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Abstract. Bell inequalities are pillars of quantum physics in that their violations imply that
certain properties of quantum physics (e.g. entanglement) cannot be represented by any classical
picture of physics. In this article Bell inequalities and their violations are considered through the
lens of noncommutative polynomial optimization. Optimality of these violations is certified for
a large majority of a set of standard Bell inequalities, denoted A2–A89 in the literature. The
main techniques used in the paper include: the NPA hierarchy, i.e., the noncommutative version
of the Lasserre semidefinite programming (SDP) hierarchies based on the Helton-McCullough
Positivstellensatz, the Gelfand-Naimark-Segal (GNS) construction with a novel use of the Artin-
Wedderburn theory for rounding and projecting, and nonlinear programming (NLP). A new
“Newton chip”-like technique for reducing sizes of SDPs arising in the constructed polynomial
optimization problems is presented. This technique is based on conditional expectations. Finally,
noncommutative Gröbner bases are exploited to certify when an optimizer (a solution yielding
optimum violation) can not be extracted from a dual SDP solution.

1. Introduction

Bell inequalities, introduced by Bell in his seminal paper [Bel64], have been instrumental in
the quest to experimentally demonstrate the validity of quantum mechanics. Violation of a Bell
inequality serves as an indicator for entanglement of a quantum state and implies that a physical
interaction cannot be explained via locally causal models from classical physics. Mathemati-
cally a Bell inequality is simply a special type of inequality on (eigenvalues of) noncommutative
polynomials as sketched in Section 1.1, cf. [PNA10]. Thus finding violations of Bell inequalities
requires solving instances of noncommutative polynomial optimization problems.

Polynomial optimization minimizes a polynomial over a semialgebraic set, i.e., a set defined by
polynomial inequalities. Since this optimization problem is NP-hard [Lau09], various relaxation
schemes are employed. The most successful one is the Lasserre hierarchy [Las01] based on Puti-
nar’s Positivstellensatz [Put93], a powerful representation result from real algebraic geometry.
Lasserre’s hierarchy produces a sequence of semidefinite programming (SDP) relaxations whose
optima converge to the optimum of the original problem (under mild natural assumptions). Poly-
nomial optimization and its interplay with real algebraic geometry remain a highly vibrant area,
and we refer the reader to e.g. [Las10, HLL09, Sch05, RTAL13, MHL15, WML21, AM19, Nie14,
Lau09] and the references therein for further details.

In the noncommutative context one considers polynomials in noncommuting variables and
their positivity when evaluated at tuples of matrices (or, more generally, operators on Hilbert
space). Surprisingly, a noncommutative polynomial is positive (semidefinite) if and only if it is
a sum of hermitian squares (sos) [Hel02, McC01]. As in the commutative case, one relies on
sos to optimize noncommutative polynomials over noncommutative semialgebraic sets, i.e., sets
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described by noncommutative polynomial inequality constraints. This is done with the noncom-
mutative Lasserre hierarchy [HM04, DLTW08, NPA08, PNA10, CKP12, BKP16], also called the
Navascués-Pironio-Aćın (NPA) hierarchy. The impetus for progress has been provided by linear
systems theory at first ([DOHMP09, Hel02]), and lately quantum information theory has been a
major driver of progress [DLTW08, NPA08, BFS16, GdLL19]. NCSOStools [CKP11, BKP16] can
compute lower bounds on minimal eigenvalues or traces of noncommutative polynomial objective
functions over noncommutative semialgebraic sets; also see the Julia library TSSOS of Magron
and Wang [MW23, Appendix B].

We next survey how Bell inequalities give rise to noncommutative optimization problems, and
our contribution including a reader’s guide is then given in Section 1.2.

1.1. From Bell inequalities to noncommutative polynomial optimization. Suppose we
have a system consisting of two subsystems, e.g. two players Alice and Bob. It operates as
follows: Alice and Bob receive questions from the finite sets of questions S and T , respectively,
and provide answers from the finite sets of answers A and B, respectively. We consider conditional
joint probabilities

P (a, b|s, t) := P (Alice answers a, Bob answers b|Alice is asked s, Bob is asked t),

called correlations in the quantum literature [Gis09].
If Alice and Bob use deterministic strategies (so-called classical configuration of the system

[AIIS05]), which means that

PA(a|s) := P (Alice answers a|Alice is asked s) ∈ {0, 1}
PB(b|t) := P (Bob answers b|Bob is asked t) ∈ {0, 1},

for all s ∈ S, t ∈ T, a ∈ A, b ∈ B, then we have deterministic correlations [GdLL18] and
P (a, b|s, t) = PA(a|s)PB(b|t) ∈ {0, 1} for all a, b, s, t. If they use independent probabilistic strate-
gies (i.e., for each s ∈ S Alice decides which answer from A to provide based on some probability
distribution ps, i.e., PA(a|s) = ps(a) and the same for Bob, and these distributions are indepen-
dent of each other), we have P (a, b|s, t) = ps(a)pt(b) ∈ [0, 1]. If their strategy is based on some
shared randomness, i.e., if the pair of answers (a, b) to the pair of questions (s, t) is determined
randomly according to some probability distribution ps,t, the resulting correlations are called
classical correlations and are equal to P (a, b|s, t) = ps,t(a, b). That is, classical correlations are
convex combinations of deterministic correlations and they represent the so-called local hidden
variable model [Gis09, AIIS05].

Bell inequalities are linear inequalities in the correlations P (a, b|s, t) and in the marginal prob-
abilities PA(a|s) and PB(b|t), that are valid for all classical correlations and define the so-called
Bell polytope [Gis09, AIIS05]. The tight Bell inequalities are the facet-defining inequalities for
this polytope. However, quantum systems can violate some of them, as has been confirmed by
several experiments, see e.g. [RKM+01]. One of the most famous tight Bell inequalities violated
by quantum systems is the Clauser-Horne-Shimony-Holt (CHSH) inequality [CHSH69], which
classically reads for the case when we have S = T = A = B = {0, 1} as follows [PV09]:

−PA(1|0)− PB(1|0) + P (1, 1|0, 0) + P (1, 1|0, 1) + P (1, 1|1, 0)− P (1, 1|1, 1) ≤ 0.(1.1)

A (quantum) system violates this inequality if the left-hand side is positive, which is equivalent
to the condition that the negative value of the left-hand side is negative. To be compliant with
the rest of the paper, we introduce the violation of the Bell inequality (1.1) as the negative
value of the left-hand side of (1.1) if this value is negative, i.e., violation := PA(1|0) + PB(1|0)−
P (1, 1|0, 0) − P (1, 1|0, 1) − P (1, 1|1, 0) + P (1, 1|1, 1), if this value is negative. Tsirelson [Tsi80]
proved the largest (most negative) violation for the CHSH inequality is −(

√
2− 1)/2.

Quantum systems differ from classical systems in that Alice and Bob follow a quantum strategy,
which means that they share a bipartite quantum state ψ and they answer the questions s, t by
performing quantum measurements on their part of the quantum state. A standard representation
of quantum measurements is the commuting model, where these measurements are represented by
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projector-valued measures, or PVM for short, which are defined to be collections of bounded op-
erators on a separable Hilbert space ∪s∈S{Xa

s | a ∈ A} and ∪t∈T {Y b
t | b ∈ B}, satisfying [NPA08]:

Xa
s Y

b
t = Y b

t X
a
s , Xa

sX
a
s = Xa

s , Y b
t Y

b
t = Y b

t , Xa
sX

a′
s = 0, Y b

t Y
b′
t = 0,∑

a

Xa
s = I,

∑
b

Y b
t = I

for all a, b, s, t, a′ ̸= a, b′ ̸= b.
Based on PVM and a shared quantum state ψ, Alice and Bob return the pair of answers (a, b)

to the pair of questions (s, t) with probability

P (a, b|s, t) = ψTXa
s Y

b
t ψ.

Likewise, PA(a|s) = ψTXa
sψ and PB(b|t) = ψTY b

t ψ.
To look for the largest (most negative) violation of some tight Bell inequality∑

a,s

ca,sPA(a|s) +
∑
b,t

cb,tPB(b|t) +
∑
a,b,s,t

ca,b,s,tP (a, b|s, t) ≥ d,

we have to minimize the left hand side.
For the CHSH example, we have to minimize

ψ⋆(X1
0 + Y 1

0 −X1
0Y

1
0 −X1

0Y
1
1 −X1

1Y
1
0 +X1

1Y
1
1 )ψ

subject to X1
iX

1
i = X1

i , and Y 1
i Y

1
i = Y 1

i , for i = 0, 1, and X1
i Y

1
j = Y 1

j X
1
i , for all i, j = 0, 1,

where ψ is a complex unit vector. Note that we eliminated X0
i and Y 0

i , i = 0, 1 since they can
be expressed as X0

i = I − X1
i and Y 0

i = 1 − Y 1
i and they in this form satisfy the constraints

from above. In purely mathematical terms, to establish the largest violation we are looking for a
minimum eigenvalue of the non-commutative polynomial X1

0+Y
1
0 −X1

0Y
1
0 −X1

0Y
1
1 −X1

1Y
1
0 +X1

1Y
1
1

subject to projection constraints and commutativity of X1
i with Y 1

j , which is an instance of the

optimization problems studied in noncommutative polynomial optimization [BKP16].

1.2. Contribution and reader’s guide. In this article we apply recent progress and develop
new tools for noncommutative polynomial optimization to certify optimality of violations for
a large set of standard Bell inequalities obtained from the quantum physics literature [IIA06,
AIIS05, PV09, PV10]. Following [IIA06, PV09] the 88 problems are denoted A2–A89. These are
optimization problems where the objective function is a quadratic noncommutative polynomial
in between 4 and 10 variables.

In the following, G announces a paragraph that is mostly a guide to the paper, and C denotes
a paragraph describing a new contribution. The manuscript is organized as follows.

(G) Section 2 introduces the basic concepts, and Section 3 is mostly expository. Its main purpose is
to fix notation, terminology and to keep the presentation self-contained. We specialize the NPA
hierarchy of SDP relaxations [DLTW08, NPA08, PNA10, BKP16], i.e., the implementation of the
Helton-McCullough noncommutative Positivstellensatz [HM04] to the case of noncommutative
polynomial optimization problems arising from Bell inequalities. For this we formally define the
Bell algebra in Section 3.1 as the appropriate algebraic object in which to study the violation of
Bell inequalities; Section 3.3 explains how we efficiently implement computations with the Bell
algebra in Matlab based on the results discussed in Section 3.2. This enables us to solve the third
step of the NPA hierarchy for the standard Bell inequalities A2–A89 already using standard SDP
solvers.

(C) To further reduce the size of the SDPs constructed in the Bell algebra we employ so-called SOS
conditional expectations [SS13] in Section 3.5. This reduction is lossless and is the appropriate
analog of the Newton polytopes in commutative polynomial optimization [Rez78, BPT13] and
Newton chips in the freely noncommutative setting [BKP16].

(C) Our next contribution is in Section 3.4, where we employ a regularization method with which we
can for the first time reliably solve the fourth step of the NPA hierarchy for all of the standard Bell
inequalities, and even the fifth step for several of them. The regularization method is well-known
but has, to the best of our knowledge, not yet been successfully applied to (noncommutative)
polynomial optimization problems.
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(G)&(C) Section 4 then turns to certifying optimality of Bell inequality violations. For this we apply
the flatness rank condition from operator theory championed first in the commutative by Curto-
Fialkow [CF00] and in the noncommutative by McCullough [McC01]; cf. [PNA10]. In Section 4.1
we recall how this flat rank condition on the solution of the dual SDP in the NPA hierarchy can
be exploited to extract optimum solutions of the original problem (optimizers) via the so–called
Gelfand-Naimark-Segal (GNS), and thus certify optimality of a Bell inequality violation. Our
contribution here is merely to observe that contrary to widespread belief flatness is in fact a use-
ful tool for noncommutative polynomial optimization. Indeed, for more than 70% of the A2–A89
problems the hierarchy becomes flat quickly (say in the second, third or fourth step of the SDP
hierarchy), thus leading to a proof of optimality of the violation.

