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Abstract. In this paper natural necessary and sufficient conditions for quan-
tifier elimination of matrix rings Mn(K) in the language of rings expanded by
two unary functions, naming the trace and transposition, are identified. This
is used together with invariant theory to prove quantifier elimination when K
is an intersection of real closed fields. On the other hand, it is shown that
finding a natural definable expansion with quantifier elimination of the theory
of Mn(C) is closely related to the infamous simultaneous conjugacy problem in
matrix theory. Finally, for various natural structures describing dimension-free
matrices it is shown that no such elimination results can hold by establishing
undecidability results.
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1. Introduction

This article grew out of an attempt to understand the model theory of full matrix
rings in connection with their use in what is called Free Analysis. Free Analysis
provides a framework for dealing with quantities with the highest degree of non-
commutativity, such as large random matrices, see for example [AM16, KVV14,
HKM11, Voi10]. Our focus lies in the geometry attached to algebraic functions
in this context, meaning noncommutative polynomials over K (= R or C). Here,
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matrices take on the role of field elements when polynomials (=noncommutative
polynomials) are considered as functions. For example the polynomial xy− yx can
only be distinguished from 0 by evaluating at matrices, say of size 2 × 2. If P (x̄)
is an arbitrary noncommutative polynomial in finitely many variables, then P is
0 if and only if P (X̄) = 0 for all tuples X̄ of square matrices of any size. Thus,
matrices in this context are not restricted to a specific size and we may refer to
“dimension-free” matrices when we want to stress this point of view.

There is ongoing interest (cf. [DNT17, Put07]) in the question of whether some
form of elimination theory or decidability from the classical case of the fieldK can be
rescued in the noncommutative context. This article contributes to these questions
in two ways. To explain how, first note that these questions have obvious negative
answers if we ask them for the common theory of all matrix rings Mn(K); this
theory is not model complete in the language of rings as Mn(K) is not elementary
in Mn+1(K) for any n, and it is indeed hereditarily undecidable because every
non-principal ultraproduct of the Mn(K) interprets true arithmetic.

A less naive way to tackle the problem is to consider first order structures that
interpret allMn(K) and then to try to approach elimination theory and decidability
questions for such structures. We show that the most commonly used structures
that are used in Free Analysis, interpret all matrix ringMn(K) and are undecidable.
This is done in Section 3. (We point out that the community has not agreed on the
exact structure to be used for dimension-free matrices yet.) This already implies
that quantifier elimination results similar to those for algebraically closed fields
or real closed fields cannot be expected to hold true for structures interpreting
all Mn(K). However it is unclear if a weakened elimination result like model-
completeness holds true in a suitable language.

In this context it is important to understand the elimination theory of matrix
rings of fixed size, which, surprisingly, is strongly tied to the well-known simultane-
ous conjugacy problem for matrices. To be more precise, let L be the first-order
language of rings. The question about the elimination theory of Mn(K) in this
language, a priori, seems to be all answered by the classical results for the field K.
(Contemporary model theory might even identify the bi-interpretable structures K
and Mn(K).) However, already Mn(C) does not have quantifier elimination in L
(cf. 2.1.8) and it admits quantifier elimination only if invariants for the simultaneous
conjugacy problem are named in an extended language. This is done in Section 2.4.

We now explain our main contribution, namely the elimination theory of matrix
rings of fixed size n×n. We switch to an arbitrary field K. A classical comparison
of the field K and the matrix ring Mn(K) in terms of how the bi-interpretation is
done reveals a more subtle elimination theory of Mn(K). For an example, consider
polynomials P (x, y), Q(x, y). The solution set in Mn(K)2 of P (x, y) = 0, Q(x, y) 6=
0, seen as a subset of K2·n2

, is closed under simultaneous conjugation. The question
of whether the projection onto theX-coordinate(s) has this property is not answered
within the elimination theory of K. The issue is that the quantifier-free definable
sets inMn(K) (in the language of rings for now) single out certain K-definable sets
and not all K-varieties can be described quantifier-free inMn(K). The ringMn(K)
is quantifier-free definable in the field K. Conversely, K is universally definable in
the ringMn(K) as its center1 and in 2.1.4 we see an existential definition. However

1It should also be noted that for any field K, the ring Mn(K) is already interpretable in the
monoid (Mn(K), ·) when n ≥ 3. The reason is that (Mn(K), ·) interprets the poset of vector sub-
spaces of Kn and one can then invoke incidence geometry, see [Tre17, 5.1]. For the interpretation
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there is no field K that is quantifier-free definable in the ring Mn(K) as its center,
see 2.3.

In Section 2 we identify natural necessary and sufficient conditions for quantifier
elimination of Mn(K) in the language of rings expanded by two unary functions,
naming the trace and transposition. This is obtained for formally real Pythagorean
fields (see 2.2.4) and it says that Mn(K) has quantifier elimination in the extended
language if and only if there is some D ∈ N depending only on n such that for all
d and any two d-tuples of n× n matrices X,Y ∈Mn(K)d with

tr(w(X,Xt)) = tr(w(Y, Y t))

for all words w in x, xt of length ≤ D, there is some O ∈Mn(K) with OOt = In and
OtXiO = Yi for all i, i.e., the tuples X and Y are orthogonally equivalent over K.

This condition is satisfied for the field of real numbers and more generally for
every intersection of real closed fields, see 2.2.5. A similar result holds for the com-
plex field, however the involution properly expands the matrix ring to include the
reals. As mentioned above, quantifier elimination of a natural definable expansion
of Mn(C) is closely related to the simultaneous conjugacy problem; see 2.4.

For the theory of matrix rings and more generally, C∗-algebras from a continuous
logic perspective we refer the reader to e.g. [FHS14]. We use basic model theory
and standard notations as explained for example in [Hod93]. For generalities on
decidability in first order logic see [Rau10]. All rings and algebras in this paper are
associative but not necessarily commutative or unital. Fields are commutative.

2. Elimination theory of matrix rings

In this section we are concerned with the elimination theory of matrix rings of
fixed size. The first subsection is of preliminary nature and deals with model-
completeness in the ring language and with quantifier elimination after naming
matrix units. After that, in the main part, we study natural expansions by trace and
transposition (or adjoint). In particular, we prove quantifier elimination of the ring
Mn(R) expanded by the trace, transposition and the order on its center, see 2.2.6.

2.1. Naming matrix units. In this subsection we show that model complete
expansions of fields have model complete matrix rings in their natural language,
see 2.1.7. If we name matrix units, the same is true for quantifier elimination, see
2.1.11.

2.1.1. On matrix units. Let A be a ring, n ∈ N and for i, j ∈ {1, . . . , n} let
aij ∈ A. Suppose for all i, j, s, t ∈ {1, . . . , n} we have aij ·ast = δjsait. The following
properties are easily verified.
(1) For i, j, s, t ∈ {1, . . . , n} we have assaijatt = δisδjtaij .

