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Abstract. This article investigates the notions of exposed points and (exposed) faces
in the matrix convex setting. Matrix exposed points in finite dimensions were first
defined by Kriel in 2019. Here this notion is extended to matrix convex sets in infinite-
dimensional vector spaces. Then a connection between matrix exposed points and matrix
extreme points is established: a matrix extreme point is ordinary exposed if and only if
it is matrix exposed. This leads to a Krein-Milman type result for matrix exposed points
that is due to Straszewicz-Klee in classical convexity: a compact matrix convex set is
the closed matrix convex hull of its matrix exposed points.

Several notions of a fixed-level as well as a multicomponent matrix face and matrix ex-
posed face are introduced to extend the concepts of a matrix extreme point and a matrix
exposed point, respectively. Their properties resemble those of (exposed) faces in the clas-
sical sense, e.g., it is shown that the C∗-extreme (matrix extreme) points of a matrix face
(matrix multiface) of a matrix convex set K are matrix extreme in K. As in the case of
extreme points, any fixed-level matrix face is ordinary exposed if and only if it is a matrix
exposed face. From this it follows that every fixed-level matrix face of a free spectrahe-
dron is matrix exposed. On the other hand, matrix multifaces give rise to the noncom-
mutative counterpart of the classical theory connecting (archimedean) faces of compact
convex sets and (archimedean) order ideals of the corresponding function systems.
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1. Introduction

In the classical theory of convexity an important role is played by distinguished points
and subsets of the relative boundary of a convex set. The extreme points extC of a convex
set C in a locally convex vector space are those points c ∈ C that cannot be expressed as a
nontrivial convex combination of the elements of C. Equivalently, the set C\{c} is convex.
Geometrically, any line with an extreme point in its relative interior has at least one of
its endpoints outside C. A compact convex set C is the closed convex hull of extC by the
Krein-Milman theorem [Bar02, Section III.4], so in this case the extreme points generate C.
Another type of boundary points of interest are the exposed points expC. These are the

ones that can be weakly separated from C by an affine hyperplane and they are easily seen
to be extreme. In (finite-dimensional) polyhedra the exposed and extreme points coincide,
but in general the exposed points form a proper subset of the extreme boundary. If C is a
compact convex set in a normed vector space, the exposed points also recover C as they are
dense in extC by the Straszewicz theorem (see [Bar02, Section II.2] and [Kle58]). Hence a
compact convex set in a normed vector space is the closed convex hull of its exposed points.

Extending the concept of extremeness from points to sets leads to the notion of faces.
A face F ⊆ C is a convex subset that contains the endpoints of all the lines in C which
intersect the relative interior of F . Equivalently, faces are those subsets F of C for which
C\F is convex. Trivially, ∅ and C are faces, but any other proper face F ⊊ C is contained
in the relative boundary of C. If the face F is a singleton {x}, then x is an extreme point,
meaning that faces extend the concept of extreme points to sets. A key feature of faces
is that their extreme points are extreme in the convex set they are contained in. This
property features prominently in the proof of the Krein-Milman theorem. In this article
these notions are explored in the matrix convex setting.

1.1. Matrix convex sets. Matrix convex sets are the noncommutative counterpart to clas-
sical convex sets, and were first introduced by Wittstock [Wit84]. As they are categorically
dual to operator systems [WW99, Proposition 3.5], they introduce convex-geometric ideas
and tools to the study operator systems. A Hahn-Banach separation theorem for matrix
convex sets was proved by Effros-Winkler [EW97], the matricial Krein-Milman theorem
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is due to Webster-Winkler [WW99], and further fundamental results were developed re-
cently by a plethora of authors: representations of convex sets by linear matrix inequal-
ities [HV07, HM12, FNT17], further results on free spectrahedra including the convex
Positivstellensatz [HKM12], inclusion problems and dilation theory [HKM13, DDOSS17,
HL21], minimal and maximal matrix convex sets [PSS18] and matrix convex hull approx-
imation [HKM16], (absolute) extreme points of matrix convex sets and free spectrahedra
[EHKM18, EH19] and matrix exposed points of free spectrahedra [Kri19], the theory of
C∗-convexity, i.e., fixed-dimension matrix convexity, via operator systems and the corre-
spondence between C∗-extreme points and pure states [FM97, Far04, Mag16], noncom-
mutative Choquet theory [DK+] and the connection between nonunital operator systems
and noncommutative (nc) convex sets [KKM+], the correspondence between compact
rectangular matrix convex sets and operator spaces [FHL18], etc.

Let V be a complex vector space with predual space V ′. We will usually refer to V as a
dual vector space without explicitly mentioning the predual V ′. Denote by Mm,n(V ) the
space of m× n matrices over V and use the abbreviation Mn(V ) =Mn,n(V ). To simplify
notation we write Mm,n =Mm,n(C), Mn =Mn,n(C), and In ∈ Mn for the identity matrix.
Unless mentioned otherwise, we endow V with the weak topology and the corresponding
matrix spaces with the product topology. We say a set S = (Sn)n∈N ⊆ (Mn(V ))n∈N
is closed (compact) if it is levelwise closed (compact), i.e., each component Sn is closed
(compact).

Definition 1.1. Suppose for each n ∈ N the set Kn is a subset of Mn(V ) and denote by
K the graded family (Kn)n∈N.

(a) Let A1, . . . , Ak ∈ K with Ai ∈ Kni
. An expression of the form

(1.1)
k∑

i=1

γ∗iAiγi,

where γi ∈ Mni,n are complex matrices with
∑k

i=1 γ
∗
i γi = In, is a matrix convex combi-

nation of the points A1, . . . , Ak.
(b) We callK amatrix convex set in V if it is closed under matrix convex combinations.
(c) A set C ⊆ Mn(V ) is a C∗-convex set if it is closed under formation of C∗-convex

combinations, i.e., matrix convex combinations (1.1) with Ai ∈ C and γi ∈ Mn.

Equivalently, a setK is matrix convex if and only if it is closed under formation of direct
sums and conjugations by isometries. If 0 ∈ K1, then K is closed under conjugations by
arbitrary contractions (see Proposition 2.3 below for a proof of this simple observation).
Note that for a matrix convex set K, each Kn is a convex set in the classical sense.

For any graded set S = (Sn)n∈N with Sn ⊆Mn(V ), the intersection of all matrix convex
sets containing S is called the matrix convex hull of S and is denoted by mconvS. Its
closure is denoted by mconvS.

Definition 1.2. A morphism between matrix convex sets K and L over spaces V and W
respectively, a matrix affine map, is a continuous linear map Φ : V → W that satisfies
Φr(Kr) ⊆ Lr for all r ∈ N and

Φr

( k∑
i=1

γ∗iAiγi

)
=

k∑
i=1

(γ∗i ⊗ Ir) Φri(Ai)(γi ⊗ Ir)

for all k-tuples (Ai)
k
i=1 and (γi)

k
i=1 such that Ai ∈ Kri and γi ∈ Mri,r for i = 1, . . . , k with

the property
∑k

i=1 γ
∗
i γi = Ir. Here for any positive integer r and B = (Bi,j) ∈ Mr(V ) we
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denote by
Φr(B) =

(
Φ(Bi,j)

)
the r-th ampliation of Φ. We call Φ a matrix affine homeomorphism if each of the Φr is
a homeomorphism.

1.1.1. Matrix extreme points. We recall the definition of the matrix counterparts of classi-
cal extreme points: matrix extreme points were introduced by Webster-Winkler [WW99],
while C∗-extreme points already appeared earlier in [FM97].

Definition 1.3. Let K be a matrix convex set.
(a) A matrix convex combination (1.1) is proper if all of the matrices γi are onto.
(b) A point A ∈ Kn is matrix extreme if from any expression of A as a proper matrix

convex combination of elements Ai ∈ Kni
it follows that ni = n and each of the Ai is

unitarily equivalent to A.
(c) A point A ∈ Kn is a C∗-extreme point if any expression of A as a proper C∗-convex

combination of elements Ai ∈ Kn implies each of the Ai is unitarily equivalent to A.

Any matrix extreme point of a compact matrix convex set is extreme in the classical
sense by [WW99, Corollary 3.6]. This also holds for non-compact sets; it is e.g. an easy
corollary of the characterization [EHKM18, Proposition 4.6] (see also [HL21]).

1.1.2. Matrix exposed points. In this paper we study the notions of exposed points and
(exposed) faces in the matrix convex setting. While matrix exposed points in the finite
dimensional setting were first introduced by Kriel [Kri19], in Section 3 we generalize the
notion to arbitrary, infinite-dimensional vector spaces, and then investigate their proper-
ties and streamline some of the arguments appearing in [Kri19].

Definition 3.1. Let K = (Kn)n∈N be a matrix convex set in a dual vector space V. An ele-
ment A ∈ Kn is called a matrix exposed point of K if there exist a continuous linear map
Φ : V → Mn and a self-adjoint matrix α ∈ Mn such that the following conditions hold:

(a) for all positive integers r and B ∈ Kr we have Φr(B) ⪯ α⊗ Ir;
(b) {B ∈ Kn | α⊗ In − Φn(B) ⪰ 0 singular} = {U∗AU | U ∈ Mn unitary}.

It is straightforward that any exposed point in the classical sense is extreme, although
the proof of the matricial analogue, stated as Proposition 3.5, is more involved, and needs
some careful preliminary observations on the exposing map Φ given in Proposition 3.4.
As expected, matrix exposed points form a proper subset of the matrix extreme points in
general (Example 3.6).

1.2. Main results. Inspired by the Effros-Winkler matricial Hahn-Banach separation tech-
niques developed in [EW97], we establish our first main result, Theorem A, giving the
precise connection between matrix extreme points and matrix exposed points via classical
exposed points.

Theorem A. Let K = (Kn)n∈N be a matrix convex set. Then a point A ∈ Kn is matrix
exposed if and only if it is a matrix extreme point, which is ordinary exposed in Kn.

The part of Theorem A asserting that matrix exposed points are matrix extreme is
the above mentioned Proposition 3.5, while the remaining claims are stated and proved
separately as Theorem 3.8. Here the idea in [Kri19] of introducing non-archimedean real
closed fields is key to allow the Effros-Winkler separation techniques to apply in the
context of a general (not necessarily closed) matrix convex set. The idea of separating
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over a real closed field extension of R also appears in the theory of convexity over arbitrary
ordered fields, developed in [SMR10], the related separation techniques in [Rob91] and the
real closed separation theorem for convex sets in [NT13]. The methods used in the proof of
Theorem 3.8 also yield an Effros-Winkler type weak separation theorem for (non-closed)
matrix convex sets.

Corollary 3.11 (Weak separation theorem for matrix convex sets). Let K be a matrix
convex set in a dual space V with 0 ∈ K1 and A /∈ Kn. Suppose there is a continuous
linear functional φ : Mn(V ) → C and real number a > 0 such that Reφ|Kn < a and
φ(A) = a. Then there exists a continuous linear map Φ : V → Mn such that

In ⊗ Ir − ReΦr(B) ≻ 0

for every positive integer r and B ∈ Kr, but

ker
(
In ⊗ In − ReΦn(A)

)
̸= {0}.

The second important result in Section 3 is Theorem 3.14 giving a matrix analogue of
the classical Straszewicz theorem [Bar02, Section II.2], more precisely, its generalisation
to compact convex sets in normed spaces due to Klee [Kle58].

Theorem 3.14 (The Straszewicz-Klee theorem for matrix convex sets). Let K be a
compact matrix convex set in a normed vector space V. Then mexpK ̸= ∅ and

K = mconv (mexpK).

The proof goes along the lines of the Webster-Winkler matricial Krein-Milman theorem
[WW99] in combination with the techniques in [HL21] of assigning to a matrix convex set
K a family of convex sets, whose exposed points are shown to be in correspondence with
the matrix exposed points of K.

1.2.1. Exposed points of state spaces. A (concrete) operator system R is a closed self-
adjoint subspace of the operators on a Hilbert space that contains the identity. As before,
for positive integers r, n and a linear map φ : R → Mn, the r-th ampliation φr :Mr(R) →
Mr(Mn) is defined by applying φ entrywise, i.e.,

φr

(
(Ai,j)

)
=

(
φ(Ai,j)

)
for (Ai,j) ∈ Mr(R). The map φ is completely positive (cp) if for all r ∈ N, the r-
th ampliation φr is positive, meaning that if A ∈ Mr(R) is positive semidefinite, so is
φr(A) ∈Mr(Mn) ∼= Mrn. The collection of all unital completely positive (ucp) maps from
an operator system R to the matrix spaces Mn for n ∈ N is referred to as the matrix
state space of R and is easily seen to be matrix convex. In fact, it is the core example of a
compact matrix convex set by the categorical duality established in [WW99, Proposition
3.5]. Further, the matrix extreme points of the state space of an operator system R are
precisely the pure states on R (see [Far04]).

In Subsection 3.4 we give some insight into the matrix exposed points of the matrix state
space of an operator system R, while keeping in mind that by [Far04, Theorem 2.2], the
extreme rays in the space of cp maps on R are determined by the matrix extreme points
of the state space of R. Proposition 3.16 presents the analogous connection between the
exposed rays and matrix exposed points of the respective sets. If R = A is a separable
C∗-algebra, then every matrix extreme point of the matrix state space of A is matrix
exposed (Example 3.18).
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1.2.2. Matrix faces and matrix exposed faces. To investigate the facial structure of a ma-
trix convex set K we discuss several possible notions of a face and an exposed face of
K. Here the main distinction is whether one considers subsets of a single component Kn

for some n ∈ N or multicomponent subsets of a matrix convex set K. Section 4 first
introduces three concurrent definitions of a fixed-level matrix face, which aim to extend
the concepts of a matrix extreme point or a matrix exposed point, and demonstrates their
suitableness to the theory of matrix convexity.

Definition 4.1. Let K = (Kr)r∈N be a matrix convex set in the space V and F a convex
subset of Kn for some n ∈ N.

(a) Then F is amatrix face if for every tuple of points A1, . . . , Ak fromK with Ai ∈ Kni

and every tuple of surjective matrices γi ∈ Mni,n satisfying
∑k

i=1 γ
∗
i γi = In, the condition

(1.2)
k∑

i=1

γ∗iAiγi ∈ F,

implies ni = n and Ai ∈ F for i = 1, . . . , k.
(b) If F is a C∗-convex matrix face, then it is a C∗-face.
(c) The set F is a weak matrix face if for every tuple of points A1, . . . , Ak from K with

Ai ∈ Kni
and every tuple of surjective matrices γi ∈ Mni,n satisfying

∑k
i=1 γ

∗
i γi = In, the

condition
k∑

i=1

γ∗iAiγi ∈ F,

implies ni = n and each Ai is unitarily equivalent to some element in F. We will denote
by U(F ) = {U∗AU | A ∈ F, U ∈ Mn unitary} the unitary orbit of F.

We show that a key hereditary property of extreme points of classical faces has its
matrix counterpart.

Proposition 4.4. Let K be a matrix convex set and F ⊆ Kn a matrix face of any type.
Every C∗-extreme point of F is a matrix extreme point of K.

In Subsection 4.2, the corresponding three types of matrix exposed faces are introduced.

Definition 4.5. Let K = (Kr)r∈N be a matrix convex set in a dual vector space V and F
a convex subset of Kn.
(a) Then F is amatrix exposed face if there exists a continuous linear map Φ : V → Mn

and a self-adjoint matrix α ∈ Mn satisfying the following conditions:

(i) for every positive integer m and B ∈ Km we have Φm(B) ⪯ α⊗ Im;
(ii) for any m < n and B ∈ Km we have Φm(B) ≺ α⊗ Im;
(iii) {B ∈ Kn | α⊗ In − Φn(B) ⪰ 0 is singular} = F.

(b) If F is a C∗-convex matrix exposed face, then it is a C∗-exposed face.
(c) We call F a weak matrix exposed face if there exists a continuous linear map

Φ : V → Mn and a self-adjoint matrix α ∈ Mn satisfying the following conditions:

(i) for every positive integer m and B ∈ Km we have Φm(B) ⪯ α⊗ Im;
(ii) for any m < n and B ∈ Km we have Φm(B) ≺ α⊗ Im;
(iii) {B ∈ Kn | α⊗ In − Φn(B) ⪰ 0 is singular} = U(F ).

After adapting the observations in Proposition 3.4 on the exposing maps for matrix
exposed points to the matrix face setting, we prove the following expected, yet not entirely
obvious result.
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Proposition 4.11. Let K be a closed matrix convex and F ⊊ Kn a matrix exposed face of
any type. Then F is a matrix face of the corresponding type.

We proceed by giving a generalisation of Theorem 3.8 for faces, namely Theorem 4.12,
presenting an interplay between matrix faces and matrix exposed faces.

Theorem 4.12. Let K be a matrix convex set and F ⊆ Kn a matrix face of any type that
is also an exposed face. Then F is a matrix exposed face of the corresponding type.

Finally, Proposition 4.13 and Corollary 4.14 give a sufficient condition for a point to lie
in a weak matrix face and a matrix face, respectively. This leads to a family of examples
of weak matrix faces presented in Example 4.15. We then observe in Subsection 4.3.1
that as a corollary of Theorem 4.12, every matrix face of a free spectrahedron is matrix
exposed.

1.2.3. Matrix multifaces and matrix exposed multifaces. In Section 5 we discuss two as-
pirant notions of a multicomponent face of a matrix convex set. The main attribute of
multilevel faces is their role in the noncommutative counterpart to the classical theory
connecting (archimedean) faces of compact convex sets and (archimedean) order ideals of
the corresponding function systems presented in [Alf71, Section II.5].

