
CIRCULAR FREE SPECTRAHEDRA
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Abstract. This paper considers matrix convex sets invariant under several types of rota-

tions. It is known that matrix convex sets that are free semialgebraic are solution sets of

Linear Matrix Inequalities (LMIs); they are called free spectrahedra. We classify all free

spectrahedra that are circular, that is, closed under multiplication by eit: up to unitary

equivalence, the coefficients of a minimal LMI defining a circular free spectrahedron have a

common block decomposition in which the only nonzero blocks are on the superdiagonal.

A matrix convex set is called free circular if it is closed under left multiplication by unitary

matrices. As a consequence of a Hahn-Banach separation theorem for free circular matrix

convex sets, we show the coefficients of a minimal LMI defining a free circular free spectrahe-

dron have, up to unitary equivalence, a block decomposition as above with only two blocks.

This paper also gives a classification of those noncommutative polynomials invariant un-

der conjugating each coordinate by a different unitary matrix. Up to unitary equivalence

such a polynomial must be a direct sum of univariate polynomials.

1. Introduction

For square matrices A,B, write A � B (resp. A ≺ B) to express that B −A is positive

semidefinite (resp. positive definite). Given a g-tuple A = (A1, . . . Ag) ∈ Md(C)g, let ΛA(x)

denote the linear matrix polynomial

(1.1) ΛA(x) =

g∑
j=1

Ajxj

and let LA denote the (symmetric monic) linear pencil

(1.2) LA(x) = Id −
g∑
j=1

Ajxj −
g∑
j=1

A∗jx
∗
j = Id − ΛA(x)− ΛA(x)∗.
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The spectrahedron SA is the set of all x ∈ Cg satisfying the linear matrix inequal-

ity (LMI) LA(x) � 0. Spectrahedra and LMIs are ubiquitous in control theory [SIG97,

BGFB94] and optimization [BPR13]. Indeed LMIs are at the heart of the subject called

semidefinite programming.

This article investigates spectrahedra from the perspective of the emerging areas of free

convexity [DDSS+, Eff09, EW97, Far12, HKM+, WW99, Wit84, Zal+] and free analysis

[AM14, BMV+, HKM12, KVV14, KŠ+, Pop08, Tay72, Voi10]. In free analysis we are

interested in matrix variables and evaluate a linear pencil on g-tuples X = (X1, . . . , Xg) ∈
Mn(C)g according to the formula

(1.3) L(X) = Id⊗In −
g∑
j=1

Aj ⊗Xj −
g∑
j=1

A∗j ⊗X∗j .

For positive integers n, let

(1.4) DA(n) =
{
X ∈Mn(C)g : LA(X) � 0

}
.

The sequence DA = (DA(n))n is called a free spectrahedron. It is the set of all solutions

to the ampliated LMI corresponding to LA. In particular, DA(1) = SA. Free spectrahedra

are closely connected with operator systems for which [FP12, KPTT13, Arv08] are a few

recent references. In a different direction they provide a model for convexity phenomena in

linear system engineering problems described entirely by signal flow diagrams [dOHMP09].

The main results of this article characterize free spectrahedra and free polynomials that

are invariant under various natural types of circular symmetry. A core motivation for this ar-

ticle comes from classical several complex variables where the study of maps on various types

of domains is a major theme. There an important class is the circular domains. These behave

very well under bianalytic mappings as described e.g. by Braun-Kaup-Upmeier [BKU78].

1.1. Main Results. This subsection contains a summary of the main results of the paper.

Let M(C)g denote the sequence (Mn(C)g)n∈N of g-tuples of n×n matrices with entries from

C. A subset Γ ⊆M(C)g is a sequence (Γ(n))n where Γ(n) ⊆Mn(C)g.

1.1.1. Rotationally invariant free spectrahedra. A subset D ⊆ M(C)g is circular if Z ∈ D
implies eitZ ∈ D for all t ∈ R and is free circular if UZ ∈ D for each n, each Z ∈ D(n), and

each n×n unitary matrix U ∈Mn(C). Here UZ = (UZ1, . . . , UZg). Geometric and analytic

properties of circular subsets of Cn and their generalizations, such as Reinhardt domains,

are heavily investigated in several complex variables [Kra01], cf. [BKU78].

Given a tuple A ∈Md(C)g, if there is an orthogonal decomposition of Cd such that with

respect to this decomposition A = A1 ⊕A2, then LA(x) = (LA1 ⊕ LA2)(x). In this case each

LAi is a subpencil of LA. If DA = DAi , then LAi is a defining subpencil for DA. Say the
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pencil LA is a minimal defining pencil for DA if no proper subpencil of LA is a defining

subpencil for DA.

Theorem 1.1 below says the tuple A in a minimal defining pencil LA of a circular free

spectrahedron is (up to unitary equivalence) block superdiagonal. It also says, if the domain

is free circular, then there are just two blocks. We refer to such a domain as a matrix

pencil ball.

Theorem 1.1. Let A ∈Md(C)g and suppose LA is a minimal defining pencil for DA.

(1) Assume A has no reducing subspace. The free spectrahedron DA is circular if and

only if there is an orthogonal decomposition of Cd such that, with respect to this

decomposition, the As have the block decomposition

(1.5) As =



0 As(1) 0 · · · 0

0 0 As(2)
. . . 0

...
...

. . . . . .
...

0 0
. . . . . . As(k)

0 0 0 · · · 0


,

where the As(j) are matrices of appropriate sizes and for each j there exists at least

one sj such that Asj(j) 6= 0.

In any case, DA is circular if and only if the As can be written as a direct sum of

block superdiagonal matrices of the form (1.5).

(2) The free spectrahedron DA is free circular if and only if there exist s, t ∈ N with

s+ t = d and a tuple F of s× t matrices such that A is unitarily equivalent to

(1.6) E =

(
0 F

0 0

)
.

Proof. Part (1) is proved in Section 2 by a geometric argument. In strong contrast, the proof

of Part (2) – given in Section 3, see Theorem 3.6 and Corollary 3.7 – depends on a strengthen-

ing (Proposition 3.3) of the characterization [BMV+, Proposition 3.5] of free circular matrix

convex sets (i.e., a version of the Effros-Winkler Theorem [EW97] for free circular matrix

convex sets). We give a self-contained proof of the latter in Appendix A, see Theorem A.5.

1.1.2. Rotationally invariant free polynomials. A free d×d matrix polynomial p is invariant

under coordinate unitary conjugation if for any n, and any g-tuple of unitaries U =

(U1, . . . , Ug) ∈Mn(C)g there exists a unitary W such that for all X ∈Mn(C)g,

(1.7) p(U∗1X1U1, . . . , U
∗
gXgUg) = W ∗p(X)W.

Our main theorem on polynomials characterizes monic free matrix polynomials that are

invariant under coordinate unitary conjugation.
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Theorem 1.2. If p is a monic free matrix polynomial, then p is invariant under coordinate

unitary conjugation if and only if

p(x)
u∼ p1(x1)⊕ · · · ⊕ pg(xg).

That is, p must be (up to unitary equivalence) a direct sum of univariate matrix polynomials.

Proof. The proof appears in Section 4.

1.2. Readers Guide. In Section 2 we prove Theorem 1.1 (1) – the classification of all

circular free spectrahedra; i.e., free spectrahedra that are closed under rotations by eit. In

Section 3 we characterize free circular spectrahedra thus finishing the proof of Theorem 1.1.

Finally, in Section 4 we turn our attention to free matrix polynomials and prove Theorem

1.2. Appendix A contains a self-contained proof of the Ball-Marx-Vinnikov Theorem [BMV+]

classifying free circular matrix convex sets. We prove a sharpened version by establishing an

effective Hahn-Banach separation result for free circular domains, see Proposition A.4.

2. Circular Free Spectrahedra

A subset D ⊆M(C)g is circular if Z ∈ D implies eitZ ∈ D for all t ∈ R. In this section

the first part of Theorem 1.1 characterizing circular free spectrahedra is established. The

main idea of the proof is as follows. Assuming DA is a circular free spectrahedron, for each

t ∈ R, the pencil LeitA determines the same free spectrahedron as LA, namely DA = DeitA.

We are thus in a position to apply the Gleichstellensatz (see e.g. [HKM13, Theorem 1.2] and

[Zal+, Theorem 1.2]) characterizing when two free spectrahedra are the same.

Remark 2.1. It turns out if, for a t such that t
π

is irrational, eitA is unitarily equivalent to

A, then DA is circular. This fact is a corollary of the proof of Theorem 1.1 (1) given below.

For a direct proof, observe, if eitA = U∗AU , then eintA = U∗nAUn and thus, for a dense set

of t ∈ R, the tuple eitA is unitarily equivalent to A. A routine limiting argument completes

the proof.

2.1. Set up for the Proof of Theorem 1.1 (1). Suppose A satisfies the hypotheses of

the theorem, except for possibly the irreducibility condition. Here, a g-tuple A ∈ Md(C)g

is said to be irreducible if the As have no common reducing subspace, i.e, if there is no

proper subspace M ⊆Md(C) such that AsM ⊆M and A∗sM ⊆M for each 1 ≤ s ≤ g.

