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Abstract. Given the projections of two semialgebraic sets defined by polynomial matrix inequalities, it is

in general difficult to determine whether one is contained in the other. To address this issue we propose

a new matrix Positivstellensatz that uses lifting polynomials. Under some general assumptions (e.g., the

archimedeanness, nonempty interior, convexity), we prove that such a containment holds if and only if the

proposed matrix Positivstellensatz is satisfied. The corresponding certificate can be searched for by solving

a semidefinite program. An important application is to certify when a spectrahedrop (i.e., the projection of

a spectrahedron) is contained in another one.

1. Introduction

A basic question of fundamental importance in convex geometry and optimization is to

determine whether or not containment holds between two given convex sets. The simplest

convex sets are polyhedra, defined by a finite set of scalar linear inequalities. Containment

problems for polyhedra have been studied extensively and are well understood [FO85, GK94].

Another class of thoroughly studied convex sets are spectrahedra. They arise as feasible sets of

semidefinite programs [deK02, WSV00] and are defined by linear matrix inequalities (LMIs).

Denote by Sk the space of all k×k real symmetric matrices. A tuple A := (A0, A1, . . . , An) ∈
(Sk)n+1 gives rise to the linear pencil

A(x) := A0 + x1A1 + · · ·+ xnAn,

in the variables x := (x1, . . . , xn). It determines the spectrahedron (i.e., a set that is defined

by a linear matrix inequality)

SA := {x ∈ Rn : A(x) � 0}.

(Here, C � 0 means the symmetric matrix C is positive semidefinite. Similarly, we use C � 0

to express that C is positive definite.)

An important special case of the containment question is the matrix cube problem of Ben-

Tal & Nemirovski [B-TN02, Nem06]. It asks for the largest hypercube contained in a given

spectrahedron. The problem is known to be NP-hard. Numerous problems of robust control,

such as Lyapunov stability analysis for uncertain dynamical systems, are special cases of the

matrix cube problem. This is also the case for maximizing a positive definite quadratic form

over the unit cube, one of the fundamental problems in combinatorial optimization.
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More generally, given another tuple B := (B0, B1, . . . , Bn) ∈ (St)n+1, where t might be

different from k, one is interested in a certificate for the containment

(1.1) SA ⊆ SB.

Clearly, if there exist matrices Vi (i = 0, . . . , `) such that

(1.2) B(x) = V T
0 V0 +

∑̀
i=1

V T
i A(x)Vi,

then SA ⊆ SB. Indeed, if A(x) � 0 for some x ∈ Rn, then V T
i A(x)Vi � 0 and thus

the right-hand side of (1.2) is positive semidefinite, which implies B(x) � 0. If SA has

nonempty interior (this is the case e.g. if A0 = Id, the d × d identity matrix), then (1.2)

holds if and only if the matricial relaxation of SA is contained in the matricial relaxation

of SB [HKM12, HKM13]. When B(x) is the normal form of an ellipsoid or polytope, the

certificate (1.2) is necessary and sufficient for SA ⊆ SB, as shown by Kellner, Theobald and

Trabandt [KTT13]. More general spectrahedral containment is also addressed by the same

authors in [KTT15].

In general, the certificate (1.2) is sufficient but not necessary for ensuring SA ⊆ SB. A

more general certificate than (1.2) is

(1.3) B(x) = V0(x)TV0(x) +
∑̀
i=1

Vi(x)TA(x)Vi(x),

for matrix polynomials V0(x), V1(x), . . . , V`(x). To guarantee (1.3), we typically need that SA
is bounded and B(x) � 0 on SA (see [KS10, SH06] for representations of positive definite

matrix polynomials). Indeed, the boundedness of SA is equivalent to archimedeanness of the

quadratic module associated to the linear pencil A(x); see [KS13]. Hence if SA is bounded

and B(x) � 0 on SA, then B(x) can be expressed as in (1.3). This is a consequence of the

classical matrix Positivstellensatz [HN10, KS10, SH06]. It can be used to check containment

of spectrahedra [KTT15].

However, in applications, convex sets are often not spectrahedra. A more general class

of convex sets are projections of spectrahedra (see [HV07]), which we call spectrahedrops.

They are sometimes called semidefinitely representable sets or spectrahedral shadows. The

Lasserre type moment relaxations [Las09a, Las15, NPS10] produce a nested hierarchy of

spectrahedrops approximating and closing down on the (convex hull of a) semialgebraic set.

Many convex semialgebraic sets are spectrahedrops [HN09, HN10, Sce11]; however, not all

of them are [Sce18].

Consider the linear pencils (y := (y1, . . . , yr), z := (z1, . . . , zs))

(1.4)

{
A(x, y) := A0 + x1A1 + · · ·+ xnAn + y1An+1 + · · ·+ yrAn+r,

B(x, z) := B0 + x1B1 + · · ·+ xnBn + z1Bn+1 + · · ·+ zsBn+s,
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where Ai, Bi are all real symmetric matrices. They define the spectrahedrops

(1.5)

{
PA := {x ∈ Rn : ∃y ∈ Rr, A(x, y) � 0},
PB := {x ∈ Rn : ∃z ∈ Rs, B(x, z) � 0}.

A natural question is: how can we check the containment

(1.6) PA ⊆ PB?

If PA ⊆ PB, then for all x ∈ PA there exists z ∈ Rs such that B(x, z) � 0. When there

are no lifting variables y, z, we have PA = SA and PB = SB, so the containment (1.6)

simply reduces to (1.1) and can be certified by (1.2) or (1.3). However, when there are lifting

variables y, z, (1.2) and (1.3) do not apply, because the ranges of y, z depend on x. While a

Positivstellensatz describing polynomials positive on spectrahedrops is given in [GN11] (see

also [HKM17]), to the best of the authors’ knowledge, the question of a satisfactory certificate

for (1.6) is widely open.

Contributions. In this paper, we study how to check the containment between projections

of two semialgebraic sets that are given by polynomial matrix inequalities. By Tarski’s trans-

fer principle [BCR98], the projection of a semialgebraic set is again semialgebraic. However,

it is generally a challenge to find a concrete description for the projection. Quantifier elimina-

tion (QE) methods (e.g., based on cylindrical algebraic decompositions [BPR03, Col75]) can

be applied to compute such projections. We refer to [HED12] for effective QE algorithms.

From a numerical perspective, Magron et al. [MHL15] addressed how to compute semidefinite

approximations of projections of semialgebraic sets.

For computational efficiency we prefer to work directly with the original semialgebraic

descriptions, including the extra variables. We thus propose a new matrix Positivstellensatz

that uses lifting polynomials, which we call a lifted matrix Positivstellensatz.

Denote by SR[x, y]k×k the space of all real k × k symmetric matrix polynomials in x :=

(x1, . . . , xn) and y := (y1, . . . , yr). The space SR[x, z]t×t is similarly defined, with z :=

(z1, . . . , zs) and an integer t > 0. For G(x, y) ∈ SR[x, y]k×k and Q(x, z) ∈ SR[x, z]t×t,

consider the projections of semialgebraic sets defined by them,

PG := {x ∈ Rn : ∃y ∈ Rr, G(x, y) � 0},
PQ := {x ∈ Rn : ∃z ∈ Rs, Q(x, z) � 0}.