(2) If aij = 0 for some i, j, then ast = asi · aij · ajt = 0 for all s, t. Now assume all
aij 6= 0. Then the aij (1 ≤ i, j ≤ n) are linearly independent over any central
subfield F of A.

(3) For (xij)i,j∈{1,...,n}, (yij)i,j∈{1,...,n} ∈Mn(F ), we have

(

n∑
i,j=1

xijaij) · (
n∑

i,j=1

yijaij) =

n∑
i,j=1

(

n∑
k=1

xikykj)aij .

we code a subspace as the range of a matrix and note that ran(A) ⊆ ran(B) ⇐⇒ ∃C ∈Mn(K) :
A = BC.
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(4) Let F be a central subfield of A. The map

Mn(F ) −→ A, (uij)i,j∈{1,...,n} 7−→
n∑

i,j=1

uijaij

is a (not necessarily unital) F -algebra homomorphism, because it is clearly F -
linear and it is a ring homomorphism by (3). If aij 6= 0 for all i, j ∈ {1, . . . , n},
then by (2) this map is injective.

To see an example where the map is not unital, choose any field F , set
n = 1 < m, A = Mm(F ) and take a11 ∈ A \ {0, Im} with a2

11 = a11.

2.1.2. Defining matrix units. The language of unital rings is denoted by Lri =
{+, ·,−, 0, 1}. Let F be a field and let M = Mn(F ). The center C = Cn of
M is isomorphic to F , but we will work with C instead of F . For N ∈ N we
considerMN (C) as a subset ofMN2

and as an F -algebra via the natural embedding
F ∼= C ↪→ MN (C). Take 2N2 + 2 variables ū = (uij | i, j ∈ {1, . . . N}), x̄ =
(xij | i, j ∈ {1, . . . N}), y, v. Consider the following Lri-formulas:

(1) Let ε = εN (ū) be the formula
∧N
i,j,t=1 uij · ujt = uit 6= 0 ∧

∧N
i,j,s,t=1,j 6=s uij ·

ust = 0.
(2) Let δ = δN (v, ū) be the formula

∧N
s,t=1 v · ust = ust · v.

(3) Let λN (x̄, y, ū) be the formula y =
∑N
i,j=1 xij · uij .

Finally let γ = γN (x̄, y, ū) be the formula λ(x̄, y, ū) ∧ ε(ū) ∧
∧N
i,j=1 δ(xij , ū).

By 2.1.1 we then obtain

2.1.3. Proposition. For i, j ∈ {1, . . . , N} let Eij ∈MN (C) be the N ×N -matrix
that has exactly one nonzero entry, namely 1 (∈ C) at position (i, j).
(1) If Θ : MN (C) −→ Mn(F ) = M is a (not necessarily unital) embedding of

F -algebras, then the N2-tuple ā := (Θ(Eij))i,j∈{1,...N} ∈MN2

is a realization
of εN (ū), and γN (x̄, y, ā) defines the graph of Θ in the ring M .

(2) For every realization ā = (aij)i,j∈{1,...,N} ∈MN2

of εN inM , there is a unique
(not necessarily unital) embedding of F -algebras Θā : MN (C) −→Mn(F ) such
that Θā(Eij) = aij (i, j ∈ {1, . . . , N}). Explicitly, the graph of Θā is defined
by γN (x̄, y, ā).

Consequently the family of all (not necessarily unital) embeddings of F -algebras
MN (C) −→Mn(F ) is quantifier-free definable in M by γ(x̄, y, ū) and its parameter
set is quantifier-free defined by ε(ū). �

2.1.4. Corollary. For any field F the center of Mn(F ) is existentially definable by

∃ū
(
εn(ū) ∧ δn(v, ū)

)
. �

2.1.5. Corollary.
(1) For a field F , the theory of Mn(F ) is axiomatised by saying the following

about a model A with center C:
(a) A is a ring whose center C is elementarily equivalent to F .
(b) There is some realization ā = (aij)i,j∈{1,...,n} of εn in An

2

and for each
such realization, γn(x̄, y, ā) defines an isomorphism Mn(C) −→ A.

(2) If A,B are rings that are elementarily equivalent to Mn(F ), and if A is a
subring of B, then the center CA of A is a subring of CB. Further, for each
realization ā = (aij)i,j∈{1,...,n} of εn in An

2

the following diagram commutes:
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A B

Mn(CA) Mn(CB)

Θā
∼= Θā

∼=

�

2.1.6. Definition. Let F be a field and let F̃ be an expansion of F in some
language L extending Lri. Then we define the L -structureMn(F̃ ) as the structure
expanding the ring Mn(F ) and that interprets new relation symbols and constant
symbols only on the center C of Mn(F ) as given by F̃ . A new m-ary function
symbol f is interpreted on Cm as given by F̃ , and set to be 0 outside of Cm.

For algebraically closed fields, the following may be found in [Ros80, Theorem 5.4].

2.1.7. Proposition. If F̃ is a model complete expansion of a field F in some
language L extending Lri, then the L -structure Mn(F̃ ) is also model complete.
Hence, for example, the ringMn(C) is model complete and the ringMn(R) expanded
by the natural order on its center is model complete.

Proof. This is a routine argument using 2.1.5: Let Ã, B̃ be L -structures with
underlying rings A,B respectively. Suppose Ã, B̃ are elementarily equivalent to
Mn(F̃ ) with Ã ⊆ B̃. We need to show that Ã ≺ B̃. Choose a realization ā =

(aij)i,j∈{1,...,n} of εn in An
2

as in 2.1.5(1) and consider the commutative diagram
of 2.1.5(2). We see that the L -structure M induced by Ã on CA is a substructure
of the L -structure N induced by B̃ on CB . By assumption this extension is
elementary. Since Ã is interpretable in M in the same way B̃ is interpretable in
N , we get Ã ≺ B̃. �

2.1.8. Remark. A corresponding version of 2.1.7 for quantifier elimination (instead
of model completeness) fails; for instance the ring Mn(C) does not have quantifier
elimination in Lri for any n ≥ 2. In fact, by [Ros78, proof of Theorem 3.2], for any
infinite field F , the center ofMn(F ) is not quantifier-free definable with parameters
from F · In in the ring Mn(F ).

A geometric argument goes as follows: Assume F · In is quantifier-free F · In-
definable in Mn(F ). Then F · In is a finite union of nonempty sets of the form
{X ∈ Mn(F ) | p1(X) = . . . = pr(X) = 0 and q1(X), . . . , qs(X) 6= 0}, where pi, qj
are univariate polynomials from F [t]. Since such polynomials have only finitely
many roots in F and F is infinite, one of these sets is of the form {X ∈ Mn(F ) |
q1(X), . . . , qs(X) 6= 0}. But then F · In has nonempty Zariski interior in Mn(F ), a
contradiction.