While our aim is to extend the properties of a matrix extreme point, a notion similar
to that of a matrix multiface, but mimicking absolute extreme points (see [EHKM18]),
was recently explored under the name nc face in [KKM+].

Definition 5.1. LetK = (Kr)r∈N be a matrix convex set in the space V and F = (Fr)r∈N ⊆
K a levelwise convex subset of K.
(a) Then F is a matrix multiface if for every tuple of points A1, . . . , Ak from K and

every tuple of surjective matrices γi ∈ Mni,n satisfying
∑k

i=1 γ
∗
i γi = In, the condition

(1.3)
k∑

i=1

γ∗iAiγi ∈ F ,

implies Ai ∈ F for i = 1, . . . , k.
(b) If F is a matrix convex matrix multiface, then it is a matrix convex multiface.

Inspired by [Alf71, Section II.5] we give a family of examples of matrix convex multi-
faces. For a compact matrix convex set K we denote by

A(K) := {θ = (θn : Kn → Mn)n∈N | θ continuous matrix affine}
its dual operator system, which is abstractly characterized by the Choi-Effros axioms as a
matrix-ordered ∗-vector space with an Archimedean matrix order unit (see [Pau02, Chap-
ter 13]). Recall that by [WW99, Proposition 3.5], K is matrix affinely homeomorphic to
UCP(A(K)) by the evaluation map sending X ∈ K to the ucp map ΦX ∈ UCP(A(K)),
where

ΦX(θ) = θ(X)

for any θ ∈ A(K). Now suppose Φ is a ucp map on A(K) with kernel J and let

(1.4) J⊥
n := {A ∈ Kn | θn(A) = 0 ∀θ ∈ J}

for n ∈ N. We show in Example 5.3 that if J is spanned by its positive elements, i.e.,
J = J+ − J+, then J⊥ := (J⊥

n )n∈N is a matrix convex multiface of K. In Remark 5.4 we
then observe how this construction gives a sufficient condition for a point to be contained
in some matrix multiface.
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The matrix convex version of the interplay between classical faces and order ideals is
stated as Proposition 5.7. Let us say that a multicomponent subset F ⊆ K of a compact
matrix convex set K satisfies condition (∗) if for each n ∈ N and θ ∈ Mn(A(K)) with
θ|F ⪰ 0 there is a positive element ψ ∈Mn(A(K))+ such that

ψ ⪰ θ and ψ|F = θ|F .

Further, a ucp map Φ : A(K) → Mn is called partially order reflecting if it satisfies

Φm

(
Mm(A(K))+

)
= Φm

(
Mm(A(K))

)+
for all m ∈ N, i.e., for every m ∈ N and A ∈ Mm(A(K)) with Φm(A) ⪰ 0 there exists a
B ⪰ 0 such that Φm(A) = Φm(B).

Proposition 5.7. Let K be a compact matrix convex set.

(a) Let n ∈ N and Φ : A(K) → Mn be a partially order reflecting ucp map with kernel
J spanned by its positive elements. Then J⊥ ⊆ K is a closed matrix convex
multiface that satisfies condition (∗).

(b) Suppose F ⊆ K is a closed matrix convex multiface that satisfies (∗). Then

J := {θ ∈ A(K) | θ|F = 0}

is spanned by its positive elements and is the kernel of a ucp map Φ : A(K) → R
for some operator system R, where Φ satisfies the partially order reflecting property

Φn

(
Mn(A(K))+

)
= Φn

(
Mn(A(K))

)+
for all n ∈ N.

Example 5.9 then explains how every vertex of a simplex S in an Euclidean space Rn lies
in a matrix convex multiface of mconv(S). More precisely, each vertex defines a partially
order reflecting evaluation map whose kernel is spanned by its positive elements.

Next, a hereditary property of matrix extreme points is established.

Proposition 5.10. Let K be a matrix convex set and F ⊆ K a matrix (convex ) multiface
of any type. Every matrix extreme point of F is a matrix extreme point of K.

Section 5.2 introduces the exposed counterparts of the multilevel matrix faces and
investigates their properties. For instance, in Proposition 5.15 every component of a
matrix exposed multiface is shown to be an ordinary exposed face.

Definition 5.12. Let K = (Kr)r∈N be a matrix convex set in a dual vector space V and
F a levelwise convex subset of K.

(a) Then F is a matrix exposed multiface if there exists a positive integer r, a contin-
uous linear map Φ : V → Mr and a self-adjoint matrix α ∈ Mr satisfying the following
conditions:

(i) for every positive integer n and B ∈ Kn we have Φn(B) ⪯ α⊗ In;
(ii) for each n ∈ N we have {B ∈ Kn | α⊗ In − Φn(B) ⪰ 0 is singular} = Fn.

(b) If F is a matrix convex matrix exposed multiface, then it is amatrix convex exposed
multiface.

Subsection 5.2.1 is an extension of Subsection 4.3 and explores the connection between
matrix multifaces and matrix exposed multifaces.
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1.3. Reader’s guide. This paper is organized as follows. Section 2 contains basic def-
initions and preliminaries in both classical and matrix convexity. Section 3 then deals
with generalising the notion of an exposed point and its properties to the matrix setting.
It includes the proofs of Proposition 3.5 and Theorem 3.8 giving the interplay between
matrix extreme and matrix exposed points. Subsection 3.3 is dedicated to the proof of
the Straszewicz-Klee theorem for matrix convex sets (Theorem 3.14), while Subsection 3.4
deals with exposed points of state spaces. Section 4 introduces fixed-level matrix faces and
matrix exposed faces and establishes their connection in Proposition 4.11 and Theorem
4.12. The extreme points hereditary property of matrix faces is proved as Proposition
4.4, and in Subsection 4.3.1 the correspondence between matrix faces and matrix exposed
faces for free spectrahedra is deduced. Section 5 covers matrix multifaces and matrix ex-
posed multifaces. Their correspondence with the kernels of partially order reflecting ucp
maps is established in Proposition 5.7, while the hereditary property of matrix extreme
points is stated as Proposition 5.10.

Acknowledgments. We express our special thanks to Eric Evert for his insightful com-
ments and valuable suggestions and are appreciative of the helpful comments on the
earlier versions of the manuscript provided by Jurij Volčič and Scott McCullough. We
thank Raphaël Clouâtre for notifying us of an issue in an earlier version of the paper and
we thank the anonymous referee for their detailed reading and thoughtful suggestions.

2. Preliminaries

We recall the formal definitions of extreme and exposed points from the classical theory,
as well as of their set analogues, faces and exposed faces (see [Bar02]). We then present a
convenient translation argument and a property of interior points of matrix convex sets.
Lastly, we give some background on free spectrahedra in Subsection 2.1.

Definition 2.1. Let K ⊆ V be a convex set.
(a) A point x ∈ K is called an extreme point of K if any expression x = ty + (1− t)z

for some y, z ∈ V and 0 < t < 1 forces x = y = z. Equivalently, the set K\{x} is convex.
(b) A point x ∈ K is an exposed point of K if there exists a continuous functional

φ : V → C and a real number a such that φ(x) = a and φ(y) < a for all y ∈ K\{x}.

Every exposed point is extreme, while the converse holds, e.g., for (finite-dimensional)
polyhedra, but not in general (see Figure 1 below). The next definition extends the
concepts of extreme and exposed points to sets.

Definition 2.2. Let K ⊆ V be a convex set.
(a) A convex subset F ⊆ K is called a face of K if tx+ (1− t)y ∈ F for some x, y ∈ K

and 0 < t < 1 forces x, y ∈ F. Equivalently, the set K\F is convex.
(b) A convex subset F ⊆ K is an exposed face of K if there exists a continuous

functional φ : V → C and a real number a such that φ(x) = a for all x ∈ F and φ(y) < a
for all y ∈ K\F.

Every exposed face is indeed a face and it is straightforward that for a singleton (ex-
posed) face F = {x}, the point x is extreme (exposed). We now explain some technical
assumptions on the matrix convex set K we are considering that will appear throughout
the paper. If convenient, we may assume 0 ∈ K1 since one can instead consider the matrix
convex set −λ + K for some λ ∈ K1. This assumption is usually made without loss of
generality as translations preserve matrix extreme points, etc.
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Proposition 2.3. A matrix convex set K in a dual space V with 0 ∈ K1 is closed under
conjugation by contractions.

Proof. Let A ∈ Kr and let α ∈ Mr,n be a contraction. Since 0 ∈ K1, we have 0n = ⊕n0 ∈
Kn. Letting β = (In − α∗α)

1
2 , we have α∗α + β∗β = In and

α∗Aα = (α∗ β∗)(A⊕ 0n−r)

(
α
β

)
∈ Kn. □

Proposition 2.4. If K is a matrix convex set and v ∈ intK1, then ⊕nv ∈ intKn.

Proof. We may without loss of generality assume that v = 0 ∈ intK1. Otherwise K can
be replaced by −v +K so that 0 ∈ int (−v +K1). Then ⊕n0 ∈ int (−⊕n v +Kn) implies
⊕nv ∈ intKn.
Recall that open neighbourhoods of 0 in the weak topology are of the form

Uv′,ϵ = {w ∈ V | |⟨w, v′⟩| < ϵ}

where v′ ∈ V ′, ϵ > 0 and ⟨·, ·⟩ : V × V ′ → C denotes the pairing of V and V ′. Also, for
each n ∈ N, a pairing of the matrix spaces Mn(V ) and Mn(V

′) can be defined by

⟨⟨B,B′⟩⟩ =
∑
i,j

⟨Bi,j, B
′
i,j⟩

for B ∈ Mn(V ) and B′ ∈ Mn(V
′). A net in Mn(V ) converges weakly if and only if it

converges entrywise (see, e.g., [EW97, Section 2]) and open neighbourhoods of 0 in the
weak topology of Mn(V ) are of the form

Un
B′,ϵ = {B ∈Mn(V ) | |⟨Bi,j, B

′
i,j⟩| < ϵ for i, j = 1, . . . , n},

where B′ ∈Mn(V
′) and ϵ > 0.

As 0 ∈ intK1, there is a v
′ ∈ V ′ and ϵ > 0 such that Uv′,ϵ ⊆ K1. Let w ∈ Uv′,ϵ = −Uv′,ϵ.

Matrix convexity of K and the unitary similarity of

(
0 1
1 0

)
and

(
1 0
0 −1

)
, as well as of(

0 1
−1 0

)
and

(
i 0
0 −i

)
imply(

0 w
w 0

)
,

(
0 w

−w 0

)
∈ K2.

Whence (
0 w
0 0

)
=

1

2

((
0 w
w 0

)
+

(
0 w

−w 0

))
∈ K2.

It is easy to see that also wEi,j ∈ Kn, where (Ei,j)i,j denote the standard n × n matrix
units.

Now take B′ =
(
v′

n2

)
i,j

∈Mn(V
′) and observe that for any B ∈ Un

B′,ϵ,

n2Bi,jEi,j ∈ Kn

for all i, j. Then again by (matrix) convexity,

B =
1

n2

∑
i,j

n2Bi,jEi,j ∈ Kn.

We deduce that ⊕n0 ∈ Un
B′,ϵ ⊆ Kn. □
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2.1. Free spectrahedra. We now describe an important class of matrix convex sets arising
from spectrahedra. Taking V = Cg for some g ∈ N we getMn(V ) ∼= Mg

n. For k ∈ N denote
by Sg

k the space of g-tuples of complex self-adjoint k×k matrices. For A = (A0, . . . , Ag) ∈
Sg
k, the corresponding linear matrix-valued polynomial

LA = A0 +

g∑
i=1

Aixi

in the noncommuting variables x1, . . . , xg is called a linear pencil. It can be evaluated at
a point x ∈ Rg, producing a Linear Matrix Inequality LA(x) ⪰ 0 with the solution set
{x ∈ Rg | LA(x) ⪰ 0} called a spectrahedron (see, e.g., [RG95, HV07, HM12]). Similarly,
L is evaluated at a tuple X ∈ Sg

n as

LA(X) = A0 ⊗ In +
g∑

i=1

Ai ⊗Xi,

where ⊗ denotes the Kronecker (tensor) product. Then the matricial solution set DA =(
DA(n)

)
n
, where

DA(n) = {X ∈ Sg
n | LA(X) ⪰ 0}

is referred to as a free spectrahedron (see, e.g., [HKM12, HKM13, FNT17, EH19, Kri19])
and is easily seen to be matrix convex.

We will often assume that DA(1) has nonempty interior. This may be done without
loss of generality as we now explain. Since DA(1) is a finite-dimensional convex set, it
has nonempty relative interior, i.e., nonempty interior in the relative topology of its affine
span. This means it is contained in a proper affine subspace of Rg, i.e.,

(2.1) φ|DA(1) = a

for some functional φ : Rg → R and a ∈ R, which implies

φn|DA(n) = a⊗ In
for all n ∈ N (see [HKM16, Corollary 3.6]). So if DA(1) has no interior points, we can use
the relations given by (2.1) to express some of the variables xi in terms of the others and
thus reduce dimensions.

The assumption intDA(1) ̸= ∅ in turn implies that L can be assumed to be monic,
meaning A0 = Ik (see [HKM13, Proposition 2.1]). Then by the Effros-Winkler matricial
Hahn-Banach separation theorem [EW97, HM12], a spectrahedron is the matrix analogue
of an affine half-space with the corresponding affine hyperplane being

∂DA(n) = {X ∈ Sg
n | LA(X) ⪰ 0 singular}.

3. Matrix exposed points

In this section we introduce and study matrix exposed points in matrix convex sets, a
notion originating in [Kri19]. We generalise the notion to arbitrary infinite-dimensional
vector spaces while at the same time streamlining many of the arguments from [Kri19].
The main results are Theorem 3.8 asserting the connection between matrix exposed points
and matrix extreme points and Theorem 3.14 giving a matrix analogue of the classical
Straszewicz theorem, more precisely, its generalisation due to Klee stating that every
compact convex set in a normed space is the closed convex hull of its exposed points.
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3.1. Definition and basic properties. The definition of a matrix exposed point aims to
simulate properties of an exposed point in the classical sense. Throughout we assume
that K is a matrix convex set in a dual vector space V, endowed with the corresponding
weak topology with respect to which the involved linear maps are assumed continuous.
We will also assume that K1 has more than one point and (after a translation if needed)
that 0 ∈ K1.

Definition 3.1. Let K = (Kn)n∈N be a matrix convex set in a dual vector space V . An ele-
ment A ∈ Kn is called a matrix exposed point of K if there exist a continuous linear map
Φ : V → Mn and a self-adjoint matrix α ∈ Mn such that the following conditions hold:

(a) for all positive integers r and B ∈ Kr we have Φr(B) ⪯ α⊗ Ir;
(b) {B ∈ Kn | α⊗ In − Φn(B) ⪰ 0 singular} = {U∗AU | U ∈ Mn unitary}.

We say that a pair (Φ, α) matricially exposes the point A and denote the set of all matrix
exposed points of K by mexpK.

Remark 3.2. (a) For any linear map Φ : V → Mn the corresponding family (Φr|Kr :
Kr →Mr(Mn))r∈N of restricted canonical ampliations defines a matrix affine map, i.e., it
satisfies:

Φr

( k∑
i=1

γ∗iAiγi

)
=

k∑
i=1

(γ∗i ⊗ Ir) Φri(Ai)(γi ⊗ Ir)

for all k-tuples (Ai)
k
i=1 and (γi)

k
i=1 such that Ai ∈ Kri and γi ∈ Mri,r for i = 1, . . . , k with

the property
∑k

i=1 γ
∗
i γi = Ir.

(b) Recall that an ordinary exposed point A ∈ K can be weakly separated from the
other points of a convex set K by an affine hyperplane. In other words, for the functional
φ : V → C and a, which determine the hyperplane, we have that A is the only point of K
in the kernel of the map a−φ, while for all x in K we have φ(x) ≤ a. On the other hand,
if a linear map Φ, matrix α ∈ Mn and A ∈ Kn are as in Definition 3.1, then we have for
any unitary matrix U ∈ Mn,

α⊗ In − Φn(U
∗AU) = (U∗ ⊗ In)

(
α⊗ In − Φn(A)

)
(U ⊗ In).

Note that if the matrix α⊗In−Φn(A) is singular, then so is α⊗In−Φn(U
∗AU). Condition

(b) of Definition 3.1 additionally demands for the points of the unitary orbit of A to be
exactly the ones from Kn in the kernel of the map α⊗ In −Φn. We conclude that if A is
matrix exposed, then so is any point from its unitary orbit (being exposed by the same
pair (Φ, α) as A).

(c) From Definition 3.1 we see that for r < n and B ∈ Kr the strict inequality Φr(B) ≺
α ⊗ Ir holds as we now explain. If r < n and B ∈ Kr are such that α ⊗ Ir − Φr(B) is
singular (while also positive semidefinite), then for any C ∈ Kn−r,

α⊗ In − Φn(B ⊕ C) =
(
α⊗ Ir − Φr(B)

)
⊕
(
α⊗ In−r − Φn−r(C)

)
,

and from the singularity of α⊗ Ir −Φr(B), the singularity of α⊗ In −Φn(B⊕C) follows.
But then for any choice of C ∈ Kn−r for which B ⊕ C is not unitarily equivalent to A,
the last statement contradicts part (b) of Definition 3.1. To prove the existence of such
a C we proceed as follows. As explained above, without loss of generality K1 contains a
nonzero v ∈ V as well as 0 ∈ V. In particular, by convexity, wt = ⊕n−r

i=1 tv ∈ Kn−r for every
t ∈ [0, 1].