We are interested in a certificate for the containment

(1.7) PG ⊆ PQ.

This task is typically very hard. For a given x, checking the existence of z satisfying

Q(x, z) � 0 is already very difficult, as it amounts to verifying whether a polynomial matrix

inequality has a real solution or not. Even for the special case when Q(x, z) is diagonal,

the existence of such z is equivalent to feasibility of semialgebraic sets, which is a difficult
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question computationally. We refer to Renegar [[Ren92] for the computational complexity.

However, we can easily see that PG ⊆ PQ if there exist polynomials p1(x), . . . , ps(x) ∈ R[x]

such that

(1.8)


Q(x, (p1(x), . . . , ps(x))︸ ︷︷ ︸

z

) =

V0(x, y)TV0(x, y) +
∑`

i=1Vi(x, y)TG(x, y)Vi(x, y),

for certain matrix polynomials V0(x, y), . . . , V`(x, y). This is because for every x, if there

exists y such that G(x, y) � 0 (i.e., x ∈ PG), then Q(x, z) � 0 for z = (p1(x), . . . , ps(x)) (i.e.,

x ∈ PQ). The representation (1.8) gives a certificate for PG ⊆ PQ. When Q(x, z) does not

depend on z, (1.8) is reduced to the classical matrix Positivstellensatz [SH06, KS10]. We call

each pi a lifting polynomial and call (1.8) a lifted matrix Positivstellensatz certificate.

When do there exist polynomials p1, . . . , ps ∈ R[x] satisfying (1.8)? Is (1.8) also necessary

for PG ⊆ PQ? If they do exist, how can one compute pi(x) and Vi(x, y) satisfying (1.8)? In

this paper, we assume that the quadratic module generated by G(x, y) is archimedean, which

is almost equivalent to the compactness of the semialgebraic set

SG := {(x, y) ∈ Rn × Rr : G(x, y) � 0}

and implies the compactness of the projection PG. Our major results are:

(I) When Q(x, z) is linear in z, we show that (1.8) is also a necessary certificate for

PG ⊆ PQ, under the following natural condition: for each x ∈ PG there exists z

such that Q(x, z) � 0. The condition essentially means that PG ⊆ int(PQ), the

interior of PQ. Such a condition is generally required. For instance, when Q(x, z) does

not depend on z, strict positivity of Q(x) on PG is required in the classical matrix

Positivstellensatz. The certificate (1.8) can be searched for by solving a semidefinite

program, once the degrees for pi, Vj are fixed. This result is given in Theorem 3.1 in

Subsection 3.1.

(II) When Q(x, z) is nonlinear in z, checking PG ⊆ PQ becomes more difficult. In this

case, (1.8) gives nonlinear equations for the coefficients of the unknown polynomials

pi(x), i.e., (1.8) is not a convex condition on the (p1, . . . , pm). Hence, (1.8) cannot be

checked by solving a semidefinite program. This is unsurprising, because for a given

x, checking the existence of a z satisfying Q(x, z) � 0 is already a difficult problem.

In computation, one often prefers a Positivstellensatz certificate that can be checked

by solving a semidefinite program. We show that this is possible when for each fixed

x ∈ PG, the matrix polynomial Q(x, z) is sos-concave in z. Indeed, under the sos-

concavity condition, we prove a new lifted matrix Positivstellensatz in Theorem 3.3

in Subsection 3.2: (1.8) is equivalent to a different Positivstellensatz certificate using

lifting polynomials, which can again be searched for by solving a semidefinite program.
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A key step in the proofs of the above theorems is the existence of a continuous lifting

map PG → SQ, where some type of convexity assumption is essential, see Example

3.4. When Q(x, z) is not convex in z, the lifting polynomials might not exist. Hence

Theorems 3.1 and 3.3 do not extend to the non-convex case.

(III) The above lifted matrix Positivstellensätze can be applied to check containment be-

tween two spectrahedrops. Let PA, PB be two spectrahedrops as in (1.5). A certificate

for the containment PA ⊆ PB is the representation

(1.9)


B(x, (p1(x), . . . , ps(x))︸ ︷︷ ︸

z

) =

V0(x, y)TV0(x, y) +
∑`

i=1 Vi(x, y)TA(x, y)Vi(x, y)

where p1, . . . , ps are scalar polynomials in x and V0, . . . , V` are matrix polynomials in

(x, y). In Section 4, we show in Theorem 4.1 that (1.9) is also a necessary certificate

for PA ⊆ PB, under weaker assumptions than in (I). Indeed, the archimedeanness

of the quadratic module of A(x, y) can be weakened to the archimedeanness of its

intersection with the ring R[x]t×t.

A special case is that in PG, PQ, the lifting variables y, z have the same dimension, i.e.,

r = s. For this case, our Positivstellensätze still hold, but we cannot get stronger conclusions.

However, if for each x ∈ PG the lifting variables y, z are required to be same (i.e., y = z), then

the containment problem is reduced to checking whether G(x, y) � 0 implies Q(x, y) � 0.

This is the focus of the classical matrix Positivstellensatz, for which we refer to [KS10, SH06].

Our lifted matrix Positivstellensätze (see Theorems 3.1, 3.3 and 4.1) require standard as-

sumptions, e.g., archimedeanness, sos-concavity, nonempty interior or strict positivity. Gen-

erally, the archimedeanness and strict positivity are often required in a Positivstellensatz

(see [Mar08]). Because of lifting variables we also need to assume sos-concavity. However,

we would like to remark that these assumptions do not need to be checked in order to apply

our Positivstellensatz certificates. They can be searched for by solving semidefinite programs

whether these assumptions are satisfied or not. The purpose of these assumptions is to

guarantee that the Positivstellensatz certificates hold.

The paper is organized as follows. Section 2 gives preliminaries about matrix polynomials

and their quadratic modules. Section 3 presents two lifted matrix Positivstellensätze, gives

their proofs and several examples. Section 4 shows how to apply the lifted matrix Posi-

tivstellensatz to check containment of spectrahedrops. In Section 5 we apply our results to

solve the matrix cube problem and to find maximum inscribing ellipsoids for spectrahedrops.

With the help of Lasserre relaxations this leads to an approximation scheme for each of the

two problems for general convex semialgebraic sets. Finally, Section 6 gives conclusions and

discusses some open questions.
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2. Preliminaries

This section reviews some preliminary results about matrix polynomials and the classical

matrix Positivstellensatz.

2.1. Notation. Matrix polynomials are elements of the ring R[x]k×k where R[x] is the ring

of polynomials in x := (x1, . . . , xn) with coefficients from R. The space of all k × k real

symmetric matrix polynomials is denoted as SR[x]k×k. Let Ik denote the k × k identity

matrix. A subset M ⊆ SR[x]k×k is called a quadratic module if

Ik ∈M, M +M ⊆M and aTMa ⊆M for all a ∈ R[x]k×k.