If we allow matrix units as parameters, then a corresponding version of 2.1.7 for
quantifier elimination does hold.

2.1.9. Lemma. If U is a subring of Mn(F ), F a field and U contains the standard
matrix units Eij, 1 ≤ i, j ≤ n, then

RU = {a ∈ F | a is the (1, 1) entry of some Y ∈ U}
is a subring of F and U = Mn(RU ).

Proof. Let a, b ∈ RU , say a is the (1, 1) entry of X ∈ U , and b is the (1, 1) entry of
Y ∈ U . Then a + b is the (1, 1) entry of X + Y ∈ U , and ab is the (1, 1) entry of
XE11Y E11 ∈ U , proving then RU is a subring of k.
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Given X ∈ U ⊆ Mn(F ), X = (xij)i,j , we see that xij is the (1,1) entry of
E1iXEj1 ∈ U , so U ⊆ Mn(RU ). Conversely, if X = (xij)i,j ∈ Mn(RU ), then each
xij is the (1,1) entry of some Yij ∈ U . Hence X =

∑
i,j Ei1YijE1j ∈ U. �

2.1.10. Recall from [Hod93, Thm. 8.4.1] that an L -theory T has quantifier elimi-
nation if and only if it is model complete and models of T have the amalgamation
property over substructures.

2.1.11. Proposition. Let F̃ be an expansion with quantifier elimination of a field
F in some language L extending Lri and let c̄ = (cij)i,j∈{1,...,n} be new constant
symbols. Then the L (c̄)-structure (Mn(F̃ ), ē), where c̄ is interpreted by a tuple ē
of matrix units, also has quantifier elimination.

In particular, the ring Mn(C) expanded by the standard matrix units Eij and the
ring Mn(R) expanded by the natural order on its center and the standard matrix
units Eij have quantifier elimination.

Proof. SinceMn(F̃ ) is model complete by 2.1.7, it suffices to show that the theory of
(Mn(F̃ ), ē) has the amalgamation property. Let (Ã, ā), (B̃, b̄) be L (c̄)-structures
with underlying rings A,B respectively. Suppose (Ã, ā), (B̃, b̄) are elementarily
equivalent to (Mn(F̃ ), ē) and suppose U is a common L (c̄)-substructure. Hence
U = (Ũ, ū), where Ũ is an expansion of a common subring U of A and B, and
ū = ā = b̄. Let K,L be the center of A,B respectively. By 2.1.5 there are ring
isomorphisms ϕ : A −→ Mn(K), ψ : B −→ Mn(L) that map uij to the standard
matrix unit Eij for all i, j. We expand Mn(K) to the L -structure Mn(K̃) that
makes ϕ an L -isomorphism Ã −→Mn(K̃), and similarly forMn(L). By 2.1.9, there
are subrings R ⊆ K,S ⊆ L such that the restriction of ϕ,ψ to U are isomorphisms
onto Mn(R),Mn(S) respectively. We expand Mn(R),Mn(S) to the induced L -
substructures ofMn(K̃),Mn(L̃) respectively and obtain the following commutative
diagram:

(Mn(K̃), Ē) (Ã, ū) (B̃, ū) (Mn(L̃), Ē)

(Mn(R̃), Ē) (Ũ, ū) (Mn(R̃), Ē)

ϕ

∼=
ψ

∼=

∼= ∼=

Restricting all maps to centers and using that F̃ has quantifier elimination, there is
some Ω̃ elementarily equivalent to K̃ and L̃ together with L -embeddings ε : K̃ −→
Ω̃, δ : L̃ −→ Ω̃ such that for every v in the center of U we have ε(ϕ(v)) = δ(ψ(v)).
Let ε̄ : Mn(K) −→ Mn(Ω), δ̄ : Mn(L) −→ Mn(Ω) be the unique extensions of ε, δ
preserving the standard matrix units. We see that ε̄, δ̄ are L (c̄)-morphisms and
thus the desired amalgamation is given by the maps ε̄ ◦ ϕ and δ̄ ◦ ψ. �

2.2. Quantifier elimination with trace and transposition. We have seen in
2.1.11 that quantifier elimination of a field in a suitable language carries over to
its matrix rings if we allow naming of definable parameters (i.e., the set of these
parameters is 0-definable). Without parameters the assertion fails, see 2.1.8. We
now consider quantifier elimination of expansions of matrix rings by trace and
transposition in the case of Pythagorean fields. We will see in 2.2.4 that quantifier
elimination is equivalent to a property in invariant theory describing simultaneous
orthogonal similarity of matrices. For the real field the characterization entails
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quantifier elimination of the ring Mn(R) expanded by the trace, transposition and
the order on its center.

2.2.1. Lemma. Let K,L be fields. Let L be the extension of Lri by a unary
function symbol F . Consider the L -structures (Mn(K), trK) and (Mn(L), trL).
Let (U, f) be an L -structure and suppose we are given L -embeddings ϕ : (U, f) ↪→
(Mn(K), trK) and ψ : (U, f) ↪→ (Mn(L), trL). Then
(1) The subring R of U generated by the image of f is commutative and ϕ(R) ⊆

K · In, ψ(R) ⊆ L · In.
(2) If K · In and L · In can be amalgamated over ϕ|R, ψ|R into some field Ω by

maps ε : K · In −→ Ω · In, δ : L · In −→ Ω · In, then for the induced maps
ε̄ : Mn(K) −→Mn(Ω), δ̄ : Mn(L) −→Mn(Ω) and every X ∈ U we have

trΩ(ε̄(ϕ(X))) = trΩ(δ̄(ψ(X))).

Here are the maps in a (not necessarily commutative) diagram.

(Mn(Ω), trΩ)

(Mn(K), trK) (Mn(L), trL)

(U, f)

(R, f |R)

ε̄ δ̄

ϕ ψ

ϕ|R ψ|R

Proof. (1) Let X ∈ U , then ϕ(f(X)) = trK(ϕ(X)) since ϕ is an L -homomorphism
(U, f) −→ (Mn(K), trK). Since trK(ϕ(X)) ∈ K ·In we get ϕ(f(X)) ∈ K ·In. Hence
ϕ(f(U)) ⊆ K · In. Since ϕ is an embedding U −→ Mn(K), R is commutative and
ϕ(R) ⊆ K · In. Similarly, ψ(R) ⊆ L · In.
(2) For X ∈ U we have

trΩ(ε̄(ϕ(X))) = ε(trK(ϕ(X))) since trΩ ◦ ε̄ = ε ◦ trK

= ε(ϕ(f(X))) since trK ◦ϕ = ϕ ◦ f
= δ(ψ(f(X))) since ε ◦ ϕ = δ ◦ ψ,

and similarly trΩ(δ̄(ψ(X))) = δ(ψ(f(X))). �

2.2.2. Theorem. Let Ω be a real closed field or the algebraic closure of a real closed
field. For X1, . . . , Xd, Y1, . . . , Yd ∈Mn(Ω) the following are equivalent:
(1) There is some unitary O ∈Mn(Ω) with O ·Xi ·O∗ = Yi for all i ∈ {1, . . . , d}.2
(2) For every word w in the letters x1, . . . , xd, x

∗
1, . . . , x

∗
d we have

trΩ(w(X1, . . . , Xd, X
∗
1 , . . . , X

∗
d )) = trΩ(w(Y1, . . . , Yd, Y

∗
1 , . . . , Y

∗
d )).