We first present the linear Gleichstellensatz adapted to our set up of free (non-symmetric)

variables.

Proposition 2.2. If B ∈Me(C)g satisfies DA = DB, where A ∈Md(C)g is minimal defining

for DA, then B is unitarily equivalent to A⊕ J for some g-tuple J .



CIRCULAR FREE SPECTRAHEDRA 5

Proof. The statement holds when working over the field of real numbers and evaluating at

tuples of symmetric matrices by [HKM13, Theorem 1.2] and [Zal+, Theorem 1.2]. It is easy

to see that the same proofs work over the field of complex numbers and evaluating at tuples

of self-adjoint matrices. We now reduce the proposition to this case.

To each monic pencil LA(x) in free variables x, x∗ we can associate a monic pencil

L(Are,Aim)(y, z) with self-adjoint coefficients in self-adjoint variables y, z as follows. Let Are
j =

1
2
(Aj + A∗j) and Aim

j = 1
2i

(Aj − A∗j) for j = 1, . . . , g. Then

L(Are,Aim)(y, z) = I −
g∑
j=1

Are
j yj −

g∑
j=1

Aim
j zj.

Each X ∈ DA yields a point 1
2

(
X +X∗, i(X −X∗)

)
in the free spectrahedron (in self-adjoint

variables) D(Are,Aim). Conversely, given (Y, Z) ∈ D(Are,Aim) we have Y − iZ ∈ DA. Hence

DA = DB implies that D(Are,Aim) = D(Bre,Bim).

We claim that L(Are,Aim)(y, z) is a minimal defining pencil for D(Are,Aim). Indeed, as

otherwise by the Gleichstellensatz ([HKM13, Theorem 1.2] or [Zal+, Theorem 1.2]), there

will be a reducing subspace for (Are, Aim) and a compression L(Ãre,Ãim)(y, z) of L(Are,Aim)(y, z)

to this subspace with D(Are,Aim) = D(Ãre,Ãim). But this in turn will yield a subpencil LÃ of A

with the same free spectrahedron as A, contradicting the minimality of LA.

Hence, again by the Gleichstellensatz, (Are, Aim) is (unitarily equivalent to) a subpencil

of (Bre, Bim). But then A is a subpencil of B, as desired.

Since, for each t, A and eitA are minimal defining tuples for the free spectrahedron

DA = DeitA, by Proposition 2.2, for each t ∈ R there is a unitary U = Ut ∈Md(C) such that,

for each s = 1, . . . , g,

(2.1) U∗t AsUt = eitAs.

For a fixed s, equation (2.1) holds for each real t so the spectrum of As is a circular set for

each s. Since each As is finite dimensional, the spectrum of each As is {0} and each As is

nilpotent.

Fix a number t relatively irrational with respect to π. For notational ease, abbreviate

U = Ut (for this t). Being unitary, the matrix U can be (block) diagonalized as

U = W ∗DW

where D ∈Md(C) is diagonal and W ∈Md(C) is unitary. Equation (2.1) shows

D∗WAsW
∗D = eitWAsW

∗

Clearly, LWAW ∗ and LA define the same free spectrahedron. Thus, without loss of generality,

U may be taken to have the form

(2.2) U = (λ1Im1 ⊕ λ2Im2 ⊕ · · · ⊕ λk+1Imk+1
),
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where the λj are distinct unimodular numbers. Let Sj denote the corresponding eigenspace

of U and let the Imj
be identity matrices on these spaces.

Since Cd = S1⊕· · ·⊕Sk+1 we can use this orthogonal sum to give a block decomposition

(2.3) As = (As(j, `))j,`)

subordinate to the Si. Note that

(2.4) λjλ`As(j, `) = eitAs(j, `)

so it follows that

(2.5) λ` = eitλj or As(j, `) = 0 for all s.

Equation (2.5) implies As(j, j) = 0 for each s and j.

Lemma 2.3. Let U ∈ Md(C) be a unitary with the form of equation (2.2) and let A =

(A1, . . . , Ag) ∈ Md(C)g be a g-tuple of matrices with block decomposition As = (As(j, `)j,`)

as described in equation (2.3). Assume there is a t ∈ R relatively irrational with respect to

π such that eitAs = U∗AsU for all s.

Given 1 ≤ j, ĵ, `, ˆ̀≤ k + 1, if As(j, `) 6= 0 and if Aŝ(j, ˆ̀) 6= 0, then, by equation (2.5),

` = ˆ̀. Likewise, if As(j, `) 6= 0 and if Aŝ(ĵ, `) 6= 0, then j = ĵ. Moreover, if (j, `) is a

nonzero location, then, for ĵ 6= j and ˆ̀ 6= ` and all s, the matrices As(ĵ, `) and As(j, ˆ̀) are

both zero.

Proof. Fix 1 ≤ j ≤ k + 1 and note from equation (2.5) that if As(j, `) and Aŝ(j, ˆ̀) are both

not zero, then λ` = eitλj and λˆ̀ = eitλj. In particular, λ` = λˆ̀. Since the λk are distinct it

follows that ` = ˆ̀. Similarly if As(j, `) and Aŝ(ĵ, `) are both not zero, then equation (2.5)

shows λj = λĵ, hence j = ĵ.

Given a family of matrices A = {As}gs=1 with the block decomposition As = (As(j, `))j,`),

a sequence of pairs from the set {1, . . . , k + 1} of the form

(2.6) C = {(j0, j1), (j1, j2), (j2, j3), . . . , (jm, jm+1)}

such that for each 1 ≤ r ≤ m there is an s such that As(jr, jr+1) 6= 0 is an admissible

chain. Call j0 the left end of C and denote by SC the subspace

(2.7) SC = Sj0 ⊕ Sj1 ⊕ Sj2 ⊕ · · · ⊕ Sjm+1 .

The family A has a block zero column if there is an ` such that As(j, `) = 0 for all s, j.

Lemma 2.4. Assume the setup and hypotheses of Lemma 2.3 with chain structure as de-

scribed in equation (2.6).

(1) If C is a chain as in (2.6), then the jk are distinct.

(2) The family A has a block zero column.
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Proof. Suppose C is a chain as in (2.6), but the jk are not distinct. Since As(j, j) = 0 for all

j and s, in this case we may assume that m ≥ 1 and jm+1 = j0 and jk 6= j` for 0 ≤ k, ` ≤ m.

By reindexing if needed, we may assume that

C = {(m, 1), (1, 2), (2, 3), . . . , (m− 1,m)}

is an admissible chain. Summarizing, for each 1 ≤ j < m there exists an sj such that

Asj(j, j + 1) 6= 0 and there exists an sm such that Asm(m, 1) 6= 0. Equation (2.5) implies

λj = λ1e
(j−1)it for each 1 ≤ j ≤ p. Thus λp must be both λ1e

−it and λ1e
(p−1)it. Hence pt is a

multiple of 2π contradicting the choice of t as relatively irrational with respect to π and the

proof of item (1) is complete.

Turning to item (2) and arguing by contradiction, suppose for each ` there exists a j`
and an s` so that As`(j`, `) 6= 0. In this case, since, by Lemma 2.3, each column and row has

exactly one nonzero entry and since all diagonal entries of As are zero, there is an m and

distinct indices j0, j1, . . . , jm such that

C = {(j0, jm), (jm, jm−1), . . . , (j2, j1), (j1, j0)}

is an admissible chain. An application of item (1) concludes the proof.

The following lemma completes the set up for the proof of Theorem 1.1 (1).

Lemma 2.5. Assume the set up and hypotheses of Lemma 2.4 and assume C is a maximal

chain whose left end j0 is a block zero column of the As. Then the following hold

(1) SC (defined in equation (2.7)) is a common reducing subspace for each As.

(2) The restriction of each As to SC has the form of equation (1.5) with respect to the

orthogonal decomposition of S as described by equation (2.7).

(3) If A is an irreducible family and As(`, ĵ) = 0 for all 1 ≤ ` ≤ k + 1 and 1 ≤ s ≤ g,

then ĵ = j0. In particular, the As have exactly one block zero column. By reindexing

if needed, {1, . . . , k + 1} is an admissible chain and As(`, 1) = 0 for all s, j.

Proof. Use the notations of equations (2.6) and (2.7). In particular, As(j, k) maps Sk into Sj.
By the definition of chain, for each 1 ≤ ` ≤ m, there is an s` such that As`(j`, j`+1) 6= 0.

From Lemma 2.3, for each 1 ≤ ` ≤ m, each j 6= j`+1 and each 1 ≤ s ≤ g the matrix

As(j`, j) = 0. Hence, AsSj`+1
⊆ Sj` . On the other hand, As(j, j0)Sj = 0 by the choice of

j0. It follows that AsSC ⊆ SC. Thus SC is a common invariant subspace for the As. On the

other hand, since, for each 0 ≤ ` ≤ m the location (j`, j`+1) is a nonzero location, Lemma

2.3 shows As(j`, q) = 0 for all q /∈ {j0, . . . , jm+1} and all 1 ≤ s ≤ g. Finally, the existence of

a q /∈ {j0, . . . , jm+1} and an s such that As(jm+1, q) 6= 0 contradicts the maximality of the

chain C. Hence As(jml+1, q) = 0 for all such q and all s. It follows that S⊥ is also a common

invariant subspace for the As. Hence S is reducing.