(C) Flatness typically brings with it numerical challenges. Section 4.2 exploits the concept of semisim-
plicity from noncommutative algebra [Lam13] and uses the Artin-Wedderburn theory [Lam13,
Chapter 1] for rounding and projecting in order to improve the accuracy of solutions obtained
from the GNS construction in Section 4.1.

(C) For our final contribution, in an opposite direction, we explain how noncommutative Gröbner
bases can be used to certify when the solution to a dual SDP from the hierarchy does not give
rise to an optimizer; see Section 4.3. This is a noncommutative variant of the technique called
recursive generation (RG) in classical moment problems [CF98].

(G) In Section 5 we employ standard nonlinear programming (NLP) to produce upper bounds on Bell
inequality violations. The NPA hierarchy produces lower bounds on a Bell inequality violation;
often flatness can be used to extract optimizers and thus prove sharpness. In many other cases the
upper bounds produced with NLP coincide with those from NPA, thus again certifying optimality.
Together with flatness this enables us to certify optimality of 86% of the A2–A89 Bell inequalities.

(G) Numerical results with a detailed description of data are presented in Section 6.

2. Preliminaries

In this section we present basic notation and give some preliminaries.

2.1. Basic algebraic notation. Let X = (X1, . . . , Xm) and Y = (Y1, . . . , Yn) be two tuples
of noncommuting variables and denote by ⟨X⟩, ⟨Y ⟩ the corresponding sets (monoids) of words
generated by X and Y , respectively. Then R⟨X⟩ and R⟨Y ⟩ are the corresponding free algebras
of noncommutative (nc) polynomials. To study Bell inequalities arising from bipartite states in
quantum physics we form the bipartite free algebra R⟨X↔Y ⟩ = R⟨X⟩ ⊗ R⟨Y ⟩. Elements of
R⟨X↔Y ⟩ are of the form

(2.1) f =
∑

u∈⟨X⟩

∑
w∈⟨Y ⟩

au,wuw, au,w ∈ R,

where the finite sums are over all words in ⟨X⟩ and ⟨Y ⟩, respectively. We call an element of the
form au,wuw with au,w ̸= 0 a monomial. Its degree is |u|+|w|, and the degree of f in (2.1) is the
largest degree of a monomial appearing in f . We denote by R⟨X↔Y ⟩d the set of all elements of
degree ≤ d. Note that by the definition of the bipartite algebra, the words from ⟨X⟩ and ⟨Y ⟩ com-
mute. The algebra R⟨X↔Y ⟩ also comes equipped with the involution ⋆, which fixes R∪{X,Y }
element-wise and reverses words from ⟨X⟩, ⟨Y ⟩. Therefore, f⋆ =

∑
u∈⟨X⟩

∑
w∈⟨Y ⟩ au,wu

⋆w⋆, for f

as in (2.1), and SymR⟨X↔ Y ⟩ = {f ∈ R⟨X↔ Y ⟩ | f = f⋆} denotes the set of all symmetric
elements.

Let Vd be the (column) vector of all words uw ∈ R⟨X↔Y ⟩ with u ∈ ⟨X⟩, w ∈ ⟨Y ⟩ of degree
≤ d sorted w.r.t. the graded lexicographic order. With a slight abuse of notation, we will write
u ∈ Vd, if u is an entry of Vd.

Every f ∈ R⟨X↔Y ⟩ of degree ≤ 2d can be written (non-uniquely) as f = V⋆
dGVd, where G is

a real matrix, called a Gram matrix of f . If f = f⋆ then G can (and generally will) be chosen
to be symmetric. Note that the length of Vd is N := N(m,n, d) = dimR⟨X↔Y ⟩d,

N =
d∑

ℓ=0

σ(m, ℓ)nd−ℓ =


(n−1)md+2−mnd+2+n(nd+1−1)+m

(m−1)(n−1)(m−n) m ̸= n

−((d+2)md+1)+(d+1)md+2+1

(m−1)2
m = n

,
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where m is the number of X variables, n is the number of Y variables and σ(m, ℓ) = mℓ+1−1
m−1 is

the number of different words (monomials) of length ≤ ℓ in m > 1 non-commuting variables; if
m = 1, we have σ(1, ℓ) = ℓ+ 1.

An ideal I of an algebra A is a vector subspace such that A · I · A ⊆ I. In particular, given
a subset S ⊂ A the ideal generated by S is

IS =
{ finite∑

i,j

aijsibij | aij , bij ∈ A, si ∈ S
}
.

Observe that R⟨X↔Y ⟩ is the quotient ring R⟨X,Y ⟩/IS , where S is the set of all commutators
[Xi, Yj ], i = 1, . . . ,m, j = 1, . . . , n.

By Sd we denote the vector space of real symmetric d × d matrices and by S⪰0
d the cone of

(real) positive semidefinite d× d matrices. Occasionally we will need to use complex matrices as
well; then we use Sd(C) and Sd(C)⪰0 for the sets of complex hermitian d × d matrices and its
subset of positive semidefinite matrices, respectively.

2.2. Positivity and sum of squares in R⟨X ↔ Y ⟩. As a stepping stone towards our study
of Bell inequality violations, we consider sums of squares and positivity for noncommutative
polynomials from the bipartite free algebra R⟨X↔Y ⟩.

2.2.1. Sum of squares (sos) in R⟨X ↔ Y ⟩. An element of the form f⋆f is called a (hermitian)
square, and our main interest is in sums of squares (sos). An element f ∈ R⟨X ↔ Y ⟩ is
sos, if f ≡

∑
i g

⋆
i gi for some gi ∈ R⟨X ↔ Y ⟩. With the help of Gram matrices one can detect

membership in the sos cone using semidefinite programming (SDP):

Proposition 2.1. An element f ∈ R⟨X↔Y ⟩2d is sos iff there is G ⪰ 0 such that

(2.2) f ≡ V⋆
dGVd.

Proof. If f ≡
∑

i g
⋆
i gi is sos, then deg gi ≤ d for all i as the highest degree terms cannot cancel.

Hence we can write gi = GT
i Vd, where G

T
i is the (row) vector consisting of the coefficients of gi.

Then g⋆i gi = V⋆
dGiG

T
i Vd and by setting G :=

∑
iGiG

T
i , (2.2) holds.

Conversely, given a positive semidefinite G ∈ RN×N of rank r satisfying (2.2), write G =∑r
i=1GiG

T
i for Gi ∈ RN×1, where N = N(m,n, d) is the length of Vd, defined above. By

defining gi := GT
i Vd, we get f ≡

∑
g⋆i gi. □

Therefore, for every f ∈ R⟨X↔Y ⟩2d we can check whether f is sos by solving an instance of
semidefinite programming problem, which can be formulated as follows:

inf ⟨C,G⟩

s.t. fw =
∑

u,v∈Vd, u⋆v≡w

Gu,v, ∀ entries w of V2d

G ⪰ 0,

(2.3)

The matrix C in the objective function could be zero matrix, in which case we tend to get
the highest rank solution G. If we want a solution G with a small rank (to obtain a shorter sos
decomposition), we can choose for C the identity matrix, i.e., we minimize the trace, which is a
a commonly used heuristic for matrix rank minimization [RFP10].

2.2.2. Evaluation and positivity of elements in R⟨X↔Y ⟩. By an evaluation of f ∈ R⟨X↔Y ⟩
we mean its image under a ⋆-representation of R⟨X ↔ Y ⟩. Concretely, this means taking a
Hilbert space H and self-adjoint bounded operators xi, yj on H such that

(2.4) [xi, yj ] = 0 for all i, j,

and then evaluating f(x, y). We say f is positive if all its evaluations are positive semidefinite.
An important thought not always sufficiently rich class of representations is obtained by con-

sidering finite dimensional Hilbert spaces H in which case x, y are tuples of hermitian matrices
satisfying (2.4).



6 TIMOTEJ HRGA, IGOR KLEP, AND JANEZ POVH

Proposition 2.2. Suppose xi, yj ∈ Sd(C) satisfy (2.4). Then for some δ, ϵ we have d = δε, and
up to unitary equivalence,

(2.5) xi = Iδ ⊗ ξi, yj = γj ⊗ Iε

for some ξi ∈ Sε(C), γj ∈ Sδ(C).

Proof. This is well-known; see [DLTW08, Appendix A] for an elementary proof. □

Unlike in the freely noncommutative setting ([Hel02, McC01]), positivity in R⟨X↔Y ⟩ is not
equivalent to being sos. This fails already with n = m = 1 in which case R⟨X↔Y ⟩ = R[X1, Y1] is
just the algebra of bivariate commutative polynomials and positivity is simply positivity on R2.

3. Detecting positivity in the Bell algebra via a SDP hierarchy

We now turn our attention to the violation of Bell inequalities. In this section we explain the
standard specialization of the noncommutative Lasserre hierarchy (also called the NPA hierarchy
after [NPA08]) for the case of Bell inequalities. The hierarchy is based on Proposition 3.1 below
(see Corollary 3.3) and gives rise to a sequence of SDPs converging to the true minimum.

It is convenient to consider Bell inequalities in the Bell algebra, formally defined in Section
3.1. Section 3.2 presents the theoretical underpinning of the SDP hierarchy, and Section 3.3 dis-
cusses practical implementation of the resulting SDPs. Since the size of the SDPs can grow large
quickly, we present in Section 3.4 a regularization method to solve larger SDPs. This enables us
to compute, for the first time, fourth levels of the hierarchy for all of the Bell inequalities A2–A82.

3.1. Bell algebra. We consider the bipartite Bell algebra B2 = R⟨X↔Y ⟩/IB, where

B = {X2
i −Xi, Y

2
j − Yj | i = 1, . . . ,m, j = 1, . . . , n}.

Equivalently,

B2 = R⟨X,Y ⟩/
(
[Xi, Yj ], X

2
i −Xi, Y

2
j − Yj | i = 1, . . . ,m, j = 1, . . . , n

)
.

Elements of B2 are of the form (2.1), but the sums are now over words u,w in ⟨X⟩, ⟨Y ⟩, respec-
tively, without repetitions.

The involution and degree function on B2 are inherited from the one on R⟨X↔Y ⟩, so we can
talk about degrees, symmetric elements and (sums of hermitian) squares.

We can evaluate elements f of B2 in Hilbert spaces H.(1) Here only tuples of self-adjointI
projections xi, yj on H are admissible. That is, the self-adjoint bounded operators xi, yj on H
must satisfy

(3.1) [xi, yj ] = 0, x2i = xi, y2j = yj for all i, j.

We call f ∈ B2 positive if all its evaluations f(x, y) are positive semidefinite.

3.2. Positivity and sum of squares in the Bell algebra. We let Vd denote the vector of
all products uw, where u,w are words in ⟨X⟩, ⟨Y ⟩, respectively, without repetitions ordered
w.r.t. the graded lexicographic order. The entries of Vd form a basis of (B2)d. The number

of entries from Vd, having only Xi letters (i = 1, . . . ,m) is σ̂(m, d) := 1 +
∑d

i=1m(m − 1)i−1.

Basic calculus shows that σ̂(m, d) = m(m−1)d−2
m−2 if m ̸= 2. Otherwise, we have σ̂(2, d) = 1 + 2d.

1Our setup is real. That is, we work with polynomials with real coefficients and mostly with real Hilbert spaces.
The real framework is more convenient in optimization since the standard SDP solvers normally only accept real-
valued problems. While this is contrary to the usual physics setup, where one allows complex Hilbert spaces, it
really comes with no loss of generality. Namely, every complex Hilbert space isometrically embeds into a real
Hilbert space thus allowing us to model “complex” problems with real Hilbert spaces.
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The commutativity between Xi and Yj implies that the length of Vd is equal to τ(m,n, d) :=

dim(B2)d = σ̂(m, d) +
∑d

ℓ=1 σ̂(m, d− ℓ)n(n− 1)ℓ−1,

τ(m,n, d) =



m2(n−2)(m−1)d+m(4−n2(n−1)d)+2n(n(n−1)d−2)
(m−2)(n−2)(m−n) m ̸= 2 ̸= n, m ̸= n,

−n2(n−1)d+(n−2)n((d+2)n−2)(n−1)d−1+4
(n−2)2

m = n ̸= 2,

n2(n−1)d−4d(n−2)−4n+4
(n−2)2

m = 2 ̸= n,

m2(m−1)d−4d(m−2)−4m+4
(m−2)2

m ̸= 2 = n,

1 + 2d+ 2d2 m = n = 2.