(3) For every word w of degree ≤ n2 in the letters X1, . . . , Xd, X
∗
1 , . . . , X

∗
d ,

trΩ(w(X1, . . . , Xd, X
∗
1 , . . . , X

∗
d )) = trΩ(w(Y1, . . . , Yd, Y

∗
1 , . . . , Y

∗
d )).

2If Ω is real closed then X∗ is the transpose of X. If Ω is the algebraic closure of a real closed
field Ω0 ⊆ Ω then X∗ is the conjugate transpose of X with respect to Ω0.
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Proof. The equivalence of (1) and (2) over C is established in [Wie62, Thm. 4]
and in [Sib68, Cor. 1]. The equivalence of (1) and (2) over R is given by [Sib68,
Lemma 2] (see also [Pro76, Thm 7.1, Thm. 15.3]). For degree bounds in (3) (when
Ω = R or C), see [Pro76, Thm 7.3] and [Raz74].3 Since (2) is equivalent to (3), all
equivalences carry over to all real closed fields and to their algebraic closures. �

2.2.3. Observation. Let F be a formally real field. Then

X = 0 ⇐⇒ tr(XtX) = 0

for every matrix X = (xij) ∈Mn(F ), because tr(XtX) =
∑
i,j x

2
ij.

2.2.4. Theorem. Let F be a formally real Pythagorean field (hence sums of squares
are squares) and let F̃ be an expansion of F in a language L extending the language
Lri. Suppose F̃ has quantifier elimination in L . Let L (tr, invo) be the extension
of L by two new unary function symbols. The following are equivalent.
(1) The structure (Mn(F̃ ), trF , X 7→ Xt) has quantifier elimination in L (tr, invo).
(2) F has the Specht property for the transpose, i.e., there is some D = D(n) such

that for all d and any two d-tuples of n× n matrices X,Y ∈Mn(F )d with

tr(w(X,Xt)) = tr(w(Y, Y t))

for all words w in x, xt of length ≤ D, there is some O ∈Mn(F ) with OOt =
In and OtXiO = Yi for all i.

(3) If K̃ ≡ F̃ and U is a substructure of (Mn(K̃), trK , X 7→ Xt) and ψ : U −→
(Mn(K̃), trK , X 7→ Xt) is an embedding, then there is an elementary extension
Ω̃ � K̃ and an extension of ψ to an embedding (Mn(K̃), trK , X 7→ Xt) −→
(Mn(Ω̃), trΩ, X 7→ Xt). Hence the following diagram commutes:

(Mn(Ω̃), trΩ, X 7→ Xt)

(Mn(K̃), trK , X 7→ Xt) (Mn(K̃), trK , X 7→ Xt)

U

�

ψ

Proof. (2)⇒(1) Since F̃ is model complete we know from 2.1.7 thatMn(F̃ ) is model
complete and so is its definable expansion (Mn(F̃ ), trF , X 7→ Xt). Hence by 2.1.10
it suffices to show that the theory T of (Mn(F̃ ), trF , X 7→ Xt) has the amalgamation
property over finitely generated substructures. So let M ,N |= T and let U be a
common finitely generated L (tr, invo)-substructure of M ,N . Using 2.1.1, 2.1.3
and as M |= T we see that there is an isomorphism ϕ̄ : M −→ (Mn(K̃), trK , X 7→
Xt) where K̃ ≡ F̃ : In the language L (tr, invo) we can say that there are matrix
units aij over the center K of M such that the ring homomorphismMn(K) −→M
that maps Eij to aij , is an isomorphism mapping transposition to the action of
invoM .

We write ϕ for the restriction of ϕ̄ to U . Similarly, we see that there is an
isomorphism ψ̄ : N −→ (Mn(L̃), trL, X 7→ Xt), with L̃ ≡ F̃ and we write ψ

3For d = 1, this result is classical. The equivalence between (1) and (2) over C is due to [Spe40,
Satz 1]. The degree bounds and the real case for d = 1 are due to [Pea62, Thm. 1 and Cor. to
Thm. 2].
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for the restriction of ψ̄ to U . We now replace M by (Mn(K̃), trK , X 7→ Xt)

and N by (Mn(L̃), trL, X 7→ Xt) and we need to amalgamate these L (tr, invo)

structures over U via the L (tr, invo)-embeddings ϕ,ψ. We write U = (Ũ, f, h),
where f : U −→ U and h : U −→ U are the maps induced by the trace functions
and the transpositions, respectively on U .

Let R be the subring of U generated by the image of f . By 2.2.1(1), R is
commutative, ϕ(R) ⊆ K · In and ψ(R) ⊆ L · In. For better readability we now
identify K with K · In and L with L · In. Since ϕ is an L -embedding, Mn(K̃) and
Mn(L̃) induce the same L -structure R̃ on R and ϕ|R : R̃ −→ K̃, ψ|R : R̃ −→ L̃ are
embeddings of L -structures. Since F̃ has quantifier elimination there are Ω̃ ≡ F̃
and L -embeddings ε : K̃ −→ Ω̃, δ : L̃ −→ Ω̃ such that ε ◦ϕ|R = δ ◦ψ|R. We write
ε̄, δ̄ for the induced L (tr, invo)-embeddings as in 2.2.1 and consider the diagram

(Mn(Ω̃), trΩ, X 7→ Xt)

(Mn(K̃), trK , X 7→ Xt) (Mn(L̃), trL, X 7→ Xt)

U

(R, f |R)

ε̄ δ̄

ϕ ψ

ϕ|R ψ|R

Notice that in general only the outer square in this diagram commutes. Since U is
a finitely generated L -structure, there are X1, . . . , Xd ∈ U such that U is the ring
generated by X1, . . . , Xd.
Claim. There is some orthogonal matrix O ∈Mn(Ω) such that for all i ∈ {1, . . . , d}
we have

O · ε̄(ϕ(Xi)) ·Ot = δ̄(ψ(Xi)).