Items (2) and (3) follow immediately from item (1) and the definition of irreducible.
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2.2. Proof of Theorem 1.1 (1). The initial set up of the proof shows that, up to unitary

equivalence, the As are nilpotent matrices and that there exists a t relatively irrational with

respect to π and a unitary U with the form of equation (2.2) such that

U∗AsU = eitAs for all s.

Relative to the block decomposition for U , write As = (As(j, `)j,`) (as described in

equation (2.3)). Applying Lemma 2.3 shows that if As(j, `) 6= 0 and Aŝ(j, ˆ̀) 6= 0, then ` = ˆ̀

and if As(j, `) 6= 0 and Aŝ(ĵ, `) 6= 0, then j = ĵ.

Applying Lemma 2.4 shows that there is some j0 such that As(`, j0) = 0 for all s and `.

It follows that the As have a maximal admissible chain C of the form

C = {(j0, j1), (j1, j2), (j2, j3), . . . , (jm, jm+1)}

whose left end j0 is a block zero column of the As.

Applying Lemma 2.5 (1) shows that SC (as defined in equation (2.7)) is a common

reducing subspace for the As. Lemma 2.5 (2) and (3) show that the As have the form of

equation (1.5) and complete the proof.

2.3. Examples. Here are two classical examples of circular free spectrahedra.

Example 2.6. The Bi-disk is a circular free spectrahedron given as the positivity set of

(2.8) LA(z) =

(
1 z1
z∗1 1

)
⊕
(

1 z2
z∗2 1

)
Example 2.7. The Ball is a circular free spectrahedron given as the positivity set of

(2.9) LA(z) =


1 z1 z2 · · · zg
z∗1 1 0 · · · 0

z∗2 0 1 · · · 0
...

...
...

. . .
...

z∗g 0 0 · · · 1


3. A Free Circular Free Spectrahedron is a Matrix Pencil Ball

This section contains the proof of Theorem 1.1 (2). Throughout, A ∈Md(C)g is a fixed

tuple of d× d matrices and it is assumed that the free spectrahedron DA is free circular. We

will state precisely and prove in Theorem 3.6 below there is an N (at most d3) and a tuple

F ∈MN(C)g such that, DA = DE, where

E =

(
0 F

0 0

)
.

A separate argument, given as Corollary 3.7, shows in fact, if A is minimal, then A is unitarily

equivalent to E. Thus, in any case E can be chosen to be of size d.
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3.1. Free Circular Matrix Convex Sets. In this section we describe free circular matrix

convex sets. The set Γ ⊆ M(C)g is matrix convex [EW97] if it is closed under direct

sums in the sense that if X ∈ Γ(n) and Y ∈ Γ(m), then the tuple X⊕Y whose j-th entry is

Xj ⊕ Yj =

(
Xj 0

0 Yj

)
is in Γ(n+m); and is closed under isometric conjugation in the sense that if X ∈ Γ(n)

and V is an n×m isometric matrix, then

V ∗XV =
(
V ∗X1V, . . . , V ∗XgV

)
∈ Γ(m).

In the case 0 ∈ Γ(1), if Γ is closed under direct sums and isometric conjugation, then it is

closed under contractive conjugation (replacing V isometric with V contractive) [HM04]. It

is not hard to show, if Γ is matrix convex, then each Γ(n) is convex in the conventional sense.

The Effros-Winkler matricial Hahn-Banach separation theorem [EW97] says if Γ is closed

(meaning each Γ(n) is closed), matrix convex, 0 ∈ Γ(1), and if Y /∈ Mn(C)g \ Γ(n), then

there exists a tuple A ∈ Mn(C)g such that LA(X) � 0 for X ∈ Γ, but LA(Y ) 6� 0. In this

sense DA is the free analog of a separating hyperplane and a closed matrix convex set is an

intersection of free spectrahedra.

Proposition 3.3 below is the analog of the Effros-Winkler separation theorem for free

circular matrix convex sets. It is an effective version of [BMV+, Proposition 3.5].

Lemma 3.1. Suppose D ⊆ M(C)g contains 0 and is closed with respect to direct sums. If

for each pair of positive integers s, t, each Y ∈ D(t) and each pair of t× s isometries V1, V2
(so t ≥ s), V ∗2 XV1 ∈ D(s), then for each pair m,n of positive integers, each X ∈ D(n) and

each pair C1, C2 of m× n contractions, C∗2XC1 ∈ D(m).

Proof. Let positive integers m,n, a tuple X ∈ D(n) and a pair of m× n contractions C1, C2

be given. Let Dj = (I − C∗jCj)
1
2 . With this choice of Dj, the (m+ n)×m matrices

Vj =
(
Cj Dj

)
are isometries. Since D is closed with respect to direct sums and contains 0, it follows that

X ⊕ 0 ∈ D(n + m). Since D is closed with respect to multiplying on the left by the adjoint

of an isometry and the right by an isometry (of the same sizes),

V ∗2

(
X 0

0 0

)
V1 = C∗2XC1 ∈ D(m).

Following [BMV+] we call a graded set C = (C(n))n∈N matrix balanced if for each pair

m,n of positive integers, each X ∈ C(n) and pair of n ×m contractions C1, C2, the matrix

C∗2XC1 ∈ C(m). Observe, if C is matrix balanced and closed with respect to direct sums,

then it is matrix convex and in particular each DA(n) is convex in the ordinary sense.
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Proposition 3.2. A subset D of M(C)g is closed with respect to direct sums and matrix

balanced if and only if it is matrix convex, free circular and contains 0.

Proof. Choosing C2 = Z∗ and C1 = I shows if D is matrix balanced, then it is free circular.

Choosing C1 = C2 shows matrix balanced implies matrix convex. Choosing either C1 or C2

equal zero shows 0 ∈ D. Hence, D matrix balanced implies matrix convex, free circular and

0 ∈ D.

In view of Lemma 3.1, it suffices to prove the converse under the added assumption

that the Cj are isometries. In this case, there exists an n × n unitary matrix W such that

WC1 = C2. Letting Z = W ∗ gives ZX ∈ D(n) by the free circular hypothesis. Thus

C∗1(ZX)C1 ∈ D(m) by the matrix convex assumption. Finally, as C∗1Z = C∗2 the result

follows.

Given ε > 0, the free ε-neighborhood of 0, denoted Nε, is the graded set (Nε(n))∞n=1

where

Nε(n) = {X ∈Mn(C)g :
∑
‖Xj‖ < ε}.

Proposition 3.3. Let C = (C(n)) denote a free circular matrix convex subset of the graded

set M(C)g that contains a free ε-neighborhood of 0. If Xb ∈ Mn(C)g is in the boundary of

C(n), then there is a tuple Q ∈Mn(C)g such that ‖ΛQ(Y )‖ ≤ 1 for all m and Y ∈ C(m) and

such that ‖ΛQ(Xb)‖ = 1.

Proof. By Proposition 3.2 and [BMV+, Proposition 3.5], C = BF for some operator tuple F

acting on a Hilbert space H. Here BF is the operator pencil ball determined by F , i.e.,

BF =
{
X ∈M(C)g :

∥∥∑
j

Fj ⊗Xj

∥∥ ≤ 1
}
.

Let ΛF (x) =
∑g

j=1 Fjxj denote the homogeneous operator pencil determined by F. Since Xb

is in the boundary of BF , we see that ‖ΛF (Xb)‖ = 1. Hence, there exists a sequence of unit

vectors γk ∈ H ⊗Cn such that (‖ΛF (Xb)γk‖)k tends to 1. Fix k. Write γk =
∑n

j=1 γk,j ⊗ ej.
Let Γk denote an n dimensional subspace of H containing the span of {γk,1, . . . , γk,n} (if the

dimension of H is less than n, then there is nothing to prove) and let Gk = V ∗FV ∈Mn(C)g,

where V : Cn → Γk is an isometry. It follows that (‖ΛGk(Xb)‖)k tends to 1. By compactness,

(Gk) has a subsequence which converges in norm to some G ∈ Mn(C)g. It follows that

‖ΛG(Xb)‖ = 1 and ΛG is at most one in norm on C.

The authors of [BMV+] obtain [BMV+, Proposition 3.5] as a consequence of Ruan’s

representation theorem for operator spaces (see [ER00, Theorem 2.3.5] or [Pau02, Chapter

13]). We give an elementary self-contained proof of Proposition 3.3 in Appendix A.
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3.2. Criteria for Membership in a Free Spectrahedron. This section contains three

simple lemmas preliminary to the proof of Theorem 1.1 (2).

Lemma 3.4. A tuple X ∈Mn(C)g lies in DA(n) if and only if for every subspace M of Cn

of dimension e ≤ d, the tuple V ∗XV lies in DA(e), where V : M → Cn is the inclusion map.

