacing the role of ϕ by the homomorphism x 7→ b−1ϕ(x)b we see that without loss

of generality we may assume that b = 1. Thus,

(5.2) ϕ(x)− x ∈ J for all x ∈ R.

Now apply Lemma 4.1. Picking a basis {r1, . . . , rd} of R, we can thus find skl ∈ S,

k, l = 1, . . . , p, such that

(5.3) ϕ(x) =
d∑

k=1

d∑
l=1

rlxrk ⊗ skl for all x ∈ R,

and our goal is to show that at least one skl is invertible in S.
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Let λk ∈ F be such that 1 =
∑d

k=1 λkrk. Then

x = 1 · x · 1 =
d∑

k=1

d∑
l=1

(λkλl)rlxrk for all x ∈ R.

Using (5.2) and (5.3) we thus obtain

(5.4)
d∑

k=1

d∑
l=1

rlxrk ⊗ (skl − λkλl · 1) ∈ J for all x ∈ R.

We may assume that λ1 6= 0. Choose wj, zj ∈ R that satisfy (2.1). Denoting the

expression in (5.4) by ρ(x), we have∑
j

wjρ(zj) =
∑
j

d∑
k=1

d∑
l=1

wjrlzjrk ⊗ (skl − λkλl · 1)

=
d∑

k=1

d∑
l=1

(∑
j

wjrlzj

)
rk ⊗ (skl − λkλl · 1)

=
d∑

k=1

rk ⊗ (sk1 − λkλ1 · 1).

As ρ maps into J it follows that

d∑
k=1

rk ⊗ (sk1 − λkλ1 · 1) ∈ J = R⊗ rad(S).

Since the rk’s are linearly independent, we must have sk1 − λkλ1 · 1 ∈ rad(S) for each

k. In particular, s11 = λ21 · 1 + u for some u ∈ rad(S). Since λ1 6= 0 it follows that s11
is invertible, as desired. �

We are now in a position to give our main result.

Theorem 5.5. Every semilocal algebra S is an SN algebra.

Proof. Since S is stably finite [Lam01, Theorem 2.13] and the algebra S/rad(S) is

semisimple, the theorem follows from Lemma 5.2 and Theorem 5.4. �

Corollary 5.6. Every artinian algebra is an SN algebra.

6. Finite-dimensional algebras

Corollary 5.6 shows that every finite-dimensional algebra is an SN algebra. The next

result gives a strengthening of this property.

Theorem 6.1. Let A be a finite-dimensional algebra and let R be its central simple

subalgebra. Then every homomorphism from R into A can be extended to an inner

automorphism of A.
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Proof. Assume first that R = Mn(F ). Then A contains a set of n× n matrix units and

is therefore isomorphic to Mn(S) ∼= R⊗ S for some subalgebra S of A [Bre14, Lemma

2.52]. Since S is also finite-dimensional, the desired conclusion follows from Corollary

5.6.

Now let R be an arbitrary central simple algebra. We may assume that the field F

is infinite, for otherwise R ∼= Mn(F ) by Wedderburn’s theorem on finite division rings.

Let ϕ be a homomorphism from R into A. Take a splitting field K for R. Identifying

K ⊗ R with Mn(K), n ≥ 1, it follows from the preceding paragraph that there exists

b ∈ K ⊗ A such that

(idK ⊗ ϕ)(y) = byb−1

for all y ∈ K ⊗R. In particular,

(1⊗ ϕ(x))b = b(1⊗ x)

for all x ∈ R. Writing b =
∑m

i=1 ki ⊗ ai with the ki’s linearly independent, it follows

that
m∑
i=1

ki ⊗ (ϕ(x)ai − aix) = 0,

and so ϕ(x)ai = aix for all x ∈ R and every i. Hence we see that it suffices to show

that spanF{a1, . . . , am} contains an element which is invertible in A.

As a finite-dimensional algebra, A can be considered as a subalgebra of MN(F ) for

some N ≥ 1. Take the polynomial

f(ξ1, . . . , ξm) = det
( m∑

i=1

ξiai

)
∈ F [ξ1, . . . , ξm].