Proof. We write Yi = ε̄(ϕ(Xi)) and Zi = δ̄(ψ(Xi)). To see the claim we use (2), by
which it suffices to show that for every word w in x1, . . . , xd, x

t
1, . . . , x

t
d we have

trΩ(w(Y1, . . . , Yd, Y
t
1 , . . . , Y

t
d )) = trΩ(w(Z1, . . . , Zd, Z

t
1, . . . , Z

t
d)).

Let X = w(X1, . . . , Xd, h(X1), . . . , h(Xd)) ∈ U (the degree bound D is used to
transfer (2) from F̃ to Ω̃). By 2.2.1(2) we know that

trΩ(ε̄(ϕ(X))) = trΩ(δ̄(ψ(X))).

Since ε̄ and ϕ respect the function symbol for the adjoint we see that

ε̄(ϕ(X)) = ε̄(ϕ(w(X1, . . . , Xd, h(X1), . . . , h(Xd))))

= w(ε̄(ϕ(X1)), . . . , ε̄(ϕ(Xd)), ε̄(ϕ(X1))t, . . . , ε̄(ϕ(Xd))
t)

= w(Y1, . . . , Yd, Y
t
1 , . . . , Y

t
d ).

Similarly, δ̄(ψ(X)) = w(Z1, . . . , Zd, Z
t
1, . . . , Z

t
d), establishing the claim. �

Now take an orthogonal O ∈ Mn(Ω) as in the claim and observe that the map
γ : Mn(Ω) −→ Mn(Ω), X 7→ O ·X · Ot preserves traces, adjoints of matrices and
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the L -structure of Mn(Ω̃). Hence γ is an L (tr, invo)-automorphism of (Mn(Ω̃),
trΩ, X 7→ Xt).

Consequently, by the claim, γ ◦ ε̄ ◦ϕ = δ̄ ◦ψ. This shows that the maps γ ◦ ε̄ ◦ϕ
and δ̄ ◦ ψ form an amalgamation of the L (tr, invo)-structures M and N over the
L (tr, invo)-embeddings ϕ and ψ.
(1)⇒(3) is a weakening, see 2.1.10.
(3)⇒(2) By a standard compactness argument it suffices to show that (2) holds
without the degree bound for all K̃ ≡ F̃ .

Let U be the L (tr, invo)-substructure of Mn(K̃) generated by K · In and the
Xi. Let U be the ring underlying U . Hence U is generated as a K-algebra by
all words in the Xi, X

t
i . Let ϕ : U → Mn(K) be the identity mapping and let

ψ : U → Mn(K) be the K-algebra homomorphism that maps Xi to Yi and Xt
i to

Y ti .
We claim that ψ is an L (tr, invo)-homomorphism. Firstly, ψ is well defined:

It suffices to show that for every noncommutative polynomial p(x, xt) with co-
efficients in K and p(X,Xt) = 0, we have p(Y, Y t) = 0. By 2.2.3 we know
tr(p(X,Xt)tp(X,Xt)) = 0. But the left-hand side of this equation is simply a
linear combination of traces of words in the X,Xt. Hence by the assumption on
traces, tr(p(Y, Y t)tp(Y, Y t)) = 0. Thus p(Y, Y t) = 0 by 2.2.3 again. It is clear that
ψ is an L (tr, invo)-embedding.

Now we amalgamate as asserted in (3). There are an elementary extension Ω̃ of
K̃ and an L -embedding ε̄ : Mn(K̃) → Mn(Ω̃), preserving tr and invo such that
ψ(u) = ε̄(u) for all u ∈ U . Since ε̄ is compatible with the traces it is a K-algebra
homomorphisms. Hence by the Skolem-Noether theorem (see [Bre14, Thm 4.46]),
there is some invertible Z ∈Mn(Ω) with

ε̄(X) = Z−1XZ for all X ∈Mn(K).

Now,

Z−1XtZ = ε̄(Xt) = (ε̄(X))t = (Z−1XZ)t = ZtXt(Z−1)t = ZtXt(Zt)−1,

whence ZZtXt = XtZZt for all X. Hence ZZt is central and there is some
λ ∈

∑
Ω2 with ZZt = ZtZ = λIn.

By the commutativity in the amalgamation diagram we know

Z−1XiZ = Yi

for all i. Since Ω is Pythagorean we also know that λ is a square and so we may
replace Z by Z√

λ
and assume λ = 1. Hence O = Z−1 is an orthogonal matrix with

coefficients in Ω satisfying OtXiO = Yi for all i. Since Ω is an elementary extension
of K we may find such an O with coefficients in K as well. �

We next identify a large class of fields with the Specht property, namely fields
that can be written as intersections of real closed fields. We refer to [Cra80] for a
systematic study of such fields. In [MSV93] the authors say such fields satisfy the
principal axis property: every symmetric matrix over F is orthogonally similar to a
diagonal matrix over F . Notice that all fields that can be written as intersections of
real closed fields are Pythagorean and by [Bec78, III, §1, Thm. 1], every hereditarily
Pythagorean field is the intersection of real closed fields.

2.2.5. Proposition. Suppose the field F is an intersection of real closed fields.
Then F has the Specht property for transposition.
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More precisely, given two d-tuples of n× n matrices X,Y ∈Mn(F )d with

tr(w(X,Xt)) = tr(w(Y, Y t))

for all words w in x, xt of length ≤ n2, there is some O ∈ Mn(F ) with OOt = In
and OtXiO = Yi for all i.

Proof. By 2.2.2, for every real closed field R ⊇ F there is an orthogonal matrix
U ∈Mn(R) with U tXiU = Yi.

Consider the system of linear equations PXi = YiP and PXt
i = Y ti P for i =

1, . . . , d. It has solutions P with nonzero determinant in every real closed field
extension of F by the above, so it must have a solution P ∈Md(F ) that is invertible.
Hence P−1XiP = Yi and P−1Xt

iP = Y ti for all i. In particular,

P−1Xt
iP = Y ti =

(
P−1XiP

)t
= P tXt

i (P
t)−1,

whence PP t commutes with all Xi and Xt
i .

Since F has the principal axis property, we can diagonalize PP t. There is an
orthogonal matrix V ∈Mn(F ) and a diagonal matrix D ∈Mn(F ) with V tPP tV =
D. By construction, each entry of D is a (sum of) square(s). We thus find a
diagonal matrix

√
D ∈Mn(F ) with

√
D

2
= D. Let H := V

√
DV t ∈Mn(F ). Then

H2 = V
√
DV tV

√
DV t = V

√
D

2
V t = V DV t = PP t,

i.e., H is the symmetric square root of PP t. Thus by standard linear algebra, it
commutes with all elements that commute with PP t.