Proof. To prove the non-trivial direction, let a vector v ∈ Cd ⊗ Cn be given. Write v =∑d
j=1 ej ⊗ vj, where {e1, . . . , ed} is an orthonormal basis for Cd. Let M denote the span of

{v1, . . . , vd}. Thus M has dimension e ≤ d. Let V denote the inclusion of M into Cn. Since

V ∗XV ∈ DA(e) by assumption,

〈LA(X)v, v〉 = 〈LA(V ∗XV )v, v〉 ≥ 0

and the desired conclusion follows.

Before proceeding we address a technical point related to the Kronecker product that

occurs in the following lemma. Note that for any B1, B2 ∈ M`(C) and Z ∈ Mν(C) we have

the identity

(3.1) (B1 ⊕B2)⊗ Z = (B1 ⊗ Z)⊕ (B2 ⊕ Z).

On the other hand, while Z ⊗ (B1 ⊕ B2) 6= (Z ⊗ B1) ⊕ (Z ⊗ B2), the fact that these two

expressions are unitarily equivalent suffices for our arguments. In fact, there is a permutation

matrix, often called the canonical shuffle, Π`,ν ∈Mν`(C) such that B⊗Z = Π∗`,ν(Z ⊗B)Π`,ν

for any matrices B ∈M`(C) and Z ∈Mν(C). We write B ⊗ Z c.s.∼ Z ⊗B.

Lemma 3.5. Suppose DA is matrix balanced, closed with respect to direct sums and Λ = ΛF

is a homogeneous linear pencil.

(i) If ‖Λ(X)‖ > 1 for all X ∈ Md(C)g \ DA(d), then, ‖Λ(Y )‖ > 1 for each 1 ≤ e ≤ d

and Y ∈Me(C)g \ DA(e).

(ii) If ‖Λ(X)‖ > 1 for all X ∈Md(C)g \ DA(d), then ‖Λ(X)‖ > 1 for all X /∈ DA.

(iii) If ‖Λ(X)‖ ≤ 1 for all X ∈ DA and ‖Λ(X)‖ = 1 for all X ∈ ∂DA(d), then DA = DE,

where E =

(
0 F

0 0

)
.

Proof. To prove item (i), suppose 1 ≤ e ≤ d and Y ∈ Me(C)g \ DA(e). Thus LA(Y ) 6� 0.

Let 0 denote the tuple of zeros in Md−e(C)g and let X = Y ⊕ 0. Now X /∈ DA(d) since

LA(X)
c.s.∼ LA(Y ) ⊕ I 6� 0. By hypothesis, ‖Λ(X)‖ > 1. But Λ(X)

c.s.∼ Λ(Y ) ⊕ 0. Hence,

‖Λ(Y )‖ > 1.

By item (i), to prove item (ii) it may be assumed that ‖Λ(X)‖ > 1 for all 1 ≤ e ≤ d

and X ∈ Me(C)g \ DA(e). Let n and Y ∈ Mn(C)g \ DA(n) be given. By Lemma 3.4,

there is a subspace M of dimension e ≤ d such that, X = V ∗Y V /∈ DA(e), where V is the

inclusion of M into Cd. Hence, by assumption, ‖Λ(X)‖ > 1. Hence there is a unit vector
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v ∈ CN ⊗M ⊆ CN ⊗ Cn, where N is the size of the pencil Λ, such that ‖Λ(X)v‖ > 1.

Consequently,

1 < ‖Λ(X)v‖ = ‖(I ⊗ V )∗Λ(Y )(I ⊗ V )v‖ ≤ ‖Λ(Y )‖ ‖v‖ = ‖Λ(Y )‖.

To prove item (iii), first note that the hypotheses immediately imply DA ⊆ DE. To

prove the reverse inclusion, observe, if X /∈ DA(d), then there is an 0 < r < 1 such that

rX ∈ ∂DA(d) (since 0 is in DA(d) and DA(d) is convex) and hence ‖Λ(X)‖ = 1
r
> 1. Thus,

if X /∈ DA(d), then ‖Λ(X)‖ > 1. It follows from item (ii) that X /∈ DA implies X /∈ DE.

Hence DE ⊆ DA and the proof is complete.

3.3. Free Circular Free Spectrahedra. The final part of Theorem 1.1, stated in a some-

what different form below as Corollary 3.7, is proved in this subsection.

Theorem 3.6 (Theorem 1.1 (2)). If DA is a free circular spectrahedron, then there exists a

homogeneous linear pencil Λ such that ‖Λ(X)‖ ≤ 1 if and only if X ∈ DA. Moreover, Λ is

the direct sum of at most d2 homogeneous linear pencils of size (at most) d.

Corollary 3.7. Suppose A ∈Md(C)g. If LA is a minimal defining pencil for DA and DA is

free circular, then there exists positive integers s, t such that s + t = d and a g-tuple F of

s× t matrices with entries from C such that,

A
u∼
(

0 F

0 0

)
.

Proof of Corollary 3.7. By Theorem 3.6, there exist positive integers m,n and a tuple G of

m× n matrices such that DA = DB, where

B =

(
0 G

0 0

)
.

In particular, the size of B is (m + n) × (m + n). Next observe, without loss of generality,

it may be assumed that ker(G) = {0} = ker(G∗).

There is a reducing subspace E ⊆ Cm⊕Cn such that, letting E denote the restriction of

B to E , the monic linear pencil LE is minimal defining for DA (cf. Proposition 2.2). Hence

by loc. cit. A and E are unitarily equivalent. Let G denote the projection of E onto the first

coordinate and G∗ denote the projection onto the second coordinate. Thus E ⊆ G ⊕ G∗. On

the other hand, since E is reducing for E,

G∗jGjG∗ = B∗jBjE =

(
0 0

0 G∗jGj

)
E ⊆ E .

Hence each G∗j maps G∗ into G∗ and
∑g

j=1G
∗
jGjG∗ ⊆ G∗. On the other hand, since

∑
G∗jGj

does not have a kernel, it follows that the span of the subspaces G∗jG∗ is precisely G∗. Thus
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G∗ ⊆ E . Likewise G ⊆ E . Hence E = G ⊕ G∗ and thus,

E = W ∗BW =

(
0 V GV∗
0 0

)
,

where W is the inclusion of E into Cm+n and V and V∗ are the inclusions of G and G∗ into

Cm and Cn respectively.

The proof of Theorem 3.6 rests on two preliminary lemmas. Given a vector v =∑d
k=1 ek ⊗ vk ∈ Cd ⊗ Cn and matrix η ∈Md(C), let

[η, v] =
d∑
s=1

es ⊗
( d∑
k=1

ηs,kvk
)
∈ Cd ⊗ Cn = Cnd.

A pair (X, v) ∈Mn(C)g× (Cnd \{0}) is in the detailed boundary of DA(n) if X ∈ DA and

LA(X)v = 0.

Lemma 3.8. Fix positive integers n,N and suppose (Xj, vj) ∈ Mn(C)g ⊗ Cnd are in the

detailed boundary of DA(n) for 1 ≤ j ≤ N . Write, vj ∈ Cnd = Cd ⊗ Cn as

(3.2) vj =
d∑

k=1

ek ⊗ vjk.

Let P denote the subspace of Md(C) consisting of those matrices c such that [c, vj] = 0 for

all 1 ≤ j ≤ N. (In this context, we identify Md(C) with Cd2 or equivalently endow Md(C)

with the Hilbert-Schmidt norm.) There exists a homogeneous linear pencil Λ of size d, an `

and a nonzero matrix η ∈ P⊥ such that ‖Λ(Z)‖ ≤ 1 for all Z ∈ DA, and such that [η, v`] 6= 0

and if [η, vj] 6= 0, then ‖Λ(Xj)‖ = 1.

Proof. Let {εj}Nj=1 be the standard orthonormal basis for CN and let E j = εjε
∗
j ∈ CN×N. Let

Y =
∑N

j=1X
j ⊗ E j. Since Y is unitarily equivalent to ⊕Nj=1X

j, it follows that Y ∈ D(nN).

Let v =
∑N

j=1 v
j ⊗ εj ∈ CndN . Thus, v =

∑d
k=1 ek ⊗ vk, where, for 1 ≤ k ≤ d,

vk = vjk ⊗ εj ∈ CnN .

Let M denote the span of {vk : 1 ≤ k ≤ d} as a subspace of CnN and let m denote the

dimension of M. In particular, m ≤ d. Let V denote the inclusion of M into CnN and let

Z = V ∗Y V . Note that Z ∈ DA(m) since DA is matrix convex and V is an isometry. Observe

that

ΛA(Y ) =

g∑
k=1

Ak ⊗ Yk =

g∑
k=1

Ak ⊗
( N∑
j=1

(Xj
k ⊗ E

j)
)

=
N∑
j=1

( g∑
k=1

Ak ⊗Xj
k

)
⊗ E j =

N∑
j=1

ΛA(Xj)⊗ E j.

(3.3)
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It follows from equation (3.3), that

〈LA(Z)v, v〉 = 〈LA(Y )v, v〉 =
N∑
j=1

〈LA(Xj)vj, vj〉 = 0.

Thus Z boundary of DA(m). By Proposition 3.3, there is a homogeneous linear pencil Λ of

size m ≤ d (and without loss of generality we take Λ of size d) such that ‖Λ(X)‖ ≤ 1 for all

X ∈ DA and ‖Λ(Z)‖ = 1. Thus, there is a unit vector γ ∈ Cd ⊗M such that ‖Λ(Z)γ‖ = 1.