Note that K ⊗ A can be viewed as a subalgebra of MN(K). Since b is invertible in

K⊗A, we know that spanK{a1, . . . , am} contains an invertible element in K⊗A. This

clearly implies that f is a nonzero polynomial. As F is infinite, there exist λi ∈ F

such that f(λ1, . . . , λm) 6= 0. That is, spanF{a1, . . . , am} contains an element c which

is invertible in MN(F ). However, since we are in finite dimensions, c−1 is a polynomial

in c. Thus, c is invertible in A. �

Using the standard homomorphism construction we will now see that Theorem 6.1

can be used for showing that all derivations from R into any R-bimodule M are inner

(in accordance with the conventions mentioned at the very beginning of the paper, we

assume that our bimodules are unital). This is, of course, a well-known result. Another

way of stating it is that central simple algebras are separable.

Corollary 6.2. Every derivation from a central simple algebra R into an arbitrary

R-bimodule M is inner.

Proof. Let d : R → M be a derivation. As a finite-dimensional subspace of M , d(R)

generates a finite-dimensional subbimodule of M . Therefore, there is no loss of gener-

ality in assuming that M itself is finite-dimensional.
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Let Ã be the set of all matrices of the form [ x u
0 x ], where x ∈ R and u ∈ M . Note

that Ã is a (finite-dimensional!) algebra under the standard matrix operations. Let R̃

be its subalgebra consisting of all matrices of the form [ x 0
0 x ], x ∈ R. Of course, R̃ ∼= R.

Define ϕ : R̃→ Ã by

ϕ

([
x 0

0 x

])
=

[
x d(x)

0 x

]
.

One immediately checks that ϕ is a homomorphism. By Theorem 6.1 there exists an

invertible element c = [ t v
0 t ] ∈ Ã such that ϕ(x̃) = cx̃c−1 for all x̃ ∈ R̃. Consequently,

ϕ(x̃)c = cx̃, that is, [
x d(x)

0 x

]
·
[
t v

0 t

]
=

[
t v

0 t

]
·
[
x 0

0 x

]
for all x ∈ R. This yields

xt = tx and xv + d(x)t = vx

for all x ∈ R. Since R is central, the first identity shows that t ∈ F . Moreover, t 6= 0

for c is invertible. Hence w = t−1v satisfies d(x) = wx− xw by the second identity. �

7. Domains

In this section we give classes of domains which are SN algebras. For instance, UFDs

and free algebras are SN algebras (Corollaries 7.2 and 7.4).

As the coordinate ring of an elliptic curve demonstrates (see Example 7.6), not every

commutative domain is an SN algebra. However, the following proposition shows that

every domain S embedded into a division algebra satisfies a certain weaker condition.

Proposition 7.1. Let R be a central simple algebra, and let an algebra S be a domain

which can be embedded into a division algebra D. If ϕ is a homomorphism from R into

R⊗ S, then there exists c ∈ R⊗ S which is invertible in R⊗D, in fact

c−1 = (1⊗ s−1)b ∈ R⊗D

for some nonzero s ∈ S and b ∈ R⊗ S, such that

ϕ(x) = cxc−1

for all x ∈ R. Moreover, if {r1, . . . , rd} is a basis of R, b =
∑d

k=1 rk ⊗ sk for some

sk ∈ S, and c =
∑d

l=1 rl ⊗ tl for some tl ∈ S, then

tls
−1sk ∈ S

for all k and l.

Proof. Not every ck from Lemma 4.1 can be 0 (in view of (c)), and so skl 6= 0 for some

k and l. Set c = ck and s = skl. By the lemma we have ϕ(x)c = cx for all x ∈ R and

bc = 1⊗ s for some b ∈ R ⊗ S. Of course, s is invertible in D. Therefore (1⊗ s−1)b is

a left inverse of c in R ⊗D. By [Mon83, Theorem 1], a left inverse in R ⊗D is also a

right inverse, so c−1 = (1⊗ s−1)b.
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Now take a basis {r1, . . . , rd} of R, and let us write b =
∑d

k=1 rk ⊗ sk and c =∑d
l=1 rl ⊗ tl. Then

ϕ(x) = cxc−1 =
d∑

k=1

d∑
l=1

rlxrk ⊗ tls−1sk.

for all x ∈ R. Pick wj, zj ∈ R satisfying (2.1). We have∑
j

wjϕ(zj) =
∑
j

d∑
k=1

d∑
l=1

wjrlzjrk ⊗ tls−1sk

=
d∑

k=1

d∑
l=1

(∑
j

wjrlzj

)
rk ⊗ tls−1sk

=
d∑

k=1

rk ⊗ t1s−1sk.