Here, the superscript T denotes the transpose of a matrix. For a finite set Γ ⊆ SR[x]k×k,

define the semialgebraic set

SΓ := {x ∈ Rn : ∀g ∈ Γ, g(x) � 0}.

The set Γ generates the following quadratic module in SR[x]t×t,

(2.1) QMt(Γ) :=

{
L∑
i=1

pTi gipi

∣∣∣∣ gi ∈ {Ik} ∪ Γ,

L ∈ N, pi ∈ R[x]k×t

}
.

In particular, when Γ is empty, QMt(∅) is the set of all sums of hermitian squares in SR[x]t×t,

i.e., the sos matrix polynomials. Given a matrix polynomial f ∈ SR[x]t×t and S ⊆ Rn, we

write f � 0 on S if for all x ∈ S, f(x) � 0 (i.e., f(x) is positive semidefinite). Similarly,

by writing f � 0 on S we mean that f(x) � 0, i.e., f(x) is positive definite for all x ∈ S.

Clearly, if f ∈ QMt(Γ) then f � 0 on SΓ. Note that the finite set Γ can be replaced by a

block-diagonal matrix polynomial. Thus there is no harm in assuming that Γ = {G}. In this

case we shall write simply SG and QMt(G) for the semialgebraic set and quadratic module

generated by S, respectively.

In a Positivstellensatz, we usually deal with the case that SG is compact. In fact, we often

need a slightly stronger assumption that the quadratic module QMt(G) is archimedean. Here,

a quadratic module M of SR[x]t×t is said to be archimedean if there exists f ∈M such that

the set Sf is compact. When SG is bounded, the archimedeanness can be enforced by possibly

enlarging G without changing SG.

2.2. Matrix Positivstellensatz. For a matrix polynomial G ∈ SR[x]k×k, if f ∈ SR[x]t×t

and f � 0 on SG, we might not have f ∈ QMt(G). To guarantee f ∈ QMt(G), we typically

need that QMt(G) is archimedean (and thus SG compact) and f � 0 on SG. This is the matrix

version of Putinar’s Positivstellensatz [Put93], which is given by Scherer & Hol [SH06].

Theorem 2.1 ([SH06]). Let G ∈ SR[x]k×k be such that QMt(G) is archimedean. For f ∈
SR[x]t×t, if f � 0 on SG, then f ∈ QMt(G).
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We refer readers to [HN10, KS10] for further refinements of this result, and to [Cim12,

HL06, Scm09] for additional recent results on Positivstellensätze for matrix polynomials.

A matrix polynomial Q ∈ SR[x]t×t is sos if and only if the scalar polynomial yTQ(x)y is sos

in (x, y), where y is a new t-tuple of variables. This means that whether Q is an sos matrix

polynomial can be checked by solving a semidefinite program. A more direct procedure (see

[SH06, Lemma 1]) is as follows. When Q has degree 2d, Q is sos if and only if there exists a

positive semidefinite matrix Z such that

(2.2) Q = (u(x)⊗ It)TZ(u(x)⊗ It),

where ⊗ is the classical Kronecker product and u(x) is the vector of all monomials in x of

degrees ≤ d. As (2.2) is just a set of linear equations in the entries of a positive semidefinite

matrix Z, one can search for a feasible Z by solving a semidefinite program. More generally,

for a given finite set Γ ⊆ SR[x]k×k, one can check whether or not Q belongs to the truncated

quadratic module

(2.3) QMt(Γ)
∣∣
2d

:=

{
L∑
i=1

pTi gipi

∣∣∣∣ gi ∈ {Ik} ∪ Γ, pi ∈ R[x]k×t,

L ∈ N, deg(pTi gipi) ≤ 2d

}
.

This can be done similarly by solving a semidefinite program [SH06, Sections 2,5]. Checking

whether Q ∈ SR[x]t×t is sos via (2.2) requires an SDP variable Z of size t ·σdeg(Q)/2, where σe
is the dimension of all polynomials in R[x] of degree ≤ e. The number of linear constraints is

roughly t2 ·σdeg(Q). Similar increases in sizes compared to scalar polynomials hold for checking

membership in QMt(Γ)
∣∣
2d

; see [SH06, p. 192] for technical details. For further recent develop-

ments in the area, we refer to positive polynomials [HG05, RT08, Sce09], moment problems

[Las09c, Lau09, PV99], convex algebraic geometry [BPR13, FNT17, GPT13, GT13], poly-

nomial optimization [deKL11, HL06, Las01, Las15, Lau14, PS03, Scw05], and semidefinite

programs [deK02, HNS16, WSV00].

3. A Lifted Matrix Positivstellensatz

In this section, we prove a lifted matrix Positivstellensatz certifying containment of pro-

jections of semialgebraic sets given by polynomial matrix inequalities. For G ∈ SR[x, y]k×k

and Q ∈ SR[x, y]t×t, consider the projected semialgebraic sets

PG := {x ∈ Rn : ∃y ∈ Rr, G(x, y) � 0},(3.1)

PQ := {x ∈ Rn : ∃z ∈ Rs, Q(x, z) � 0}.(3.2)

We are going to establish a certificate for the containment PG ⊆ PQ. Our discussion is

divided into two cases. We first analyze the case when Q(x, z) is linear in z, and then treat

the nonlinear case.
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3.1. The case Q(x, z) is linear in z. Suppose Q(x, z) is linear in z := (z1, . . . , zs),

(3.3) Q(x, z) := Q0(x) + z1Q1(x) + · · ·+ zsQs(x),

where Q0(x), . . . , Qs(x) ∈ SR[x]t×t are symmetric matrix polynomials. A certificate for

the inclusion PG ⊆ PQ is the existence of polynomials p1(x), . . . , ps(x) ∈ R[x] and matrix

polynomials Vi(x, y) such that

(3.4)

{
Q0(x) + p1(x)Q1(x) + · · ·+ ps(x)Qs(x) =

V0(x, y)TV0(x, y) +
∑`

i=1Vi(x, y)TG(x, y)Vi(x, y).

Indeed, if x ∈ PG, then there exists y ∈ Rr with G(x, y) � 0, thus Q(x, z) � 0 for z =

(p1(x), . . . , ps(x)) by (3.4). This certifies that PG ⊆ PQ.

In the following, we show that (3.4) is almost necessary for ensuring PG ⊆ PQ. Our main

conclusion is that (3.4) must hold if PG is contained in the interior of PQ (i.e., PG ⊆ int(PQ)),

under an archimedean condition. Since G is a matrix polynomial in (x, y), its quadratic

module QMt(G) is a subset of SR[x, y]t×t. The archimedeanness of QMt(G) requires the

existence of f ∈ QMt(G) such that the set {(x, y) ∈ Rn × Rr : f(x, y) � 0} is compact.