As before, every f ∈ (B2)2d has aGram matrixG satisfying f ≡ V⋆
dGVd. An element f ∈ B2 is

a sum of degree d squares iff there is a positive semidefiniteG ⪰ 0 with f ≡ V⋆
dGVd (cf. Proposition

2.1). The set of all such sums of degree d squares is denoted by Σ2
2d, and Σ2 = ∪d∈NΣ2

2d is the set of
all sums of squares in B2. However, in sharp contrast with the bifree setting in R⟨X↔Y ⟩, sums of
squares decompositions in B2 do not come with degree bounds. This follows from recently estab-
lished quantum complexity results and the refutation of Connes’ embedding conjecture [JNV+21].

To handle quantum Bell inequalities we need to be able to certify positivity of elements of B2.
This is done with a variant of the NPA hierarchy [NPA08] whose theoretical underpinning is the
archimedean Positivstellensatz of Helton & McCullough:

Proposition 3.1 ([HM04]). For f ∈ B2 the following are equivalent:

(i) f(x, y) ⪰ 0 for all evaluations in Hilbert spaces H;
(ii) for all ε > 0, f + ε is sos in B2.

It is important to note that in addition to not having degree bounds in (ii), the ε is needed in
general, too.

Proof. To apply [HM04], we need to show that the cone of sums of squares Σ2 in B2 is archimedean.
Since the set of Σ2-bounded elements,

H = {f ∈ B2 | ∃η ∈ N : η − f⋆f ∈ Σ2}
is a ∗-subalgebra [Vid59] of B2, it suffices to show Xj ∈ H. But this is clear since

1−X2
j = 1−Xj = (1−Xj)

2 ∈ Σ2. □

Remark 3.2. An important thought not always sufficiently rich class of representations is ob-
tained by considering finite dimensional Hilbert spaces H in which case x, y are real symmetric
matrices (of the form described in Proposition 2.2 with the additional property that xi, yj are
projections). However, due to the recently proved failure of the Connes’ embedding conjecture
[JNV+21, Fri12, JNP+11], there are f ∈ B2 whose evaluations on tuples of symmetric projection
matrices are positive but they are not positive on infinite dimensional Hilbert spaces. That is,
item (i) in Proposition 3.1 is not equivalent to

(i)’ f(x, y) ⪰ 0 for all evaluations in finite-dimensional Hilbert spaces H.
It is a major open problem to find certificates for (i)’. We shall sidestep this issue and focus on
evaluations in arbitrary Hilbert spaces, where Proposition 3.1 applies.

Proposition 3.1 yields the following specialization of the NPA hierarchy.

Corollary 3.3. Let f ∈ B2. Consider the optimization problem

λmin(f) := inf{λminf(x, y) | x, y tuples of self-adjoint operators satisfying (3.1)},(3.2)

where λminf(x, y) is the smallest eigenvalue of the evaluation f(x, y).2 For d ∈ N we form the
d-th order relaxation for λmin(f):

(3.3) λd := sup{λ | f − λ ∈ Σ2
2d}.

2More precisely, this is the smallest number λ in the (compact and real) spectrum of f(x, y), i.e., for any real

number µ < λ, f(x, y)− µ is invertible.
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Then λd increase and converge to λmin(f) as d→∞.

The problem (3.3) is a semidefinite program which can be stated as

sup f1 − ⟨E11, G⟩
s.t. f − f1 ≡ V⋆

d (G− ⟨E11, G⟩E11)Vd

G ⪰ 0,

(3.4)

where f1 denotes the constant term of f and E11 is the matrix unit with a one in the (1, 1) entry.
The dual semidefinite program corresponding to (3.4) can be derived in different ways. We

follow the procedure in [BKP16, Section 4.2]. Note that Σ2
2d is a convex cone and its dual can be

represented as

(Σ2
2d)

∨ := {L : B2 → R | L linear and L(g⋆g) ≥ 0 ∀g ∈ (B2)d}
= {H ∈ Sτ(m,n,d) | H ⪰ 0, H1,1 = 1, Hu,v = Hp,q, for all u, v, p, q ∈ Vd : u⋆v ≡ p⋆q}.

Therefore, we have

λd = sup
f−λ∈Σ2

2d

λ = sup
λ

inf
L∈(Σ2

2d)
∨
(λ+ L(f − λ))

≤ inf
L∈(Σ2

2d)
∨
sup
λ
(λ+ L(f − λ)) = inf

L∈(Σ2
2d)

∨

(
L(f) + sup

λ
(λ− L(λ))

)
= inf

L∈(Σ2
2d)

∨

(
L(f) + sup

λ
λ(1− L(1))

)
= inf{L(f) | L ∈ (Σ2

2d)
∨, L(1) = 1}.

The inequality in the second line is due to the exchange of sup and inf. The optimization problem
in the last line is an SDP, which can be reformulated as

inf ⟨Gf , H⟩
s.t. H1,1 = 1

Hu,v = Hp,q, for all u, v, p, q ∈ Vd : u⋆v ≡ p⋆q
H ⪰ 0,

(3.5)

where the matrix Gf is a symmetric Gram matrix for f .

Proposition 3.4. There is a linear functional L : (B2)2d → R that is strictly positive in the sense
that L(p⋆p) > 0 for all 0 ̸≡ p ∈ (B2)d.

Proof. For this proof it is beneficial to present an alternative viewpoint to the Bell algebra B2,
namely as a group algebra. Consider the following linear change of variables:

(3.6) ∆i := 2Xi − 1, Γj := 2Yj − 1

Then

(3.7) ∆⋆
i = ∆i, and ∆2

i = 1

and likewise for Γj . Thus the ∗-subalgebra AX of B2 generated byXi is the same as that generated
by ∆i. Since the ∆i do not satisfy any other relations besides (3.7), this subalgebra is isomorphic
to the group algebra R[Gm], where Gm denotes the free product of m (= number of X variables)
copies of Z/2Z. Similarly, the ∗-subalgebra AY of B2 generated by Yj is isomorphic to the group
algebra R[Gn]. Since AX ,AY together generate B2 and they commute, we have

B2 = AX ⊗AY
∼= R[Gm]⊗ R[Gn] ∼= R[Gm ×Gn].

For simplicity, let G := Gm ×Gn.
We now claim that L : R[G]→ R, ∑

g∈G
agg 7→ ae,
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where e ∈ G denotes the identity element, is a strictly positive linear functional. It is obviously
linear. Given f =

∑
g∈G agg ∈ R[G], we have f⋆ =

∑
g∈G agg

−1, and thus

f⋆f =
∑
g,h∈G

agahg
−1h.

The constant term of f⋆f , i.e., L(f⋆f), thus equals∑
g∈G

a2g

and is nonzero whenever f ̸= 0. □

This proposition immediately implies a zero duality gap for (3.4)–(3.5), since the constructed
strictly positive L yields an interior point for the feasibility set of (3.5).

Corollary 3.5. The primal-dual pair of SDPs (3.4)–(3.5) has zero duality gap.

In the next section we explain how this SDP is efficiently constructed and solved.

3.3. Construction of the SDP hierarchy. In this subsection we discuss how to efficiently
construct the semidefinite programs that implement testing for sos in the Bell algebra B2.

Each nc monomial in R ⟨X,Y ⟩ with m+ n variables and degree d permits a unique numerical
representation as a d-dimensional vector with elements from the set {1, 2, . . . ,m + n}. The
components are obtained as follows. To each Xi, i = 1, . . . ,m, we assign its index i, while to each
Yj , j = 1, . . . , n, we assign m+ j. For example if m = 2 and n = 3, then the monomial X1X2Y1Y3
has the vector representation [1, 2, 3, 5]T . The constant monomial is represented by zero. Using
this representation each polynomial is then given by the vector of coefficients and the associated
vectors determining individual monomials.

Example 3.6. The polynomial p = 1− 2X + 2X2 −XY − Y X + Y 2 ∈ R⟨X,Y ⟩ is numerically
represented as

coef = [1,−2, 2,−1,−1, 1]T ,
p1 = 0, p2 = 1, p3 = [1, 1]T , p4 = [1, 2]T , p5 = [2, 1]T , p6 = [2, 2]T .

Furthermore, to each monomial in R ⟨X,Y ⟩ with m+ n variables and degree d we can assign
a nonnegative integer, representing the position of this monomial in the graded lexicographic
order. This can be seen by using a bijective correspondence between nonnegative integers and
the vectors representing the monomials, as described above. This bijection is as follows:

• Vector 0 (representing constant monomial 1) is mapped to 1.
• Every vector [ad−1, . . . , a0]

T representing a non-constant monomial is mapped to the integer

(3.8) ad−1(m+ n)d−1 + ad−1(m+ n)d−2 + . . .+ a1(m+ n) + a0 + 1.

• Conversely, we can assign to each integer 1 < p ≤ ((m + n)d+1 − 1)/(m + n − 1) the vector
[ad−1, . . . , a0]

T , where

a0 = p− 1− q0(m+ n), q0 =

⌈
p− 1

m+ n

⌉
− 1,

a1 = q0 − q1(m+ n), q1 =

⌈
q0

m+ n

⌉
− 1,

...

ad−1 = qd−2.

In case p = 1, we assign to it the constant monomial 1, i.e., the vector 0 in our framework.

Example 3.7. For m = 1, n = 1 listing all the nc monomials from R ⟨X,Y ⟩ up to degree d = 3
in graded lexicographic order

1, X, Y, X2, XY, Y X, Y 2, X3, X2Y, XY X, XY 2, Y X2, Y XY, Y 2X, Y 3,
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we see that the index of Y XY is 13. This can also be computed from (3.8). The monomial Y XY
is represented as [2, 1, 2]T , hence we obtain the index as

[2, 1, 2] · [4, 2, 1]T + 1 = 13.

Let df be the degree of f ∈ B2 and let d denote the level of hierarchy, i.e., we consider the d-th
order relaxation for λmin(f), cf. Corollary 3.3:

λd := sup{λ | f − λ ∈ Σ2
2d}.

Recall that f ∈ B2 is a sum of degree d squares iff there exists a positive semidefinite matrix G
satisfying V⋆

dGVd = f , where Vd is the vector of all words in B2 of degree ≤ d.
Before we set up the linear equations for the semidefinite program (3.4) that connect various

elements of matrix G, we apply a preprocessing step in which we prepare a table of reduced
monomials from B2. More specifically, for a given hierarchy level d we first generate all the nc
monomials from R ⟨X,Y ⟩ up to degree d, and then we apply the commutative and idempotent
relations from (3.1) to reduce every monomial so that no element is repeated and all the Xi are
listed before any Yj .

From (3.4) we see that the matrix E11 determines the objective function of the semidefinite
program, while the equality constraints

(3.9) f − f1 = ⟨G− ⟨E11, G⟩E11,VdV⋆
d⟩

are obtained as follows: Among all monomials in B2, consider the ones having degree at most
dmax = ⌈d2⌉. They belong to Vd. For every product v⋆i vj between two words from Vd, we find its
reduced form and associated index in the generated table of all monomials up to degree d. The
index determines the row in the system of linear equations that connects all the elements of the
form v⋆i vj . If the product is in f , the associated component of the right hand side vector b equals
its coefficient, otherwise it is zero. We solve the obtained semidefinite program

inf{⟨E11, G⟩ | Avec(G) = b, G ⪰ 0}

with MOSEK [MOS19]. Since standard solvers fail to solve the d = 4 relaxation for the Bell
inequalities considered here, we present a regularization method in the next subsection to solve
these as well. Finally, the value of the d-th order relaxation is then given by λd = f1 −G1,1.