Set O = H−1P . Then

OtO = P tH−1H−1P = P tH−2P = P t(PP t)−1P = P tP−tP−1P = I,

so O ∈Mn(F ) is an orthogonal matrix. Further,

OtXiO = O−1XiO = P−1HXiH
−1P = P−1XiP = Yi,

as desired. �

2.2.6. Corollary. Let F be an intersection of real closed fields and let F̃ be an
expansion of F in a language L extending the language of rings. Suppose F̃ has
quantifier elimination in L . Let L (tr, invo) be the extension of L by two new
unary function symbols. Then the structure (Mn(F̃ ), trF , X 7→ Xt) has quantifier
elimination in L (tr, invo).

Proof. Immediate from Theorem 2.2.4 and Proposition 2.2.5. �

2.2.7. An application: Sylvester’s equation A famous matrix equation from
control theory is Sylvester’s equation [BR97], AX −XB = C for some n ∈ N and
n × n real (or complex) matrices A,B,C. By the Sylvester-Rosenblum theorem,
given A,B there is a unique solution X for every C iff the spectra of A and B are
disjoint, and by the quantifier elimination proved in Corollary 2.2.6 (or 2.4.2 below,
for the complex case), this can be expressed quantifier free in A,B purely in terms
of the trace and (conjugate) transpose.
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2.3. Trace and transposition are needed. We present three examples estab-
lishing the optimality of 2.2.4. The first example shows that we cannot omit the
trace.

2.3.1. Example. Let K be a field of characteristic zero. Let

X1 =

1
2

2

 , X2 =

1
1

2

 ∈M3(K).

Let U be the unital subring of M3(Z) generated by X1. Consider the ring homo-
morphism ψ : U →M3(K) defined by

X1 7→ X2,

and let ϕ : U → M3(K) be the inclusion mapping. Then the following diagram
cannot be amalgamated:

M3(K) M3(K)

U

ϕ ψ

(Notice that ϕ and ψ also respect the transposition, since all X ∈ U are symmetric.)

Proof. Notice that it suffices to verify the claim for K = L = Q. Firstly, the map ψ
is well-defined, since the minimal polynomial of X1 is (t− 1)(t− 2) and is equal to
the minimal polynomial of X2. Now assume M3(Ω) is an amalgamation of ψ and
φ over U , and the following diagram commutes:

(2.1)

M3(Ω)

M3(Q) M3(Q)

U

ε̄ δ̄

ϕ ψ

Then ε̄, δ̄ : M3(Q) → M3(Ω) are ring homomorphisms. By the Skolem-Noether
theorem (see, e.g. [Bre14, Theorem 4.46]), there are invertible matrices W,V ∈
M3(Ω) such that

ε̄(Y ) = W−1YW, δ̄(Y ) = V −1Y V

for all Y ∈M3(Q). Then

V −1X2V = δ̄(X2) = δ̄(ψ(X1)) = ε̄(φ(X1)) = ε̄(X1) = W−1X1V,

yielding
X2 = (VW−1) X1 (VW−1)−1.

However, this is not possible because X1 and X2 are not similar; for example they
have different characteristic polynomials. �

The second example shows that we cannot omit transposition in 2.2.4.
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2.3.2. Example. Let K be a field of characteristic zero. Consider

X1 =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , X2 =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ∈M4(K).

Let U be the unital subring of M4(Z) generated by X1. Consider the ring homo-
morphism ψ : U →M4(K) defined by

X1 7→ X2,

and let ϕ : U → M4(K) be the identity mapping. Then ψ and ϕ cannot be
amalgamated over U . (Notice that ϕ and ψ also respect the trace functions.)

Proof. Again, it suffices to verify the claim for K = L = Q. Note that ψ is well-
defined since the minimal polynomial of X1 and of X2 is t2. Now assume M4(Ω)
amalgamates ϕ and ψ over U . As in 2.3.1 this leads to X1 being conjugate to X2

(over Ω and thus over Q). However, this is impossible since X1 and X2 are not
similar; for example dim ker(X1) = 2 6= 3 = dim ker(X2). �

By 2.2.6, the structure (Mn(R,≤), trR, X 7→ Xt) has quantifier elimination in
Lri(≤, tr, invo). The third example shows that (Mn(C), trC, X 7→ Xt) does not
have quantifier elimination in Lri(tr, invo).

2.3.3. Example. Complex matrices with the trace and transpose do not admit
quantifier elimination. For the same reasons as above it suffices to show there exist
symmetric order two nilpotents with different rank. For this we take N1 to be the
rank one outer product N1 = uut with u =

(
1 i 0 0

)t and we let N2 be the
symmetric order two nilpotent

N2 =


0 1 0 −i
1 0 −i 0
0 −i 0 −1
−i 0 −1 0.

 .

2.4. The simultaneous conjugacy problem.

2.4.1. As in the proof of 2.2.4(2)⇒(1), using the complex Specht property (see
2.2.2), one can establish that the theory of (Mn(C),≤, trC, X 7→ X∗) has quantifier
elimination; here ≤ is the order on the symmetric center R · In. The underlying
expansion of the field C is C̃ := (C, z 7→ z,≤), where ≤ is the order on R and z is
complex conjugation. Since R is not definable in the field C, the structure C̃ is a
proper expansion of C. Conversely, the field R obviously defines the structure C̃;
hence the complex version of 2.2.4 is a statement about the real field.

2.4.2. The question on whether a natural definable expansion of the ring Mn(C)
has quantifier elimination is tightly related to a “hopeless” open problem in invari-
ant theory [LB95, LBP87, GfP69]. Namely the classification of d-tuples of n × n
matrices under simultaneous conjugation by GLn(C), i.e., understanding the quo-
tient Mn(C)d/GLn(C). Alternately, in algebraic language, one is interested in a
canonical form for tuples of matrices under simultaneous conjugation, a role played
by the Jordan canonical form in the case d = 1. A relaxation of the problem asks
for a set of invariants that separate the orbits.

In model theoretic terms this can be phrased as follows. LetM be the ringMn(C)
and fix d ∈ N. We write ∼d for the simultaneous similarity relation on Md. Then
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∼d is a 0-definable equivalence relation and by elimination of imaginaries of the field
C (cf. [Hod93, Thm. 4.4.6]), there is a 0-definable function fd : Md −→ Mk for
some k such that X̄ ∼ Ȳ ⇐⇒ fd(X̄) = fd(Ȳ ). If we add names for all the fd to the
language of rings, one can prove quantifier elimination of the resulting expansion
of M just like in the proof of 2.2.4(2)⇒(1); the sequence of the fd substitutes the
role of the transposition and the trace.

In [Fri83] functions fd as above are explicitly constructed, up to a finite number
of exceptions. Alternatively one can use techniques from Gröbner bases to construct
them explicitly (without exceptions). This is work in progress and will be published
in another paper.