If C ∈ Kn−r with the required properties does not exist, then for any w ∈ Kn−r, the
direct sum B ⊕ w is unitarily equivalent to A, hence all the B ⊕ wt for t ∈ [0, 1] are
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unitarily equivalent. Now any functional φ on V with φ(v) ̸= 0 gives rise to a nonzero
diagonal matrix φn−r(w1) = ⊕n−r

i=1 φ(v) and thus yields a continuous family of complex
matrices

φn(B ⊕ wt) =

(
φr(B) 0

0 t φn−r(w1)

)
∈ Mn,

which are all unitarily equivalent. But this is a contradiction by a simple eigenvalue count.
Note that the strict inequality Φr(B) ≺ α⊗Ir for all B ∈ Kr does not hold when r ≥ n,

since the singularity of α⊗ In −Φn(A) implies the singularity of α⊗ In+s −Φn+s(A⊕C)
for any s ∈ N and C ∈ Ks.

Proposition 3.3. Let K = (Kn)n∈N be a matrix convex set. Then the matrix exposed
points in K1 coincide with the ordinary exposed points of K1.

Proof. First assume A is a matrix exposed point inK1. Conditions (a) and (b) in Definition
3.1 for the case n = 1 imply the existence of a continuous linear functional φ : V → C
and a real number α such that:

φ(B) = φ1(B) ≤ α for all B ∈ K1,

φ−1(α) = {A}.
(3.1)

So A is ordinary exposed in K1.
For the converse, assume A is an ordinary exposed point in K1 and φ : V → C a

continuous linear functional satisfying (3.1). We need to prove that for any positive integer
r and B ∈ Kr the ampliation φr satisfies φr(B) ⪯ α⊗ Ir = αIr. Assume otherwise. Then
there is an r > 1 and B ∈ Kr, for which φr(B) ⪯̸ αIr, meaning that for some unit vector
x ∈ Cr we have

(3.2) x∗
(
φr(B)− αIr

)
x =

〈(
φr(B)− αIr

)
x, x

〉
∈ C\{t ∈ R | t ≤ 0}.

Since (φn)n∈N is matrix affine, we also have x∗φr(B)x = φ(x∗Bx) ≤ α, from which we
deduce

x∗
(
φr(B)− αIr

)
x = x∗φr(B)x− α ≤ 0,

contradicting (3.2). We conclude that the pair (φ, α) satisfies the conditions in Definition
3.1, i.e., it matricially exposes A in K. □

3.2. Interplay between matrix extreme points and matrix exposed points. While in the
classical theory it is straightforward to see that any exposed point is extreme, we need
some preliminary observations (given in Proposition 3.4) to prove the matrix analogue of
this claim in Proposition 3.5. Theorem 3.8 then asserts when the converse holds: a matrix
extreme point that is ordinary exposed is in fact matrix exposed.

Proposition 3.4. Let A ∈ Kn be a matrix exposed point with an exposing pair (Φ, α). Then
the following statements hold.

(a) For any nonzero x =
∑n

j=1 xj ⊗ ej ∈ Cn ⊗Cn in the kernel of α⊗ In −Φn(A), the
components x1, . . . , xn form a basis of Cn.

(b) The kernel of α⊗ In − Φn(A) is one-dimensional.

Proof. (a) Let x =
∑n

j=1 xj ⊗ ej ∈ Cn ⊗ Cn be an arbitrary nonzero vector in the kernel

of α⊗ In −Φn(A) and suppose that the matrix (x1, . . . , xn) ∈ Mn is singular, say of rank
r < n. Without loss of generality assume its rank is achieved in the first r columns. Let
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P ∈ Mr,n be the projection of Cn onto span{x1, . . . , xr}, so that (P ⊗In)x =
∑r

j=1 xj⊗ej.
Then by denoting x(r) =

∑r
j=1 xj ⊗ ej, we can express:

(α⊗ Ir − Φr(PAP
∗))x(r) = (P ⊗ In)(α⊗ In − Φn(A))(P

∗ ⊗ In)x(r)

= (P ⊗ In)(α⊗ In − Φn(A))x = 0.

We deduce that α⊗Ir−Φr(PAP
∗) is singular, which by part (c) of Remark 3.2 contradicts

the fact that A is matrix exposed.
(b) Suppose there are two linearly independent vectors x =

∑n
j=1 xj ⊗ ej and y =∑n

j=1 yj ⊗ ej in the kernel of α ⊗ In − Φn(A). If P ∈ Mr,n is a projection of rank r then

PAP ∗ ∈ Kr, and we have Ir⊗α−Φr(PAP
∗) = (P⊗In)(α⊗In−Φn(A))(P

∗⊗In). Assume
r < n. If there exists a complex number λ for which the linear combination λx+ y lies in
the image of P ∗ ⊗ In, i.e. λx + y = (P ∗ ⊗ In)z for some z ∈ Cr ⊗ Cn, then the vector z
lies in the kernel of Ir ⊗ α− Φr(PAP

∗). But this contradicts A being matrix exposed.
To find such a λ and projection P consider the matrices M = (x1, . . . , xn) and N =

(y1, . . . , yn). They are both invertible by part (a), whence

det(λM +N) = det(M−1) det(λIn +M−1N).

Since the invertible matrixM−1N has a nonzero eigenvalue, there is a λ for which λM+N
is singular. Taking P to be the projection onto span{λx1+ y1, . . . , λxn+ yn} then finishes
the proof. □

Proposition 3.5. Let K = (Kn)n∈N be a matrix convex set. Then every matrix exposed
point of K is matrix extreme.

Proof. Let A ∈ Kn be matrix exposed and (Φ, α) the corresponding exposing pair. Sup-
pose we can express A as a proper matrix convex combination:

(3.3) A =
k∑

i=1

V ∗
i AiVi

for k-tuples (Ai)
k
i=1 and (Vi)

k
i=1, where Ai ∈ Kni

and the matrices Vi ∈ Mni,n are surjective

(implying ni ≤ n) with the property
∑k

i=1 V
∗
i Vi = In. By assumption we have Ini

⊗ α −
Φni

(Ai) ⪰ 0 for i = 1, . . . , k, and

α⊗ In − Φn(A) =
k∑

i=1

(V ∗
i ⊗ In)

(
Ini

⊗ α− Φni
(Ai)

)
(Vi ⊗ In).(3.4)

Suppose one of the Ai (without loss of generality A1) is not unitarily equivalent to
A and hence satisfies In1 ⊗ α − Φn1(A1) ≻ 0. We will prove that this implies V1 = 0.
First notice that for i = 1, . . . , k we have (V ∗

i ⊗ In)
(
Ini

⊗ α− Φni
(Ai)

)
(Vi ⊗ In) ⪰ 0. By

Proposition 3.4, there is x =
∑n

j=1 xj ⊗ ej ∈ Cn ⊗ Cn from the kernel of α ⊗ In − Φn(A)
such that its components x1, . . . , xn span Cn. From (3.4) we can deduce (using the positive
semidefiniteness of the summands on the right-hand side) that x lies in the intersection
of the kernels of (V ∗

i ⊗ In)
(
Ini

⊗ α− Φni
(Ai)

)
(Vi ⊗ In) for i = 1, . . . , k. In particular, we

have (V ∗
1 ⊗ In)

(
In1 ⊗ α − Φn1(A1)

)
(V1 ⊗ In)x = 0. Now the positive definiteness of the

middle factor and injectivity of (V ∗
1 ⊗ In) imply that x lies in the kernel of V1 ⊗ In, i.e.,

(V1 ⊗ In)x = (V1 ⊗ In)
( n∑

j=1

xj ⊗ ej

)
=

n∑
j=1

V1xj ⊗ ej = 0.

So V1xj = 0 for j = 1, . . . , n and hence V1 = 0. □
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Example 3.6. We give an example of a matrix convex set K with a matrix extreme point
that is not matrix exposed. It is a free spectrahedrop (i.e., a coordinate projection of a
free spectrahedron), whose ground level component K1 is the set in Figure 1. This is a
convex set with an extreme point that is not exposed.

x2 = x31

x1

x2

0−1 1

1

Figure 1. The origin of the coordinate system is an extreme point, which
is not exposed.

As proved in [NPS10, Example 3.7], the intersections of the depicted set with the first
and second quadrant admit a so-called exact Lasserre relaxation, this being a sufficient
condition for them and also their convex hull, i.e., their union, to be described by a
spectrahedrop. So there is a linear pencil

L = C +
2∑

i=1

Aixi +

g∑
j=1

Bjyj

in variables (x1, x2, y1, . . . , yg) such that

K1 = {x ∈ R2 | ∃y ∈ Rg : L(x, y) ⪰ 0}.

Then

K =
⋃
n∈N

{X ∈ S2
n | ∃Y ∈ Sg

n : L(X, Y ) ⪰ 0}

is a free spectrahedrop with a matrix extreme point that is not matrix exposed. ♢

Example 3.7. In analogy to the equality between extreme and exposed points of polyhedra
in Euclidean spaces Rn, every matrix extreme point of a free spectrahedron is matrix
exposed as showed in [Kri19, Corollary 6.21] (cf. Subsection 4.3.1). ♢

We now state a partial converse to Proposition 3.5, which will be proved after two
technical lemmas.

Theorem 3.8. Let K = (Kn)n∈N be a matrix convex set. Then:

(a) Every matrix exposed point A in Kn is ordinary exposed in Kn.

(b) Every point A in Kn, which is both exposed and matrix extreme, is a matrix exposed
point of K.
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Denote by S(Mn) = {p : Mn → C | p unital positive} the state space of Mn. Each
positive functional p ∈ S(Mn) is of the form p(α) = tr (γα) for a fixed positive semidefinite
matrix γ ∈ Mn with trace 1 and so S(Mn) is a compact convex subset of M∗

n. The next
lemma concerns the set we just introduced; it is a strict-positivity analogue of [EW97,
Lemma 5.2] along the lines of [Kri19, Lemma 2.16]. In fact, [EW97, Lemma 5.2] is a key
result leading to the Effros-Winkler matricial Hahn-Banach separation theorem [EW97],
but the matricial separation there originates from the ability to separate a closed convex
set from an outer point. On the other hand, to obtain the desired matricial separation in
Theorem 3.8, we will implicitly use the idea that any (not necessarily closed) convex set
can be separated from an outer point by a functional with values in an ordered extension
field of R (cf. [NT13, Theorem 2.1]). This, together with a finite intersection property
[BCR98, Theorem 2.7.2] motivates the introduction of real closed fields in the next lemma.
For a real closed field R we will denote >R the order relation on R. For x, y >R 0 we
write x≫ y if x >R ny for all n ∈ N. For x ∈ R with an n ∈ N such that −n <R x <R n
we denote by st(x) ∈ R the standard part of x (for more about real closed fields see
[BCR98]).

Lemma 3.9. Let C be a (convex) cone of continuous real affine functions on the state space
S(Mn) ⊆ M∗

n such that for every f ∈ C there is a state pf ∈ S(Mn) with f(pf ) > 0. Then
there exists a real closed field R containing R, and a unital positive R-linear functional
p0 : Mn → R[i] satisfying fR(p0) >R 0 for all f ∈ C\{0} (here R[i] stands for the algebraic
closure of R and fR is the unique extension of f to an R-linear map Mn(R[i])∗ → R[i]).

Proof. Denote the set of unital positive R-linear functionals p : Mn → R[i] by SR(Mn)
and for a given function f ∈ C\{0} consider the following family

{f > 0} := {(R, p) | R real closed field over R, p ∈ SR(Mn), fR(p) > 0},

which is a type as we now explain (see [Hod93] as a reference for model theory). By
assumption we have {f > 0} ≠ ∅ for any f ∈ C\{0} and we need to prove⋂

f∈C\{0}

{f > 0} ≠ ∅.

If we show that all finite intersections of the sets {f > 0} are nonempty, then by a
compactness argument as in [BCR98, Theorem 2.7.2], there is a real closed field R over
R, and a state p ∈ SR(Mn) such that for all f ∈ C\{0} we have f(p) > 0. So suppose
there is an n ∈ N and functions f1, . . . , fn ∈ C such that:

n⋂
i=1

{fi > 0} = ∅.

Define the map θ : S(Mn) → Rn with θ(p) =
(
f1(p), . . . , fn(p)

)
. This is clearly a

continuous affine map, from which we see that θ(S(Mn)) is a compact convex subset of
Rn. On the other hand we have by assumption that:

θ(S(Mn)) ∩ Rn
+ = ∅,

where Rn
+ := [0,∞)n. By a geometric version of the Hahn-Banach theorem (see e.g. [Bar02,

Section III.1]), the sets θ(S(Mn)) and Rn
+ can be strictly separated, i.e., there is a linear

function g(x1, . . . , xn) = c1x1 + · · ·+ cnxn on Rn and a real number b such that g(y) ≥ b
for all y ∈ Rn

+ and g(z) < b for all z ∈ θ(S(Mn)). Moreover, since Rn
+ is a cone, we have

b = 0.
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For every standard unit vector ei ∈ Rn we have g(ei) = ci ≥ 0. So the function
f ◦ θ = c1f1 + · · · + cnfn is a conic combination of f1, . . . , fn and hence an element of
C. But f satisfies {p ∈ S(Mn) | f(p) > 0} = ∅, which contradicts the assumption of the
lemma. □

Lemma 3.10. Let K = (Kn)n∈N a matrix convex set for which 0 ∈ K1. Suppose there exist
a linear functional φ :Mn(V ) → C and a real number a > 0 such that Reφ|Kn < a. Then
there is a state p : Mn → C such that

Reφ(α∗Bα) < ap(α∗α)

for all B ∈ Kr, nonzero matrices α ∈ Mr,n and positive integers r.

Proof. Let C be the set of all continuous affine functions on S(Mn) of the form:

fv,α(p) = a p(α∗α)− Reφ(α∗vα)

for a matrix α ∈ Mr,n, v ∈ Kr and r ∈ N. The set C is a cone as we can express

fv,α + fw,β = fx,γ, cfv,α = fv,√cα

for any real number c ≥ 0, where the matrix γ is defined to be γ∗ = (α β) ∈ Mr,2n and
x = v ⊕ w.

Let us prove that for any f = fv,α ∈ C there is a state pf ∈ S(Mn) with f(pf ) > 0.
Suppose α ̸= 0 and let pf be the state on Mn, for which pf (α

∗α) = ∥α∥2. Then for the
matrix β = α

∥α∥ the point β∗vβ lies in Kn and by considering the assumption Reφ|Kn < a,

we have that
Reφ(α∗vα) = ∥α∥2Reφ(β∗vβ) < apf (α

∗α).

By Lemma 3.9 there exist a real closed field R over R and a unital positive functional
p : Mn → R[i] with fv,α(p) >R 0 for all fv,α ∈ C with α ̸= 0.
Now using the procedure described in [Kri19, Corollary 2.17] we construct from p a state

on Mn with required properties. Since p is positive, it is of the form p(A) = tr (CA) for
a positive semidefinite matrix C ∈ Mn(R) with trC = 1. Let D ∈ Mn(R) be its positive
square root, i.e., C = D2 with D being positive semidefinite, and define q ∈ SR(Mn) by
q(A) = tr (DA). By [Kri19, Lemma 2.14] there exist r ∈ N and λ1 ≫ ... ≫ λr > 0 in
R along with D1, . . . , Dr ∈ SR(Mn) such that D =

∑r
i=1 λjDj (here λ1D1 = stD is the

standard part of D). In the case r = 1, the state q is already all we need; so assume r ≥ 2
and let qj(A) = tr(D2

jA) for j = 1, . . . , r.
Since q(In) = 1, we can take λ1 = 1. The goal is to prove we can replace the matrix C,

which defines p, with E2 +D2
r , where E =

∑r−1
j=1 λjDj. Note that for every f ∈ C we have

stf(p) = f(q1) ≥ 0 and f(qr) ≥ 0. Let qE(A) = tr(E2A) and suppose there was an f ∈ C,
for which f(qE + qr) ≤R 0. Then f(q1) + f(qr) = st f(qE + qr) ≤ 0 and hence f(qr) = 0.
We deduce f(qE + qr) = f(p) >R 0, which contradicts our assumption. Hence we have
f(qE + qr) >R 0 for all f ∈ C.

Now continue the above procedure, i.e., in the next step replace the matrix E2 + D2
r

with (
∑r−2

j=1 λjDj)
2 +D2

r−1 +D2
r etc. By induction we conclude that the state qF with the

corresponding matrix F =
∑r

j=1D
2
r has the desired properties. □

Proof of Theorem 3.8. (a) Let A ∈ Kn be matrix exposed with the pair Φ : V → Mn

and α ∈ Mn exposing it as in Definition 3.1. By Proposition 3.4, there is a vector
x =

∑n
j=1 xj⊗ej ∈ Cn⊗Cn spanning the kernel of α⊗ In−Φn(A) and whose components

x1, . . . , xn are linearly independent. Define the functional φ :Mn(V ) → C by:

φ(B) = x∗Φn(B)x,
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and a = x∗(α⊗ In)x ∈ R. Since the pair (Φ, α) matricially exposes A, we have

a− φ(B) = x∗
(
α⊗ In − Φn(B)

)
x ≥ 0

for all B ∈ Kn and a > φ(B) for each B not in the unitary orbit of A.
Let us check that a > φ(B) also for any B ∈ Kn\{A}, which is unitarily equivalent to

A. Let U ∈ Mn be a unitary matrix such that a = φ(U∗AU). Then

0 = x∗
(
α⊗ In − Φn(U

∗AU)
)
x =

(
(U ⊗ In)x

)∗(
α⊗ In − Φn(A)

)
(U ⊗ In)x.