The procedure is demonstrated in the following simple example.

Example 3.8. Let us consider f(X,Y ) = X1+Y1−X1Y1−X1Y2−Y1X2+X2Y2. This is the nc
polynomial of degree df = 2 that is associated with the CHSH inequality (1.1). We are looking
for its smallest eigenvalue. Suppose we want to compute λ1, i.e., the first level of the hierarchy
(3.3). In order to set up the linear equations, we need to consider all reduced monomials in B2

in four variables X1, X2, Y1 and Y2 of degree ≤ 2:

1, X1, X2, Y1, Y2, X1X2, X2X1, X1Y1, X1Y2, X2Y1, X2Y2, Y1Y2, Y2Y1.

Among these, the monomials of degree ≤ 1 define the set V1. Computing V1V⋆
1 and comparing

the entries with monomials in f , we obtain the following system of 10 linear equations:

X1 : G1,2 +G2,1 +G2,2 = 1

X2 : G1,3 +G3,1 +G3,3 = 0

Y1 : G1,4 +G4,1 +G4,4 = 1

Y2 : G1,5 +G5,1 +G5,5 = 0

X1X2 : G2,3 +G3,2 = 0

X1Y1 : G2,4 +G4,2 = −1
X1Y2 : G2,5 +G5,2 = −1
X2Y1 : G3,4 +G4,3 = −1
X2Y2 : G3,5 +G5,3 = 1

Y1Y2 : G4,5 +G5,4 = 0

Note that each non-symmetric monomial contributes to the same equation as its involution,
and the equation connecting the constant monomial is omitted due to (3.9). The value of the
relaxation is −0.2071068.
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3.4. Solving large semidefinite programs via regularization. The hierarchy of semidefinite
programs produces a sequence of lower bounds λd that converges to the optimal value λmin of the
problem (3.2). For instances for which the value of the current level does not match the optima
given in the literature, we increase d and compute the next of level of the hierarchy. However, the
resulting SDP on the fourth level optimizes a linear function over matrices of size 1486 or 2276
and has 249,315 or 568,675 linear equations in the case when m+ n = 9 or m+ n = 10, respec-
tively. It is clear that the number of constraints will be a challenge for an interior-point solver.
We tried to apply the Splitting Conic Solver (SCS) [OCPB16], a first-order method that scales
to very large problems, at the cost of lower accuracy. However, we use the GNS construction (see
Section 4) to extract the minimizers from the solution of the dual problem. For this to succeed
we need to solve the SDP to higher precision.

To overcome these difficulties we propose to use regularization. The idea of approximating
the original (linear) semidefinite program with a sequence of SDPs having a quadratic objective
function is a known technique for solving large-scale SDPs [KMR17, HP21, HP22, ZST10, YST15].
The primal-dual pair of problems (3.4) and (3.5) can we written in standard form as

sup ⟨E11, X⟩
s.t. A(X) = b

X ⪰ 0,

(3.10)

inf bT y

s.t. AT (y)− E11 = Z

Z ⪰ 0,

(3.11)

for an appropriate operator A : Sd → Rp, where p is the number of linear equations. We propose
to use the augmented Lagrangian method to solve (3.11). We introduce a Lagrange multiplier
X for the dual equation and consider for a penalty parameter α > 0 the augmented Lagrangian
function Lα:

Lα(y, Z;X) = bT y +
〈
X,E11 −AT (y) + Z

〉
+

1

2α

∥∥E11 −AT (y) + Z
∥∥2
F

= bT y +
1

2α

∥∥E11 −AT (y) + Z + αX
∥∥2
F
− α

2
∥X∥2F .

This is the usual Lagrangian with an additional redundant quadratic term. The augmented
Lagrangian method to solve (3.11) now consists in minimizing Lα(y, Z;X) to get y and Z ⪰ 0.
Then the primal matrix X is updated X ← X + 1

α

(
E11 −AT (y) + Z

)
, see [Ber14, Section 2.2].

Then as α→ 0 the whole processes is iterated until convergence.
The crucial part is how we solve the inner minimization problem

(3.12) inf bT y +
1

2α

∥∥E11 −AT (y) + Z + αX
∥∥2
F

such that y free, Z ⪰ 0.

One way is to use the alternating optimization technique to minimize the dual function first
with respect to y and then with respect to the dual variable Z. This leads to the famous
alternating method of multipliers (ADMM) and its special variant called the Boundary Point
Method proposed in [PRW06] in the context of semidefinite programming. As with SCS, this
solver also lacks the ability to generate highly accurate solutions. Moreover, in the y update
step, we need to solve a system of linear equations whose left-hand side has the form A

(
AT (y)

)
.

Considering the large number of constraints in our case, this is too costly.
We propose the following. The inner minimization problem (3.12) can be further simplified by

eliminating Z as follows. Define M = E11 −AT (y) + αX. Then for fixed y the problem

inf
Z⪰0
∥Z +M∥2F

is a projection of −M onto the cone of positive semidefinite matrices. It is known that the
solution Z = (−M)+ can be computed from the eigenvalue decomposition of M , see [Hig88].
More specifically, if the eigenvalue decomposition of M is given by X = SDiag(λ)ST with the
eigenvalues λ ∈ Rk and orthogonal matrix S ∈ Rk×k, then we have X+ = SDiag(λ+)S

T .
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By substituting Z into (3.12) we obtain

inf bT y +
1

2α

∥∥∥(E11 −AT (y) + αX
)
+

∥∥∥2
F

such that y ∈ Rp.

Note that the objective function is convex and differentiable with explicit expressions of its
gradient. In particular, if we denote the objective function as Fα(y), then we have

∇yFα(y) = b− 1

α
A
(
(E11 −AT (y) + αX)+

)
.

The function value and the gradient are evaluated by computing the partial spectral decomposi-
tion. Then for a fixed α and X, the function is minimized using the L-BFGS algorithm [LN89].
Finally, by using Z = (−M)+ the update on X is given by

X ←
(
X +

1

α

(
E11 −AT (y)

))
+

.

The penalty parameter α regulates the tightness level of the solutions. We start with α = 10 and
after each iteration we decrease its value by 0.9 until it is sufficiently small.

3.5. Reducing the size of the Gram matrix using an SOS conditional expectation.
Once again, we switch to viewing B2 as the group algebra R[G] = R[Gm ×Gn] ∼= R[Gm]⊗R[Gn]
as in the proof of Proposition 3.4. Let f =

∑
agg ∈ R[G], and denote

supp f := {g ∈ G | ag ̸= 0}.
We let Gf be the subgroup of G generated by supp f .

Proposition 3.9. For f ∈ R[G] the following are equivalent:

(i) f is a sum of squares in R[G], i.e., there are hj ∈ R[G] such that

(3.13) f =
∑
j

h∗jhj ;

(ii) f is a sum of squares in R[Gf ], i.e., there are hj ∈ R[Gf ] such that (3.13) holds.

Proof. The implication (ii) ⇒ (i) is obvious. For the converse, consider the mapping

E : R[G]→ R[Gf ]

G ∋ g 7→

{
g, g ∈ Gf

0, otherwise.

This map is an SOS conditional expectation [SS13, Section 3], i.e., E is a unital R[Gf ]-module
map, E(f)∗ = E(f∗) for all f ∈ R[G], and E maps sums of squares (in R[G]) to sums of squares
(in R[Gf ]). (See also [BHK] for a recent application of this notion to quantum games.) Thus
applying E to a sum of squares of the form (3.13) leads to another sum of squares expression of
the form (3.13) where the participating terms hj are all in R[Gf ], as desired. □

Proposition 3.9 suggests an alternate relaxation scheme for optimizing a Bell polynomial f ∈
B2 = R[G]. Let V1 =

−−−−→
supp f be the vector having the support of f as its entries (including 1 even if

1 ̸∈ supp f).3 For r ∈ N, let Vr be the vector of all distinct words of degree ≤ r in the entries of V1.
Lemma 3.10. f ∈ B2 is a sum of squares iff there is r ∈ N G ⪰ 0 such that

f = V∗rGVr.
Proof. Immediate from Proposition 3.9. □

We can now pose an alternate SDP hierarchy to the optimization problem (3.2) for f ∈ B2 =
R[G]. For d ∈ N consider

sup f1 − ⟨E11, G⟩
s.t. f − f1 ≡ V⋆d (G− ⟨E11, G⟩E11)Vd

G ⪰ 0,

(3.14)

3An alternate might require adding all the variables to supp f leading to larger but tighter relaxations.
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where f1 denotes the constant term of f and E11 is the matrix unit with a one in the (1, 1)
entry. By Lemma 3.10 and Proposition 3.1, the optimal values µd(f) of (3.14) increase with d
and converge to λmin(f) as d→∞.

As in Section 3.2, the dual SDP to (3.14) can be presented as

inf ⟨Gf , H⟩
s.t. H1,1 = 1

Hu,v = Hp,q, for all u, v, p, q ∈ Vd : u⋆v ≡ p⋆q
H ⪰ 0,

(3.15)

where the matrix Gf is a symmetric Gram matrix for f w.r.t. Vd, i.e., f = V∗dGfVd.

Example 3.11. Recall the CHSH polynomial

f = X1 + Y1 −X1Y1 −X1Y2 −X2Y1 +X2Y2 ∈ B2

from Example 3.8 which can in the ∆,Γ coordinates of Proposition 3.4 be written as

f =
1

2
− 1

4
(∆1Γ1 +∆1Γ2 +∆2Γ1 −∆2Γ2) ∈ R[G].

Solving the primal-dual pair of SDPs (3.14), (3.15) with d = 1, where

V1 =
(
1 ∆1Γ1 ∆1Γ2 ∆2Γ1 ∆2Γ2

)T
, Gf =



1
2 −1

8 −1
8 −1

8
1
8

−1
8 0 0 0 0

−1
8 0 0 0 0

−1
8 0 0 0 0
1
8 0 0 0 0

 ,

leads to µ1(f) =
1
2

(
1−
√
2
)
,

G =



1
2
√
2
−1

8 −1
8 −1

8
1
8

−1
8

1
8
√
2

1
16

√
2

1
16

√
2

0

−1
8

1
16

√
2

1
8
√
2

0 − 1
16

√
2

−1
8

1
16

√
2

0 1
8
√
2
− 1

16
√
2

1
8 0 − 1

16
√
2
− 1

16
√
2

1
8
√
2

 , H =


1 1√

2
1√
2

1√
2
− 1√

2
1√
2

1 0 0 −1
1√
2

0 1 1 0
1√
2

0 1 1 0

− 1√
2
−1 0 0 1


whence by Cholesky or eigenvalue decomposition we extract

f−µ1(f) =
1

16
√
2

(
(2
√
2−∆1Γ1−∆1Γ2−∆2Γ1+∆2Γ2)

2+(∆1Γ1+∆2Γ2)
2+(−∆1Γ2+∆2Γ1)

2
)
.

Example 3.12. For a slightly more complicated example, consider the A16 polynomial given in
group algebra form as

f =
1

4

(
7 + 2∆1 +∆2 +∆3 −∆4 + 2Γ1 + Γ2 + Γ3 − Γ4 +∆1Γ1 +∆1Γ2 +∆1Γ3 −∆1Γ4

+∆2Γ1 −∆2Γ2 +∆2Γ3 +∆3Γ1 −∆3Γ3 −∆3Γ4 −∆4Γ1 −∆4Γ2 −∆4Γ4

)
In this case the border vector V1 has 22 entries, and µ1(f) = −0, 347072. However, already the
second relaxation (leading to an SDP of size 241 × 241) is exact, µ2(f) = −0, 300364. Namely,
the dual solution H and its restriction to the top 22× 22 block have rank 16, which makes it in
this case possible to extract optimizers thus certifying optimality, cf. Section 4.