Theorem 3.1. Let G(x, y) ∈ SR[x, y]k×k and let Q(x, z) be as in (3.3). Assume that QMt(G)

is archimedean. If for all x ∈ PG there exists z ∈ Rs with Q(x, z) � 0, then there exists a

polynomial tuple p(x) = (p1(x), . . . , ps(x)) such that Q(x, p(x)) ∈ QMt(G), i.e., (3.4) holds.

Proof. Since QMt(G) is archimedean, the set SG is compact, hence so is the projection PG.

For each x ∈ PG, there exists z (depending on x, that is, z = z(x)), such that Q(x, z(x)) � 0.

Let δ = δ(x) > 0 be such that Q(w, z(x)) � 0 for all w in the open ball B(x, 2δ) centered at

x with radius 2δ. Then, {B(x, δ(x))}x∈PG
is an open covering for PG. By compactness, there

exist finitely many of these open balls covering PG, say,

PG ⊆
N⋃
i=1

B(xi, δ(xi)).

For each i, there exists εi > 0 such that Q(w, z(xi)) � εiI for all w ∈ B(xi, δ(xi)). Hence, we

can choose ε > 0 small enough such that for all x ∈ PG there exists z ∈ Rs with Q(x, z) � εI.

Define the function

(3.5)
φ(x) := arg min zT z

s.t. Q0(x) + z1Q1(x) + · · ·+ zsQs(x) � ε
2
I.

From the above, we can see that the feasible set of (3.5) has nonempty interior for all x ∈ PG.

Because of the strict convexity of zTz, the minimizer φ(x) is unique. Further, the objective

is a coercive function, that is, for every number τ > 0, the set {z : zT z ≤ τ} is compact.

Hence the optimal value function φ(x)Tφ(x) is continuous in x. This can be inferred from

[Sha97, Theorem 10] or [WSV00, Theorem 4.1.10].
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The minimizer function φ(x) is also a continuous function on PG, which can be seen as

follows. Suppose {xk} ⊆ PG is a sequence such that xk → x ∈ PG. Then ‖φ(xk)‖2 → ‖φ(x)‖2

by the continuity of the objective function. Clearly, {φ(xk)} is bounded. Let u be one of its

accumulation points. Then ‖u‖2 = ‖φ(x)‖2. Clearly, u is a feasible point corresponding to x.

Hence, u is a minimizer for (3.5), and by the uniqueness, u = φ(x). So φ(x) is a continuous

function on PG. Note that

Q(x, φ(x)) � ε

2
I on PG.

By the Stone-Weierstraß theorem (see e.g. [Rud76, Theorem 7.32]), φ(x) can be approximated

arbitrarily well by polynomial functions. In particular, there exists a polynomial p(x) such

that

Q(x, p(x)) � 0 on PG.

That is, Q(x, p(x)) is symmetric matrix polynomial that is positive definite on PG. By the

archimedean property of QMt(G), the classical matrix Positivstellensatz (see e.g. [SH06,

KS10]) implies that

Q(x, p(x)) = V0(x, y)TV0(x, y) +
∑
i

Vi(x, y)TG(x, y)Vi(x, y)

for some matrix polynomials Vi(x, y). �

3.2. The case Q(x, z) is nonlinear in z. Denote the set of exponents by

Ns
2d := {α = (α1, . . . , αs) ∈ Zs≥0 | α1 + · · ·+ αs ≤ 2d}.

We consider the case that Q(x, z) is polynomial in z, say,

(3.6) Q(x, z) :=
∑
α∈Ns

2d

zα1
1 · · · zαs

s Qα(x),

with each Qα(x) ∈ SR[x]t×t. If we parameterize zi by a polynomial pi(x), a natural general-

ization of the certificate (3.4) is

(3.7) Q(x, p(x)) =
∑
α∈Ns

2d

p1(x)α1 · · · ps(x)αsQα(x) ∈ QMt(G).

However, (3.7) is nonlinear in the coefficients of p = (p1, . . . , ps). Generally, the existence of

p satisfying (3.7) cannot be checked by solving a semidefinite program.

Here we propose a convexification of (3.7). If each product p1(x)α1 · · · ps(x)αs is replaced

by a new polynomial pα(x), then (3.7) becomes

(3.8)

{ ∑
α∈Ns

2d
pα(x)Qα(x) =

V0(x, y)TV0(x, y) +
∑`

i=1Vi(x, y)TG(x, y)Vi(x, y),
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for some matrix polynomials Vi(x, y). However, (3.8) does not imply PG ⊆ PQ in general. To

remedy this, let

p := (pα)α∈Ns
2d
,

and define the matrix polynomial

M(p) := (pα+β)α,β∈Ns
d
.

In Proposition 3.2 below, under some convexity conditions, we show that (3.8) is a cer-

tificate for PG ⊆ PQ. The matrix polynomial Q(x, z) is said to be sos-concave in z at a

point x if for every ξ ∈ Rt the polynomial ξTQ(x, z)ξ is sos-concave in z, i.e., its Hessian

∇2(ξTQ(x, z)ξ) about z is an sos-matrix polynomial in z. We refer to [Nie11] for more on

sos-concavity/convexity of matrix polynomials.

Proposition 3.2. Let G(x, y) ∈ SR[x, y]k×k and let Q(x, z) be as in (3.6). Assume Q(x, z)

is sos-concave in z at every x ∈ PG. If a polynomial tuple p satisfies (3.8) and M(p) � 0 on

PG, then PG ⊆ PQ.

Proof. Define a matrix polynomial in x = (x1, . . . , xn) and w = (wα)α∈Ns
2d

as

F (x, w) :=
∑
α∈Ns

2d

wαQα(x).

Pick an arbitrary x ∈ PG. Let wα = pα(x) (note w0 = 1), then

F (x,w) � 0, M(w) � 0.

For an arbitrary ξ ∈ Rt, the polynomial q(z) := ξTQ(x, z)ξ is sos-concave in z. Let u =

(w1, . . . , ws), then one can show that (see e.g. [HN10, Theorem 9] or [Las09b, Theorem 2.6])

q(u) ≥
∑
α∈Ns

2d

wαξ
TQα(x)ξ = ξTF (x,w)ξ ≥ 0.

Since q(u) = ξTQ(x, u)ξ ≥ 0 and ξ is arbitrary, we can conclude that Q(x, u) � 0, i.e.,

x ∈ PQ. The above can also be deduced from the results in [Nie11]. Since x ∈ PG was

arbitrary, we conclude that PG ⊆ PQ. �

In the following, we show that (3.8) is almost a necessary certificate for PG ⊆ PQ under

conditions similar to those in Theorem 3.1 and Proposition 3.2, and under an additional

sos-concavity condition.