It follows that γ is in the span of {es ⊗ vk : 1 ≤ s, k ≤ d}; i.e, γ ∈ Cd ⊗M . In particular,

there is a µ ∈Md(C) such that γ =
∑d

s=1 es ⊗ (
∑d

k=1 µs,kvk) = [µ, v]. Let γj = [µ, vj]. Thus

γ =
∑N

j=1 γ
j ⊗ εj and γj 6= 0 if and only if [µ, vj] 6= 0. Estimate, using equation (3.3),

1 = ‖Λ(Z)γ‖2 = ‖Λ(V ∗Y V )γ‖2 = ‖(I ⊗ V ∗)Λ(Y )γ‖2

≤ ‖Λ(Y )γ‖2 =
N∑
j=1

‖Λ(Xj)γj‖2 ≤
N∑
j=1

‖γj‖2 = 1.

It follows that ‖Λ(Xj)γj‖ = ‖γj‖ for all 1 ≤ j ≤ N . Moreover, there exists an ` such that

‖γ`‖ 6= 0. Equivalently, [µ, v`] 6= 0. Furthermore, ‖Λ(X`)‖ = 1 for each such `. To complete

the proof, let η denote the projection of µ onto P⊥. Since [η, vj] = [µ, vj] = γj, it follows

that [η, γj] 6= 0 implies ‖Λ(Xj)‖ = 1. Finally, [η, v`] 6= 0.

Lemma 3.9. Fix a positive integer n and suppose (Xj, vj) is a sequence from the detailed

boundary of DA(n). Write, vj ∈ Cd ⊗ Cn as in (3.2). Let P denote the subspace of Md(C)

consisting of those matrices c such that [c, vj] = 0 for all j.

There exists a homogeneous linear pencil Λ of size d and a nonzero matrix η ∈ P⊥ such

that ‖Λ(Z)‖ ≤ 1 for all Z ∈ DA and such that if [η, vj] 6= 0, then ‖Λ(Xj)‖ = 1. In particular,

there is a j such that [η, vj] 6= 0.

Proof. For positive integers N , let PN denote the subspace of Md(C) consisting of those

matrices c such that [c, vj] = 0 for 1 ≤ j ≤ N . Hence, P1 ⊇ P2 ⊇ · · · and P = ∩∞N=1PN .

By Lemma 3.8, for each N there exists a homogeneous linear pencil ΛN of size d and a

unit vector (matrix of Hilbert-Schmidt norm one) ηN ∈ P⊥ such that ‖ΛN(X)‖ ≤ 1 for all

X ∈ DA and, if 1 ≤ j ≤ N and [ηN , vj] 6= 0, then ‖ΛN(Xj)‖ = 1. Write,

ΛN(x) =

g∑
j=1

ΛN
j xj.

Since DA contains a free neighborhood of 0, there is a uniform bound on the norms of the

matrices {ΛN
j : j,N}. It follows that there are subsequences (ΛN`)` and (ηN`)` converging

to some Λ and η respectively. In particular, ‖Λ(X)‖ ≤ 1 for all X ∈ DA. Since ηN` ∈ PM
for N` ≥ M and since PM is a (closed) subspace of Md(C), it follows that η ∈ PM and

consequently η ∈ P⊥ is a unit vector. Hence there is a j such that [η, vj] 6= 0. Thus
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[ηN` , vj] 6= 0 for large enough `. For such ` it follows, from Lemma 3.8, that ‖ΛN`(Xj)‖ = 1

and hence ‖Λ(Xj)‖ = 1.

Proof of Theorem 3.6. Let J0 denote a countable set and choose a dense subset {Xj : j ∈ J0}
of the boundary of DA(d) indexed by J0. For each j ∈ J0 there is a unit vector vj such that

(Xj, vj) is in the detailed boundary of DA(d). Write vj =
∑g

k=1 ej ⊗ vjk. Let P0 denote

those vectors c ∈ Md(C) such that [c, vj] = 0 for all j ∈ J0. By Lemma 3.9, there exists a

linear pencil Λ1 of size d and a unit vector η1 ∈ P⊥0 such that ‖Λ(Z)‖ ≤ 1 for all m and

Z ∈ DA(m) and ‖Λ(Xj)‖ = 1 for each j ∈ J0 such that [η1, vj] 6= 0. Moreover, there is a

j0 ∈ J0 such that [η1, vj0 ] 6= 0. Let J1 denote those indices j ∈ J0 such that [η1, vj] = 0.

Thus, ‖Λ1(Xj)‖ = 1 for j /∈ J1 and J1 is a proper subset of J0 since j0 ∈ J0, but j0 /∈ J1. If

J1 is empty, the proof is nearly complete. Otherwise, let P1 denote the subspace of vectors

c ∈ Md(C) such that [c, vj] = 0 for all j ∈ J1. Observe that η1 ∈ P1, but η1 /∈ P0 since

[η1, vj0 ] 6= 0. Therefore P0 is a proper subspace of P1. For the collection {(Xj, vj) : j ∈ J1}
there exists a homogeneous linear pencil Λ2 of size d and unit vector η2 ∈ P⊥1 such that if

j ∈ J2 and [η2, v
j] 6= 0, then ‖Λ2(Xj)‖ = 1 and, letting J2 denote those j ∈ J1 such that

[η2, vj] = 0, the subspace P2 consisting of those c ∈Md(C) such that [c, vj] = 0 for all j ∈ J2
properly contains P1. Recursively define PN and observe Md(C) ⊇ PN . Since Md(C) is finite

dimensional this process terminates after ρ ≤ d2 steps and produces

(i) a chain of subspaces P0 ( P1 ( · · · ( Pρ = Md(C) of Md(C);

(ii) a chain of subsets J0 ) J1 ) · · · ) Jρ = ∅;

(iii) homogeneous linear pencils Λr for 1 ≤ r ≤ ρ of size d such that ‖Λr(X)‖ ≤ 1 for

X ∈ DA and ‖Λ(Xj)‖ = 1 for each j ∈ Jr−1 \ Jr.

Let Λ = ⊕ρr=1Λ
r. Thus, by construction, ‖Λ(X)‖ ≤ 1 for all X ∈ D and ‖Λ(Xj)‖ = 1 for

all j ∈ J0. By continuity ‖Λ(Y )‖ = 1 for all Y in the boundary of DA(d). An application of

Lemma 3.5 (iii) completes the proof of the existence of Λ. The bound d3 follows since Λ is

the direct sum of at most d2 pencils each of size at most d.

4. Free Polynomials Invariant under Coordinate Unitary Conjugation

The main result of this section is Theorem 4.1 characterizing monic free matrix polyno-

mials that are invariant under coordinate unitary conjugation. The needed background on

free polynomials and their evaluations are collected in the next subsection. Experts can skip

straight to Subsection 4.2.

4.1. Words, Free Polynomials and Evaluations. We write 〈x, x∗〉 for the monoid freely

generated by x = (x1, . . . xg) and x∗ = (x∗1, . . . , x
∗
g), i.e., 〈x, x∗〉 consists of words in the 2g

noncommuting letters x1, . . . , xg, x
∗
1, . . . x

∗
g (including the empty word ∅ which plays the

role of the identity). Let C〈x, x∗〉 denote the associative C-algebra freely generated by x
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and x∗, i.e., the elements of C〈x, x∗〉 are polynomials in the freely noncommuting variables

x and x∗ with coefficients in C. Its elements are called free polynomials. The involution
∗ on C〈x, x∗〉 extends the complex conjugation on C, satisfies (x∗i )

∗ = xi, reverses the order

of words, and acts R-linearly on polynomials. Polynomials fixed under this involution are

symmetric. The length of the longest word in a free polynomial f ∈ C〈x, x∗〉 is the degree

of f and is denoted by deg(f) or |f | if f ∈ 〈x, x∗〉. The set of all words of degree at most k

is 〈x, x∗〉k, and C〈x, x∗〉k is the vector space of all free polynomials of degree at most k.

Fix positive integers v and `. Free matrix polynomials - elements of C`×v〈x, x∗〉 =

C`×v ⊗C〈x, x∗〉; i.e., `× v matrices with entries from C〈x〉 - will play a role in what follows.

Elements of C`×v〈x〉 are represented as

(4.1) p(x) =
∑

w∈〈x,x∗〉

Bww(x) ∈ C`×v〈x, x∗〉

where the sum is finite, Bw ∈ C`×v, and w(x) runs over words in x and x∗. The involution ∗

extends to matrix polynomials by

p(x)∗ =
∑

w∈〈x,x∗〉

B∗ww(x)∗ ∈ Cv×`〈x, x∗〉.

If v = ` and p(x)∗ = p(x), we say p is symmetric. Additionally if p(0) = I, we say p is monic.