On the other hand, without using the SOS conditional expectations, i.e., testing optima using
the border vectors Vd as explained above in Section 3.2, required going to the third relaxation (of
size 318× 318) to obtain the exact value from the SDP, and the fourth relaxation (of size 1486×
1486) was required to obtain flatness, extract optimizers and certify optimality (cf. Section 6).

To keep consistency with existing results in the physics literature, our numerical experiments
in Section 6 are performed in the X,Y coordinates of the Bell algebra B2 and do not make use
of the SOS conditional expectations.
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4. Extracting minimizers and certifying optimality

In this section we describe how the well-known flatness condition for the solution of the dual
SDP (3.5) can be exploited to extract minimizers, thus certifying optimality, and even improving
accuracy in certain situations.

4.1. Flat extensions and the GNS construction. In this subsection we show how to extract
optimizers under the flatness assumption on the solution to the dual SDP (3.5).

Given a matrix Z that is feasible for (3.5), the objective function, the so-called Riesz functional

L : f 7→ ⟨Gf , Z⟩

is a well-defined linear functional (B2)2d → R that is positive in the sense that it is nonnegative
on every sum of degree ≤ d squares in B2, i.e., L(Σ

2
2d) ⪰ R≥0.

We call L or the associated Hankel matrix ZL = Z flat if the rank of ZL is the same as the
rank of ZĽ, where Ľ denotes the restriction of L to (B2)2d−2.

Lemma 4.1. A linear functional L : (B2)2d → R is positive iff the associated Hankel matrix ZL

is positive semidefinite.

Proof. For p =
∑

w pww ∈ (B2)2d let p denote the vector of its coefficients so that p = p∗Vd.
Then for every p, q ∈ (B2)d we have

L(p⋆q) =
∑
u,v

puqvL(u
⋆v) =

∑
u,v

puqv(ZL)u,v = p∗ZLq

yielding the desired conclusion. □

Theorem 4.2. Suppose the optimizer H of (3.5) is flat. Then with r = rankH there exist tuples
of r × r symmetric matrices x, y and a unit vector v satisfying (3.1) and

⟨Gf , H⟩ = ⟨f(x, y)v, v⟩,

i.e., the objective value of (3.5), which is equal to λd by Corollary 3.5, is equal to the global
minimum λmin(f).

Proof. We construct the tuples using a Gelfand-Naimark-Segal (GNS) construction. Since the nc
Hankel matrix H is positive semidefinite, we can find a Gram decomposition H = [⟨u,w⟩]u,w with
vectors u,w ∈ Rr, where the labels are words in B2 of degree at most d. Using this decomposition
we set

H = span{w | degw ≤ d}.
By the flatness assumption one gets that

(4.1) H = span{w | degw ≤ d} = span{w | degw ≤ d− 1}.

The Riesz functional L associated to H defines an inner product on H via

(p,q) 7→ L(q⋆p),

thus H is a finite dimensional Hilbert space. Hence we can consider the left regular representa-
tions, i.e., the operators xi represent the left multiplication by Xi on H, and likewise for yi. That
is, xiw = Xiw and yiw = Yiw. Since by equation (4.1) we only need to consider words w with
degw ≤ d− 1, the resulting words Xiw and Yiw are of degree ≤ d. Hence the xi, yi : H → H are
well-defined.

We claim that xi, yi are symmetric. For all p, q ∈ (B2)d−1 we have

(xjp,q) = L(q⋆(Xjp)) = L((Xjq)
⋆p) = (p, xjq),

whence x∗i = xi. A similar calculation establishes y∗j = yj .

We next show that x, y satisfy (3.1). Given p, q ∈ (B2)d−1,

(x2jp,q) = (xjp, xjq) = L((Xjq)
⋆Xjp) = L(q⋆X2

j p) = L(q⋆Xjp) = (xjp,q),
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whence x2j = xj . By symmetry, y2i = yi. Finally,

(xiyjp,q) = (yjp, xiq) = L((Xiq)
⋆Yjp) = L(q⋆XiYjp) = L(q⋆YjXip) = L((Yjq)

⋆Xip)

= (xip, yjq) = (yjxip,q),

establishing (3.1).
Let 1 ∈ H be the vector corresponding to the constant element 1 ∈ B2. Then

∥1∥2 = (1,1) = L(1⋆1) = L(1) = 1.

Finally,
λmin(f) ≤ (f(x, y)1,1) = L(f) ≤ λmin(f),

concluding the proof. □

Corollary 4.3. Suppose the optimizer H of (3.5) is flat, and let r = rankH. There are r1, r2 ∈ N
with r = r1r2, and there exist tuples x of r1×r1 hermitian matrices, y of r2×r2 hermitian matrices,
and a unit vector v satisfying (3.1) and

(4.2) ⟨Gf , H⟩ = ⟨f(x⊗ Ir2 , Ir1 ⊗ y)v, v⟩ = λmin(f).

Proof. This is a straightforward consequence of Theorem 4.2. Indeed, start with the tuples x, y
produced by Theorem 4.2 and then apply Proposition 2.2 to obtain (up to unitary equivalence)
the desired tensor decomposition as in (4.2) for x, y. □

If flatness is observed, then optimizers can be extracted using the Gelfand-Naimark-Segal
(GNS) construction. Observe that the dual matrix

H =

[
A B
BT C

]
is flat iff B = AZ and C = ZTAZ for some matrix Z. In practice flatness is often accompanied
with numerical issues. It is thus worthwhile to measure deviation from flatness. We express H’s
deviation from flatness by computing

(4.3) errflat =
∥C − ZTAZ∥F

1 + ∥C∥F + ∥ZTAZ∥F
using the Frobenius norm. Observe that being flat is independent of the choice of Z, but that
errflat does depend on Z. (We refer the reader to Figure 1 below for a demonstration of soundness
of this definition.) After extracting the submatrices A and B from H, we obtain Z by solving
the matrix equation B = AZ in MATLAB as Z = A\B. If errflat is nonzero but very small, one
can still attempt to use the GNS construction to obtain approximate solutions [KPV18] to (3.1).
Sometimes these can be rounded to obtain accurate approximate solutions.

4.2. Improving accuracy: rounding based on the Artin-Wedderburn theory. In theory
computing a tensor decomposition as in Proposition 2.2 for tuples x, y satisfying (3.1) is routine.
But in practice the tuples obtained, say from the GNS construction from flatness via Theorem 4.2
or from approximate flatness as in [KPV18] only satisfy (3.1) approximately. In this case we can
project onto the form of Proposition 2.2 to increase exactness and precision. The resulting matri-
ces xj = ξj ⊗ Ir2 and yk = Ir1 ⊗ γk then satisfy the commutative relations by construction, since

xjyk = (ξj ⊗ Ir2)(Ir1 ⊗ γk) = (Ir1 ⊗ γk)(ξj ⊗ Ir2) = ykxj ,

while idempotence is achieved by rounding the eigenvalues of the ξj , γk to 0 and 1. We describe
all this in some more detail next.

In general, solutions to the optimization problem (3.5) tend to be linear functionals L ∈ (σ22d)
∨

that are extreme points. If the corresponding matrix H is flat of rank r, then the obtained GNS
construction will yield an irreducible tuple [Arv76, Theorem 1.6.6].4 That is, the subalgebra of
Mr(C) generated by the xj , yk is Mr(C) itself. Letting X denote the subalgebra generated by the
xj , and likewise for Y, we have

Mr(C) ∼= X ⊗ Y
4In the sequel we restrict to tuples of complex matrices; a similar though slightly more involved analysis works

over the reals.
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since X ,Y commute. Thus the tuples x and y are both irreducible as well. That is, X ∼=Mr1(C)
and Y ∼= Mr2(C) with r = r1r2. Since the only embeddings Mr1(C) → Mr1r2(C) are of the form
A 7→ U∗(A⊗ Ir2)U for some r × r unitary, the matrices xj have to be (after a unitary change of
bases) of the form ξj ⊗ Ir2 . From the commuting relations in (3.1) and irreducibility we deduce
the yk are of the form Ir1 ⊗ γk then.

The first step of the post-processing procedure to improve the accuracy of the minimizers con-
sists of running a numerical algorithm (e.g. [MKKK10]) for the Artin-Wedderburn block-diagonal
decomposition of matrix ∗-algebras [Lam13] described above. It produces an orthogonal matrix
Q such that all the matrices QT yjQ are simultaneously block diagonalized, i.e., the matrices Yj
are decomposed into a direct sum as

QT yjQ =
⊕
i

y
(i)
j .

For instances that we consider and for which the optimizers can be extracted from flatness, it
turned out that the rank of the dual matrix is either 4, 8, 9, 16 or 25. For the cases when the
rank r is a perfect square r = r21 we can find an orthogonal matrix Q for which the tuples of
matrices x and y are approximately of the form of Corollary 4.3, i.e.,

(4.4) x ≈ ξ ⊗ Ir1 , y ≈ Ir1 ⊗ γ

for some tuples of matrices ξ and γ. If the norm of the difference between the left hand side and

the right hand size in equation (4.4) is less than the threshold 10−5, we replace x and y by the
respective right-hand side of (4.4). This brings the matrices into the required form. Finally, note
that the two tensor products appearing in (4.4) commute automatically.

The situation is similar when the rank is 8. In this case the ξj , γk will be 2 × 2 complex self-
adjoint matrices, and we first identify their 4 × 4 real versions with the same process described
above. Here, an n× n complex matrix A corresponds to the real 2n× 2n matrix by

A = B + iC ↭

[
B C
−C B

]
.

This also covers the case when the rank is 8 and the underlying matrix is real. Then C = 0 and

A =

[
B 0
0 B

]
is the direct product of two rank 4 matrices and we proceed as before.

Finally, by computing the spectral decomposition of each of the matrices ξj and γk obtained
from (4.4) and rounding the eigenvalues to 0 and 1, the matrices xi = ξi ⊗ I, i = 1, . . . ,m and
yj = I ⊗ γj , j = 1, . . . , n satisfy the relations from (3.1).

4.3. Certifying non-optimality of a dual SDP solution arising from the hierarchy using
noncommutative Gröbner bases.

The solution H to the dual SDP (3.5) for the d-th relaxation yields a positive linear functional

(4.5) L ∈ (Σ2
2d)

∨ with L(1) = 1.

In the presence of the flat condition (cf. Section 4.1) such an L is of the form

(4.6) L(f) = ⟨f(x⊗ I, I ⊗ y)v, v⟩, f ∈ (B2)2d

for some unit vector v and tuples of orthogonal projections x, y. In this case L is called a (trun-
cated) Bell moment functional. If L is defined on the entire B2 and (4.6) holds for all f ∈ B2

without degree restriction, then L is called a full Bell moment functional.
The main result of this section presents a necessary condition for Bell moment functionals. In

particular, this may help certify that a given L is not a Bell moment functional, i.e., L cannot
be written in the form (4.6). In the commutative case the analog theory was developed by Curto
and Fialkow in their solution of the truncated moment problem [CF98]. They call the condition
recursive generation (RG).
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Proposition 4.4. Let L ∈ (Σ2
2d)

∨ with L(1) = 1. Consider the associated Hankel matrix H = HL

and form the left ideal a ⊆ B2 generated by kerH.5 If L is a Bell moment functional, then
L(a ∩ (B2)2d) = {0}.

Proof. Suppose L is a Bell moment functional, i.e., (4.6) holds. Then the formula in (4.6) extends

L to a full Bell moment functional, denoted L̂ : B2 → R. The positive semidefinite (infinite)
Hankel matrix HL̂ extends HL in the sense that it is of the form

HL̂ =

(
HL ⋆
⋆ ⋆

)
.

In particular, N := kerHL ⊆ kerHL̂ =: N̂ . For any b ∈ N̂ , the associated polynomial pb ∈ B2

satisfies L̂(pb) = 0 and

L̂(wpb) = 0

for any e ∈ N and w ∈ Ve. Thus L̂ must vanish on all the elements in the left ideal generated by
N . In particular, the same must be true for L if one restricts to elements of degree ≤ 2d. □

Proposition 4.4 gives rise to Algorithm 1 that depends on noncommutative Gröbner bases
theory. Loosely speaking, a Gröbner basis (GB) of an ideal is a particularly well-behaved set of
generators for the ideal. For instance, it enables us to answer the ideal membership problem. We
refer the reader to [Mor86, Gre00, MR98, Xiu12] for details.