Theorem 3.3. Let G(x, y) ∈ SR[x, y]k×k and let Q(x, z) be as in (3.6). Assume that QMt(G)

is archimedean. If for every x ∈ PG, Q(x, z) is sos-concave in z, and there exists z such that

Q(x, z) � 0, then there exist polynomials pα ∈ R[x] (α ∈ Ns
2d) such that (3.8) holds and M(p)

is an sos matrix polynomial.
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Proof. The proof is similar to the one for Theorem 3.1. First, we can similarly prove that

there exists ε > 0 such that for all x ∈ PG there exists z with Q(x, z) � εI. Consider the

optimization problem

(3.9) min zT z s.t. Q(x, z) � ε

2
I.

For each x ∈ PG, the feasible set of (3.9) has nonempty interior. It has a unique mini-

mizer, which we also denote by φ(x). Note that (3.9) is a convex optimization problem

and the objective is coercive. Furthermore, φ(x) is a continuous function on PG. By the

Stone-Weierstraß theorem, there exists a polynomial tuple q(x) := (q1(x), . . . , qs(x)) such

that Q(x, q(x)) � ε
4
I on PG. By the archimedean property and the classical matrix Posi-

tivstellensatz (see e.g. [KS10, SH06]), we get

Q(x, q(x)) ∈ QMt(G).

For each α, let pα = qα, then M(p) = [q]d[q]
T
d . In the above, [q]d is the vector of all monomials

in q of degrees ≤ d. Clearly, M(p) is an sos matrix polynomial and the proof is complete. �

Example 3.4. We want to point out that a lifting continuous map φ : PG → int(SQ) need

not exist without some convexity assumptions on Q. Hence Theorems 3.1 and 3.3 do not

generalize to the non-convex case. Here are two simple examples.

(a) Form SQ by rotating the semialgebraic set defined as the part of the hyperbola x2 −
z2 ≥ 1 lying inside x2 ≤ 4 by 60◦ about the origin. That is,

Q(x, z) := diag
(
−4− (−

√
3x + z)2 + (x +

√
3z)2, 16− (x +

√
3z)2

)
.

x

z

1 2

1

2

5
2

−5
2

1
2

PQ
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SQ

Then PQ =
[
−5

2
, 5

2

]
. The maximal x-coordinate of a point in the bottom component

of SQ is 1
2
, so by letting PG = [−1, 1] it is clear that each point x in PG can be lifted to

a point (x, z) ∈ SQ with Q(x, z) � 0, but there is no lifting continuous map PG → SQ.

(b) The same phenomena can occur even with an S-shape connected SQ ⊆ R2. Let SQ
be the band around a cubic curve,

1

1

z

x

SQ =
{

(x, z) ∈ R2 :
∣∣x− z(z2 − 1)

∣∣ ≤ 1

4
, |z| ≤ 3

2

}
.

We have PQ =
[
−17

8
, 17

8

]
. As before, each point x ∈ PG := [−1, 1] admits a lift to a

point (x, z) ∈ int(SQ), but there is no lifting continuous map PG → SQ.

3.3. Some examples. In the following, we give some examples of the lifted matrix Posi-

tivstellensatz proved in Theorems 3.1 and 3.3. The notation ei denotes the standard ith unit

vector, i.e., its ith entry is one and all other entries are zero.

Example 3.5. Consider the matrix polynomials

G(x, y) =

[
1− y− x2

1 x1x2

x1x2 y− x2
2

]
, Q(x, z) =

[
1 + z x2 z− 2 x1

z− 2 x1 1− z x2

]
.

Then PG = {(x1, x2) ∈ R2 : |x1 ± x2| ≤ 1}, and is contained in

PQ = {(x1, x2) ∈ R2 : 1 + x2
2 − 4x2

1x
2
2 ≥ 0}.

The quadratic module QM2(G) is archimedean since

3− x2
1 − x2

2 − 2y2 = eT1G(x, y)e1 + eT2G(x, y)e2 + (1− y)2+

x2
2(1− y)2 + x2

1(1 + y)2 + eT1G(x, y)e1(1 + y)2 + eT2G(x, y)e2(1− y)2.
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The polynomial p1 in Theorem 3.1 can be chosen to be x1; then

Q(x, p(x)) =
1

2

[
x1 + x2 −1

−1 x1 − x2

]2

+
1− x2

1 − x2
2

2
I.

A certificate of the form (3.4) for PG ⊆ PQ is

` = 4, V0 =
1√
2

[
x1 + x2 −1

−1 x1 − x2

]
,

V1 =

[
1√
2

0

0 0

]
, V2 =

[
0 0
1√
2

0

]
, V3 =

[
0 1√

2

0 0

]
, V4 =

[
0 0

0 1√
2

]
.

Example 3.6. We present an example where the assumptions of Theorem 3.1 are not met,

but the conclusion still holds. Consider the matrix polynomials

G(x, y) =

 1− x2
1 x1 + x2 x2

2

x1 + x2 0 x1 + x2

x2
2 x1 + x2 y

 , Q(x, z) =

[
1 + 2ε+ x2 x2

1

x2
1 z

]
,

for ε > 0. The projection set PG = {(x1,−x1) ∈ R2 : − 1 < x1 < 1}. It is bounded but not

closed. The intersection QM2(G) ∩ R[x] is archimedean, because

(2− x2
1 − x2

2) = eT1G(x, y)e1 +

 1
1
2
(x1 − x2)

0

T G(x, y)

 1
1
2
(x1 − x2)

0

 .
However, the quadratic module QM2(G) itself is not archimedean, since SG is unbounded.

The lifting polynomial p1 can be chosen as ε−1x2
1, then

Q(x, p(x)) = x2
1

[
ε 1

1 ε−1

]
+ (1 + x2 + ε+ ε(1− x2

1))

[
1 0

0 0

]
.

Note the following representations:

1 + x2 + ε =


√
ε√

4ε
−1

0


T

G(x, y)


√
ε√

4ε
−1

0

+ 1− x1 + εx2
1,

1− x2
1 = eT1G(x, y)e1, 1− x1 =

1− x2
1

2
+

(x1 − 1)2

2
.

A certificate of the form (3.4) for PG ⊆ PQ is that ` = 3 and

V0 =


√
εx1

√
ε
−1
x1√

εx1 0
x1−1√

2
0

 , V1 =

√ε 0

0 0

0 0

 , V2 =


√
ε 0√

4ε
−1

0

0 0

 , V3 =

 1√
2

0

0 0

0 0

 .
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In Theorem 3.1, if QMt(G) is not archimedean, its conclusion might not hold. The following

is such an example.

Example 3.7. Consider the matrix polynomial

G(x, y) =

[
y2(1− x2)− 1 0

0 2− x2

]
.

Clearly, PG = (−1, 1) is bounded. The intersection QM1(G) ∩ R[x] is archimedean, since

2− x2 ∈ QM1(G) ∩R[x]. However, the quadratic module QM1(G) itself is not archimedean,

because SG is unbounded. We claim that QM1(G) ∩ R[x] is generated by the polynomial

2− x2. For every g(x) ∈ QM1(G) ∩ R[x], we can write

(3.10) g(x) = σ0 + σ1 · (y2(1− x2)− 1) + σ2 · (2− x2)

for sos polynomials σj ∈ R[x, y]. Note that g(x) does not depend on y. To cancel y on the

right hand side of (3.10), we must have σ1 = 0. Similarly, σ0 and σ2 cannot depend on y. We

can conclude that g ∈ QM1(2−x2) ⊆ R[x]. Finally, for each λ ∈ (1, 2), the polynomial λ−x2

is positive on PG, but it does not belong to QM1(G) ∩ R[x]. The conclusion of Theorem 3.1

fails for this example, because QM1(G) is not archimedean.