If p ∈ C〈x, x∗〉 is a free polynomial and X ∈Mn(C)g, then the evaluation p(X) ∈Mn(C)

is defined in the natural way by replacing xi by Xi, x
∗
i by X∗i and sending the empty word to

the appropriately sized identity matrix. Such evaluations produce (all) finite dimensional ∗-
representations of the algebra of free polynomials. Polynomial evaluations extend to matrix

polynomials by evaluating entrywise. That is, if p is as in (4.1), then

p(X) =
∑

w∈〈x,x∗〉

Bw ⊗ w(X) ∈ C`×v ⊗Mn(C).

Note that if p ∈Md(C)〈x, x∗〉 is symmetric and X ∈Mn(C)g, then p(X) ∈Md(C)⊗Mn(C) =

Mdn(C) is a self-adjoint matrix.

4.2. Invariant Polynomials. In this subsection we prove Theorem 1.2 stated below in a

self contained fashion for the reader’s convenience. Write A
u∼ B to indicate the matrices A

and B are unitarily equivalent.

Theorem 4.1. Suppose p is a monic free d× d matrix polynomial. For each n and for each

g-tuple of unitaries U = (U1, . . . , Ug) ∈ Mn(C)g there exists a unitary W such that for all

X ∈Mn(C)g,

p(U∗1X1U1, . . . , U
∗
gXgUg) = W ∗p(X1, . . . , Xg)W

if and only if

(4.2) p(x)
u∼ p1(x1)⊕ · · · ⊕ pg(xg);
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i.e., p is (up to unitary equivalence) a direct sum of univariate matrix polynomials.

The following lemma is needed in the proof of Theorem 4.1.

Lemma 4.2. Suppose p(x) =
∑g

i=1 pi(xi) is a free d× d matrix polynomial, where

(4.3) pi(xi)pj(xj) = pi(xi)
∗pj(xj) = pi(xi)pj(xj)

∗ = 0

whenever i 6= j. Then there exists a unitary U such that

(4.4) U∗p(x)U = p̂1(x1)⊕ · · · ⊕ p̂g(xg).

for some free matrix polynomials p̂j each in the variables xj, x
∗
j alone.

Proof. Suppose (4.3) holds whenever i 6= j. Using the notation wi(xi) to denote words in xi
and x∗i , write

pi(xi) =
∑
wi

Awi
wi(xi).

Then

(4.5) pi(xi)pj(xj) =
∑
wi,wj

Awi
Awj

wi(xi)wj(xj) = 0.

Note that, if wi(xi), vi(xi), wj(xj), vj(xj) are words in xi and xj, respectively, then we have

wi(xi)wj(xj) = vi(xi)vj(xj) if and only if wi(xi) = vi(xi) and wj(xj) = vj(xj). This implies

that each monomial appears on the right hand side of (4.5) exactly once. It follows that

Awi
Awj

= 0 for all wi, wj whenever i 6= j. Similarly,

(4.6) pi(xi)
∗pj(xj) =

∑
wi,wj

A∗wi
Awj

wi(xi)
∗wj(xj) = 0.

Since each monomial appears on the right hand side of (4.6) exactly once, it follows that

A∗wi
Awj

= 0 for all wi, wj whenever i 6= j. Furthermore,

(4.7) pi(xi)pj(xj)
∗ =

∑
wi,wj

Awi
A∗wj

wi(xi)wj(xj)
∗ = 0.

It follows that Awi
A∗wj

= 0 for all wi, wj whenever i 6= j.

Let Aj denote the finite dimensional (non-unital) C∗-algebra generated by

{Awj
: wj is a word in xj, x

∗
j}.

Then

(4.8) AjA` = {0} for j 6= `.

Decompose Cd as a direct sum of invariant (hence reducing) subspaces for A1, say

Cd = S1 ⊕ · · · ⊕ Sm ⊕ Sm+1,
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where A1 acts irreducibly on Sj for j ≤ m and A1(Sm+1) = 0. From (4.8) it follows that Ak
for k ≥ 2 vanishes on S1, . . . ,Sm. In particular, Sm+1 = (S1 ⊕ · · · ⊕ Sm)⊥ is invariant under

Ak for k ≥ 2. Thus p(x) = p̂1(x1) ⊕ q(x̂) where q is a free matrix polynomial depending

only on x̂ = (x2, . . . xg) and x̂∗ = (x∗2, . . . , x
∗
g). We can repeat the above consideration –

decomposing Sm+1 into a direct sum of reducing subspaces for A2, etc. Tracking down all

these decompositions yields the desired block form (4.4).

Proof of Theorem 4.1. Let x = (x1, . . . , xg) be a g-tuple of noncommuting letters and sup-

pose p is a monic free d × d matrix polynomial that is invariant under coordinate unitary

conjugation. Here p is given by p(x) =
∑

w Bww(x). Call a monomial a (noncommutative)

cross term if it contains a product of the form xixj or xix
∗
j or x∗ixj or x∗ix

∗
j where i 6= j. Our

immediate goal is to show that p(x) does not have any cross terms.

To this end, let Cx be the set of all cross term monomials and define the free matrix

polynomials pncr and pcr by

(4.9) pncr(x) =
∑

w(x)/∈Cx

Bww(x), pcr(x) =
∑

w(x)∈Cx

Bww(x).

Here pncr(0) = Id and pcr(0) = 0d. With this notation,

(4.10) p(x) = pncr(x) + pcr(x).

To show p has no cross terms we will show p(x) = pncr(x).

Define x̃1, . . . , x̃g by

x̃1 = x1 ⊕ 0⊕ · · · ⊕ 0, x̃2 = 0⊕ x2 ⊕ · · · ⊕ 0, . . . , x̃g = 0⊕ · · · ⊕ 0⊕ xg,

Choose permutation matrices Ui so that U∗i x̃iUi = xi ⊕ 0⊕ · · · ⊕ 0 for all i.

Recall the canonical shuffle discussed before Lemma 3.5. We use it again here dealing

with polynomials. Namely, if f is a d× d free matrix polynomial then the notation f(x)
c.s.∼

h(x) means that for all n and for all X ∈Mn(C)g there exists a matrix Π̂n that is a product

of direct sums of canonical shuffles such that Π̂∗nf(X)Π̂n = h(X).

Consider p(x̃) = p(x̃1, . . . , x̃g). Since x̃ix̃j = 0 = x̃ix̃
∗
j = x̃∗i x̃j whenever i 6= j we see that

q(x) = p(x̃)
c.s.∼ q1(x1)⊕ · · · ⊕ qg(xg)

where the qi are monic matrix polynomials each depending only on xi and x∗i . Furthermore,

p(U∗1 x̃1U1, . . . , U
∗
g x̃gUg)

u∼ p(x)⊕ p(0)⊕ · · · ⊕ p(0) = p(x)⊕ Id(g−1) =
∑
w

(Bw ⊕ 0d(g−1))w(x).

Fix n and consider the evaluations p(X) ⊕ Ind(g−1) and q(X) on g-tuples of matrices

X ∈ Mn(C)g. By assumption there exists a unitary Vn depending only on our permutation

matrices Ui and on n such that

(4.11) V ∗n q(X)Vn = p((U1 ⊗ In)∗X̃1(U1 ⊗ In), . . . , (Ug ⊗ In)∗X̃g(Ug ⊗ In)) = p(X)⊕ Ind(g−1)



CIRCULAR FREE SPECTRAHEDRA 19

for all X ∈Mn(C)g.

Define the n×n matrix X n
k by X n

k = (X n
k,ij)ij for 1 ≤ k ≤ g. Here the X n

k,ij are commuting

variables and X n
k is called a generic matrix. Define the g-tuple of n × n matrices X n by

X n = (X n
1 , . . . ,X n

g ). We say a word in the commuting letters {X n
k,ij}i,j,k and {(X n

k,ij)
∗}i,j,k is

a commutative cross term if it contains a product of the form X n
k,ijX n

`,rs or X n
k,ij(X n

`,rs)
∗ with

k 6= `. Then (4.11) is equivalent to

(4.12) V ∗n q(X n)Vn = p(X n)⊕ Ind(g−1).

We next show that the entries of p(X n) have no commutative cross terms.

Since q(x) contains no cross terms it follows that for all n the entries of q(X n) contain

no commutative cross terms. Furthermore, the entries of V ∗n q(X n)Vn are linear combinations

of the entries of q(X n) so it follows that for all n the entries of V ∗n q(X n)Vn contain no

commutative cross terms. Using (4.12) we conclude that for all n the entries of p(X n) ⊕
Ind(g−1), and hence the entries of of p(X n), contain no commutative cross terms.

Since the entries of p(X n) have no commutative cross terms we know from equation

(4.10) that the entries of pncr(X n)+pcr(X n) have no commutative cross terms. If a monomial

w(x) is not a cross term, then none of the entries of w(X n) are commutative cross terms.

Therefore none of the entries of pncr(X n) are commutative cross terms. Since p(X n) has no

commutative cross terms this implies that none the entries of pcr cannot be commutative

cross terms. We conclude pcr(X n) = 0nd×nd and therefore

(4.13) pncr(X n) = p(X n).

Equation (4.13) holds for all n, so we obtain that for all n and for all g-tuples of n× n
matrices X we have the equality

(4.14) pncr(X) = p(X).

Since equation (4.14) holds for all n, we conclude

(4.15) pncr(x) = p(x).