Algorithm 1: ncRG algorithm:
a necessary condition for L ∈ (Σ2

2d)
∨ to be a Bell moment functional

Input : L ∈ (Σ2
2d)

∨ with L(1) = 1
Output: Does L satisfy the ncRG condition?

Step 1: Compute a basis b for the kernel of the Hankel matrix associated to L.
Let B be a lift of b to R⟨X,Y ⟩, i.e., simply replace all lower case x, y
with upper case X,Y

Step 2: Compute a noncommutative Gröbner basis G for the ideal A generated
by {sZ | s ∈ B} ∪ {X2

i −Xi, Y
2
j − Yj , [Xi, Yj ] | i, j} in R⟨X,Y , Z⟩

Step 3: Find a basis B0 for {f ∈ (B2)2d | FZ ∈ A}; here F is the lift of f to an
element of R⟨X,Y ⟩

Step 4: Output whether L|B0 = 0

Remark 4.5. To justify the algorithm, we need to check the noncommutative RG (ncRG) con-
dition from Proposition 4.4. [BHK, Proposition 6.1] shows that for f ∈ B2, f ∈ a iff FZ ∈ A (in
the notation of Algorithm 1). Thus L|B0 = 0 iff L satisfies L(a ∩ B2d) = {0}, as desired.

Example 4.6. We give a demonstration of how Algorithm 1 can be applied. Considerm = n = 2.
Let L : (B2)4 → R be determined by its Hankel matrix H whose columns are

1 v1 v2
v1 v1 v5
v2 v5 v2

1
2
(−v4 + v5 + v11 − v14 + 2) 1

2
(−v4 + v5 − 2v9 − v11 + v14 + 2) v9

v4 2v1 + v4 + 2v9 + v11 − 2v14 − 2 v10
v5 v5 −2v2 + 2v9 + v10 + v14
v5 v13 v5

1
2
(−v4 + v5 − 2v9 − v11 + v14 + 2) 1

2
(−v4 + v5 − 2v9 − v11 + v14 + 2) v14

2v1 + v4 + 2v9 + v11 − 2v14 − 2 2v1 + v4 + 2v9 + v11 − 2v14 − 2 1
2
(−2v2 − v4 + 2v5 + 2v9 + v10 + v11 − 2v14)

v9 v14 v9
v10

1
2
(−2v2 − v4 + 2v5 + 2v9 + v10 + v11 − 2v14) v10

v11 0 1
2
(−2v2 + v4 + 2v5 + 2v9 + v10 − v11 − 2v14)

v11 0 1
2
(−2v2 + v4 + 2v5 + 2v9 + v10 − v11 − 2v14)

5This is a slight abuse of notation. The columns of the matrix H are indexed by words Vd in the Bell algebra
of degree ≤ d. Thus a nullvector for H naturally represents an element of (B2)d.
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1
2
(−v4 + v5 + v11 − v14 + 2) v4 v5

1
2
(−v4 + v5 − 2v9 − v11 + v14 + 2) 2v1 + v4 + 2v9 + v11 − 2v14 − 2 v5

v9 v10 −2v2 + 2v9 + v10 + v14
1
2
(−v4 + v5 + v11 − v14 + 2) v11 v14

v11 v4
1
2
(−2v2 − v4 + 2v5 + 2v9 + v10 + v11 − 2v14)

v14
1
2
(−2v2 − v4 + 2v5 + 2v9 + v10 + v11 − 2v14) −2v2 + 2v9 + v10 + v14

v14
1
2
(−2v2 − v4 + 2v5 + 2v9 + v10 + v11 − 2v14) v25

1
2
(−v4 + v5 − 2v9 − v11 + v14 + 2) 0 v14

0 2v1 + v4 + 2v9 + v11 − 2v14 − 2 1
2
(−2v2 − v4 + 2v5 + 2v9 + v10 + v11 − 2v14)

v9
1
2
(−2v2 + v4 + 2v5 + 2v9 + v10 − v11 − 2v14)

1
2
(−2v2 + v4 + 2v5 + 2v9 + v10 − v11)

1
2
(−2v2 + v4 + 2v5 + 2v9 + v10 − v11 − 2v14) v10 −2v2 + v4 + 2v5 + 2v9 − v11 − 2v14 + v28

v11 2v1 + 2v9 + 3v11 − 2v14 − 2 1
2
(4v1 − 2v2 + v4 + 2v5 + 6v9 + v10 + 3v11 − 6v14 − 4)

v23 v11 v28

v5
1
2
(−v4 + v5 − 2v9 − v11 + v14 + 2) 2v1 + v4 + 2v9 + v11 − 2v14 − 2

v13
1
2
(−v4 + v5 − 2v9 − v11 + v14 + 2) 2v1 + v4 + 2v9 + v11 − 2v14 − 2

v5 v14
1
2
(−2v2 − v4 + 2v5 + 2v9 + v10 + v11 − 2v14)

v14
1
2
(−v4 + v5 − 2v9 − v11 + v14 + 2) 0

1
2
(−2v2 − v4 + 2v5 + 2v9 + v10 + v11 − 2v14) 0 2v1 + v4 + 2v9 + v11 − 2v14 − 2

v25 v14
1
2
(−2v2 − v4 + 2v5 + 2v9 + v10 + v11 − 2v14)

v13 v2 + v4
2

+ v5 − v9 − v10
2

− v11
2

− v14 + v25 v27
v2 + v4

2
+ v5 − v9 − v10

2
− v11

2
− v14 + v25

1
2
(−v4 + v5 − 2v9 − v11 + v14 + 2) 0

v27 0 2v1 + v4 + 2v9 + v11 − 2v14 − 2
v14 v14

1
2
(4v1 − 2v2 + v4 + 2v5 + 6v9 + v10 + 3v11 − 6v14 − 4)

1
2
(−2v2 − v4 + 2v5 + 2v9 + v10 + v11 − 2v14) v28

1
2
(−2v2 − v4 + 2v5 + 2v9 + v10 + v11 − 2v14)

v28 0 v31
1
2
(4v1 − 2v2 + v4 + 2v5 + 6v9 + v10 + 3v11 − 6v14 − 4) v30 0

v9 v10
v14

1
2
(−2v2 − v4 + 2v5 + 2v9 + v10 + v11 − 2v14)

v9 v10
v9

1
2
(−2v2 + v4 + 2v5 + 2v9 + v10 − v11 − 2v14)

1
2
(−2v2 + v4 + 2v5 + 2v9 + v10 − v11 − 2v14) v10

1
2
(−2v2 + v4 + 2v5 + 2v9 + v10 − v11) −2v2 + v4 + 2v5 + 2v9 − v11 − 2v14 + v28

v14
1
2
(−2v2 − v4 + 2v5 + 2v9 + v10 + v11 − 2v14)

v14 v28
1
2
(4v1 − 2v2 + v4 + 2v5 + 6v9 + v10 + 3v11 − 6v14 − 4) 1

2
(−2v2 − v4 + 2v5 + 2v9 + v10 + v11 − 2v14)

v9
1
2
(−2v2 + v4 + 2v5 + 2v9 + v10 − v11 − 2v14)

1
2
(−2v2 + v4 + 2v5 + 2v9 + v10 − v11 − 2v14) v10

1
2
(−2v2 + v4 + 2v5 + 2v9 + v10 − v11 − 2v14) v38

v11 − v23 + v28 − v30
1
2
(−2v2 + v4 + 2v5 + 2v9 + v10 − v11 − 2v14)

v11 v11
0 0

1
2
(−2v2 + v4 + 2v5 + 2v9 + v10 − v11 − 2v14)

1
2
(−2v2 + v4 + 2v5 + 2v9 + v10 − v11 − 2v14)

v11 v23
2v1 + 2v9 + 3v11 − 2v14 − 2 v11

1
2
(4v1 − 2v2 + v4 + 2v5 + 6v9 + v10 + 3v11 − 6v14 − 4) v28

v28
1
2
(4v1 − 2v2 + v4 + 2v5 + 6v9 + v10 + 3v11 − 6v14 − 4)

0 v30
v31 0

1
2
(−2v2 + v4 + 2v5 + 2v9 + v10 − v11 − 2v14) v11 − v23 + v28 − v30

v38
1
2
(−2v2 + v4 + 2v5 + 2v9 + v10 − v11 − 2v14)

2v1 + 2v9 + 3v11 − 2v14 − 2 v39
v39 v23


,

where

v1 =
19

79
, v2 =

23

44
, v4 =

31

66
, v5 =

18

125
, v9 =

450

901
, v10 =

7

41
, v11 =

25

72
,

v13 =
15

128
, v14 =

9

61
, v23 =

27

101
, v25 =

4

33
, v27 = −

1

1976
, v28 =

1

178
,

v30 = 0, v31 =
1

1119
, v38 =

3

52
, v39 =

8

43
,

and whose columns are indexed by

(1, x1, x2, y1, y2, x1x2, x2x1, x1y1, x1y2, x2y1, x2y2, y1y2, y2y1).

Thus, for instance, L(x1x2y1) =
9
61 .

Then H ⪰ 0 has one-dimensional kernel spanned by(
−2 0 0 1 1 −1 0 1 0 1 0 0 0

)T
.

This vector represents the element −2 + y1 + y2 − x1x2 + x1y1 + x2y1 ∈ B2.
By Step 2 of Algorithm 1 we are thus led to find the noncommutative Gröbner basis G for the

ideal A ⊆ R⟨X1, X2, Y1, Y2, Z⟩ generated by

{(−2 + Y1 + Y2 −X1X2 +X1Y1 +X2Y1)Z,
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X2
1 −X1, X

2
2 −X2, Y

2
1 − Y1, Y 2

2 − Y2, [X1, Y1], [X2, Y1], [X1, Y2], [X2, Y2]}.
While running a GB algorithm with NCGB in NCAlgebra under Mathematica or Magma it
appears that G will be infinite. Producing a finite truncation leads to the following set of poly-
nomials:

{−X1 +X2
1 , −X2 +X2

2 , −X1Y1 + Y1X1, −X2Y1 + Y1X2, −Y1 + Y 2
1 , −X1Y2 + Y2X1,

−X2Y2 + Y2X2, −Y2 + Y 2
2 , −2Z + Y1Z + Y2Z −X1X2Z +X1Y1Z +X2Y1Z,

2Z − 2X1Z − 2Y1Z − Y2Z + 2X1Y1Z +X1Y2Z + Y1Y2Z,

4Z − 2X2Z − 2Y1Z − 2Y2Z + 2X1X2Z − 2X1Y1Z +X2Y2Z −X2X1X2Z +X2X1Y1Z,

− Y2Z + Y2Y1Z −X1X2Y2Z +X1Y2Y1Z +X2Y2Y1Z,

2Y2Z −X2Y2Z − 2Y2Y1Z + 2X1X2Y2Z − 2X1Y2Y1Z −X2X1X2Y2Z +X2X1Y2Y1Z,

2Z − 14X1Z − 2Y1Z − Y2Z + 14X1Y1Z + 7X1Y2Z − 2X1X2X1Z − 3X1X2Y2Z + Y1Y2Y1Z + 2X1X2X1X2Z +X1X2X1Y2Z +X1Y1Y2Y1Z +X2Y1Y2Y1Z}.
Now

F = 1−X2 +X1X2 −X1Y1 +
1

2
X2X1 +

1

4
X2Y2 −

1

2
Y1Y2 −

1

2
Y2Y1 +

1

4
X1X2Y2

− 1

2
X1Y2Y1 −

1

4
X2X1X2 −

1

6
X2X1Y2 +

1

4
X1X2X1X2 −

1

4
X1X2X1Y1

− 1

4
X2X1X2Y1 −

1

6
X2X1X2Y2 −

1

12
X2Y2Y1Y2

satisfies FZ ∈ A as can be checked by computing its canonical form modulo the (truncated)
Gröbner basis. However,

L(f) = − 131149699493

563151950712000
̸= 0,

where f denotes the image of F in B2. Thus by Algorithm 1, L is not ncRG and thus cannot be
a Bell moment functional.