Example 3.8. Consider the matrix polynomials

G(x, y) =

x1 y x1

y x2 x2

x1 x2 1

 , Q(x, z) =

x1 + 2 z1 − z2
1 z1z2 x2

z1z2 x2 + 2 z2 − z2
2 x1

x2 x1 1

 .
Note that PG = [0, 1]2 and QM3(G) is archimedean, because

1− x2
1 =

 1

0

−1

G
 1

0

−1

+

 1

0

−x1

G
 1

0

−x1

 ,

1− x2
2 =

 0

1

−1

G
 0

1

−1

+

 0

1

−x2

G
 0

1

−x2

 .
As in Example 3.6 this also yields 1− xi ∈ QM3(G). Hence

2− y2 = (1− x2) + (1− x1)y2 +
1

2

 1

−y
1

T G
 1

−y
1

+
1

2

 1

−y
−1

T G
 1

−y
−1

 ∈ QM3(G).

The matrix polynomial Q(x, z) is sos-concave in z. The polynomials pi in Theorem 3.3 can

be chosen as

pα = xα1
2 xα2

1 , α = (α1, α2) ∈ N2
2.
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Clearly,

M(p) =

 1 x2 x1

x2 x2
1 x2x1

x1 x1x2 x2
1

 =

 1

x2

x1

 1

x2

x1

T

is sos. We have

Q(x, p(x)) =

x2

x1

1

x2

x1

1

T +

x1 + 2(x2 − x2
2) 0 0

0 x2 + 2(x1 − x2
1) 0

0 0 0

 .
Observe that

x1 = eT1G(x, y)e1, x2 = eT2G(x, y)e2,

x1 − x2
1 =

 1

0

−x1

T G(x, y)

 1

0

−x1

 , x2 − x2
2 =

 0

2

−x2

T G(x, y)

 0

2

−x2

 .
A certificate of the form (3.8) for PG ⊆ PQ is that

` = 4, V0(x, y) =
[
x2 x1 1

]
,

V1 =

1 0 0

0 0 0

0 0 0

 , V2 =

 1 0 0

0 0 0

−x1 0 0

 , V3 =

0 0 0

0 1 0

0 0 0

 , V4 =

0 0 0

0 2 0

0 −x2 0

 .
4. Containment of Spectrahedrops

In this section, we show how to apply the lifted matrix Positivstellensatz developed in

Section 3 to check the containment of spectrahedrops. Recall that a spectrahedrop is the

projection of a spectrahedron. Under mild and natural smoothness assumptions on their

boundaries, convex semialgebraic sets are spectrahedrops [HN10, Sce11, Las15]. First ex-

amples of convex semialgebraic sets that are not spectrahedrops are given by Scheiderer in

[Sce18].

Consider two spectrahedrops

PA := {x : ∃y, A(x, y) � 0}, PB := {x : ∃z, B(x, z) � 0},

where A(x, y) ∈ SR[x, y]k×k, B(x, z) ∈ SR[x, z]t×t are linear pencils as in (1.4). An important

question of wide applications is how to check the containment PA ⊆ PB? When PA, PB are

spectrahedra (i.e., there are no lifting variables y, z), there exist Positivstellensätze certifying

the containment [HKM13, KTT13, KTT15]. In this section, we present a certificate for the

containment when there are lifting variables y, z. Here Theorem 3.1 applies. In fact, when the

included set is a spectrahedrop, the assumptions in Theorem 3.1 can be weakened. Recall that

the intersection QMt(A) ∩ SR[x]t×t is archimedean if there exists f(x) ∈ QMt(A) ∩ SR[x]t×t

such that f(x) � 0 defines a compact set in Rn. The archimedeanness of QMt(A)∩SR[x]t×t
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implies the boundedness, but not the closedness, of PA. Clearly, the archimedeanness of

QMt(A) implies that QMt(A)∩SR[x]t×t is archimedean and PA is closed, but not vice versa;

cf. Example 3.7.

Theorem 4.1. Let A(x, y) and B(x, z) be linear pencils as in (1.4). Assume that QMt(A)∩
SR[x]t×t is archimedean. If there is ε > 0 such that for each x ∈ PA there exists z with

B(x, z) � εI, then there exists a tuple f(x) := (f1(x), . . . , fs(x)) of polynomials in R[x] such

that

(4.1) B(x, f(x)) = B0 +
n∑
i=1

xiBi +
s∑
j=1

fj(x)Bn+j ∈ QMt(A(x, y)).

Proof. For brevity, let us write M := QMt(A)∩SR[x]t×t. We claim that the positivity set of

M ,

SM := {x ∈ Rn : ∀g ∈M, g(x) � 0}

equals the closure PA. The inclusion PA ⊆ SM is clear. For the converse, assume u ∈ SM \PA.
Since PA is convex, there is a linear polynomial `(x) satisfying `(x) ≥ α > 0 on PA for some

α, and `(u) < 0. In particular, `(x) ≥ α > 0 on SA. So, by the linear Positivstellensatz

[KS13, Corollary 4.2.4], `(x) ∈ QM1(A) ∩ R[x]. This implies that `(x)I ∈ M , leading to the

contradiction `(u) ≥ 0.

The rest of the proof is the same as for Theorem 3.1. We can continuously choose for

each x ∈ PA a point z = z(x) ∈ Rs satisfying B(x, z) � ε
2
I. By the Stone-Weierstraß

theorem, there is a tuple of polynomials f(x) := (f1(x), . . . , fs(x)) such that B(x, f(x)) � 0

on PA = SM . Since M is archimedean, the matrix Positivstellensatz (see e.g. [KS10]) implies

B(x, f(x)) ∈ QMt(A), as desired. �

In Theorem 4.1, we assume the existence of a uniform ε > 0 such that for all x ∈ PA
there exists z with B(x, z) � εI. This is inconvenient to check in applications. However, the

condition can be weakened to B(x, z) � 0 when PA is closed.

Corollary 4.2. Let A(x, y) and B(x, z) be linear pencils as in (1.4). Assume that QMt(A)∩
SR[x]t×t is archimedean and PA is closed. If for each x ∈ PA there exists z with B(x, z) � 0,

then there exist a tuple f(x) := (f1(x), . . . , fs(x)) of polynomials in R[x] such that (4.1) holds.