The above together with the positive semidefiniteness of α ⊗ In − Φn(A) implies that
(U ⊗ In)x lies in the one-dimensional kernel of α ⊗ In − Φn(A) and is hence a multiple
of x. But then the unitary U is a scalar multiple of the identity and so U∗AU = A. We
conclude that the pair (φ, a) exposes A in Kn.

(b) We may assume A ∈ Kn is a nonzero exposed and matrix extreme point and
that 0 ∈ K1 as explained in the introductory section. It is clear from the definition
of a matrix extreme point that A is not contained in the matrix convex set L :=
mconv(Kn\{U∗AU | U ∈ Un}). Since A is nonzero, we have 0 ∈ L1 and hence L is
closed under conjugation by contractions by Proposition 2.3. By assumption there is a
continuous linear functional φ : Mn(V ) → R and real number a with φ(A) = a and
φ(B) < a for all B ∈ Kn\{A}. Since 0 ∈ K1, we have 0 = φ(0) ≤ a.
As in the proof of the Effros-Winkler matricial Hahn-Banach theorem in [EW97, The-

orem 5.4] we divide our reasoning in three parts. First we gather together the key tools
given by the previous lemmas, then we construct a candidate for the exposing pair. Finally
we prove it does satisfy the desired separating conditions.

By Lemma 3.10, there is a state p : Mn → C with:

(3.5) Reφ(α∗Bα) < ap(α∗α)

for any B ∈ Lr, nonzero matrix α ∈ Mr,n and positive integer r. Since 0 ∈ K1, we have
0 < ap(α∗α) for any nonzero α ∈ Mr,n so that p is a faithful state. The condition 0 ∈ K1

also implies K is closed under conjugation by contractions, so we see by the properties of
φ that

(3.6) Reφ(α∗Bα) ≤ a p(α∗α)

holds for any positive integer r, B ∈ Kr and contraction α ∈ Mr,n such that p(α∗α) = 1.
By the GNS construction the map p is determined by a representation π : Mn → B(H),

where H is a finite-dimensional Hilbert space, and a cyclic and separating vector x ∈ H
so that we have for arbitrary γ ∈ Mn the expression:

p(γ) = ⟨π(γ)x, x⟩.

We now proceed to construct of the candidate Φ : V → Mn for the map that matricially
exposes A. To a row matrix α = [α1, . . . , αn] ∈ M1,n assign the matrix α̃ ∈ Mn, defined
by

α̃ =


α1 α2 · · · αn

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 .

Denote by M̃1,n the vector space consisting of matrices of such form and let H0 :=

π(M̃1,n)x. Since x is separating, the space H0 is clearly an n-dimensional subspace of
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H. We define on H0 a family of sesquilinear forms:

Ψv(π(α̃)x, π(β̃)x) = φ(α∗vβ)

indexed by vectors v from V. For each v ∈ V the form Ψv is well-defined. Indeed,
suppose we have π(α̃1)x = π(α̃2)x for matrices α1 and α2 from M1,n. Linearity of π gives
π(α̃1 − α̃1)x = 0 and hence:〈

π(α̃1 − α̃2)x, x
〉
= p(α1 − α2) = 0.

Since p is a faithful state, we have α1 = α2, which implies that Ψv is well-defined.
Each sesquilinear form Ψv on the finite-dimensional space H0 over R is uniquely deter-

mined by the linear map Φ(v) : H0 → H0 as follows:

φ(α∗vβ) =
〈
Φ(v)π(α̃)x, π(β̃)x

〉
.

We thus get a map Φ : V → B(H0), which is both linear and weakly continuous. After
choosing an orthonormal basis for H0, we identify H0 with Cn and the bounded operators
B(H0) on it with Mn.

Now by letting (ei)
n
i=1 be the standard basis of Cn and denoting fi := e∗i for i = 1, . . . , n,

we can express any matrix B = (Bi,j)i,j ∈ Mn(V ) (using the bimodule action on V ) as a
combination of the form:

B =
∑
i,j

eiBi,jfj.

Hence

φ(B) =
∑
i,j

φ(eiBi,jfj) =
∑
i,j

〈
Φ(Bi,j) π(f̃j)x, π(f̃i)x

〉
=

〈
Φn(B)η0, η0

〉
,

where

η0 =

π(f̃1)x...

π(f̃n)x


is a vector from Hn

0 satisfying

∥η0∥2 =
n∑

i=1

∥π(f̃i)x∥2 =
n∑

i=1

p(f ∗
i fi) = p

( n∑
i=1

f ∗
i fi

)
= p(In) = 1.

In the last part of the proof we argue that Φ is the desired map. For this we need to
check that for all B ∈ Kr and r ∈ N the condition Φr(B) ⪯ aIn ⊗ Ir = aIn·r holds or
equivalently,

(3.7) Re
〈
Φr(B)η, η

〉
=

〈
ReΦr(B)η, η

〉
≤ a ⟨η, η⟩

holds for every vector η ∈ (Cn)r. Since x is cyclic, we can write any η ∈ (Cn)r as

η =

π(α̃1)x
...

π(α̃r)x

 ,(3.8)

where αi ∈ M1,n for i = 1, . . . , r. In addition, we can express the norm of η through the
values of p by

(3.9) ∥η∥2 =
n∑

i=1

∥π(α̃i)x∥2 =
n∑

i=1

p(α∗
iαi) = p(α∗α), where α =

α1
...
αr

 ∈ Mr,n.
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If η is a unit vector, then for every z ∈ Cn we have by the Cauchy-Schwarz inequality
that:

(3.10) ∥αz∥2 =
n∑

i=1

|αiz|2 ≤ ∥η∥∥z∥ = 1

showing α is a contraction.
We can finally check the validity of condition (3.7) for any unit vector η ∈ (Cn)r using

the property (3.6) of φ and the just established connection (3.9):〈
ReΦr(B)η, η

〉
=

∑
i,j

〈
ReΦ(Bi,j) π(α̃j)x, π(α̃i)x

〉
=

∑
i,j

Reφ(α∗
iBi,jαj)

= Reφ(α∗Bα)

≤ a p(α∗α)

= a ∥η∥2 = a.

Since φ weakly separates the point A from the set K, we have:〈
Φn(A)η0, η0

〉
= φ(A) = a,

so the matrix a In2−Φn(A) is singular. Then by part (a) of Remark 3.2, a In2−Φn(U
∗AU)

is singular for any U ∈ Un. To finish the proof we argue that for any B ∈ Kn not
in the unitary orbit of A, the matrix a In2 − Φr(B) is not singular. Indeed, if a unit

vector η ∈ Cn2
of the form (3.8) satisfies

〈
ReΦn(B)η, η

〉
= Reφ(α∗Bα) = a p(α∗α) = a,

then α is a contraction by (3.10). Hence α∗Bα ∈ Ln as L is closed under conjugation
of its elements by contractions. But then we have by the strong separation (3.5) that
Reφ(α∗Bα) < ap(α∗α), which is a contradiction. We conclude that the pair (Φ, a In)
matricially exposes A. □

Combining the techniques used in the proofs of Lemma 3.10 and Theorem 3.8 we obtain
an Effros-Winkler type weak Hahn-Banach separation theorem for (not necessarily closed)
matrix convex sets analogous to [Kri19, Corollary 2.17].

Corollary 3.11 (Weak separation theorem for matrix convex sets). Let K be a matrix
convex set in a dual space V with 0 ∈ K1 and A /∈ Kn. Suppose there is a continuous
linear functional φ : Mn(V ) → C and real number a > 0 such that Reφ|Kn < a and
φ(A) = a. Then there exists a continuous linear map Φ : V → Mn such that

In ⊗ Ir − ReΦr(B) ≻ 0

for every positive integer r and B ∈ Kr, but

ker
(
In ⊗ In − ReΦn(A)

)
̸= {0}.

3.3. Straszewicz-Klee theorem for matrix convex sets. A classical result on exposed
points due to Straszewicz [Bar02, Section II.2] states that the exposed points of a finite-
dimensional compact convex set K form a dense subset of the extreme points and hence
their closed convex hull equals K. This section extends the Straszewicz theorem, more
precisely, its generalisation for normed spaces [Kle58] due to Klee, to the matrix convex
setting.
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We proceed by following the idea in [HL21] associating to a matrix convex set K =
(Kr)r∈N in the space V a family of convex sets {Γn(K)}n∈N given by

(3.11) Γn(K) = {(γ∗γ, γ∗Aγ) | γ ∈ Mk,n, tr(γ
∗γ) = 1, k ∈ N, A ∈ Kk} ⊆ Mn ×Mn(V ).

The set Γn(K) is indeed convex as we can express

tγ∗Aγ + (1− t)δ∗Bδ =

(
t1/2γ∗ (1− t)1/2δ∗

)(
A 0
0 B

)(
t1/2γ

(1− t)1/2δ

)
for elements (γ∗γ, γ∗Aγ) and (δ∗δ, δ∗Bδ) from Γn(K), where A ∈ Kr, B ∈ Ks and γ ∈
Mr,n, δ ∈ Ms,n are matrices satisfying tr(γ∗γ) = tr(δ∗δ) = 1, and arbitrary real number t
in [0, 1]. Since K is closed under direct sums, and we have

tr

((
t1/2γ

(1− t)1/2δ

)∗(
t1/2γ

(1− t)1/2δ

))
= t tr(γ∗γ) + (1− t) tr(δ∗δ) = 1,

the convex combination t
(
γ∗γ, γ∗Aγ

)
+ (1− t)

(
δ∗δ, δ∗Bδ

)
lies in Γn(K).

Additionally we can assume for any element (γ∗γ, γ∗Aγ) from Γn(K), where A is in Kr,
that the matrix γ ∈ Mr,n is surjective (and hence r ≤ n) as we now explain. Let γ ∈ Mr,n

be an arbitrary matrix of rank s ∈ N with the property tr(γ∗γ) = 1. Let ξ ∈ Mr,s be an
isometry from Cs to the range of γ. Then

(3.12) γ∗Aγ = (ξγ)∗(ξAξ∗)(ξγ),

where ξAξ∗ lies in Ks and the matrix ξγ is surjective with tr((ξγ)∗(ξγ)) = 1.
The following variant of the Douglas Lemma [Dou66] will be often used to establish

well-definedness of objects and maps in the remainder of this section.

Lemma 3.12. Let γ ∈ Mr,n and δ ∈ Ms,n be surjective matrices. Then γ∗γ = δ∗δ if and
only if r = s and there exists a unitary matrix U ∈ Mr such that γ = Uδ.

We now state a correspondence between matrix exposed points of K at level n and
ordinary exposed points of Γn(K) (cf. [HL21, Proposition 2.14]).

Proposition 3.13. Let K = (Km)m∈N be a matrix convex set and A ∈ Kr.

(a) Let γ ∈ Mr,n be a surjective matrix with tr(γ∗γ) = 1 such that the point (γ∗γ, γ∗Aγ)
is exposed in Γn(K). Then A is a matrix exposed point of K.

(b) If A is matrix exposed in K, then for any invertible γ ∈ Mr with tr(γ∗γ) = 1, the
point (γ∗γ, γ∗Aγ) is exposed in Γr(K).

Proof. To prove (a) suppose that (γ∗γ, γ∗Aγ) is an exposed point of Γn(K), where A ∈ Kr

and γ ∈ Mr,n is a surjective matrix satisfying tr(γ∗γ) = 1. By assumption there exists
a continuous linear functional φ : Mn × Mn(V ) → C and a real number a such that
φ(γ∗γ, γ∗Aγ) = a and φ(δ, C) > a for all (δ, C) ∈ Γn(K)\{(γ∗γ, γ∗Aγ)}.
Note that φ can be written as φ = φ1 + φ2, where φ1 : Mn → C and φ2 :Mn(V ) → C.

By the Riesz representation theorem there is a matrix β ∈ Mn such that for all δ ∈ Mn

we have φ1(δ) = tr(βδ). It is easy to check that β needs to be self-adjoint and that every
matrix η = (η1, . . . , ηn) ∈ Mm,n and its corresponding vectorization

(3.13) vη =
n∑

i=1

e′i ⊗ ηi ∈ Cn ⊗ Cm

satisfy
φ1(η

∗η) = tr(βη∗η) = tr(ηβη∗) = v∗η(β ⊗ Im)vη.
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By the canonical correspondence between linear functionals on Mn(V ) and linear maps
V → Mn, the functional φ2 gives rise to a map Ψ : V → Mn. For every B ∈ Mm(V ),
matrix η = (η1, . . . , ηn) ∈ Mm,n and its vectorization vη as in (3.13) we have

φ2(η
∗Bη) = e∗Ψn(η

∗Bη)e = v∗ηΨm(B)vη,

where e =
∑n

i=1 e
′
i ⊗ e′i ∈ Cn ⊗ Cn and e′i are standard basis vectors of Cn.

So for every positive integerm, element B ∈ Km and matrix η ∈ Mm,n with the property
tr(η∗η) = 1,

v∗η
(
(β − aIn)⊗ Im −Ψm(B)

)
vη = φ(η∗η, η∗Bη)− a ≥ 0.(3.14)

Since tr(η∗η) = 1 if and only if vη ∈ Cmn is a unit vector, the above implies that the
matrix (β − aIn)⊗ Im −Ψm(B) is positive semidefinite. We also have:

v∗γ
(
(β − aIn)⊗ Ir −Ψr(A)

)
vγ = φ(γ∗γ, γ∗Aγ)− a = 0,(3.15)

which gives that (β − aIn)⊗ Ir −Ψr(A) is singular (as it is positive semi-definite).
From Lemma 3.12, the points (η∗η, η∗Bη) and (γ∗γ, γ∗Aγ) from Γn(K) are equal if and

only if there is a unitary matrix U ∈ Mr such that η = Uγ and A = U∗BU. Hence:

φ(η∗η, η∗Bη)− a = φ(γ∗γ, γ∗Aγ)− a

= v∗γ
(
(β − aIn)⊗ Ir −Ψr(A)

)
vγ

= v∗γ
(
(β − aIn)⊗ Ir −Ψr(U

∗BU)
)
vγ(3.16)

= ((In ⊗ U)vγ)
∗((β − aIn)⊗ Ir −Ψr(B)

)
(In ⊗ U)vγ

= v∗η
(
(β − aIn)⊗ Ir −Ψr(B)

)
vη.

Using the properties of φ we deduce that for B ∈ Km the matrix (β− aIn)⊗ Im −Ψm(B)
is singular if and only if m = r and B is unitarily equivalent to A.

It remains to correct the target space of Ψ and the size of β, i.e., we need a pair
(Φ, α) with Φ : V → Mr and α ∈ Mr that matricially exposes A. Let δ ∈ Mr,n be
any surjective matrix such that the range of δ∗ ⊗ Ir contains vγ (that is in the kernel of
(β−aIn)⊗Ir−Ψr(A)). Then the compression (Φ, α) = δ(Ψ, β−aIn)δ∗ defines an exposing
pair for A; the positive semi-definiteness in all the points of K is clear, definiteness outside
of the unitary orbit of A follows from the injectivity of δ∗, and singularity at the unitary
conjugates of A holds by the choice of δ (cf. equations (3.14) – (3.16)). In fact, we can
take δ = γ. To see that, write vγ =

∑r
i=1 γ̃i ⊗ ei, where γ̃i is the i-th row of γ and ei are

standard basis vectors of Cr. Then for any y =
∑r

i=1 yi ⊗ ei ∈ ker(γ ⊗ Ir),

⟨vγ, y⟩ =
r∑

i=1

⟨γ̃i, yi⟩ = 0.

Hence, vγ lies in the orthogonal complement of ker (γ ⊗ Ir), i.e., in the range of γ∗ ⊗ Ir.
To prove (b) assume that A ∈ Kr is matrix exposed and Φ : V → Mr together with

α ∈ Mr are as in Definition 3.1. Let γ ∈ Mr be an invertible matrix with tr(γ∗γ) = 1. We
claim that (γ∗γ, γ∗Aγ) is exposed in Γr(K).

By Proposition 3.4, there is a vector x =
∑r

j=1 xj ⊗ ej ∈ Cr ⊗Cr that spans the kernel

of α ⊗ Ir − Φr(A) and whose components x1, . . . , xr are linearly independent. The pair
(Φ, α) produces another pair (Ψ, β) = γ∗(Φ, α)γ and denoting by δ the inverse of γ, we
can express

(Φ, α) = δ∗(Ψ, β)δ.



FACIAL STRUCTURE OF MATRIX CONVEX SETS 23

Now define a functional φ : Mr ×Mr(V ) → C, which is for C ∈Mr(V ) and µ ∈ Mr given
by

φ(µ,C) = y∗
(
β ⊗ µ−Ψr(C)

)
y,

where y = (δ⊗δ)x ∈ Cr⊗Cr. The calculations in the above proof of (a) together with the
fact that Ψ is a matrix affine map show that for any positive integer m, element B ∈ Km

and surjective matrix η ∈ Mm,r with tr(η∗η) = 1,

φ(η∗η, η∗Bη) =
(
(Ir ⊗ η)y

)∗(
β ⊗ Im −Ψm(B)

)
(Ir ⊗ η)y ≥ 0.