3. Undecidability of dimension-free matrices

We now turn to model theoretic properties of dimension-free matrices. We present
six natural algebraic structures capturing the set of all matrices of all sizes over
a given field and prove that all of them are undecidable. This is based on unde-
cidability of finite groups, which is reviewed first (suitably for our purpose). As a
general reference for elementary properties of classes of finite groups in relation to
decidability questions, we refer to [BM04, Section 6.3].

3.1. The universal Horn theory of finite groups. Throughout, Lgr denotes
the language {·, −1, e} of groups and Tfin denotes the Lgr-theory of finite groups.
Hence

Tfin = {ϕ | ϕ an Lgr-sentence with G |= ϕ for every finite group G}.

Further, Tfin,∀ denotes the universal theory of finite groups, hence all sentences
in Tfin of the form

∀x1, . . . , xn

r∧
λ=1

( m∧
j=1

sλj = e −→
k∨
i=1

tλi = e

)
,

where r,m, k ∈ N0, r ≥ 1 and sλj , tλi are Lgr-terms in the free variables x1, . . . , xn
(aka “words in the xi and x−1

i "). A universal Horn sentence of Lgr is a sentence
of the form

∀x1, . . . , xn

( m∧
j=1

sj = e −→ t = e

)
,

where m ∈ N0 and sj , t are Lgr-terms. We write Tfin,H−∀ for the set of all universal
Horn sentences in Tfin,∀ and call it the universal Horn theory of finite groups.

Notice that by the shape of the sentences in Tfin,∀ and in Tfin,H−∀, every subgroup
of a model of Tfin,∀, Tfin,H−∀ is again a model of Tfin,∀, Tfin,H−∀ respectively.

3.1.1. Fact. (cf. [Slo81])
The universal Horn theory of finite groups is undecidable. More precisely: Tfin,H−∀
is not a recursive subset of the set of Lgr-sentences. The same is then obviously
true for Tfin,∀.

3.1.2. Definition. We call a class K of groups satiated if
(a) Every finite group embeds into some member of K, and,
(b) Every member of K is a model of the universal Horn theory of finite groups.
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Let R be any first order structure in an arbitrary language L . We call R satiated
if R has a uniform interpretation of a satiated set of groups. This means that there
are k, n ∈ N and an L -formula µ(x̄1, x̄2, ȳ, z̄), where x̄1, x̄2, ȳ are n-tuples and z̄ is
a k-tuple such that
(a) for every ā ∈ Rk, the subset defined by µ(x̄1, x̄2, ȳ, ā) in R3n is the graph of

multiplication of a group Gā with universe contained in Rn, and,
(b) the set of groups {Gā | ā ∈ Rk} is satiated.

3.1.3. Proposition. Any satiated structure is undecidable.

Proof. The definition readily implies that the universal Horn theory of every sati-
ated class K (thus, all universal Horn Lgr-sentences that are true in all G ∈ K)
is the universal Horn theory of finite groups. Now suppose that R is a decidable
satiated structure. Take a formula µ as in 3.1.2. It is then clear that there is a
map ϕ 7→ ϕ̃ from universal Horn sentences in Lgr to the set of L -sentences with
recursive image such that ϕ ∈ Tfin,H−∀ if and only if ϕ̃ is true in R. But then
Tfin,H−∀ is recursive, in contradiction to 3.1.1. �

Recall that a linear group is a group that can be embedded into some GLn(F )
for some field F .

3.1.4. Proposition. Every linear group is a model of the universal theory of finite
groups.

Proof. It suffices to show the claim for the group G = GLn(F ) when F is an
algebraically closed field. If F has characteristic p > 0, then by completeness of the
theory of algebraically closed fields of fixed characteristic we may assume that F is
the algebraic closure Fp of Fp. But then G is the union of all the GLn(K), where
K runs through the finite fields of characteristic p. Since universal sentences are
preserved by unions we get the assertion. When F is of characteristic 0, then using
Łoś’s theorem, G is elementarily equivalent to any non-principal ultraproduct of
the GLn(Fp), p prime. Hence the result follows. �

3.1.5. Corollary. Let K be any class of linear groups such that every finite group
embeds into some member of K. Then K is satiated. This, for example, is the case
for any class of linear groups containing all the GLn(F ) for some fixed field F .

Proof. Immediate from 3.1.4. �

3.2. Applications to dimension-free matrices. There are various ways how the
collection of all square matrices of arbitrary (finite) size over a field can be given an
algebraic structure. We present six such constructions and show that each of them
is undecidable. In the realm of infinite matrix theory in the sense of Poincaré (cf.
[Ber68] and [Coo50]), one can find many constructions containing all finite square
matrices. But then either one does not have a handle on the finitely sized matrices,
or one of the constructions below will be interpretable.

3.2.1. Dimension-free matrices with partial operations. Let F be a field
and let R1,R2 be the following structures (the languages are defined implicitly and
en route). The universe of R1 is the disjoint union of all the GLn(F ). Further,
R1 has a partial function · with domain ⋃n(GLn(F ) × GLn(F )) and interpreted
as multiplication. The universe of R2 is the disjoint union of all the Mn(F ). Fur-
ther, R2 has two partial functions + and · defined on ⋃n(Mn(F ) ×Mn(F )) and
interpreted as addition and multiplication respectively.
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Then R1,R2 are satiated, hence undecidable by 3.1.3. The formula µ that
uniformly interprets the satiated set {GLn(F ) | n ∈ N} in R1 is the formula

x1 · z, x2 · z, y · z are defined and x1 · x2 = y.
For R2 we take the formula µ(x1, x2, y, z) & “x1, x2 are invertible", where “x in-
vertible" stands for the formula expressing that x is invertible in the group of all u
for which u · x is defined.

3.2.2. Lemma. Let F be a field and let S be a subsemigroup of Mn(F ). If S
is a group, then S is isomorphic to a subgroup of GLm(F ) for some m ≤ n. In
particular, S is a linear group.

Proof. Let I be the neutral element of S. Then I is idempotent and there is some
P ∈ GLn(F ) such that P−1 · I · P is of the form

E′ =

(
E 0
0 0

)
,

where E is the identity matrix of Mm(F ) for some m ≤ n. Let σ : Mn(F ) −→
Mn(F ); σ(X) = P−1 · X · P . Then σ is an automorphism of Mn(F ) and as
I ·X · I = X we get E′ · σ(X) · E′ = σ(X) for all X ∈ S. However, matrices with
this property are all of the form

Y ′ =

(
Y 0
0 0

)
,

for some Y ∈Mm(F ). If we embedMm(F ) intoMn(F ) by mapping Y to Y ′, we see
that σ maps S into Mm(F ). Hence S is isomorphic to a subgroup of GLm(F ). �

3.2.3. Finite rank infinite matrices. Let F be a field and let R be the semigroup
of all N×N-matrices with finite support and multiplication as operation. Then R
is a satiated structure and is thus undecidable by 3.1.3.