5. Upper bounds on violations of Bell’s inequalities via nonlinear optimization

The approach based on the hierarchy of semidefinite programs produces a sequence of lower
bounds λd that converges to the optimal value λmin of the problem (3.2). For many instances
we can extract the minimizers by computing the appropriate level of the hierarchy and using
Gelfand-Naimark-Segal (GNS) construction, as explained in Section 4. For instances for which
the value of the current level of the hierarchy matches the optima given in the literature but the
flatness condition is not met, we would need to compute the next of level of the hierarchy. For
some instances even the SDP relaxation on the fourth level was not enough to certify optimality
and extract minimizers.

In order to prove optimality for such instances, we propose to use nonlinear optimization. We
explicitly formulate (3.2) as a non-convex optimization problem

inf
〈
f(X,Y ), vvT

〉
s.t. X,Y satisfy (3.1), ∥v∥ = 1

(5.1)

and use standard nonlinear optimization methods to compute its local minima. This produces
multiple upper bounds on the violation of a Bell inequality. In the event that there is no gap
between the lower bound obtained via the SDP approach and an upper bound obtained from the
local minimum, we can certify that the matrices computed via (5.1) are indeed optimal.

Using Corollary 4.3 we anticipate that if minimizers X,Y of size r× r exist, we search for the
optimal tuples X and Y of the form

(5.2) X = x⊗ Ir1 , Y = Ir2 ⊗ y,
for some r1, r2 ∈ N such that r = r1r2.

We use properties of the matrix tuples x and y to reduce the number of variables that are
needed to parametrize them. Note that these matrices are symmetric and idempotent. The
only non-singular idempotent matrix is the identity matrix. Furthermore, the zero matrix is also
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feasible for problem (5.1). Apart from these, we need to consider matrices with rank at least 1.
It turns out that for most of the cases we consider, rank-1 matrices are sufficient, i.e., the minima
of (5.1) are attained at matrices X and Y for which x and y from (5.2) are either zero matrices,
identity matrices or have rank exactly 1. In the following we list how rank-1 matrices can be
parametrized depending on the dimension. By using the properties

(5.3) A = AH , rank(A) = 1 and A2 = A

and using the fact that the trace of an idempotent matrix equals its rank, we get:

• R2: If

A =

[
a b

b 1− a

]
the condition A2 = A reduces to the quadratic equation

a2 − a+ b2 = 0 or

(
a− 1

2

)2

+ b2 =
1

4
,

which is a circle with center
(
1
2 , 0

)
and radius 1

2 . This gives the parametrization

A(u) =
1

2

[
1− cosu sinu

sinu 1 + cosu

]
.

We can also use the rational parametrization

A(x) =
1

1 + x2

[
1 x

x x2

]
that can easily be generalized to higher dimensions. Hence each of the matrices in (5.2) can be
defined by 1 variable if we set

Xi = A(θi)⊗ I2, Yj = I2 ⊗A(λj)
for some θi, i = 1, . . . ,m and λj , j = 1, . . . , n. Together with the eigenvector v ∈ R4 this gives
n +m + 4 decision variables in the constrained optimization problem (5.1), if f ∈ B2 was given
with m variables X and n variables Y .

• R3: The conditions (5.3) give

A(x, y) =
1

1 + x2 + y2

1 x y

x x2 xy

y xy y2


In this case the matrices in (5.2) can be parametrized with 2 variables. Together with the
eigenvector v ∈ R9 this yields 2(m+ n) + 9 decision variables.

• C2: If

A =

[
a α+ iβ

α− iβ 1− a

]
the condition A2 = A reduces to

a2 − a+ α2 + β2 = 0 or

(
a− 1

2

)2

+ α2 + β2 =
1

4
,

which is a sphere with center
(
1
2 , 0, 0

)
and radius 1

2 . This gives the parametrization

A(u, v) =
1

2

[
1 + cosu sin v sinu sin v + i cos v

sinu sin v − i cos v 1− cosu sin v

]
.

Similarly to the real case we can also use the parametrization

A(x, y) =
1

1 + x2 + y2

[
1 x+ iy

x− iy x2 + y2

]
.
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Again the matrices in (5.2) can thus be described with 2 variables. Since the eigenvector lies in
C4, this gives 2(m+ n) + 8 decision variables in total.

We minimize the objective function from (5.1) where the feasible matrices are constrained to
being either zero, identity or rank-1. Hence there are 3m+n possible optimization problems in
total, if f ∈ B2 has m + n variables. In all cases we used MATLAB’s built in function fmincon

with multiple random starts to compute the local optimums. The results are summarized in Table
3. It is remarkable that optimality for so many cases can be proved using this strategy.

6. Numerical results

6.1. Data. In this section we report results obtained on the 88 instances of Bell inequalities
labeled as A2 to A89. These instances were used in the computational experiments described
in [IIA06]. The article [AIIS05] explains how these Bell inequalities are obtained. We have
rewritten them in a noncommutative polynomial optimization formulation. More precisely, for
each instance we created a txt file, containing the numbers of variables Xi and Yi, i.e., m and
n, the polynomial f for which we seek to compute the minimum eigenvalue to obtain the largest
violation and all the relations that apply to the variables. These data are available at https:

//github.com/HrgaT/Bell_inequality_data.

6.2. Results. We organize the results into four groups.

(1) The first group of results, reported in Table 1, contains results on instances, for which the opti-
mum value from the literature was achieved by the SDP hierarchy for some d, the dual solution
was flat and the minimizer was extracted by the GNS construction, and the optimum value was
additionally certified by the nonlinear programming approach. We want to point out three in-
stances, A38, A52 and A81, for which we corrected the violation of the underlying Bell inequality
by 10−7.

(2) The second group of results, reported in Table 2, contains the results where the optimum was
achieved by the SDP hierarchy for some d, the dual solution was flat and the minimizer was ex-
tracted by the GNS construction, but nonlinear programming approach did not give the optimum
value.

(3) The third group of results, reported in Table 3, contains the results where the optimum from the
literature was attained by the SDP hierarchy for some d, but the minimizer was not reconstructed,
even when going all the way to the level four hierarchy. However, the nonlinear programming
approach delivered the optimum value which serves as a certificate of optimality.

(4) The fourth group of instances, reported in Table 4, contains the rest of the results and is split
into two parts. (a) Instances for which we could recompute the optimum obtained from literature
[PV09, PV10], but could not confirm the optimality either by GNS or by the nonlinear program-
ming approach. Nevertheless, the bounds from the literature together with the bounds from the
SDP hierarchy certify the optimality for these five instances (up to an accuracy of 10−8). New
here is the confirmation of the maximal violation for A80, where by computing the level 3 of the
SDP hierarchy we managed to close the gap between the upper and lower bound; (b) Remaining
instances. Here the finite sequence of lower bounds λd is increasing but does not reach the best
known upper bounds from the literature [PV09, PV10]. For all these instances we solved the
level four SDP hierarchy. For A14, A21, A47, A62, A64, A68, A82, A84 and A89 we have thus
improved the currently best known lower bound on the violation. Notice that by going from level
3 to level 4 the SDP bound for A82 stays the same.

In the following tables we report the optimum violation from the literature [PV09, PV10]
(column opt), the optimum value of the SDP hierarchy (λd) attained at level d. The difference
between both optima is in the column |opt − λd|. When we could extract the optimizer by the
GNS construction, we report dGNS, the level of the dual SDP hierarchy for which the optimum
matrix was flat. For these cases we also report the rank of these flat solutions (column rank)
and the numerical deviations from flatness errflat introduced in (4.3). We report errflat also for
the instances where the GNS construction did not give the optimum matrices (Tables 3–4) to
demonstrate that in these cases this parameter is significantly larger compared to the cases where
the GNS construction was successful.

https://github.com/HrgaT/Bell_inequality_data
https://github.com/HrgaT/Bell_inequality_data


22 TIMOTEJ HRGA, IGOR KLEP, AND JANEZ POVH

For the instances in Tables 1 and 3 we confirmed the optimum (also) with the NLP approach,
therefore we provide in these two tables also the optimum values optNLP and the differences
|opt− optNLP|.

Table 1. Numerical results on instances, where the optimum value from the literature (opt) was
achieved by the SDP hierarchy in level d, reported in column 4, the minimizer was extracted by
GNS on level dGNS from the dual optimum of rank, reported in column 7. The optimum value
was confirmed by NLP, i.e., the value optNLP in column 9 is equal to opt and λd is within a
numerical error of 10−8 (10−7 for A38, A52, A81).

Instance opt λd d |opt− λd| dGNS rank errflat optNLP |opt− optNLP|
A2 -0.2071068 -0.2071068 1 0.0000000 3 4 0.0000000 -0.2071068 0.0000000
A4 -0.2990381 -0.2990381 3 0.0000000 3 4 0.0000000 -0.2990381 0.0000000
A5 -0.4353342 -0.4353342 3 0.0000000 3 4 0.0000000 -0.4353342 0.0000000
A9 -0.4652428 -0.4652428 3 0.0000000 3 8 0.0000000 -0.4652428 0.0000000
A11 -0.4561079 -0.4561079 3 0.0000000 3 8 0.0000000 -0.4561079 0.0000000
A12 -0.4877093 -0.4877093 2 0.0000000 3 8 0.0000000 -0.4877093 0.0000000
A15 -0.4496279 -0.4496279 3 0.0000000 3 8 0.0000000 -0.4496279 0.0000000
A16 -0.4571068 -0.4571068 3 0.0000000 4 8 0.0000000 -0.4571068 0.0000000
A17 -0.3754473 -0.3754473 2 0.0000000 2 4 0.0000000 -0.3754473 0.0000000
A22 -0.6234571 -0.6234571 3 0.0000000 3 8 0.0000001 -0.6234571 0.0000000
A23 -0.5460735 -0.5460735 2 0.0000000 3 8 0.0000000 -0.5460735 0.0000000
A24 -0.6047986 -0.6047986 2 0.0000000 2 4 0.0000000 -0.6047986 0.0000000
A25 -0.6033789 -0.6033789 2 0.0000000 2 4 0.0000000 -0.6033789 0.0000000
A27 -0.6483073 -0.6483073 2 0.0000000 2 4 0.0000000 -0.6483073 0.0000000
A28 -0.6403143 -0.6403143 2 0.0000000 3 4 0.0000000 -0.6403143 0.0000000
A29 -0.4920635 -0.4920635 2 0.0000000 3 8 0.0000000 -0.4920635 0.0000000
A30 -0.5698209 -0.5698209 2 0.0000000 2 4 0.0000000 -0.5698209 0.0000000
A31 -0.5738173 -0.5738173 2 0.0000000 2 4 0.0000000 -0.5738173 0.0000000
A32 -0.4135530 -0.4135530 3 0.0000000 3 8 0.0000000 -0.4135530 0.0000000
A33 -0.6226313 -0.6226313 3 0.0000000 3 8 0.0000000 -0.6226313 0.0000000
A34 -0.5350117 -0.5350117 3 0.0000000 3 4 0.0000000 -0.5350117 0.0000000
A35 -0.6249079 -0.6249079 3 0.0000000 3 4 0.0000000 -0.6249079 0.0000000
A36 -0.4388685 -0.4388685 3 0.0000000 3 8 0.0000000 -0.4388685 0.0000000
A37 -0.4868868 -0.4868868 3 0.0000000 3 8 0.0000000 -0.4868868 0.0000000
A38 -0.4699126 -0.4699127 3 0.0000001 3 8 0.0000000 -0.4699127 0.0000001
A39 -0.6172035 -0.6172035 2 0.0000000 3 8 0.0000000 -0.6172035 0.0000000
A40 -0.6078638 -0.6078638 2 0.0000000 2 4 0.0000000 -0.6078638 0.0000000
A41 -0.4785634 -0.4785634 3 0.0000000 3 8 0.0000000 -0.4785634 0.0000000
A43 -0.6107654 -0.6107654 2 0.0000000 2 4 0.0000000 -0.6107654 0.0000000
A44 -0.5364942 -0.5364942 3 0.0000000 3 4 0.0000000 -0.5364942 0.0000000
A45 -0.5372394 -0.5372394 3 0.0000000 3 8 0.0000000 -0.5372394 0.0000000
A49 -0.4666943 -0.4666943 3 0.0000000 3 8 0.0000000 -0.4666943 0.0000000
A50 -0.5182900 -0.5182900 3 0.0000000 3 8 0.0000000 -0.5182900 0.0000000
A52 -0.6218611 -0.6218612 3 0.0000001 3 8 0.0000000 -0.6218612 0.0000001
A53 -0.6386102 -0.6386102 3 0.0000000 3 8 0.0000000 -0.6386102 0.0000000
A54 -0.5936813 -0.5936813 3 0.0000000 3 8 0.0000000 -0.5936813 0.0000000
A55 -0.6213203 -0.6213203 2 0.0000000 3 4 0.0000005 -0.6213203 0.0000000
A57 -0.6603444 -0.6603444 3 0.0000000 3 8 0.0000000 -0.6603444 0.0000000
A58 -0.6488905 -0.6488905 3 0.0000000 3 4 0.0000000 -0.6488905 0.0000000
A59 -0.4488256 -0.4488256 3 0.0000000 3 4 0.0000000 -0.4488256 0.0000000
A61 -0.4019248 -0.4019248 3 0.0000000 3 8 0.0000000 -0.4019248 0.0000000
A66 -0.4877093 -0.4877093 3 0.0000000 3 8 0.0000000 -0.4877093 0.0000000
A70 -0.6052228 -0.6052228 2 0.0000000 3 8 0.0000000 -0.6052228 0.0000000
A71 -0.4490163 -0.4490163 3 0.0000000 3 8 0.0000000 -0.4490163 0.0000000
A72 -0.6962822 -0.6962822 3 0.0000000 3 4 0.0000000 -0.6962822 0.0000000
A73 -0.8831381 -0.8831381 3 0.0000000 3 4 0.0000000 -0.8831381 0.0000000
A74 -0.6890694 -0.6890694 3 0.0000000 3 8 0.0000000 -0.6890694 0.0000000
A75 -0.6051510 -0.6051510 3 0.0000000 3 4 0.0000000 -0.6051510 0.0000000
A76 -0.4898631 -0.4898631 3 0.0000000 3 9 0.0000000 -0.4898631 0.0000000
A77 -0.6655582 -0.6655582 3 0.0000000 3 4 0.0000000 -0.6655582 0.0000000
A78 -0.8927018 -0.8927018 2 0.0000000 2 4 0.0000000 -0.8927018 0.0000000
A79 -0.6243153 -0.6243153 3 0.0000000 3 8 0.0000000 -0.6243153 0.0000000