Next we show that if (η∗η, η∗Bη) is different from (γ∗γ, γ∗Aγ), then φ(η∗η, η∗Bη) > 0. If B
is not unitarily equivalent to A, the positive definiteness of β⊗Im−Ψm(B) (following from
the positive definiteness of α⊗Im−Φm(B) and the invertibility of γ) implies (Ir⊗η)y = 0 or
φ(η∗η, η∗Bη) > 0. But (Ir⊗η)y = (δ⊗ηδ)x ̸= 0 for nonzero η since span{x1, . . . , xr} = Cr

and δ is invertible. On the other hand, if B = U∗AU for some unitary U ∈ Mr and
φ(η∗η, η∗Bη) = 0, then

0 = φ(η∗η, η∗Bη) = ((Ir ⊗ η)y)∗
(
β ⊗ Ir −Ψr(B)

)
(Ir ⊗ η)y

= ((Ir ⊗ Uη)y)∗
(
β ⊗ Ir −Ψr(A)

)
(Ir ⊗ Uη)y

= ((γ ⊗ Uη)y)∗
(
α⊗ Ir − Φr(A)

)
(γ ⊗ Uη)y

= ((Ir ⊗ Uηδ)x)∗
(
α⊗ Ir − Φr(A)

)
(Ir ⊗ Uηδ)x.

By part (b) of Proposition 3.4, the kernel of α ⊗ Ir − Φr(A) is spanned by x, hence
(Ir ⊗Uηδ)x = λx for some nonzero λ ∈ C. Since the components of x form a basis of Cn,
this implies Uηδ = λIr, i.e., Uη = λγ. A comparison of Hilbert-Schmidt norms now yields
|λ| = 1, which in turn implies (η∗η, η∗Bη) = (γ∗γ, γ∗Aγ), a contradiction.

It remains to observe that

φ(γ∗γ, γ∗Aγ) = ((Ir ⊗ γ)y)∗
(
β ⊗ Ir −Ψr(A)

)
(Ir ⊗ γ)y

= ((δ ⊗ Ir)x)∗
(
β ⊗ Ir −Ψr(A)

)
(δ ⊗ Ir)x

= x∗
(
δ∗βδ ⊗ Ir − (δ∗Ψrδ)(A)

)
x

= x∗
(
α⊗ Ir − Φr(A)

)
x = 0,

which proves that the pair (−φ, 0) exposes the point (γ∗γ, γ∗Aγ) in Γn(K). □

Using the results established above we can prove, applying similar techniques as in
[WW99, Theorem 4.3], a version of the Krein-Milman matricial theorem featuring matrix
exposed points.

Theorem 3.14 (The Straszewicz-Klee theorem for matrix convex sets). Let K be a
compact matrix convex set in a normed vector space V. Then mexpK ̸= ∅ and

K = mconv (mexpK).

Proof. Let K = (Kn)n∈N be a compact matrix convex set in a normed space V . By
the classical Straszewicz-Klee theorem (see [Bar02, Section II.2] and [Kle58]), the set of
exposed points of K1 is non-empty, so by Proposition 3.3, also mexpK ̸= ∅. The inclusion
mconv(mexpK) ⊆ K holds by definition, so we only need to prove K ⊆ mconv(mexpK).
We can assume 0 ∈ mconv(mexpK), otherwise translate each Kn by an element a ⊗ In
for some fixed a ∈ K1 (as translations preserve matrix exposed points).
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Suppose there is A inKn\(mconv(mexpK))n. By the matricial Hahn-Banach separation
theorem [EW97, Theorem 5.4] there exists a continuous linear map Φ : V → Mn such that:

(3.17) ReΦr(B) ⪯ In·r
for every positive integer r and B ∈ (mconv(mexpK))r, but:

(3.18) ReΦn(A) ⪯̸ In2 .

The idea in the following is to reduce the problem to a point where the classical
Straszewicz theorem [Bar02, Section II.2], more precisely, its generalisation for normed
spaces due to Klee [Kle58], applies. For that we use the fact that the map Φ associates to
every pair of matrices γ, δ ∈ Mr,n a continuous linear functional φ2 :Mn(V ) → C with:

φ2(γ
∗Bδ) = v∗γΦr(B)vδ

for B ∈Mr(V ). Here vγ and vδ from (Cn)r are the vectorizations of γ and δ as in (3.13).
Let (δ, C) be an exposed point of Γn(K). By Proposition 3.13 it can be expressed

as (δ, C) = (η∗η, η∗Bη) for some matrix exposed point B ∈ Kr, matrix η ∈ Mr,n with
tr(η∗η) = 1 (hence its vectorization vη satisfies v∗ηvη = 1) and positive integer r ≤ n.
Accordingly we extend φ2 to a functional φ : Mn ×Mn(V ) → C by

φ(η∗η, η∗Bη) = v∗η(In·r + Φr(B))vη.

Inequality (3.17) now gives

Reφ(η∗η, η∗Bη) = Re
(
v∗η(In·r + Φr(B))vη

)
= 1 + v∗η ReΦr(B)vη

≤ 1 + v∗η In·rvη = 2.

Since the above holds for every (δ, C) in Γn(K) and the compactness of K implies the
compactness of Γn(K), we have by the Klee generalisation of the Straszewicz theorem
[Kle58] that

(3.19) Reφ(ϵ,D) ≤ 2

for every (ϵ,D) ∈ Γn(K) (since φ is linear and every such (ϵ,D) is a limit of a sequence of
convex combinations of exposed points). Equation (3.19) implies that for every positive
integer r, unit vector vη ∈ Cr·n and B ∈ Kr,

1 + v∗η ReΦr(B)vη = Reφ(η∗η, η∗Bη) ≤ 2 = 1 + v∗η In·rvη,
which in turn implies ReΦr(B) ⪯ In·r. But this contradicts condition (3.18), hence
mconv(mextK) = K. □

3.4. Matrix exposed points of matrix state spaces. For an operator systemR let CPn(R)
denote the set of all completely positive (cp) maps and UCPn(R) the set of all unital
completely positive (ucp) maps from R to Mn respectively. We identify both sets in a
canonical way with subsets ofMn(R∗). Then the family CP(R) = (CPn(R))n∈N is a weak∗

closed matrix convex cone in R∗ meaning it is closed under formation of the following
combinations:

(3.20)
k∑

i=1

V ∗
i ψiVi ∈Mn(R∗)

for k ∈ N, elements ψi ∈ CPni
(R) and matrices Vi ∈ Mni,n. On the other hand, the family

UCP(R) = (UCPn(R))n∈N, usually referred to as the matrix state space of the operator
system R, is a weak∗ compact matrix convex set in R∗, i.e., closed under matrix convex
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combinations (3.20), where
∑k

i=1 V
∗
i Vi = In. Moreover, by [Far04, Proposition 1.2] we see

that CP(R) is the matrix conic hull of UCP(R) as we have

CPn(R) = {γ∗φγ | γ ∈ Mn, φ ∈ UCPn(R)}.
For every positive integer n the component CPn(R) is a convex cone and the set

UCPn(R) is convex. In this section we describe the relationship between matrix exposed
points of UCP(R) and the exposed rays of CP(R) while keeping in mind the analogous
connection between matrix extreme points and extremal rays (see [Far04]). We begin by
recalling some of the known results.

A cp map φ : R → Mn is called pure if for every cp map ψ : R → Mn, for which φ−ψ
is completely positive, we have that ψ = tφ for some real number t ∈ [0, 1]. It turns out
(see [Bar02, Section II.8]) that pure cp maps in CPn(R) determine the extremal rays of
this cone, i.e., the extremal rays are exactly rays of the form {tφ | t ≥ 0} for some pure cp
map φ. The following proposition explains the interplay between pure cp maps and pure
states, i.e., pure ucp maps.

Proposition 3.15 ([Far04, Theorem 2.2]). Let ψ ∈ CPn(R) be pure. Then there exists
a positive integer k ≤ n, a pure state φ ∈ UCPk(R) and a matrix γ ∈ Mk,n such that
ψ = γ∗φγ.

If the matrix γ in this proposition is invertible, then the reverse implication holds,
i.e., for a pure state φ ∈ UCPk(R) the map ψ = γ∗φγ ∈ CPn(R) is pure (ψ is clearly
completely positive even with no condition on γ). Indeed, let θ ∈ CPn(R) satisfy ψ− θ ∈
CPn(R). Then the map (γ∗)−1θγ−1 lies in CPk(R) and:

(γ∗)−1(ψ − θ)γ−1 = φ− (γ∗)−1θγ−1 ∈ CPk(R).

Since φ is pure, there is a t ∈ [0, 1] such that (γ∗)−1θγ−1 = tφ and hence θ = tψ.
To conclude this short summary we note the fact that the pure states on the operator

system R correspond to matrix extreme points in UCP(R) (see [Far04]). We now turn
our attention to the case of matrix exposed points.

Proposition 3.16. Suppose for a completely positive map ψ ∈ CPn(R) the corresponding
ray {tψ | t ≥ 0} is exposed in CPn(R). Then there exists a positive integer k ≤ n, a state
φ ∈ UCPk(R) and a matrix γ ∈ Mk,n such that ψ = γ∗φγ, and φ is a matrix exposed
point in UCP(R).

Proof. Since ψ ∈ CPn(R) determines the exposed ray {tψ | t ≥ 0} in CPn(R), there is
a linear functional F : Mn(R∗) → C satisfying F (tψ) = 0 for all t ≥ 0 and F (θ) > 0 for
all θ ∈ CPn(R)\{tψ | t ≥ 0}. By Proposition 3.15, there is a positive integer k ≤ n, a
pure state φ ∈ UCPk(R) and γ ∈ Mk,n such that ψ = γ∗φγ; so φ is matrix extreme in
UCP(R). If we prove that φ is an exposed point in UCPk(R), the by part (b) of Theorem
3.8 it is also matrix exposed. To prove φ is exposed define the functional G :Mk(R∗) → C
by

G(θ) = F (γ∗θγ)

for θ ∈ Mk(R∗). By the properties of F we have G(θ) ≥ 0 for all θ ∈ UCPk(R) (since
γ∗θγ ∈ CPn(R)) and G(φ) = 0. As φ is the only unital element of the ray {tψ | t ≥ 0},
we have G(θ) > 0 for all θ ∈ UCPk(R)\{φ}. Hence the pair (G, 0) exposes φ. □

Remark 3.17. To give a partial converse to Proposition 3.16, analogous to that of Proposi-
tion 3.15, let γ ∈ Mn in the above notation be invertible and let φ ∈ UCPn(R) be matrix
exposed. Then φ is both matrix extreme and exposed in the classical sense; so the remark
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after Proposition 3.15 implies that the map γ∗φγ is pure completely positive. Suppose we
are in the special case when the pair (G, 0) for some functional G :Mn(R∗) → C exposes
φ in UCPn(R). We now claim that

F (θ) = G
(
(γ∗)−1θγ−1

)
defines a functional F : Mn(R∗) → C which exposes the ray {t γ∗φγ | t ≥ 0}. Clearly,
F (t γ∗φγ) = tG(φ) = 0. For θ ∈ CPn(R) denote tθ = ∥θ(1)∥ so that we have F

(
θ
tθ

)
=

G
(
(γ∗)−1 θ

tθ
γ−1

)
≥ 0 (since θ

tθ
∈ UCPn(R)) implying F (θ) ≥ 0. On the other hand, we

have F
(

θ
tθ

)
= G

(
(γ∗)−1 θ

tθ
γ−1

)
= 0 (so F (θ) = 0) if and only if (γ∗)−1θγ−1 = tθ φ, whence

θ = tθ γ
∗φγ.

Example 3.18. Let A be a separable unital C∗-algebra. Then the matrix extreme points,
i.e., pure matrix states, of the matrix state space UCP(A) are matrix exposed. Indeed, by
part (b) of Theorem 3.8, it is enough see that every ordinary extreme point φ of CPn(A)
is ordinary exposed. By the canonical correspondence between linear maps A → Mn

and linear functionals on Mn(A) (see [Pau02, Chapter 6]), such a φ determines a state
φ̃ :Mn(A) → C given by

φ̃(X) =
1

n
⟨φn(X)e, e⟩,

where e = e1 ⊕ · · ·⊕ en and the ei are standard basis vectors of Cn. The above correspon-
dence is in fact a linear bijection and as such it preserves extreme and exposed points.
Hence, φ being extreme in CPn(A) implies that φ̃ is a pure state of the C∗-algebraMn(A).
But then by [AS01, Corollary 3.55], φ̃ is exposed in Mn(A)∗, which in turn implies that
φ is an exposed point of CPn(A). ♢

4. Matrix faces and matrix exposed faces

We proceed by discussing several possible notions of a face and an exposed face of
a matrix convex set. The main distinction is whether one considers subsets of a single
component Kn for some n ∈ N or multicomponent subsets of a matrix convex set K. All
the presented definitions aim to extend the concepts of a matrix extreme point or a matrix
exposed point. We also explain how their properties resemble those of the (exposed) faces
in the classical sense and investigate the interplay between the notions of a matrix face
and a matrix exposed face.

4.1. Fixed-level matrix faces. In this section we present three aspirant definitions of a
non-graded matrix face and explore the resemblance of their properties with the classical
theory: Proposition 4.4 states that the C∗-extreme points of a matrix face of a matrix
convex set K are matrix extreme in K and in Theorem 4.12 we prove that any matrix
face that is ordinary exposed is in fact a matrix exposed face. As a corollary of the latter
we observe that every matrix face or C∗-face of a free spectrahedron is matrix exposed.
Although it is not clear whether they are ordinary faces, weak matrix face are included
in the list as the most straightforward generalisation of a matrix extreme point.

Definition 4.1. Let K = (Kr)r∈N be a matrix convex set in the space V and F a convex
subset of Kn.
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(a) Then F is amatrix face if for every tuple of points A1, . . . , Ak fromK with Ai ∈ Kni

and every tuple of surjective matrices γi ∈ Mni,n satisfying
∑k

i=1 γ
∗
i γi = In, the condition

(4.1)
k∑

i=1

γ∗iAiγi ∈ F,

implies ni = n and Ai ∈ F for i = 1, . . . , k.
(b) If F is a C∗-convex matrix face, then it is a C∗-face.
(c) The set F is a weak matrix face if for every tuple of points A1, . . . , Ak from K with

Ai ∈ Kni
and every tuple of surjective matrices γi ∈ Mni,n satisfying

∑k
i=1 γ

∗
i γi = In, the

condition
k∑

i=1

γ∗iAiγi ∈ F,

implies ni = n and each Ai is unitarily equivalent to some element in F. We will denote
by U(F ) = {U∗AU | A ∈ F, U ∈ Mn unitary} the unitary orbit of F.

Remark 4.2. (a) It is clear from the definition that a matrix face or C∗-face F is itself a
face in the classical sense and that the matrix convex set mconv(Kn\F ) is disjoint from
F. Similarly, in the case of a weak matrix face, the set mconv(Kn\U(F )) is disjoint from
F.

(b) Since in dimension 1 unitary equivalence implies equality and C∗-convexity implies
classical convexity, the matrix faces of all types inK1 coincide with its faces in the classical
sense. Also, K1 itself is a matrix face, however Kn for n > 1 is never a matrix face of any
type. Indeed, for any v ∈ K1 we have

⊕nv =
n∑

i=1

eive
∗
i ∈ Kn,

where (ei)i is the standard basis of Cn satisfying
∑n

i=1 eie
∗
i = In.

In general, a matrix face (C∗-face) F ⊆ Kn (or its unitary orbit in the case of a weak
matrix face) does not contain any reducible elements of the form A ⊕ B ∈ Mr+s(V ) for
r, s < n as we can express

A⊕B =

(
Ir
0

)
A
(
Ir 0

)
+

(
0
Is

)
B
(
0 Is

)
.

This gives the intuition that just as points of a matrix convex set are only sporadically
matrix extreme, there are in general very few (boundary) points that are contained in a
matrix face.

(c) A matrix face F is closed under unitary conjugation. Indeed, for A ∈ F, B ∈ Kn

and a unitary matrix U ∈ Mn, by (4.1) the condition U∗BU = A ∈ F implies B ∈ F.
(d) If A ∈ Kn is matrix extreme, then its unitary orbit U(A) = {U∗AU | U ∈

Mn unitary}, though in general not convex, satisfies the matrix face condition (4.1).
Indeed, if for a tuple of points A1, . . . , Ak from K and a tuple of surjective matrices
γi ∈ Mni,n with

∑k
i=1 γ

∗
i γi = In we have

U∗AU =
k∑

i=1

γ∗iAiγi,

where U ∈ Mn is a unitary matrix, then A =
∑k

i=1 Uγ
∗
iAiγiU

∗ and A being matrix
extreme forces all Ai to be unitarily equivalent to A.
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(e) A singleton F = {A} is a weak matrix face if and only if A is a matrix extreme
point.

(f) To get rid of the surjectivity of the matrices γi in (4.1), an equivalent condition
for a convex set F ⊆ Kn to be a matrix face demands that for every tuple of points
A1, . . . , Ak, where each Ai belongs to Kni

for some ni ≤ n, and every tuple of nonzero

matrices γi ∈ Mni,n satisfying
∑k

i=1 γ
∗
i γi = In the condition

(4.2)
k∑

i=1

γ∗iAiγi ∈ F,

implies ni = n and Ai ∈ F for i = 1, . . . , k. It is easy to check that (4.1) and (4.2)
are equivalent. The analogous definitions for C∗-faces and weak matrix faces can be
formulated similarly.

The next example will show that as in the case of matrix extreme points, some of the
components Kn need not contain any matrix faces.