Since the left hand side, i.e.
∑

j wjϕ(zj), lies in R ⊗ S, so does the right hand side.

This readily yields that t1s
−1sk ∈ S. �

Corollary 7.2. Every UFD is an SN algebra.

Proof. Let S be a UFD and let R, ϕ, b, c, s, sk, tl be as in Proposition 7.1. Since S is a

UFD, t1, . . . , td have a greatest common divisor e and c can be replaced with (1⊗e−1)c,
we can without loss of generality assume that t1, . . . , td are coprime. Then it suffices to

prove that s−1sk ∈ S for every k. Since tls
−1sk ∈ S for every k, l, we see that s divides

tlsk for every l, k. Let p be a prime such that pn divides s. Suppose that pn does not

divide sk0 for some k0. Since pn divides tlsk0 for every l, we conclude that p divides tl
for every l, which contradicts the assumption about tl being coprime. Hence s divides

sk for every k. �

We now move to the noncommutative setting. Since embeddings of noncommuta-

tive domains into division rings can be ill-behaved or nonexistent, one needs stronger

assumptions than in Corollary 7.2. Let S be an arbitrary ring. The inner rank of

A ∈ Sm×n is the least r such that A = BC for some B ∈ Sm×r and C ∈ Sr×n. We write

ρA = r. For example, if S is a division ring, then ρA is just the rank of A. We say

that S is a Sylvester domain [Coh06, Section 5.5] if for any P ∈ S`×m and Q ∈ Sm×n

such that PQ = 0, it follows that ρP + ρQ ≤ m.

We say that an element s ∈ S right divides a ∈ S if a = a′s for some a′ ∈ S. If S

is a domain and a, b ∈ S \ {0}, then s is a highest common right factor (HCRF)

of a and b if s right divides a, b and every s′ ∈ S that right divides a, b also right

divides s. We say that S is an HCRF domain if every pair of nonzero elements in

S admits a HCRF. Special examples of HCRF domains are filtered rings satisfying the

2-term weak algorithm [Coh06, Section 2.8] or more generally, 2-firs with right ACC1

(ascending chain condition on principal right ideals) [Coh06, Exercise 3.2.1].



SKOLEM-NOETHER ALGEBRAS 15

Theorem 7.3. If S is an HCRF domain and a Sylvester domain, then S is an SN

algebra.

Proof. Since S is a Sylvester domain, it admits a universal skew field of fractions D

and this embedding preserves the inner rank by [Coh06, Theorem 7.5.13]. Let R be a

central simple algebra and ϕ : R→ R⊗ S a homomorphism. By Proposition 7.1 there

exists c ∈ R⊗S invertible in R⊗D such that ϕ(x) = cxc−1 for all x ∈ R. Furthermore,

if {r1, . . . , rd} is a basis of R and

c =
∑
l

rl ⊗ tl, c−1 =
∑
k

rk ⊗ uk

for tl ∈ S and uk ∈ D, then tluk = slk ∈ S for all 1 ≤ l, k ≤ d (here uk = s−1sk from

Proposition 7.1). Since S is an HCRF domain, we can assume that t1, . . . , td have no

non-trivial common right factors (otherwise they have a nontrivial HCRF e and we can

replace c with c(1⊗ e−1)). Fix k such that uk 6= 0. Then (uk,−1)t ∈ D2 belongs to the

right kernel of the matrix t1 s1k
...

...

td sdk

 ∈ Sd×2

which is therefore of (inner) rank 1 over D. Since the embedding S ⊆ D is inner rank

preserving, this matrix is also of inner rank 1 over S, sot1 s1k
...

...

td sdk

 =

v1...
vd

(w1 w2

)
for some vi, wj ∈ S. Since w1 right divides tl for every l and t1, . . . , td are right coprime

by assumption, we conclude that w1 is invertible in S. By taking some tl 6= 0 we get

uk = t−1l slk = w−11 v−1l vlw2 = w−11 w2 ∈ S.

Consequently c−1 ∈ R⊗ S. �

Corollary 7.4. Every free algebra F 〈X〉 is an SN algebra.

Proof. A free algebra is a filtered ring with a weak algorithm [Coh06, Theorem 2.5.3],

so it is a HCRF domain and a fir (free ideal ring) by [Coh06, Theorem 2.4.6] and hence

a Sylvester domain by [Coh06, Proposition 5.5.1]. �

Theorem 7.3 has the following form for commutative rings.

Corollary 7.5. Every Bézout domain is an SN algebra.