Therefore, p has no cross terms, as claimed.

Now p can be written p(x) = I +
∑g

i=1 pi(xi) where pi(0) = 0. Additionally, since p is

invariant under coordinate unitary conjugation it follows that p2 defined by

(4.16) p2(x) = I + 2
∑
i

pi(x) +
∑
i,j

pi(xi)pj(xj)

is also invariant under coordinate unitary conjugation and hence p2 cannot have any cross

terms. Thus equation (4.16) implies that pi(xi)pj(xj) = 0 whenever i 6= j.
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Additionally, since p is invariant under coordinate unitary conjugation, given any uni-

taries Ui ∈ Mn(C) there exists some unitary U ∈ Mnd(C) depending only on the Ui such

that for any X ∈Mn(C)g we have

(4.17) p(X1, . . . Xg) = U∗p(U∗1X1U1, . . . , U
∗
gXgUg)U.

It immediately follows that

(4.18) p(X1, . . . Xg)
∗ = U∗p(U∗1X1U1, . . . , U

∗
gXgUg)

∗U.

These two equations imply

(4.19)
p(x)∗p(x) = I +

∑
i pi(x) +

∑
i pi(x)∗ +

∑
i,j pi(xi)

∗pj(xj),

p(x)p(x)∗ = I +
∑

i pi(x) +
∑

i pi(x)∗ +
∑

i,j pi(xi)pj(xj)
∗

are also invariant under coordinate unitary conjugation and therefore have no cross terms.

Therefore pi(xi)pj(xj)
∗ = pi(xi)

∗pj(xj) = 0 whenever i 6= j.

It follows from Lemma 4.2 that there exists a unitary V ∈Md(C) such that

V ∗p(x)V = p̂1(x1)⊕ · · · ⊕ p̂g(xg),

where the p̂i are monic free matrix polynomials in the variable xi. Thus, if p is invariant

under coordinate unitary conjugation, then equation (4.2) holds.

The converse is straightforward. If (4.2) holds, then evidently p is invariant under

coordinate unitary conjugation.

Remark 4.3. We say a free spectrahedron D is invariant under coordinate unitary conju-

gation if X ∈ D implies (U∗1X1U1, . . . , U
∗
gXgUg) ∈ D for all X ∈ Mn(C)g and all unitaries

U1, . . . , Ug ∈ Mn(C). Suppose the symmetric monic linear pencil LA is minimal in defining

a free spectrahedron DA. It follows from Theorem 4.1 and [HKM13, Theorem 1.2] that DA
is invariant under coordinate unitary conjugation if and only if there is a unitary U so that

U∗LA(x)U =

g⊕
j=1

(
I − Ajxj − Ajx∗j

)
.

Appendix A. Free Circular Matrix Convex Sets are Operator Pencil Balls

In this section we characterize free circular subsets of M(C)g. A subset D ⊆ M(C)g is

free circular if UX ∈ D for each n, each X ∈ D(n) and each n× n unitary matrix U .

A.1. Properties of Free Circular Sets. A free set D ⊆ M(C)g is an operator pencil

ball if there exists a Hilbert space H over C and a g-tuple A ∈ B(H)g such that X ∈ D if

and only if

‖ΛA(X)‖ ≤ 1.
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(Observe that the formulas (1.1) – (1.4) naturally extend to tuples of operators A.) In

particular, an operator pencil ball can be described as the positivity set of the symmetric

operator pencil (
I ΛA(x)

ΛA(x)∗ I

)
.

If H is finite dimensional (so B(H)g ∼= Md(C)g), the set D is a matrix pencil ball.

The main result of this section is Theorem A.5. It shows that a free circular matrix con-

vex free set containing a neighborhood of 0 is an operator pencil ball, and is thus a free circu-

lar analog of the Effros-Winkler matricial Hahn-Banach separation theorem [EW97, HM12].

Lemma A.1. Suppose C is matrix balanced, closed with respect to direct sums and contains

0 in its interior and Q ∈ Md(C)g. If ‖ΛQ(X)‖ ≤ 1 for X ∈ C, then ‖ΛQ(X)‖ < 1 for X in

the interior of C. Conversely, if ‖ΛQ(X)‖ < 1 for X in the interior of C, then ‖ΛQ(X)‖ ≤ 1

for X ∈ C.

A.2. States and Representations of Separating Linear Functionals. Let M`(C)sa
denote self-adjoint elements of M`(C) and suppose S is a subspace of M`(C)sa. An affine

linear mapping f : S → R is a function of the form f(x) = af + λf (x), where λf : S → R
is linear over R and af ∈ R. The following lemma is a version of [EW97, Lemma 5.2].

Lemma A.2. Suppose F is a convex set of affine linear mappings f : S → R and T ⊆ S is

compact and convex. If for each f ∈ F there is a T ∈ T such that f(T ) ≥ 0, then there is a

T ∈ T such that f(T) ≥ 0 for every f ∈ F .

Proof. Each f ∈ F is continuous, a fact we will use freely. For f ∈ F , let

Bf = {T ∈ T : f(T ) ≥ 0} ⊆ T .

By hypothesis each Bf is non-empty and it suffices to prove that⋂
f∈F

Bf 6= ∅.

Since each Bf is compact, it suffices to prove that the collection {Bf : f ∈ F} has the finite

intersection property. Accordingly, let f1, . . . , fm ∈ F be given. Arguing by contradiction,

suppose
⋂m
j=1Bfj = ∅. Define F : S → Rm by

F (T ) = (f1(T ), . . . , fm(T )).

Then F (T ) is both convex and compact because T is both convex and compact since F is

continuous. Moreover, F (T ) does not intersect

Rm
≥0 = {x = (x1, . . . , xm) : xj ≥ 0 for each j}.

Hence there is a linear functional λ : Rm → R such that λ(F (T )) < 0 and λ(Rm
≥0) ≥ 0.

There exists λj such that λ(x) =
∑
λjxj. Since λ(Rm

≥0) ≥ 0 it follows that each λj ≥ 0 and,
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since λ 6= 0, there is a k such that λk > 0. Without loss of generality, it may be assumed

that
∑
λj = 1. Let

f =
∑

λjfj.

Since F is convex, it follows that f ∈ F . On the other hand, f(T ) = λ(F (T )). Hence if

T ∈ T , then f(T ) < 0. Thus, for this f there does not exist a T ∈ T such that f(T ) ≥ 0, a

contradiction which completes the proof.

Lemma A.3. Let C = (C(n)) denote a matrix balanced subset of the graded set M(C)g that

is closed with respect to direct sums. Let n and an C-linear functional L : Mn(C)g → C
be given. If Re(L(X)) ≤ 1 for each X ∈ C(n), then there exits positive semidefinite n × n
matrices T1 and T2 each of trace norm one such that for each m, each Y ∈ C(m), and each

pair C = (C1, C2) of m× n matrices

2 Re(L(C∗2Y C1)) ≤ tr(C1T1C
∗
1) + tr(C2T2C

∗
2).

Proof. Let ` = 2n and let

T = {T = T1 ⊕ T2 : Tj ∈Mn(C)sa, Tj � 0, and tr(Tj) = 1}.

In particular T is a compact convex subset of the `× ` matrices.

Given a positive integer m, a tuple Y in C(m) and m × n contraction matrices C1, C2,

define fY,C : Mn(C)sa ⊕Mn(C)sa → R by

fY,C(T1 ⊕ T2) =
2∑
j=1

tr(CjTjC
∗
j )− 2 Re(L(C∗2Y C1)).

Now we show that the collection

F = {fY,C : Y ∈ C(m), C = (C1, C2) where C1, C2 ∈ Cm×n are contractions and m,n ∈ N}

is a convex set. Start with a positive integer s, nonnegative numbers λ1, . . . , λs with
∑
λj =

1, and with (Yj, Cj,1, Cj,2) for j = 1, . . . , s where Yj ∈ C(mj) and Cj,p are mj ×n contraction

matrices. Let Z = ⊕Yj and let Fp denote the (block) column matrix with entries
√
λjCj,p.

Then Z ∈ C(m) where m =
∑
mj and

F ∗pFp =
∑

λjC
∗
j,pCj,p �

∑
λjI = I.

Hence each Fp is a contraction. By definition,∑
λjC

∗
j,2YjC1 = F ∗2ZF1,

∑
λj tr(Cj,pTpC

∗
j,p) = tr(FpTpF

∗
p ).

Therefore ∑
λjfYj ,Cj

(T ) = fZ,F (T )

so F is convex.
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Observe, for any X ∈ C and pair of matrices C2 and C1 (of the appropriate sizes)

ReL(C∗2XC1) ≤ ‖C2‖ ‖C1‖. Now let fY,C ∈ F be given. Choose unit vectors γj such that

‖Cjγj‖ = ‖Cj‖,

let Tj = γ∗j γj and finally T = T1 ⊕ T2. With these notations,

2 Re(L(C∗2Y C1) ≤ 2‖C1‖ ‖C2‖ ≤ ‖C1‖2 + ‖C2
2‖ = tr(C1γ1γ

∗
1C1) + tr(C2γ2γ

∗
2C
∗
2)

and thus,

fY,C(T ) =
2∑
j=1

tr(Cjγjγ
∗
jC
∗
j )− 2 Re(L(C∗2Y C1)) ≥ 0.