Example 4.3 (all types). Given a pair of real numbers a and b with a < b define the
corresponding matrix interval [aI, bI] := ([aIn, bIn])n∈N, where

[aIn, bIn] := {α ∈ Mn | aIn ⪯ α ⪯ bIn}.
A simple argument in [WW99, Example 2.2] shows the only matrix extreme points of
[aI, bI] are the numbers a, b ∈ [aI, bI]1 = [a, b]. Each A ∈ [aI, bI]n can be expressed as a
matrix convex combination of a and b. So none of the [aI, bI]n for n > 1 contains any
matrix face. ♢

In general, a compact matrix convex set K over a finite-dimensional space is the (al-
ready closed) matrix convex hull of its matrix extreme points by a version of the matricial
Krein-Milman theorem [WW99, Theorem 4.3] (see also [HL21, Theorem 2.9]), and ev-
ery point A ∈ Kn can be expressed as a matrix convex combination of matrix extreme
points from the sets K1, . . . , Kn. Hence by part (f) of Remark 4.2, a component Kn which
contains a matrix face of any type must also contain a matrix extreme point. Moreover,
the elements of a matrix face or a C∗-face can only be described by matrix convex com-
binations of matrix extreme points of K, which lie in F. Similarly, only matrix convex
combinations of matrix extreme points that lie in U(F ) can describe points in a weak
matrix face F .

An important property of classical faces is that their extreme points are also extreme
in the whole set and the next proposition gives a matrix version of it. While the notion
of a C∗-extreme point in a (not necessarily C∗-convex) convex set might not be natural,
this hereditary property of C∗-extreme points holds for all types of matrix faces.

Proposition 4.4 (all types). Let K be a matrix convex set and F ⊆ Kn a matrix face.
Every C∗-extreme point of F is a matrix extreme point of K.

Proof. First suppose that F ⊆ Kn is a matrix face or a C∗-face and A is a C∗-extreme
point in F. Suppose we can express A as

(4.3) A =
k∑

i=1

γ∗iAiγi ∈ F

for k-tuples (Ai)
k
i=1 and (γi)

k
i=1, where each Ai is in Kni

and γi ∈ Mni,n are surjective

matrices with
∑k

i=1 γ
∗
i γi = In. Since F is a matrix face, we deduce ni = n and Ai ∈ F for
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i = 1, . . . , k. But then A being C∗-extreme implies that all the Ai are unitarily equivalent
to A.

If F is a weak matrix face, the condition (4.3) implies ni = n and Ai ∈ U(F ) for
i = 1, . . . , k. So each Ai is of the form U∗

i BiUi for some unitary Ui ∈ Mn and Bi ∈ F.
Then as A is C∗-extreme, all the Bi and therefore all the Ai, too, are unitarily equivalent
to A. □

4.2. Matrix exposed faces. This section gives three possible generalisations of the concept
of a matrix exposed point to a set, namely a matrix exposed face.

Definition 4.5. Let K = (Kr)r∈N be a matrix convex set in a dual vector space V and F
a convex subset of Kn.
(a) Then F is amatrix exposed face if there exists a continuous linear map Φ : V → Mn

and a self-adjoint matrix α ∈ Mn satisfying the following conditions:

(i) for every positive integer m and B ∈ Km we have Φm(B) ⪯ α⊗ Im;
(ii) for any m < n and B ∈ Km we have Φm(B) ≺ α⊗ Im;
(iii) {B ∈ Kn | α⊗ In − Φn(B) ⪰ 0 is singular} = F.

(b) If F is a C∗-convex matrix exposed face, then it is a C∗-exposed face.
(c) We call F a weak matrix exposed face if there exists a continuous linear map

Φ : V → Mn and a self-adjoint matrix α ∈ Mn satisfying the following conditions:

(i) for every positive integer m and B ∈ Km we have Φm(B) ⪯ α⊗ Im;
(ii) for any m < n and B ∈ Km we have Φm(B) ≺ α⊗ Im;
(iii) {B ∈ Kn | α⊗ In − Φn(B) ⪰ 0 is singular} = U(F ).

We call (Φ, α) in the notation above an exposing pair of the matrix exposed face F.

Remark 4.6. (a) As in the case of matrix faces of all types, the matrix exposed faces in K1

of all types coincide with its ordinary faces. Indeed, it is clear that every matrix exposed
face in K1 is ordinary exposed. For the converse we only need to observe that if F ⊆ K1

is ordinary exposed with an exposing pair (φ, α), then the condition φ|K1 ≤ α implies

φm(B) ⪯ α⊗ Im

for every positive integer m and B ∈ Km. Indeed, if φm(B) ⪯̸ α⊗ Im for some m ∈ N and
B ∈ Km, then there is a unit vector ξ ∈ Cnm such that

0 > ξ∗(α⊗ Im − φm(B))ξ = α− φ(ξ∗Bξ)

But as ξ∗Bξ ∈ K1, this contradicts the condition φ|K1 ≤ α.
(b) For any matrix affine map Φ, unitary U ∈ Mn and B ∈ Kn, the matrix

α⊗ In − Φn(U
∗BU) = (In ⊗ U∗)

(
α⊗ In − Φn(B)

)
(In ⊗ U)

is singular if and only if α⊗ In −Φn(B) is singular. Hence, the condition (iii) in part (a)
of the above definition implies that a matrix exposed face is closed under conjugation by
unitaries.

(c) Let A ∈ Kn be a matrix exposed point with the pair (Φ, α) exposing it. Then by
definition and part (c) of Remark 3.2, the same pair (Φ, α) satisfies the conditions in part
(a) of Definition 4.5 for exposing the (in general non-convex) unitary orbit of A.
(d) A singleton F = {A} is a weak matrix exposed face if and only if A is a matrix

exposed point.
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(e) For a matrix exposed face F ⊆ Kn of any type the intersection:

N =
⋂
A∈F

ker(α⊗ In − Φn(A))

is always nontrivial. If we restrict the search to a unit vector in N , then by the finite
intersection property it suffices to prove that for every finite selection of A1, . . . , Ak ∈ F
the intersection

(4.4)
k⋂

i=1

ker
(
α⊗ In − Φn(Ai)

)
∩ Sn2

is nonempty. Here Sn2
denotes the unit sphere in Cn ⊗ Cn. So suppose A1, . . . , Ak ∈ F

are such that the intersection (4.4) is empty and consider the convex combination A =
1
k

(
A1 + · · · + Ak

)
∈ F. For this point the matrix α ⊗ In − Φn(A) is nonsingular, which

implies by Definition 4.5 that F is not a matrix face.

Proposition 4.7 (all types). Let F ⊆ Kn be a matrix exposed face of a matrix convex set
K and Φ : V → Mn together with α ∈ Mn an exposing pair. Then for every nonzero
x =

∑n
i=1 xi ⊗ ei ∈ Cn ⊗ Cn in N , its components x1, . . . , xn span Cn. Moreover, N is

one-dimensional.

Proof. Let P be the projection onto span{x1, . . . , xn}. Then as in the proof of part (a) of
Proposition 3.4, α⊗ Ir − Φr(PAP

∗) is singular for any A ∈ F, but PAP ∗ ∈ Kr for some
r < n. The proof of part (b) of Proposition 3.4 then shows that N is one-dimensional. □

Proposition 4.8. Let K = (Kn)n∈N be a matrix convex set. Then every matrix exposed
face F ⊆ Kn is an exposed face of Kn.

Proof. Let F ⊆ Kn be a matrix exposed face and Φ : V → Mn together with α ∈ Mn

an exposing pair. By part (e) of Remark 4.6, there is a nonzero x ∈ N . Now define the
functional φ :Mn(V ) → C by

(4.5) φ(B) = x∗Φn(B)x,

and the real number a = x∗(α⊗ In)x ∈ R. Since the pair (Φ, α) matricially exposes F, we
have by the choice of x that

a− φ(B) = x∗
(
α⊗ In − Φn(B)

)
x = 0

for all B ∈ F, but also

a− φ(B) = x∗
(
α⊗ In − Φn(B)

)
x ≥ 0

for all B ∈ Kn. Moreover, if B ∈ Kn satisfies φ(B) = a, then (α ⊗ In − Φn(B))x = 0.
Hence α ⊗ In − Φn(B) is singular, so B ∈ F . We conclude that φ(B) = a if and only if
B ∈ F, which shows that the pair (φ, a) exposes F in Kn. □

Example 4.9. Suppose L and M are two linear pencils such that DM ⊆ DL and DM(n)∩
∂DL(n) ̸= ∅ for some n ∈ N. Let

nmin := min{n ∈ N | DM(n) ∩ ∂DL(n) ̸= ∅}.

If F = DM(nmin) ∩ ∂DL(nmin) is convex, then it is clearly a matrix exposed face in DM .
Indeed, if L = A0 +

∑g
i=1Aixi, then the pair (L− A0, A0) matricially exposes F. ♢
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4.3. Interplay between matrix faces and matrix exposed faces. The aim of this section
is to show that a matrix face (C∗-face) is exposed if and only if it is a matrix exposed
face (C∗-exposed face). It is not clear if a weak matrix exposed face is an exposed face,
however the “only if” part of the claim still holds in this case, i.e., an ordinary exposed
weak matrix exposed face is in fact weakly matrix exposed (see Theorem 4.12).

Remark 4.10. We emphasize that the zero map and the zero matrix always define an
exposing pair (of any type) for Kn, even though Kn for n > 1 is never a matrix face.

Proposition 4.11 (all types). Let K be a matrix convex set and F ⊊ Kn a matrix exposed
face. Then F is a matrix face.

Proof. The proof is analogous to that of Proposition 3.5 regarding matrix exposed points.
Let F ⊆ Kn be a matrix exposed face of any type with Φ : V → Mn and α ∈ Mn an
exposing pair. Further, assume we have

k∑
i=1

γ∗iAiγi = A ∈ F

for k-tuples (Ai)
k
i=1 and (γi)

k
i=1, where each Ai is in Kni

and γi ∈ Mni,n are surjective

matrices (so ni ≤ n) with
∑k

i=1 γ
∗
i γi = In. By assumption we have Ini

⊗ α− Φni
(Ai) ⪰ 0

for every i = 1, . . . , k. Also

α⊗ In − Φn(A) =
k∑

i=1

(γ∗i ⊗ In)
(
Ini

⊗ α− Φni
(Ai)

)
(γi ⊗ In),(4.6)

where clearly (γ∗i ⊗In)
(
Ini

⊗α−Φni
(Ai)

)
(γi⊗In) ⪰ 0 for i = 1, . . . , k. Suppose any of the

points Ai, say A1, is not in F (not in U(F ) for the case of a weak matrix exposed face) and
hence satisfies Ini

⊗α−Φni
(Ai) ≻ 0 by definition. We will prove that the latter implies γ1 =

0. By Proposition 4.7, there is an x =
∑n

i=1 xi⊗ ei ∈ N =
⋂

A∈F ker(α⊗ In−Φn(A)) such
that span{x1, . . . , xn} = Cn. Equality (4.6) together with the positive semi-definiteness of
the right-hand side summands imply that x lies in the intersection of the kernels of the
matrices (γ∗i ⊗ In)

(
Ini

⊗ α − Φni
(Ai)

)
(γi ⊗ In) for i = 1, . . . , k. In particular, we have

(γ∗1 ⊗ In)
(
In1 ⊗α−Φn1(A1)

)
(γ1⊗ In)x = 0, which, together with the positive definiteness

of the middle factor and injectivity of (γ∗1 ⊗ In), implies that x lies in the kernel of γ1⊗ In,
i.e., we have:

0 = (γ1 ⊗ In)x = (γ1 ⊗ In)
( n∑

j=1

xj ⊗ ej

)
=

n∑
j=1

γ1xj ⊗ ej.

So γ1x
i
j = 0 for i = 1, . . . , d and j = 1, . . . , n, whence γ1 = 0. □

Theorem 4.12 (all types). Let K be a matrix convex set and F ⊆ Kn a matrix face that
is also an exposed face. Then F is a matrix exposed face.

Proof. First, suppose F ⊆ Kn is a matrix face or a C∗-face, hence it is closed under
conjugation by unitaries, and suppose F is also exposed in the classical sense. By part
(a) of Remark 4.6 we may assume n > 1. Moreover, we may assume 0n /∈ F and 0 ∈ K1.
Indeed, otherwise replaceK by−v+K for any vector v ∈ K1. Note that In⊗v = ⊕nv /∈ F
as F does not contain reducible elements by part (b) of Remark 4.2. By assumption, we
also have F ⊊ Kn since Kn is never a matrix face.

By considering the matrix convex set L = mconv(Kn\F ), which is disjoint from F,
we construct, analogously to the proof of part (b) of Theorem 3.8, from the pair (φ, a)
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exposing F, a continuous linear map Φ : V → Mn and a self-adjoint matrix α = aIn ∈ Mn

that satisfy Φm(B) ⪯ α⊗Im for allm ∈ N and B ∈ Km. Also, the following relation holds:〈
Φn(A)η0, η0

〉
= φ(A) = a

for some unit vector η0 ∈ (Cn)n and all A ∈ F. So for all A ∈ F the corresponding matrix
a In2 − Φn(A) is singular.

We now show that for a point B ∈ Kn\F the matrix a In2 − Φr(B) is nonsingular.
So suppose some unit vector η ∈ (Cn)n of the form (3.8) satisfies

〈
ReΦn(B)η, η

〉
=

Reφ(α∗Bα) = a p(α∗α) = a. By the same reasoning as in (3.10) we see that α is a con-
traction. As we assumed 0 ∈ L1, the point α∗Bα belongs to Ln, since L is closed under
conjugation by contractions. Because of the strong separation of F from Ln determined
by (φ, a), we get Reφ(α∗Bα) < ap(α∗α), which is a contradiction. The above reasoning
can be easily adapted for case of a weak matrix face by considering the matrix convex set
mconv(Kn\U(F )) instead of mconv(Kn\F ).
Finally, we claim that for any m < n and B ∈ Km the strict inequality Φm(B) ≺ α⊗Im

holds. So supposem < n and B ∈ Km are such that α⊗Im−Φm(B) is singular (while also
positive semidefinite). Then by part (b) of Remark 4.2, B ⊕ C /∈ F for any C ∈ Kn−m.
By the singularity of

α⊗ In − Φn(B ⊕ C) =
(
α⊗ Im − Φm(B)

)
⊕

(
α⊗ In−m − Φn−m(C)

)
,

this contradicts F being a matrix exposed face (cf. part (c) of Remark 3.2). The claim
also holds if F is a weak matrix exposed face, where in the above reasoning we use the
fact that U(F ) does not contain any reducible elements. Having proven the last claim,
we conclude that the pair (Φ, a In) matricially exposes F. □

Recall how a matrix convex set K determines a family of convex sets {Γn(K)}n∈N
given by (3.11) in Section 3.3. We proceed by showing that for each n ∈ N, there is a
connection between matrix exposed faces of K and exposed faces of Γn(K) analogous to
the one regarding points in Proposition 3.13. We state it as Proposition 4.13, whose proof
mimics the one of Proposition 3.13.

Proposition 4.13. Let K = (Kn)n∈N be a matrix convex set and F ⊆ Kr. Then the
following holds:

(a) Let γ ∈ Mr,n be a surjective matrix with tr(γ∗γ) = 1 such that the set

(4.7) Fγ := {(γ∗γ, γ∗Aγ) | A ∈ F}
is an exposed face of Γn(K). Then F is a weak matrix exposed face of K.

(b) If F is a weak matrix exposed face of K, then for any invertible γ ∈ Mr with
tr(γ∗γ) = 1, the set Fγ in (4.7) is an exposed face of Γr(K).

Proof. To prove (a) suppose Fγ as above is an exposed face of Γn(K) for some surjective
γ ∈ Mr,n with tr(γ∗γ) = 1. By assumption there exists a continuous linear functional
φ : Mn ×Mn(V ) → C and a real number a such that φ(γ∗γ, γ∗Aγ) = a and φ(δ, C) > a
for all (δ, C) ∈ Γn(K)\Fγ.

Now decompose φ into φ = φ1 + φ2, where φ1 : Mn → C and φ2 : Mn(V ) → C.
By the Riesz representation theorem there is a self-adjoint matrix β ∈ Mn such that
φ1(δ) = tr(βδ). For any matrix η = (η1, . . . , ηn) ∈ Mm,n and its vectorization

(4.8) vη =
n∑

i=1

e′i ⊗ ηi ∈ Cn ⊗ Cm
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we have
φ1(η

∗η) = tr(βη∗η) = tr(ηβη∗) = v∗η(β ⊗ Im)vη.
By the canonical correspondence between linear functionals on Mn(V ) and linear maps
V → Mn, the functional φ2 gives rise to a map Ψ : V → Mn. For every B ∈ Mm(V ) and
matrix η = (η1, . . . , ηn) ∈ Mm,n with its vectorization vη as in (4.8) we have

φ2(η
∗Bη) = v∗ηΨm(B)vη.

So for every positive integerm, element B ∈ Km and matrix η ∈ Mm,n with the property
tr(η∗η) = 1,

v∗η
(
(β − aIn)⊗ Im −Ψm(B)

)
vη = φ(η∗η, η∗Bη)− a ≥ 0.(4.9)

Since tr(η∗η) = 1 if and only if vη ∈ Cmn is a unit vector, the above implies that the
matrix (β − aIn)⊗ Im −Ψm(B) is positive semidefinite. For A ∈ F we also have

v∗γ
(
(β − aIn)⊗ Ir −Ψr(A)

)
vγ = φ(γ∗γ, γ∗Aγ)− a = 0.(4.10)

The positive semi-definiteness of (β−aIn)⊗Ir−Ψr(A) implies
(
(β−aIn)⊗Ir−Ψr(A)

)
vγ =

0). So (β − aIn)⊗ Ir −Ψr(A) is singular for every A ∈ F .
Again, by the Douglas Lemma 3.12, (η∗η, η∗Bη) ∈ Γn(K) with B ∈ Km and η ∈ Mm,n

is of the form (γ∗γ, γ∗Aγ) for some A ∈ F if and only if r = m and there is a unitary
matrix U ∈ Mr such that η = Uγ and A = U∗BU. By the calculation (3.16) we have

φ(η∗η, η∗Bη)− a = v∗η
(
(β − aIn)⊗ Ir −Ψr(B)

)
vη.