Proof. Every Bézout domain is a GCD domain, which is just a commutative HCRF

domain. Moreover, by [Coh06, Proposition 2.3.17] it is also a semifir and hence a

Sylvester domain by [Coh06, Proposition 5.5.1]. Therefore Theorem 7.3 applies. �
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In the next example we present a domain that is not an SN algebra; cf. [RZ61,

Theorem 15].

Example 7.6. Let S = F [x, y]/(y2 − x3 − x). Then S is a domain,

a =

(
y x

x2 y

)
∈M2(S)

is invertible as a matrix over the field of fractions of S and

a−1 =

(
y
x
−1

−x y
x

)
.

Since every product of an entry in a and an entry in a−1 lies in S, it follows that

ϕ : M2(F )→M2(F )⊗ S, u 7→ aua−1

is a well-defined homomorphism. Suppose that S is an SN algebra. Then there exists

an invertible c ∈M2(S) such that ϕ(u) = cuc−1 for all u ∈M2(F ). Then γ = det(c) is

invertible in S and it is easy to see that this implies γ ∈ F \ {0}. Since c−1a commutes

with every u ∈M2(F ) by the definition of ϕ, we have c−1a = fI2 for some f ∈ S. But

then

γf 2 = γ det(c−1a) = det(a) = x

contradicts the irreducibility of x in S.

8. Polynomial matrix algebras

In this section we prove that matrix algebras over polynomial algebras are SN.

Theorem 8.1. Mn(F [ξ1, . . . , ξs]) is an SN algebra.

Besides the Quillen-Suslin theorem, saying that over F [ξ1, . . . , ξs] every finitely gen-

erated projective module is free, see [Qui76, Su76], the proof of this theorem is mostly

based on the following simple factorization lemma.

Lemma 8.2. Let A be a commutative algebra, which is a domain with field of fractions

K, R a central simple algebra and a ∈ R ⊗ Mn(A). Suppose that a is invertible in

R⊗Mn(K) and that a(x⊗ 1)a−1 ∈ R⊗Mn(A) for all x ∈ R. Then for c ∈Mn(A) the

following are equivalent:

(i) There exists a factorization a = u(1⊗ c) for some invertible u ∈ R⊗Mn(A);

(ii) The left ideal

I(a) := {m ∈Mn(A) | (1⊗m)a−1 ∈ R⊗Mn(A) } ⊆Mn(A)

is generated by c;

(iii) The rows of c form a basis of the A-module

M(a) := { r ∈ A1×n | (1⊗ r)a−1 ∈ R⊗ A1×n }.
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Proof. (i)⇒(ii): Let u ∈ R⊗Mn(A) be invertible such that a = u(1⊗ c). Then for any

m ∈Mn(A) we have that (1⊗m)a−1 = (1⊗mc−1)u−1 lies in R⊗Mn(A) if and only if

mc−1 ∈Mn(A), i.e., m ∈Mn(A)c.

(ii)⇒(i): Let {r1, . . . , rd} be a basis of R and for fixed i take wk, zk ∈ R such that∑
k wkrjzk = δij, see (2.1) at the beginning of Section 2. If a =

∑
j rj ⊗ aj, then

(1⊗ ai)a−1 =
∑
k

(wk ⊗ 1)a(zk ⊗ 1)a−1 ∈ R⊗Mn(A).

Since i was arbitrary, this shows that all coefficients ai of a lie in I(a). Assuming that

I(a) = Mn(A)c, we can thus factor a = u(1 ⊗ c) for some u ∈ R ⊗Mn(A). But then

u−1 = (1⊗ c)a−1 ∈Mn(A), i.e., u is invertible.

(ii)⇒(iii): Suppose I(a) = Mn(A)c. Since a is invertible over K, there exists a

nonzero e ∈ A such that e·1 ∈ I(a). Hence the rows of c are clearly linearly independent.

Given any r ∈ M(a), we can extend r by zero to form a matrix m ∈ I(a) which has r

as one of its rows. By assumption m ∈Mn(A)c. In particular, r is a linear combination

of the rows of c, which shows that they form a basis of M(a).