Consequently, for each fY,C there is a T ∈ T such that fY,C(T ) ≥ 0. From Lemma A.2,

there is a T ∈ T such that fY,C(T) ≥ 0 for every Y and C.

A.3. An Effros-Winkler Theorem for Free Circular Matrix Convex Sets. In this

section we present the effective version of [BMV+, Proposition 3.5], i.e., Proposition 3.3,

restated here for the convenience of the reader as Proposition A.4.

Proposition A.4. Let C = (C(n)) denote a matrix balanced subset of the graded set M(C)g

that contains a free ε-neighborhood of 0 and is closed with respect to direct sums. If Xb ∈
Mn(C)g is in the boundary of C(n), then there is a tuple Q ∈Mn(C)g such that ‖ΛQ(Y )‖ ≤ 1

for all m and Y ∈ C(m) and such that ‖ΛQ(Xb)‖ = 1. Furthermore, if Y is in the interior

of C, then ‖ΛQ(Y )‖ < 1.

Proof. By the usual Hahn-Banach separation theorem and the assumption that C(n) contains

an ε-neighborhood of 0, there is a linear functional L : Mn(C)g → C such that Re(L(Xb)) =

1 ≥ Re(L(C(n))).

From Lemma A.3 there exists positive semidefinite n × n matrices T1 and T2 of trace

norm one such that
∑2

p=1 tr(CpTpC
∗
p)− 2 Re(L(C∗2Y C1)) ≥ 0 for each m, each pair of m× n

contractions C1, C2, and each Y ∈ C(m). Hence, by homogeneity, for each m, each pair of

m× n matrices C2, C1, and each Y ∈ C(m),

(A.1)
2∑
p=1

tr(CpTpC
∗
p)− 2 Re(L(C∗2Y C1)) ≥ 0

Note this inequality is sharp in the sense,

(A.2)
2∑
p=1

tr(Tp)− 2 Re(L(Xb)) = 0.
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Let {e1, . . . , eg} denote the standard orthonormal basis for Cg. Thus, if M is an n × n
matrix, then M ⊗ e` = (M1, . . . ,Mg) ∈ Mn(C)g is the g-tuple with Mj = 0 for j 6= ` and

M` = M . Given 1 ≤ ` ≤ g, define a bilinear form on Cn by

B`(c, d) = L(cd∗ ⊗ e`)

for c, d ∈ Cn. There is a unique n× n matrix B` such that B`(c, d) = 〈B`c, d〉.
Let ΛB denote the linear polynomial ΛB(x) =

∑g
1Bjxj. Fix a positive integer m and let

{e1, . . . , em} denote the standard orthonormal basis for Cm. Let Y = (Y1, . . . , Yg) ∈ C(m)

be given and consider ΛB(Y ). Given vectors γp =
∑m

j=1 γp,j ⊗ ej, for p = 1, 2, contained in

Cn ⊗ Cm, compute

〈ΛB(Y )γ2, γ1〉 =
∑
i,j

∑
`

〈B`γ2,j, γ1,i〉〈Y`ej, ei〉 =
∑
i,j

∑
`

L
(
γ2,jγ

∗
1,i ⊗ e`

)
〈Y`ej, ei〉

= L
(∑

`

∑
i,j

γ2,i〈Y`ej, ei〉γ∗1,j ⊗ e`
)

= L
(∑

`

Γ2Y`Γ
∗
1 ⊗ e`

)
= L(Γ2Y Γ∗1),

where Γp is the matrix with j-th column γp,j. Using equation (A.1),

2 Re(L(Γ2Y Γ∗1)) ≤ tr(Γ∗1T1Γ1) + tr(Γ∗2T2Γ2) =
2∑
p=1

m∑
j=1

〈Tpγp,j, γp,j〉

=
2∑
p=1

〈(Tp ⊗ I)
∑
j

γp,j ⊗ ej,
∑
k

γp,k ⊗ ek〉 =
2∑
p=1

〈(Tp ⊗ I)γp, γp〉.

Thus,

(A.3) Φ(Y ) =

(
T1 ⊗ I −ΛB(Y )

−ΛB(Y )∗ T2 ⊗ I

)
� 0

for every m and Y ∈ C(m).

Since C contains the ε-neighborhood of 0, it contains ± ε
2
ej ∈ Cg. Hence, for each j,

0 � Φ(± ε
2
ej) =

(
T1 ±ΛB( ε

2
ej)

±ΛB( ε
2
ej)
∗ T2

)
=

(
T1 ± ε

2
Bj

± ε
2
B∗j T2

)
.

Thus, while the Tp need not be invertible, it can be assumed (passing to subspaces of smaller

dimension if necessary) that they are invertible. Finally, multiplying left and right by ⊕T−
1
2

p

produces the linear polynomial ΛQ(x) =
∑

j Qjxj (with Qj = T
− 1

2
1 BjT

− 1
2

2 ) such that, with

Ψ denoting the monic symmetric linear pencil

Ψ(x) =

(
I −ΛQ(x)

−ΛQ(x)∗ I

)
,

Ψ(Y ) � 0 if and only if Φ(Y ) � 0. In particular, Ψ is positive definite on C. Equivalently,

‖ΛQ(Y )‖ ≤ 1 for all Y ∈ C.
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On the other hand, computing as above, (A.2) becomes

〈Φ(Xb)e⊕ e, e⊕ e〉 =
2∑
p=1

tr(Tp)− 2 Re(〈ΛB(Xb)e, e〉)

= 2− 2
∑
`

∑
j,k

Re(〈B`ej, ek〉 〈Xb
` ej, ek〉)

= 2− 2
∑
`,j,k

Re(L(eje
∗
k ⊗ e`) 〈Xb

` ej, ek〉)

= 2− 2 Re
(
L[
∑
`,j,k

〈Xb
` ej, ek〉 (eje∗k ⊗ e`)]

)
= 2− 2 Re(L(Xb)) = 0,

where e =
∑
ej⊗ej. Since Xb is in C(n), it follows that Φ(Xb) � 0. Thus Φ(Xb)(e⊕e) = 0,

and since (Tp⊗ I)e 6= 0, it follows that Ψ(Xb) is singular too. In particular, ‖ΛQ(Xb)‖ = 1.

Finally, suppose Y ∈ C and ‖ΛQ(Y )‖ = 1. If t > 1, then ‖ΛQ(tY )‖ > 1 and hence tY /∈
C. Thus Y is in the boundary of C. Hence if Y is in the interior of C, then ‖ΛQ(Y )‖ < 1.

Theorem A.5 (cf. [BMV+, Proposition 3.5]). If C ⊆ M(C)g is a closed matrix balanced,

closed with respect to direct sums and C contains a free ε-neighborhood of 0, then C is an

operator pencil ball.

Lemma A.6. If C ⊆ M(C)g is a matrix convex set and if C(1) contains 0 in its interior,

then there exists a constant κ such that if Q ∈M(C)g and ‖ΛQ(X)‖ ≤ 1 for all X ∈ C, then

‖Qj‖ ≤ κ for each 1 ≤ j ≤ g.

Proof. Let {ej : 1 ≤ j ≤ g} denote the standard basis for Cg. By hypothesis, there is an

ε > 0 such that the tuple εej ∈ DQ(1). Hence, 1 ≥ ‖Λ(εej)‖ = ε‖Qj‖. Choosing κ = 1
ε

completes the proof.

Proof of Theorem A.5. For a fixed n, choose a countable set K(n) ⊆ ∂C(n) with K(n) =

∂C(n). By assumption C contains a free ε-neighborhood of 0, so Proposition 3.3 implies that

for each X ∈ K(n) there exists a tuple QX ∈ Mn(C)g such that ‖ΛQX
(Y )‖ ≤ 1 for all m

and Y ∈ C(m) and such that ‖ΛQX
(X)‖ = 1.

Set K =
⋃
nK(n) and define Q =

⊕
X∈K QX . Since K(n) is countable for each n, it

follows that K is also countable. Furthermore, Q is a bounded operator by Lemma A.6. We

will show C = {X ∈M(C)g : ‖ΛQ(X)|| ≤ 1}.
By construction, ‖ΛQX

(Y )‖ ≤ 1 for all Y ∈ C. Hence C ⊆ {X ∈M(C)g : ‖ΛQ(X)‖ ≤ 1}.
Moreover, if X ∈ K, then ‖ΛQX

(X)‖ = 1. Since K is dense in ∂C and ΛQ is continuous,

‖ΛQ(X)‖ = 1 for all X ∈ ∂C.
Finally, suppose Y /∈ C. Since C contains a free ε-neighborhood of 0 there exists some

t ∈ (0, 1) such that tY ∈ ∂C. It follows that ‖ΛQ(tY )‖ = 1 and hence ‖ΛQ(Y )‖ = 1
t
> 1.
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Thus C ⊇ {X ⊆ M(C)g : ‖ΛQ(X)‖ ≤ 1} and therefore, C is the operator pencil ball

{X : ‖ΛQ(X)‖ ≤ 1}.
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