Using the properties of φ we deduce that for B ∈ Km the matrix (β− aIn)⊗ Im −Ψm(B)
is singular if and only if m = r and B ∈ U(F ).

Finally, we define the map Φ : V → Mr by Φ = γΨγ∗ and the self-adjoint matrix
α ∈ Mr by α = γ(β − aIr)γ∗. Now the same reasoning as in the proof of part (a) of
Proposition 3.13 shows that vγ is in the range of (γ∗ ⊗ Ir) so that α ⊗ Ir − Φr(A) is
singular for all A ∈ F. Since the positive semi-definiteness in all the points of K is clear
and the definiteness outside of U(F ) follows from the injectivity of γ∗, the pair (Φ, α)
matricially exposes F and F is a weak matrix exposed face.

To prove (b) assume F ⊆ Kr is a weak matrix exposed face and let Φ : V → Mr

together with α ∈ Mr be an exposing pair. We claim that for any invertible γ ∈ Mr with
tr(γ∗γ) = 1, Fγ = {(γ∗γ, γ∗Aγ) | A ∈ F} is an exposed face of Γr(K).

By Proposition 4.7, there is an x =
∑r

i=1 xi ⊗ ei ∈ Cr ⊗ Cr in N =
⋂

A∈F ker(α⊗ Ir −
Φr(A)) such that span{x1, . . . , xr} = Cr. Let (Ψ, β) = δ(Φ, α)δ∗ and y = (δ ⊗ δ)x, where
δ ∈ Mr denotes the inverse of γ, and define a functional φ : Mr ×Mr(V ) → C,

φ(µ,C) = y∗
(
β ⊗ µ−Ψr(C)

)
y

for C ∈Mr(V ) and µ ∈ Mr. Since Ψ is matrix affine, we see that for any positive integer
n, element B ∈ Kn and surjective matrix η ∈ Mn,r with tr(η∗η) = 1,

φ(η∗η, η∗Bη) =
(
(η ⊗ Ir)y

)∗(
β ⊗ In −Ψn(B)

)
(η ⊗ Ir)y ≥ 0.

By Proposition 4.7, the same reasoning as in the proof of part (b) of Proposition 3.13
shows that if (η∗η, η∗Bη) ∈ Γn(K)\Fγ, then φ(η∗η, η∗Bη) > 0. On the other hand, for
(γ∗γ, γ∗Aγ) ∈ Fγ we have

φ(γ∗γ, γ∗Aγ) = ((Ir ⊗ γ)y)∗
(
β ⊗ Ir −Ψr(A)

)
(Ir ⊗ γ)y

= ((δ ⊗ Ir)x)∗
(
β ⊗ Ir −Ψr(A)

)
(δ ⊗ Ir)x

= x∗
(
α⊗ Ir − Φr(A)

)
x = 0.
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Hence the pair (−φ, 0) exposes Fγ in Γn(K). □

Next we state a corollary of Proposition 4.13 regarding matrix exposed faces. The proof
is omitted as it is similar to the one of Proposition 4.13.

Corollary 4.14. Let K = (Kn)n∈N be a matrix convex set and F a subset Kr that is closed
under conjugation by unitaries. Then the following holds:

(a) Let γ ∈ Mr,n be a surjective matrix with tr(γ∗γ) = 1 such that the set Fγ in (4.7)
is an exposed face of Γn(K). Then F is a matrix exposed face of K.

(b) If F is a matrix exposed face of K, then for any invertible γ ∈ Mr with tr(γ∗γ) = 1,
the set Fγ in (4.7) is an exposed face of Γr(K).

Example 4.15. Let K be a compact matrix convex set in a finite-dimensional space V.
As a corollary of Proposition 4.13 we now give an example of a weak matrix exposed face
of K. Since K is compact, Γn(K) is a compact subset of the finite-dimensional space
Mn ×Mn(V ) and so for any fixed r < n, the minimum

m := min{∥γ∗γ∥ | γ ∈ Mr,n, tr (γ
∗γ) = 1, such that ∃A ∈ Mr with (γ∗γ, γ∗Aγ) ∈ Γn(K)}

is attained in some γ ∈ Mr,n with tr(γ∗γ) = 1. Then

Fγ = {(δ∗δ, δ∗Aδ) | A ∈ Kr, δ ∈ Mr,n, tr (δ
∗δ) = 1, δ∗δ = γ∗γ}

is the intersection of Γn(K) with the affine plane {(ϵ, B) ∈ Mn×Mn(V ) | ϵ = γ∗γ}. Hence
Fγ is an exposed face of Γn(K) which by Proposition 4.13 implies that

F = {A ∈ Kr | ∃δ ∈ Mr,n, tr (δ
∗δ) = 1, δ∗δ = γ∗γ and (γ∗γ, γ∗Aγ) ∈ Fγ}

is a weak matrix exposed face of K. ♢

4.3.1. Matrix faces and matrix exposed faces in free spectrahedra. As an application of
Proposition 4.12 we can deduce that every matrix face (C∗-face) of a free spectrahedron
is a matrix exposed face (C∗-exposed face). Indeed, by Proposition 4.12 it is enough
to prove every face of a free spectrahedron is exposed. For this we apply the result
[RG95, Corrolary 1] by Ramana and Goldman stating that every face of a spectrahedron
is exposed. But since DL(n) can be considered a spectrahedron in the Euclidean space Sg

n

for arbitrary n ∈ N, every face of a free spectrahedron is exposed, too.
We conclude with an insight into the structure of (exposed) faces of a free spectrahedron.

First recall that for a convex set K ⊆ Rn and point x ∈ K, there is a unique face FK(x) of
K which contains x in its relative interior (see [Bar02, Section II.2]). In general we have

FK(x) = aff(FK(x)) ∩K,
where aff(FK(x)) denotes the affine span of FK(x). Now let n ∈ N and A0, . . . , Ag be com-
plex self-adjoint matrices of size n× n and let L = A0 +

∑g
i=1Aixi be the corresponding

linear pencil. The following theorem (cf. [RG95, Theorem 1]) gives for a point X in the
free spectrahedron DL a concrete description of the unique face FL(X) that contains X
in its relative interior.

Theorem 4.16. Let L be a linear pencil and X ∈ DL(n). Then

FL(X) = {Y ∈ DL(n) | ker L(Y ) ⊇ ker L(X)}
= {Y ∈ Sg

n | ker L(Y ) ⊇ ker L(X)} ∩ DL(n)

= {Y ∈ DL(n) | x∗L(Y )x = 0 ∀x ∈ ker L(X)}
= {Y ∈ Sg

n | x∗L(Y )x = 0 ∀x ∈ ker L(X)} ∩ DL(n).
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Moreover, aff(FL(X)) = {Y ∈ Sg
n | ker L(Y ) ⊇ ker L(X)}.

We now present a sufficient condition to determine for which X ∈ DL the face FL(X) is
a matrix (exposed) face. The following is an easy corollary of Proposition 4.13, adapted
to free spectrahedra.

Corollary 4.17. Let L be a linear pencil and F ⊆ DL(r). Suppose F is closed under
conjugation by unitaries. If for every m ∈ N and surjective γ ∈ Mr,m with tr(γ∗γ) = 1
the set

Fγ = {(γ∗γ, γ∗Xγ) | X ∈ F}
is an exposed face of

Γm(DL) = {(δ∗δ, δ∗Y δ) | δ ∈ Mk,m onto, tr (δ∗δ) = 1, k ∈ N, Y ∈ DL(k)}
= {(δ∗δ, δ∗Y δ) | δ ∈ Mk,m onto, tr (δ∗δ) = 1, k ∈ N, Y ∈ Sg

n,

(Im ⊗ δ∗)L(Y ) (Im ⊗ δ) ⪰ 0} ⊆ Mm ×Mm,

then F is a matrix exposed face of DL.

As it is not clear if weak matrix (exposed) faces are ordinary (exposed) faces, the
observations from this subsection do not directly apply to weak matrix faces.

5. Multilevel matrix faces

5.1. Matrix multifaces. In this section we discuss two notions of a multicomponent face of
a matrix convex set. We show how the classical theory connecting (archimedean) faces of
compact convex sets and (archimedean) order ideals of the corresponding function systems
presented in [Alf71, Section II.5] has its noncommutative counterpart featuring matrix
multifaces. It also gives rise to a family of examples along with a sufficient condition to
deduce whether a point is contained in some matrix multiface.

A notion similar to that of a matrix multiface recently appeared under the name nc
face in [KKM+]. While nc faces extend the concept of absolute extreme points (see
[EHKM18]), our interest is in generalizing the properties of matrix extreme points.

Definition 5.1. LetK = (Kr)r∈N be a matrix convex set in the space V and F = (Fr)r∈N ⊆
K a levelwise convex subset of K.
(a) Then F is a matrix multiface if for every tuple of points A1, . . . , Ak from K and

every tuple of surjective matrices γi ∈ Mni,n satisfying
∑k

i=1 γ
∗
i γi = In, the condition

(5.1)
k∑

i=1

γ∗iAiγi ∈ F ,

implies Ai ∈ F for i = 1, . . . , k.
(b) If F is a matrix convex matrix multiface, then it is a matrix convex multiface.

Remark 5.2. (a) It is straightforward that each component Fn of a matrix (convex) mul-
tiface F is an ordinary face.

(b) For n ∈ N and F ⊆ Kn denote by F̂ the subset of K with n-th component F and the
other components being empty. Then for every matrix face F ⊆ Kn, the corresponding

multicomponent set F̂ is a matrix multiface. Moreover, the matrix multifaces F = (Fr)r∈N
with Fr = ∅ for r > 1 coincide with subsets of K, whose first components are ordinary

faces. Also, K̂1 itself is a matrix multiface and we see as in part (b) of Remark 4.2 that
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K̂n for n > 1 is never a matrix multiface. Moreover, as in part (c) of Remark 4.2, every
matrix multiface is closed under unitary conjugation.

(c) As in part (c) of Definition 4.1 one might consider weak matrix multifaces to obtain
that for any weak matrix multiface F , where Fn = {A} for some n ∈ N and Fm = ∅
whenever m ̸= n, the point A is matrix extreme.

Example 5.3. We give an example of a matrix face in a matrix convex set, inspired by the
theory connecting (archimedean) faces of compact convex sets and (archimedean) order
ideals of the corresponding function systems presented in [Alf71, Section II.5]. Let K be
a compact matrix convex set and denote by

A(K) = {θ = (θn : Kn → Mn)n∈N | θ continuous matrix affine}

its dual operator system. For a ucp map Φ on A(K) with kernel J let

(5.2) J⊥
n := {A ∈ Kn | θn(A) = 0 ∀θ ∈ J}.

A straightforward calculation shows that J⊥ := (J⊥
n )n∈N is a matrix convex subset of K.

We will show that if J is spanned by its positive elements, i.e., J = J+ − J+, then J⊥ is
a matrix convex multiface.

First note that for any r ∈ N, the ampliation Φr also has the kernel generated by its
positive elements. Indeed, if

Φr(A) = (Φ(Ai,j)) = 0

for some A = (Ai,j) ∈ Mr(A(K)), then every Ai,j lies in J = J+ − J+. Now the claim
follows, since we can write A =

∑
i,j Ei,j ⊗ Ai,j, each standard base matrix Ei,j can be

expressed as a (complex) linear combination of positive matrices, and the elements of the
form α⊗ θ for α ∈ M+

r and θ ∈ A(K)+ lie in Mr(A(K))+.
Now to prove J⊥ is a matrix convex multiface suppose

A =
k∑

i=1

γ∗iAiγi ∈ J⊥
n

for k-tuples (Ai)
k
i=1 and (γi)

k
i=1, where Ai ∈ Kni

and γi ∈ Mni,n are onto with
∑k

i=1 γ
∗
i γi =

In. Then for any θ ∈ J,

0 = θn(A) =
k∑

i=1

γ∗i θni
(Ai)γi.

If θ is a positive element in A(K), the above implies θni
(Ai) = 0 for i = 1, . . . , k and

since J is spanned by its positive elements, we have θni
(Ai) = 0 for all i and θ ∈ J. Hence

Ai ∈ J⊥ for i = 1, . . . , k so that J⊥ is a matrix multiface. ♢

Remark 5.4. (a) By inspection of the observations of Example 5.3, we deduce a sufficient
condition for a point X ∈ K to be contained in a matrix multiface. Identifying X with
the corresponding evaluation map ΦX ∈ UCP(A(K)), we see that if every θ ∈ A(K) with
θ(X) = 0 can be decomposed as θ = θ1−θ2, where θ1, θ2 ∈ A(K)+ and θ1(X) = θ2(X) = 0,
then (ker ΦX)

⊥ is a matrix (convex) multiface that contains X.
(b) One might try to adapt Example 5.3 to obtain a fixed-level matrix face by assuming

that for a ucp map φ on A(K) the corresponding kernel J is spanned by its positive
elements and

nmin := min {n ∈ N | J⊥
n ̸= ∅} <∞.
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Then the set J⊥
min := J⊥

nmin
satisfies the conditions of a C∗-face. However, if nmin < ∞,

then nmin = 1 because of the connection

ξ∗θn(A)ξ = θ1(ξ
∗Aξ)

for any A ∈ Kn, matrix affine map θ ∈ A(K) and unit vector ξ ∈ Cn. So the presented
construction only reproduces some of the faces of K1.

Definition 5.5. Let K be a matrix convex set. A ucp map Φ : A(K) → Mr is partially
order reflecting if it satisfies

(5.3) Φn

(
Mn(A(K))+

)
= Φn

(
Mn(A(K))

)+
for all n ∈ N, i.e., for every n ∈ N and A ∈ Mn(A(K)) with Φn(A) ⪰ 0 there exists a
B ⪰ 0 such that Φn(A) = Φn(B).

The following two propositions together give a noncommutative analogue of [Alf71,
II.5.11 – II.5.13].

Proposition 5.6. Let K be a compact matrix convex set and Φ : A(K) → Mr a ucp map.
Denote by J the kernel of Φ and J⊥ = (J⊥

m)m∈N as in (5.2). Then the following are
equivalent:

(a) The kernel J is spanned by its positive elements and Φ is partially order reflecting.

(b) For each n ∈ N and θ ∈ Mn(A(K)) with θ|J⊥ ⪰ 0 there is a positive element
ψ ∈Mn(A(K))+ such that

ψ ⪰ θ and ψ|J⊥ = θ|J⊥ .

Proof. (a) ⇒ (b) By the categorical duality, there is a point X ∈ K such that

Φn(θ) = θ(X)

for every n ∈ N and θ ∈Mn(A(K)). Moreover, for any θ ∈ J we have

θ(X) = Φ(θ) = 0,

so X ∈ J⊥. Now fix n ∈ N and let θ ∈ Mn(A(K)) be such that θ|J⊥ ⪰ 0. Then
Φn(θ) = θ(X) ⪰ 0 and by (a) there is a ψ1 ∈Mn(A(K))+ such that Φn(ψ1) = Φn(θ), i.e.,

θ − ψ1 ∈ kerΦn.

As noted in Example 5.3, the fact that J is spanned by its positive elements implies kerΦn

is also spanned by its positive elements, meaning kerΦn = (kerΦn)
+ − (kerΦn)

+. Hence
there is a ψ2 ∈ (kerΦn)

+ such that θ − ψ1 ⪯ ψ2. Then

ψ = ψ1 + ψ2 ∈Mn(A(K))+ + (kerΦn)
+ ⊆Mn(A(K))+

clearly satisfies ψ ⪰ θ and ψ|J⊥ = ψ1|J⊥ = θ|J⊥ .
(b) ⇒ (a) To see that J is spanned by its positive elements let θ ∈ J. Then θ|J⊥ = 0

and by (b), there is a ψ ∈ A(K)+ such that ψ ⪰ θ and ψ|J⊥ = θ|J⊥ = 0. Hence

θ = ψ − (ψ − θ) ∈ J+ − J+.

It remains to prove that Φ satisfies the partially order reflecting property (5.3) for all
n ∈ N. Let q : A(K) → A(K)/J denote the canonical projection. It is positive, i.e.,
order preserving, but also partially order reflecting by (b) as we now explain. For any

θ ∈ A(K) with q(θ) ∈
(
A(K)/J

)+
there is a ψ ∈ J such that θ + ψ ⪰ 0. Hence θ|J⊥ ⪰ 0

and by (b), there is a θ0 ∈ A(K)+ such that θ0|J⊥ = θ|J⊥ . Whence, q(θ) = q(θ0).
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We continue by showing that (b) implies A(K)/J is an Archimedean order unit space.
For that we shall prove that q(1K) is an Archimedean order unit. So suppose θ ∈ A(K)
satisfies

q(θ) ⪯ 1

n
q(1K)

for all n ∈ N. Then for each n there is a map ψn ∈ J such that

θ ⪯ 1

n
1K + ψn,

which implies θ|J⊥ ⪯ 1
n
for all n ∈ N. Hence θ|J⊥ ⪯ 0 and by (b), there is a ψ ∈ A(K)+

such that ψ|J⊥ = −θ|J⊥ . But then q(θ) = −q(ψ) ⪯ 0 as desired.
By repeating the above argument with the n-th ampliation qn of q, we see that In⊗q(1K)

is an Archimedean order unit in Mn(A(K)/J) for every n ∈ N. In other words, q(1K)
is an Archimedean matrix order unit. It is now easy to see that A(K)/J satisfies the
Effros-Ruan axioms of an operator system (see [Pau02, Chapter 13]).