Proof. We considerMn(F ) as the subsemigroup ofR consisting of all n×n-matrices
sitting in the corner of R. We give a uniform definition of a satiated class of linear
groups in R using a formula µ in the language {·} of semigroups, as explained in
3.1.2. For X ∈ R, consider the set

C(X) = {Y ∈ R | ∀Z ∈ R
(
(X · Z = 0→ Y · Z = 0) & (Z ·X = 0→ Z · Y = 0)

)
}.

It is easy to see that C(X) ⊆ Mn(F ) for X ∈ Mn(F ) and that C(X) = Mn(F ) for
X ∈ GLn(F ).

Let ψ(z1, z2) be an {·}-formula such that ψ holds at (X, I) ∈ R2 in R just if the
set

G(X, I) = {Y ∈ C(X) | ∃Z ∈ C(X) Y · Z = Z · Y = I}
is a group with neutral element I. Then the formula ϕ(x, z1, z2) defined as

(ψ(z1, z2)→ x ∈ G(z1, z2)) & (¬ψ(z1, z2)→ x = 0)

has the following properties for all (X, I) ∈ R2:
(a) The set of all Y ∈ R with R |= ϕ(Y,X, I) is a linear group (use 3.2.2).
(b) If X ∈ GLn(F ) and I = In, then set of all Y ∈ R with R |= ϕ(Y,X, I) is

GLn(F ).
It is now standard to write down a {·}-formula µ(x1, x2, y, z1, z2) that uniformly
defines a satiated class of groups (also invoke 3.1.5). �
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3.2.4. Products. If (Gi | i ∈ I) is a satiated family of groups, then
∏
i∈I Gi is

undecidable, in fact the universal Horn theory of that product is undecidable. Hence
by 3.1.5, for any field F , the group

∏
n∈N GLn(F ) is undecidable, and consequently

so is the semigroup
∏
n∈NMn(F ) (observe that

∏
n∈N GLn(F ) is the set of invertible

elements of
∏
n∈NMn(F )).

Proof. We write P =
∏
i∈I Gi and show that P satisfies exactly the same universal

Horn sentences as the those satisfied by all finite groups. Then 3.1.1 gives the
assertion.
As a product, P satisfies all universal Horn sentences that are true in all Gi and so
P satisfies all universal Horn sentences that are true in all finite groups.
Conversely, let ϕ be a quantifier-free Horn formula∧

j

sj = e→ t = e

in l free variables and assume P |= ∀ϕ. Let H be a finite group and suppose
H |=

∧
j sj(h1, . . . , hl) = e. Fix some i0 ∈ I and an embedding ι : H ↪→ Gi0 . We

define X1, . . . , Xl ∈ P by

Xj,i =

{
ι(hj) if i = i0,

e if i 6= i0.

It is clear that Gi |=
∧
j sj(X1,i, . . . , Xl,i) = e for all i ∈ I. Hence

P |=
∧
j

sj(X1, . . . , Xl) = e

and so P |= t(X1, . . . , Xl) = e. Looking at the ith0 component we see that H |=
t(h1, . . . , hl) = e as required. �

3.2.5. Ultraproducts. For any field F and any non-principal ultrafilter U on
N, the universal Horn theory of the ultraproduct

∏
n∈N GLn(F )/U is the universal

Horn theory of finite groups, and is thus undecidable. Since the natural map∏
n

GLn(F )/U −→ (
∏
n

Mn(F )/U)×

is an isomorphism, the semigroup
∏
nMn(F )/U is undecidable as well.

Proof. Let G∞ =
∏
n GLn(F )/U, for some non-principal ultrafilter U. If ϕ is a

universal sentence, true in all finite groups, then by 3.1.4 it is true in all GLn(F )
and so it is also true in G∞.

Conversely if G∞ |= ϕ, then ϕ is true in all finite groups: Let H be a finite group
and let N ∈ N be such that GLn(F ) contains an isomorphic copy Hn of H for all
n ≥ N . Since GLn(F ) |= ϕ for arbitrarily large n and ϕ is universal, ϕ is also true
in Hn.

Hence the universal theory of the ultraproduct is Tfin,∀. Now use 3.1.1. �

3.2.6. Direct Limits. Let F be a field. For n ∈ N let fn : M2n(F ) −→M2n+1(F )

be the ring homomorphism that sends X to
(
X 0
0 X

)
. We consider the direct limit

lim−→M2n(F ) induced by the fn.
Then for every infinite field F , the ring lim−→M2n(F ) is undecidable. In fact, it

interprets the weak monadic second order logic of F .
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Proof. By the weak monadic second order logic of the field F we mean the following
first order structure W expanding the poset P of finite subsets of F : We identify
F with the subset {{a} | a ∈ F} of P and expand P by the graph of addition and
multiplication of F ; for details see, for example, [Bau85] or [Tre17, Section 2].

We now show that W is interpretable in lim−→M2n(F ). Firstly, we identify F

with the center of lim−→M2n(F ), which is 0-definable therein. If X ∈ lim−→M2n(F ),
then let σ(X) be the set of all central elements Λ ∈ lim−→M2n(F ) such that there
is no Y ∈ lim−→M2n(F ) with (X − Λ) · Y = I. Hence σ(X) is the finite set of
eigenvalues of X. The map σ is obviously 0-definable in lim−→M2n(F ). Further, if
X,Y ∈ lim−→M2n(F ), then the property σ(X) ⊆ σ(Y ) is 0-definable in lim−→M2n(F ).

The universe of W then is the image of σ, i.e., the set P of finite subsets of F
and the partial order on P is interpretable in lim−→M2n(F ). On central elements, the
map σ is injective, hence the graph of addition and multiplication on the atoms of
W is interpretable in lim−→M2n(F ) as well.

Hence lim−→M2n(F ) interprets W and W is well known to be undecidable, see for
example [Tre17, 2.5] for char(F ) = 0 and [Tre17, 2.6] for char(F ) > 0. �

3.2.7. Row and column finite matrices. Let F be an infinite field and let I
be an infinite index set. Let MI(F ) be the set of all I × I matrices X such that all
but a finite number of entries in each row and each column of X are 0. One checks
that MI(F ) is a ring under the ordinary definition of addition and multiplication.

Then the ring MI(F ) is undecidable.

Proof. The interpretation used in the proof of 3.2.6 now gives the monadic second
order theory of F , where second order quantifiers range over subsets of F of size at
most the cardinality of I. This is undecidable as well, see the proofs of [Tre17, 2.5,
2.6]. �
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