Continued on next page
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Table 1 – Continued from previous page
Instance opt λd d |opt− λd| dGNS rank errflat optNLP |opt− optNLP|
A81 -0.6690099 -0.6690100 3 0.0000001 3 8 0.0000000 -0.6690100 0.0000001
A83 -0.6961664 -0.6961664 3 0.0000000 3 8 0.0000000 -0.6961664 0.0000000
A85 -0.6411408 -0.6411408 3 0.0000000 3 8 0.0000000 -0.6411408 0.0000000
A86 -0.8004425 -0.8004425 3 0.0000000 3 8 0.0000000 -0.8004425 0.0000000

Table 2. Numerical results on instances where the optimum was achieved by the SDP hierarchy
for some d, minimizer was extracted by GNS on level dGNS, but the nonlinear programming
approach did not produce the global optimum.

Instance opt λd d |opt− λd| dGNS rank errflat
A6 -0.3003638 -0.3003638 3 0.0000000 3 16 0.0000000
A10 -0.4158004 -0.4158004 3 0.0000000 3 25 0.0000000
A13 -0.4252330 -0.4252330 3 0.0000000 3 16 0.0000000
A46 -0.4590108 -0.4590108 3 0.0000000 3 25 0.0000000
A48 -0.4631707 -0.4631707 3 0.0000000 3 16 0.0000000
A63 -0.4894164 -0.4894164 3 0.0000000 3 16 0.0000000
A65 -0.3688996 -0.3688996 3 0.0000000 3 25 0.0000000

Table 3. This table contains the results for instances where the optimum was achieved by the
SDP hierarchy for some d, but the dual solution was not flat so we could not reconstruct the
minimizer. However, the nonlinear programming bounds coincide with the SDP bounds, which
confirms the bounds are the global optima.

Instance opt λd d |opt− λd| errflat optNLP |opt− optNLP|
A7 -0.2878683 -0.2878683 3 0.0000000 0.0023000 -0.2878683 0.0000000
A8 -0.5916501 -0.5916501 1 0.0000000 0.0200000 -0.5916501 0.0000000
A18 -0.3843551 -0.3843551 2 0.0000000 0.0165500 -0.3843551 0.0000000
A19 -0.6226300 -0.6226300 3 0.0000000 0.0200000 -0.6226300 0.0000000
A20 -0.6022398 -0.6022398 3 0.0000000 0.0045000 -0.6022398 0.0000000
A26 -0.5275550 -0.5275550 2 0.0000000 0.0053000 -0.5275555 0.0000005
A42 -0.6198655 -0.6198655 2 0.0000000 0.0100000 -0.6198655 0.0000000
A51 -0.6607809 -0.6607809 3 0.0000000 0.0144000 -0.6607809 0.0000000
A56 -0.6893124 -0.6893124 3 0.0000000 0.0059000 -0.6893124 0.0000000
A69 -0.6096103 -0.6096103 3 0.0000000 0.0200000 -0.6096103 0.0000000
A88 -0.4142136 -0.4142136 2 0.0000000 0.0190000 -0.4142136 0.0000000

Table 4. Numerical results for instances for which the SDP bounds are computed, but are not
confirmed to be the optimum since the GNS did not yield minimizers and the optimum values,
obtained by nonlinear programming, differ from the SDP bounds. The table is divided into two
parts: the upper part contains instances where our SDP bounds are equal to the optima published
elsewhere in the literature, while the lower part contains the rest of the instances, i.e., where we
could not reach the bounds from the literature even with the level 4 hierarchy.

Instance opt λd d |opt− λd| errflat λd d |opt− λd| errflat
A3 -0.2508754 -0.2508756 3 0.0000002 0.0082000 -0.2508754 4 0.0000000 0.0006800
A60 -0.3940032 -0.3940032 3 0.0000000 0.0004200 -0.3940032 4 0.0000000 0.0001000
A67 -0.3990671 -0.3990671 3 0.0000000 0.0003400 -0.3990671 4 0.0000000 0.0001000
A80 -0.3769863 -0.3769863 3 0.0000000 0.0010000 -0.3769863 4 0.0000000 0.0002100
A87 -0.7562471 -0.7562471 3 0.0000000 0.0130000 -0.7562471 4 0.0000000 0.0002000

Continued on next page
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Table 4 – Continued from previous page
Instance opt λd d |opt− λd| errflat λd d |opt− λd| errflat

A14 -0.4759513 -0.4778466 3 0.0018953 0.0100000 -0.4768133 4 0.0008620 0.0015000
A21 -0.3260601 -0.3261777 3 0.0001176 0.0085000 -0.3260654 4 0.0000053 0.0012000
A47 -0.4608544 -0.4616077 3 0.0007533 0.0038000 -0.4615622 4 0.0007078 0.0022000
A62 -0.4065268 -0.4067133 3 0.0001865 0.0011000 -0.4066728 4 0.0001460 0.0000039
A64 -0.3900890 -0.3906267 3 0.0005377 0.0004500 -0.3905074 4 0.0004184 0.0031000
A68 -0.4025522 -0.4050299 3 0.0024777 0.0008100 -0.4050294 4 0.0024772 0.0000070
A82 -0.4708838 -0.4709172 3 0.0000334 0.0016000 -0.4709172 4 0.0000334 0.0000072
A84 -0.6352087 -0.6352108 3 0.0000021 0.0004000 -0.6352107 4 0.0000020 0.0000012
A89 -0.3035637 -0.3056390 3 0.0020753 0.0069000 -0.3054510 4 0.0018873 0.0011000

Figure 1. Barplot depicting how the flatness error errflat relates to the success of the GNS
construction. Blue bars correspond to the instances where the minimizer was extracted by
flatness (instances from Tables 1–2), while the red bars visualize the errflat of the rest of the
instances, where either (1) the optimum was attained but we could not extract the minimum
by GNS (Table 3 or the first part of Table 4) or (2) the instances for which the computed SDP
bounds are not confirmed to be the optimum (second half of Table 4).
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Remark 6.1. Note that for all the instances from out data we can also exploit their sparsity
pattern, as was done in [KMP22]. While this is a promising topic to be explored further, this
approach leads to weaker lower bounds for at least some of the problems considered here. For
example, for the problem A3 from Table 4, the sparse SDP hierarchy at level 3 gives the bound
−0.2512, while the NPA hierarchy for this problem gives a much tighter optimum value already
at level 2. Additionally, the implementation presented in the current paper is very efficient and
we can compute the NPA bounds for level 4, while our implementation of the sparse SDP bounds
from [KMP22] can reach only level 3.

7. Conclusion and Perspectives

In this paper we studied the hierarchy of SDP relaxations for the case of noncommutative
polynomial optimization problems that arise from Bell inequalities. We work in the Bell algebra
as the appropriate algebraic framework to study the violation of Bell inequalities. This leads
to a reduction in size of the underlying SDP problems and paves the path towards computing
optimum values of these hierarchies for levels up to 3 using standard SDP solvers, and for level
4 using our adaption of the regularization method, combined with the L-BFGS algorithm.

The main focus was certifying optimality of Bell inequality violations. We champion the
traditional approach based on the flatness rank condition to extract optimizers via the so–called
Gelfand-Naimark-Segal (GNS) construction, to certify optimality of a Bell inequality violation.



CERTIFYING OPTIMALITY OF BELL INEQUALITY VIOLATIONS 25

By applying Artin-Wedderburn theory to rounding and projecting we improved the accuracy of
the obtained optimizers.

Further, we apply a standard nonlinear programming (NLP) formulation to obtain upper
bounds on the optimum violation of Bell inequalities. Their importance are twofold: (i) when the
GNS construction yielded an optimizer, NLP bound was a double confirmation for the optimum;
(ii) if the optimum was correctly computed by the SDP bound but was not confirmed by the
GNS construction, the NLP bound can be used to confirm the optimum value in case it coincides
with the SDP bound.

We provided extensive numerical results on the list of 88 instances of Bell inequalities. On 79
of them the optimum value of the SDP hierarchy that we computed coincided with the optima
from the literature and on 74 of them we could certify that these are indeed the optima: on 63
out of them the GNS construction yielded a certificate for optimality, and on the remaining 11
instances the NLP approach gave a numerical certificate of optimality.

Our paper therefore established a solid theoretical basis for certified optimization of noncom-
mutative polynomials in the Bell algebra and also demonstrated that implementations of the
algorithms that we proposed have high practical significance. One can naturally extend our ap-
proach to trace optimization, and to other algebras which are similar to the Bell algebra, like
multipartite Bell algebras where the variables are partitioned into more than 2 classes of pairwise
commuting tuples. Moreover, the potential for various notions of sparsity, which was only hinted
at in this paper, needs to be explored further. Finally, many of the examples considered here ex-
hibit natural symmetries which can lead to a reduction in size for the SDPs either through group
actions on the SDP problem itself or by algebraic manipulations using invariant or semi-invariant
noncommutative polynomials, which we also intend to pursue in further research.
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