Since (A(K)/J, q(1K)) is an Archimedean order unit space, there is an order isomor-
phism τ : A(K)/J → imΦ such that Φ = τ ◦ q. Hence Φ is partially order reflecting. By
applying the same reasoning to Mn(A(K)) for arbitrary n ∈ N, we conclude that Φn is
partially order reflecting for all n ∈ N. □

The next result combines and summarizes the conclusions from Example 5.3 and Propo-
sition 5.6 giving the connection between certain closed matrix convex multifaces and pos-
itively generated kernels of partially order reflecting ucp maps.

Proposition 5.7. Let K be a compact matrix convex set.

(a) Let n ∈ N and Φ : A(K) → Mn be a partially order reflecting ucp map with kernel
J spanned by its positive elements. Then J⊥ ⊆ K is a closed matrix convex
multiface that satisfies both of the equivalent conditions of Proposition 5.6.

(b) Suppose F ⊆ K is a closed matrix convex multiface that satisfies the condition
(b) of Proposition 5.6 (with J⊥ replaced by F ). Then

J := {θ ∈ A(K) | θ|F = 0}

is spanned by its positive elements and is the kernel of a ucp map Φ : A(K) → R
that satisfies the partially order reflecting property (5.3), where R is an operator
system.

Proof. Part (a) follows from Example 5.3 and Proposition 5.6. For (b) we first prove
that J⊥ = F . Clearly, F ⊆ J⊥. So suppose we have X ∈ J⊥\F . As F is closed, by
the matricial Hahn-Banach theorem [EW97] there is a matrix affine map θ ∈ A(K) such
that θ|F ⪰ 0, but θ(X) ⪰̸ 0. By assumption there is a positive element ψ ∈ A(K)+ with
ψ ⪰ θ and ψ|F = θ|F . So we have both ψ(X) ⪰ 0 and ψ − θ ∈ J. But then by the choice
of X, (ψ − θ)(X) = 0, which is a contradiction. Hence J⊥ = F .
Now the proof of the (b)⇒ (a) implication in Proposition 5.6 shows that J is spanned by

its positive elements, the quotient R := A(K)/J is an operator system and the canonical
quotient map q : A(K) → R is the desired ucp map with the partial order reflection
property (5.3) for all n ∈ N. □

Remark 5.8. If K is a matrix convex set in a finite-dimensional space V, then the operator
system R in part (b) of Proposition 5.7 is finite-dimensional and the ucp map Φ is in fact
a matrix state on A(K). So in this case part (b) gives a proper converse to part (a).
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Example 5.9. Let K1 ⊆ R2 be the triangle with a vertex X in Figure 2 and let K be the
matrix convex hull of K1. It is routine to check that ker ΦX is spanned by its positive
elements, hence by Example 5.3, (ker ΦX)

⊥ is a matrix convex multiface containing X.
Further, ΦX is partially order reflecting as we now explain. Let n ∈ N and θ ∈

Mn(A(K)) be such that
(ΦX)n(θ) = θ(X) ⪰ 0.

Without loss of generality assume θ(X) is diagonal with diagonal entries λ1, . . . , λn ≥ 0.
For each i choose an affine function fi, which is positive on K1, such that fi(X) = λi and
define

ψ = f1 ⊕ · · · ⊕ fn.

Note that for any matrix affine map φ = (φn)n ∈ A(K) and unit vector ξ ∈ Cn, the
property

ξ∗φn(A)ξ = φ1(ξ
∗Aξ)

implies φ1 ≥ 0 onK1 if and only if φ ∈ A(K)+. It is now easy to see that ψ ∈Mn(A(K))+

and ψ(X) = θ(X). This shows that ΦX is indeed partially order reflecting.
After a rotation, the above reasoning applies to any of the three vertices of K1, so each

of them defines a partially order reflecting evaluation map. Moreover, a similar argument
shows the same for each of the vertices of a simplex S in an Euclidean space Rn. So each
of them lies in a matrix convex multiface of mconv(S) satisfying both of the (equivalent)
conditions of Proposition 5.6. ♢

x1

x2

X

0

Figure 2. The level-one point X determines a matrix exposed multiface
of the matrix convex hull of the above triangle.

With similar reasoning as in Proposition 4.4 we can prove the following generalization
of the extreme point preservation property of classical faces.

Proposition 5.10. Let K be a matrix convex set and F ⊆ K a matrix (convex ) multiface.
Every matrix extreme point of F is a matrix extreme point of K.

Example 5.11. Note that a matrix multiface F of either type must contain all the matrix
extreme points, whose proper matrix convex combinations describe the elements of F . In
particular, the matrix interval [aI, bI] := ([aIn, bIn])n∈N has very few matrix convex multi-
faces, i.e., ∅, mconv({a}), mconv({b}) and [aI, bI], and accordingly, its matrix multifaces

that are not matrix convex are of the form F̂ in the notation from part (b) of Remark 5.2,
where F is a matrix face. More generally, if K is a matrix convex set and x ∈ K1 is an
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extreme point, then mconv {x} is a matrix convex multiface of K (see [KKM+, Example
9.9]). ♢

5.2. Matrix exposed multifaces. This section introduces the exposed counterparts of the
multilevel matrix faces and investigates their basic properties.

Definition 5.12. Let K = (Kr)r∈N be a matrix convex set in a dual vector space V and
F a levelwise convex subset of K.

(a) Then F is a matrix exposed multiface if there exists a positive integer r, a contin-
uous linear map Φ : V → Mr and a self-adjoint matrix α ∈ Mr satisfying the following
conditions:

(i) for every positive integer n and B ∈ Kn we have Φn(B) ⪯ α⊗ In;
(ii) for each n ∈ N we have {B ∈ Kn | α⊗ In − Φn(B) ⪰ 0 is singular} = Fn.

(b) If F is a matrix convex matrix exposed multiface, then it is amatrix convex exposed
multiface.

We call a pair (Φ, α) in the notation above an exposing pair (of size r) for the matrix
exposed face F . An exposing pair is minimal if there is no s < r together with a linear
map Ψ : V → Ms and a self-adjoint matrix β ∈ Ms satisfying

(i) Ψm(B) ⪯ β ⊗ Im for all B ∈ Km and positive integers m,
(ii) {B ∈ Kn | α⊗ In − Φn(B) ⪰ 0 is singular} = Fn for every n ∈ N.

Remark 5.13. (a) Assume the notation from part (b) of Remark 5.2. Then for every

matrix exposed face F ⊆ Kn, the corresponding multilevel set F̂ is a matrix exposed
multiface. Moreover, the matrix exposed multifaces F = (Fr)r∈N with Fr = ∅ for r > 1
coincide with subsets of K, whose first components are ordinary exposed faces. Also,
as in part (b) of Remark 4.6, a matrix exposed multiface is closed under conjugation by
unitaries.

(b) As in part (c) of Definition 4.5 one might consider weak matrix exposed multifaces
to obtain that for any weak matrix exposed multiface F , where Fn = {A} for some n ∈ N
and Fm = ∅ whenever m ̸= n, the point A is matrix exposed.

(c) We can show as in part (e) of Remark 4.6 that for a matrix exposed multiface F of
any type the intersection

Nn =
⋂

A∈Fn

ker(α⊗ In − Φn(A))

is nontrivial for any positive integer n.
(d) Note that the zero map and the zero matrix define an exposing pair for K.
(e) Suppose L andM are two linear pencils such that DM ⊆ DL and DM(n)∩∂DL(n) ̸=

∅ for some n ∈ N. If F = DM ∩ ∂DL = (DM(m) ∩ ∂DL(m))m is levelwise convex, then it
is a matrix exposed multiface in DM (cf. Example 4.9).

Proposition 5.14. Let F ⊆ K be a matrix (convex ) exposed multiface and Φ : V → Mr

together with α ∈ Mr a minimal exposing pair. Then for every n ∈ N and nonzero
x =

∑n
i=1 xi⊗ei ∈ Cr⊗Cn in Nn, the span of its components x1, . . . , xn is m-dimensional,

where m = min(r, n).

Proof. Suppose r ≤ n (the other case is treated similarly). If the span M of x1, . . . , xn
is of dimension m < r, then the projection P onto M gives rise to an exposing pair
(P ΦP ∗, PαP ∗) of size m < r. But this contradicts the minimality of (Φ, α). □
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Proposition 5.15. Let K = (Kn)n∈N be a matrix convex set and F ⊆ K a matrix (convex )
exposed multiface. Then each Fn is an ordinary exposed face of Kn.

Proof. Let F ⊆ K be a matrix exposed multiface and Φ : V → Mr together with α ∈ Mr

a minimal exposing pair. For fixed n ∈ N, choose a nonzero xn in Nn as in Proposition
5.14 and define the functional φ :Mn(V ) → C by

φn(B) = x∗nΦn(B)xn,

and the real number an = x∗n(α⊗ In)xn. Now conclude as in the proof of Proposition 4.8
that the pair (φn, an) exposes Fn in Kn. □

5.2.1. Interplay between matrix multifaces and matrix exposed multifaces. As an extension
of Subsection 4.3, here we give a few remarks on the connection between matrix multifaces
and matrix exposed multifaces.

Proposition 5.16. Let K be a matrix convex set and F ⊊ K a matrix exposed multiface

with minimal exposing pair of size r. Denote by F̃ the graded set with F̃k = Fk for k ≤ r

and F̃k = ∅ for k > r. Then F̃ is a matrix multiface.

Proof. The proof is essentially same as that of Proposition 4.11, where the counterparts of
the two key observations needed, namely part (b) of Remark 4.10 and Proposition 4.7, are
covered by the definition of a matrix multiface and by Proposition 5.14, respectively. □

Remark 5.17. Note that if F is a matrix convex multiface and for some n ∈ N, Fn is
a C∗-exposed face, then Fn = Kn. Indeed, if Fn is a C∗-exposed face, which is a proper
subset of Kn, then it must not contain any reducible elements by part (b) of Remark 4.2.
But since F is matrix convex, ⊕nF1 ⊆ Fn for all n ∈ N. So Fn can only be exposed by a
map that is constant on the whole Kn, whence Fn = Kn.

Proposition 5.18. Let K be a compact matrix convex set. Suppose F ⊆ K is a closed
matrix convex multiface such that for each n ∈ N and θ ∈ Mn(A(K)) with θ|F ⪰ 0 there
is a positive element ψ ∈Mn(A(K))+ with

ψ ⪰ θ and ψ|F = θ|F .
Then for each n ∈ N, Fn is an exposed face of Kn.

Proof. Fix n ∈ N and without loss of generality suppose Fn ⊊ Kn. We first show that for
every X ∈ Kn\Fn there is a continuous affine function φX :Mn(V ) → C such that

φX |Fn = 0 and φX(X) > 0.

Indeed, since F is closed, by the matricial Hahn-Banach separation theorem [EW97],
there is a matrix affine map θ ∈ A(K) with θ1 : V → C that satisfies

θ|F ⪰ 0 and θ(X) ⪰̸ 0.

Hence there is a y ∈ Cn such that y∗θ(X)y < 0. By assumption, there is a ψ ∈ A(K)+

with ψ−θ ∈ A(K)+ and ψ|F = θ|F . But the latter means we can take φX to be y∗(ψ−θ)y.
Since Kn is compact, there exist finitely many X1, . . . , Xk ∈ Kn\Fn such that for each

X ∈ Kn\Fn there is an 1 ≤ i ≤ k such that

φXi
|Fn = 0 and φXi

(X) > 0.

It is then straightforward that φ = 1
k
(φX1 + · · ·+ φXk

) exposes Fn in Kn. □
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[Arv69] W. B. Arveson, Subalgebras of C∗-algebras, I, Acta Math. 123 (1969) 141–224.
[Bar02] A. Barvinok, A course in convexity, 2nd edition, Grad. Stud. Math. 54, American Mathematical

Society, New York, 2002.
[BCR98] J. Bochnak, M. Coste, M. -F. Roy, Real algebraic geometry, 3rd edition, Ergeb. Math. Gren-

zgeb. 36, Springer, 1998.
[DDOSS17] K. R. Davidson, A. Dor-On, O. M. Shalit, B. Solel, Dilations, inclusions of matrix convex

sets, and completely positive maps, Int. Math. Res. Not. IMRN (2017) 4069–4130.
[DK+] K. R. Davidson, M. Kennedy: Noncommutative Choquet theory, preprint arXiv:1905.08436.
[Dou66] R. Douglas, On majorization, factorization and range inclusion of operators on Hilbert space,

Proc. Amer. Math. Soc. 17 (1966) 413–415.
[EW97] E. G. Effros, S. Winkler, Matrix convexity: Operator analogues of the bipolar and Hahn- Banach

theorems, J. Funct. Anal. 144 (1997) 117–152.
[EH19] E. Evert, J. W. Helton, Arveson extreme points span free spectrahedra, Math. Ann. 375 (2019)

629–653.
[EHKM18] E. Evert, J. W. Helton, I. Klep and S. McCullough, Extreme points of matrix convex sets,

free spectrahedra and dilation theory, J. Geom. Anal. 28 (2018) 1373–1408.
[Far04] D. Farenick, Pure matrix states on operator systems, Linear Algebra Appl. 393 (2004) 149–173.
[FHL18] A. H. Fuller, M. Hartz, M. Lupini, Boundary representations of operator spaces, and compact

rectangular matrix convex sets, J. Operator Theory 79 (2018), 139–172.
[FM97] D. Farenick, P. Morenz, C∗-extreme points in the generalised state spaces of a C∗-algebra,

Trans. Amer. Math. Soc. 349 (1997) 1725–1748.
[FNT17] T. Fritz, T. Netzer, A. Thom, Spectrahedral containment and operator systems with finite-

dimensional realization, SIAM J. Appl. Algebra Geometry 1 (2017) 556–574.
[HKM12] J.W. Helton, I. Klep, S. McCullough, The convex Positivstellensatz in a free algebra, Adv.

Math. 231 (2012) 516–534.
[HKM13] J.W. Helton, I. Klep, S. McCullough, The matricial relaxation of a linear matrix inequality,

Math. Program. 138 (2013) 401–445.
[HKM16] J.W. Helton, I. Klep, S. McCullough, Matrix Convex Hulls of Free Semialgebraic Sets, Trans.

Amer. Math. Soc. 368 (2016) 3105–3139
[HL21] M. Hartz, M. Lupini, Dilation theory in finite dimensions and matrix convexity, Isr. J. Math. 245

(2021) 39–73.
[HM12] J.W. Helton, S. McCullough, Every convex free basic semi-algebraic set has an LMI representa-

tion, Ann. of Math. (2) 176 (2012) 979–1013.
[HV07] J.W. Helton, V. Vinnikov, Linear matrix inequality representation of sets, Commun. Pure Appl.

Math. 60 (2007) 654–674.
[Hod93] W. Hodges, Model theory, Encyclopedia of Mathematics and its Applications 42, Cambridge

University Press, Cambridge, 1993.
[KKM+] M. Kennedy, S. -J. Kim, N. Manor, Nonunital operator systems and noncommutative convexity,

preprint arXiv:2101.02622.
[Kle58] V. L. Klee, Extremal structure of convex sets II, Math. Z. 69 (1958) 90–104.
[Kri19] T. L. Kriel, An introduction to matrix convex sets and free spectrahedra, Complex Anal. Oper.

Theory 13 (2019), 3251–3335.
[Mag16] B. Magajna, C*-convex sets and completely positive maps, Integral Equ. Oper. Theory 85 (2016)

37–62.
[NT13] T. Netzer, A. Thom, Real closed separation theorems and applications to group algebras,

Pac. J. Math. 263 (2013) 435–452.
[NPS10] T. Netzer, D. Plaumann, M. Schweighofer, Exposed faces of semidefinitely representable sets,

SIAM J. Optim. 20(4) (2010), 1944–1955.
[PSS18] B. Passer, O. M. Shalit, B. Solel, Minimal and maximal matrix convex sets, J. Funct. Anal. 274

(2018) 3197–3253.



FACIAL STRUCTURE OF MATRIX CONVEX SETS 43

[Pau02] V. I. Paulsen, Completely bounded maps and operator algebras, Cambridge Stud. Adv. Math. 78,
Cambridge University Press, Cambridge, 2002.

[RG95] M. Ramana, A.–J. Goldman, Some geometric results in semidefinite programming, J. Glob. Op-
tim. 7 (1995) 33–50.

[Rob91] R. O. Robson, Separating points from closed convex sets over ordered fields and a metric for R̃n,
Trans. Amer. Math. Soc. 326 (1991) 89–99.

[SMR10] G. Stengle, J. McEnerney, R. O. Robson, Convex polarities over ordered fields, J. Pure Appl. Al-
gebra 214 (2010) 370–379.

[WW99] C. Webster, S. Winkler, The Krein-Milman theorem in operator convexity, Trans. Amer.
Math. Soc. 351 (1999) 307–322.

[Wit84] G. Wittstock, On matrix order and convexity, Functional Analysis: Surveys and Recent Results
III, North-Holland Mathematics Studies, North-Holland 90 (1984) 175–188.

Igor Klep: Faculty of Mathematics and Physics, Department of Mathematics, Univer-
sity of Ljubljana, Slovenia

Email address: igor.klep@fmf.uni-lj.si
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