Proof. If QMt(A) ∩ SR[x, z]t×t is archimedean, then PA is bounded. Hence, PA is compact

since it is also closed. An ε > 0 satisfying Theorem 4.1 can be found similarly as in the proof

of Theorem 3.1. Therefore, the corollary follows from Theorem 4.1. �

Clearly, (4.1) implies that PA ⊆ PB. Theorem 4.1 essentially says that (4.1) is a necessary

certificate when PA is contained in the interior of PB, i.e., PA ⊆ int(PB). Note that in (4.1)

the polynomials fi only depend on x.
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Example 4.3. Consider the linear pencils

A(x, y) := diag
([y1 x1

x1 1

]
,

[
y2 x2

x2 1

]
,

[
1 + y1 y2

y2 1− y1

])
,

B(x, y) :=

 1 x1 z

x1 1 x2

z x2 1

 .
The spectrahedrop PA is the unit 4-norm ball {x4

1 + x4
2 ≤ 1}, while PB is the unit square

[−1, 1]2. Clearly, PA ⊆ PB. We give a certificate of the form (4.1) for this inclusion. The

polynomial f1 in Theorem 4.1 can be chosen as x1x2. Note that

B(x, f(x)) =

x1

1

x2

x1

1

x2

T +

1− x2
1

0

1− x2
2

 ,
1− x2

1 =

[
1

−x1

]T [
y1 x1

x1 1

] [
1

−x1

]
+

[
0

1

]T [
1 + y1 y2

y2 1− y1

] [
0

1

]
,

1− x2
2 =

[
1

−x2

]T [
y2 x2

x2 1

] [
1

−x2

]
+

1

2

[
1

−1

]T [
1 + y1 y2

y2 1− y1

] [
1

−1

]
.

The certificate for the inclusion PA ⊆ PB of the form (1.9), or equivalently (4.1), is

B(x, f(x)) = V0(x)TV0(x) + V1(x)TA(x, y)V1(x) + V2(x)TA(x, y)V2(x),

where the matrix polynomials Vi(x) are:

V0(x) =
[
x1 1 x2

]
,

V1(x) =
[
1 −x1 0 0 0 1

]T [
1 0 0

]
,

V2(x) =
[
0 0 1 −x2

1√
2
−1√

2

]T [
0 0 1

]
.

Example 4.4 ([KS13, Example 4.6.3]). In this example, we show that the polynomials Vj
in the right-hand side of the Positivstellensatz certificate (4.1) might depend on y. This is

the case even if there is no lifting variable z. Consider (n = 1)

A(x, y) :=

0 x 0

x y1 y2

0 y2 x

 .
Clearly, PA = {0}. We claim that QM1(A) ∩ R[x] is archimedean. Obviously, eT3Ae3 = x ∈
QM1(A). Further,

(4.2) − x2 = uAuT ∈ QM1(A)
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for u =
[

1
2

+ 1
2
y1 −x 0

]
. Hence for each λ > 0,

1− λx =

(
1− λ

2
x

)2

− λ2x2 ∈ QM1(A).

In particular, the assumptions of Theorem 4.1 or Corollary 4.2 are met. However, a certificate

of the form

−x2 =
∑
i

V T
0i V0i +

∑
j

V T
j A(x, y)Vj ∈ QM1(A)

cannot exist for V0i, Vj ∈ R[x]3. Indeed, if u =
[
u1 u2 u3

]T ∈ R[x]3, then

(4.3) uTAu = 2u1u2x + u2
3x + u2

2y1 + 2u2u3y2.

In a sum of terms of the form (4.3), one can eliminate yi only if all u2 = 0. But, for u2 = 0,

plugging in x = 1 leads to the contradiction −1 ≥ 0.

5. Applications

In this section we present two applications of our results. Namely, we show how to solve

the matrix cube problem and find the maximum inscribing ellipsoid for spectrahedrops.

5.1. Matrix cube problem for spectrahedrops. The matrix cube problem of Ben-Tal

and Nemirovski [B-TN02, Nem06] is an important problem in convex geometry and opti-

mization arising from uncertain semidefinite programs in robust control. A natural variant

of it asks to find the largest cube that is contained in a spectrahedrop.

Consider the t× t linear pencil

(5.1) B(x, z) := B0 + x1B1 + · · ·+ xnBn + z1Bn+1 + · · ·+ zsBn+s.

The matrix cube problem is the optimization problem

(5.2) max ρ s.t. [−ρ, ρ]n ⊆ PB.

When 0 is in the interior of PB, we can generally assume B0 � 0. Note that [−ρ, ρ]n ⊆ PB if

and only if [−1, 1]n ⊆ PB̃ with

B̃ :=
1

ρ
B0 + x1B1 + · · ·+ xnBn + z1Bn+1 + · · ·+ zsBn+s.

Thus, (5.2) is in turn equivalent to

(5.3)


min γ

s.t. γB0 +
∑n

i=1xiBi +
∑s

j=1pj(x)Bn+j ∈ QMt(D),

γ ≥ 0,

for scalar polynomials pj(x). In the above, D(x) is the diagonal matrix

D(x) = diag([1 + x1 1− x1 · · · 1 + xn 1− xn]).

One can solve (5.3) as a semidefinite program, when the degrees of the pj are chosen and a

truncation of QMt(D) is used.
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Remark 5.1. Now that we know how to solve the matrix cube problem for spectrahedrops,

we can give an approximation scheme for the matrix cube problem for general convex semial-

gebraic sets. Namely, we solve the matrix cube problem for each of the Lasserre relaxations

[Las09a, Las15] constructively approximating convex semialgebraic sets from above by spec-

trahedrops.

Example 5.2. Consider the spectrahedrop PB given by the linear pencil

B(x, z) =


1 x1 z1 z3

x1 1 x2 z2

z1 x2 1 x3

z3 z2 x3 1

 .
We want to find the largest square contained in PB, with a certificate for the inclusion. The

positive semidefiniteness of B(x, z) implies that |x1|, |x2|, |x3| ≤ 1, so PB is contained in the

unit cube [−1, 1]3. By solving the optimization problem (5.3), we certify that [−1, 1]3 is also

the largest cube contained in PB. The optimal value of γ in (5.3) is 1. The optimal pj are

given as

p1 = x1x2, p2 = x2x3, p3 = x1x2x3.

The certificate for the inclusion PB ⊆ [−1, 1]3 is then

B(x, p(x)) = V0(x)TV0(x) +
6∑

k=1

Vk(x)TD(x)Vk(x),

where the Vi(x) are

V0(x) =
[
1 x1 x1x2 x1x2x3

]
,

V1(x) =
[
1 0 0 0 0 0

]T (1− x1√
2

)[
0 1 x2 x2x3

]
,

V2(x) =
[
0 1 0 0 0 0

]T (1 + x1√
2

)[
0 1 x2 x2x3

]
,

V3(x) =
[
0 0 1 0 0 0

]T (1− x2√
2

)[
0 0 1 x3

]
,

V4(x) =
[
0 0 0 1 0 0

]T (1 + x2√
2

)[
0 0 1 x3

]
,

V5(x) =
[
0 0 0 0 1 0

]T (1− x3√
2

)[
0 0 0 1

]
,

V6(x) =
[
0 0 0 0 0 1

]T (1 + x3√
2

)[
0 0 0 1

]
.

We deduce that PB = [−1, 1]3.