(iii)⇒(ii): Conversely, suppose that the rows of c form a basis of M(a). In particular,

c ∈ I(a). Moreover, for any m ∈ I(a) the rows of m lie in M(a) and are, therefore,

linear combinations of the rows of c, which implies that m ∈Mn(A)c. �

Proof of Theorem 8.1. Let A := F [ξ1, . . . , ξs], K its field of fractions, R a central simple

algebra and ϕ : R → R ⊗Mn(A) a homomorphism. Since Mn(K) is SN, there exists

(after clearing denominators) a ∈ R ⊗ Mn(A), invertible in R ⊗ Mn(K), such that

ϕ(x) = a(x⊗ 1)a−1 for all x ∈ R.

Fix any prime ideal P of A. Then Mn(AP )/rad(Mn(AP )) is canonically isomorphic to

the simple algebra Mn(F )⊗AP/PAP , see Lemma 5.3. Therefore, Mn(AP ) is semilocal

and by Theorem 5.5 it is also an SN algebra.

It follows that there exists an invertible uP ∈ R⊗Mn(AP ) such that ϕ(x) = uP (x⊗
1)u−1P . Then u−1P a commutes with all elements of R ⊗ 1 and thus lies in 1 ⊗Mn(A).

This means, a can be factored as a = uP (1⊗ cP ) for some cP ∈Mn(A). By Lemma 8.2,

this implies that the AP -module APM(a) is free of rank n. Since the prime ideal P

was arbitrary, this shows that M(a) is locally free of rank n. As being projective is a

local property, this implies M(a) is projective. By the Quillen-Suslin theorem M(a) is

free of rank n. We choose c ∈ Mn(A) such that its rows form a basis of M(a). Then

again from Lemma 8.2, we get a factorization a = u(1 ⊗ c) where u ∈ R ⊗Mn(A) is

invertible. Now ϕ(x) = u(x⊗ 1)u−1 for all x ∈ R. �

9. Formal power series

The aim of this section is to show that the property of being an SN algebra transfers

from S to the formal power series algebra S[[ξ]].

Theorem 9.1. S is an SN algebra if and only if S[[ξ]] is an SN algebra.
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Proof. (⇒) Let R be a central simple algebra and let ϕ : R → R ⊗ S[[ξ]] be a homo-

morphism. Since R is finite-dimensional, we can identify R ⊗ S[[ξ]] with (R ⊗ S)[[ξ]]

and write

ϕ(x) = ϕ0(x) + ϕ1(x)ξ + ϕ2(x)ξ2 + . . .

where ϕi : R → R ⊗ S. Note that ϕ0 is an algebra homomorphism. By assumption,

there exists an invertible element a ∈ R ⊗ S such that ϕ0(x) = axa−1 for all x ∈ R.

Considering the map x 7→ a−1ϕ(x)a we see that without loss of generality we may

assume that ϕ0(x) = x for all x ∈ R, so that

(9.1) ϕ(x) = x+ ϕ1(x)ξ + ϕ2(x)ξ2 + . . .

Now apply Lemma 4.1. Thus, let {r1, . . . , rd} be a basis of R and let c1, . . . , cd ∈
R⊗ S[[ξ]] be such that

(9.2)
d∑

k=1

ckrk = 1 and ϕ(x)ck = ckx

for all x ∈ R and all k. Writing

ck =
∞∑
j=0

ckjξ
j,

where ckj ∈ R⊗ S, it follows from (9.1) and (9.2) that

(9.3) xck0 = ck0x

for all x ∈ R. Let us write ck0 =
∑

j pkj⊗ skj with the skj’s linearly independent. From

(9.3) we infer that ∑
j

(xpkj − pkjx)⊗ skj = 0

for all x ∈ R, yielding xpkj − pkjx = 0. Since R is central this means that each pkj
is a scalar multiple of 1. Accordingly, each ck0 is of the form 1 ⊗ tk for some tk ∈ S.

From the first identity in (9.2) one easily deduces that
∑d

k=1 rk ⊗ tk = 1 ⊗ 1. Writing

1 =
∑d

k=1 λkrk, where λk ∈ F , it follows that tk = λk1. We may assume that λ1 6= 0.

Accordingly, c10 is a nonzero scalar multiple of unity of R ⊗ S, implying that c1 is

invertible in (R⊗ S)[[ξ]]. Applying (9.2) we arrive at ϕ(x) = c1xc
−1
1 for all x ∈ R.

(⇐) Straightforward; more generally, the SN property is clearly preserved by retrac-

tions. Here an algebra S ′ is a retract of S if S ′ ⊂ S and there exists a homomorphism

π : S → S ′ that restricts to the identity map on S ′. �
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