20 IGOR KLEP AND JIAWANG NIE

5.2. Maximum inscribing ellipsoid. Our lifted matrix Positivstellensatz also has appli-

cations to finding the largest ellipsoid that is contained in a spectrahedrop. Let B(x, y) be

the linear pencil as in (5.1). An ellipsoid is the semialgebraic set

EP = {x ∈ Rn : 1− xTP−1x ≥ 0}

for a positive definite matrix P . The volume of EP is measured by the determinant detP . To

find the maximum EP inscribed in the spectrahedrop PB, we need to solve the optimization

problem:

(5.4)


max detP

s.t. EP ⊆ PB,

P � 0.

Our lifted matrix Positivstellensatz certificate for the above inclusion is

(5.5) B0 +
n∑
i=1

xiBi +
s∑
j=1

pj(x)Bn+j =
∑̀
k=1

Vk(x)T (1− xTP−1x)Vk(x) + V0(x)TV0(x)

for some matrix polynomials Vk(x). However, (5.5) is nonlinear in P . We apply a change of

variables:

Q = P 1/2, z = Q−1x.

Then the equation (5.5) becomes

B0 +
n∑
i=1

(Qz)iBi +
s∑
j=1

qj(z)Bn+j =
∑̀
k=1

Uk(z)T (1− zTz)Uk(z) + U0(z)TU0(z),

for some new lifting polynomials qj(z). Note that the polynomials pj(x) and qj(z) are related

by

pj(x) = qj(Q
−1x).

Therefore, (5.4) is equivalent to the maximization problem

(5.6)


max detQ

s.t. B0 +
∑n

i=1(Qz)iBi +
∑s

j=1 qj(z)Bn+j ∈ QMt(1− zTz),

Q � 0,

where t is the size of the pencil B(x, y). The determinant maximization problem over a spec-

trahedron (5.6) can be solved using interior point methods, much like classical semidefinite

programs [VBW98], when the degrees of the qj are chosen and a truncation of QMt(1− zTz)

is used.

As in the case of the matrix cube problem (cf. Remark 5.1), this solution now leads to

an approximation scheme for finding the maximum ellipsoid inscribed in a general convex

semialgebraic set.
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6. Conclusions and discussion

In this paper, we have proposed a new matrix Positivstellensatz that uses lifting poly-

nomials. It serves as a certificate for containment between projections of two sets defined

by polynomial matrix inequalities. The main feature is that the lifting variables can be

parameterized by polynomials. Such polynomials are called lifting polynomials. A typical

application of this lifted Positivstellensatz is to certify that a spectrahedrop (i.e., projection

of a spectrahedron) is contained in another spectrahedrop. Under some mild natural as-

sumptions, we have shown that the proposed lifted matrix Positivstellensatz is a sufficient

and necessary certificate for the containment. The certificate can be searched for by solving

a semidefinite program.

6.1. The case of scalar polynomials. Theorems 3.1 and 3.3 also apply to projections of

semialgebraic sets defined by scalar polynomials. We thus obtain a large class of Positivstel-

lensätze for projections of semialgebraic sets.

Let g1(x, y), . . . , gk(x, y) and q1(x, z), . . . , qt(x, z) be scalar polynomials. They give semial-

gebraic sets

K1 = {x ∈ Rn : ∃y ∈ Rr, g1(x, y) ≥ 0, . . . , gk(x, y) ≥ 0},
K2 = {x ∈ Rn : ∃z ∈ Rs, q1(x, z) ≥ 0, . . . , qt(x, z) ≥ 0}.

(6.1)

We can get a Positivstellensatz certificate for the containment K1 ⊆ K2.

Corollary 6.1. Let g1, . . . , gk ∈ R[x, y] and q1, . . . , qt ∈ R[x, z] be scalar polynomials, and

let K1, K2 be as in (6.1). Assume the quadratic module of (g1, . . . , gk) is archimedean and

the degrees of qj in z are at most 2d. If for every x ∈ K1, each qj(x, z) is sos-concave in z

and there exists z such that qj(x, z) > 0, then there exist polynomials pα ∈ R[x] (α ∈ Ns
2d)

and sos polynomials σij ∈ R[x, y] such that M(p) is an sos matrix polynomial and for each

j = 1, . . . , t,

(6.2) qj(x, p(x)) = σj0(x, y) +
k∑
i=1

gi(x, y)σij(x, y).

Proof. By Theorem 3.3, there exists a polynomial tuple p = (p1, . . . , ps) ∈ R[x]s and matrix

polynomials Vi(x, y) such that

diag
(
q1(x, p(x)), . . . , qt(x, p(x))

)
=∑

i

Vi(x, y)Tdiag
(
g1(x, y), . . . , gk(x, y)

)
Vi(x, y) + V0(x, y)TV0(x, y).

Comparing diagonal entries, we see that (6.2) holds for some sos polynomials σij(x, y). �

6.2. Some open questions. In future research, the following interesting and important

questions should be addressed. They are mostly open to the authors.
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Question 6.2. In the certificates (1.9), (3.4), or (3.8), for what kinds of matrix polynomials

G(x, y) and Q(x, z), can we choose the polynomials Vj to be independent of y?

The above question is of great interest in computation. If each Vj is independent of y,

the semidefinite programs searching for (1.9), (3.4), or (3.8) become much easier to solve. In

Example 4.4, the polynomials Vj must depend on y. However, in all the other examples, we

can choose Vj to be independent of y.

Convexity is used in a key step in the proofs of Theorems 3.1 and 3.3 to obtain a lifting

polynomial map PG → SQ. When Q(x, z) is not convex in z, the lifting polynomials might

not exist, cf. Example 3.4. This leads to the following challenging problem:

Question 6.3. In Theorem 3.3, when Q(x, z) is not sos-concave in z, what is an appropriate

certificate for ensuring PG ⊆ PQ?

Finally, we conclude with the problem of detecting equality of spectrahedrops:

Question 6.4. For two linear pencils A(x, y) and B(x, z), what is the appropriate certificate

for PA = PB?

The certificate (4.1) ensures PA ⊆ PB. To ensure PB ⊆ PA, one might be tempted to

apply a similar certificate again. However, this usually does not work because (4.1) requires

PA ⊆ int(PB). To get a similar certificate for PB ⊆ PA, one usually needs PB ⊆ int(PA).

Clearly, PA ⊆ int(PB) and PB ⊆ int(PA) generally do not hold simultaneously.

Question 6.5. In our lifted matrix Positivstellensätze, if the real field R is replaced by an

arbitrary real closed field <, do the same conclusions hold?

For a real closed field <, it is naturally expected that similar Positivstellensatz certificates

hold. However, our proofs in Theorems 3.1 and 3.3 do not apply immediately. This is because

we have used several non-first order properties, such as those of semidefinite programs, the

Stone-Weierstraß theorem and the archimedean matrix Positivstellensatz. We are not sure

whether or not these properties still hold if the real field R is replaced by an arbitrary real

closed field <. We leave the above question for future investigation.
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