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Abstract. In this paper we study constrained eigenvalue optimization of noncommutative

(nc) polynomials, focusing on the polydisc and the ball. Our three main results are as follows:

(1) an nc polynomial is nonnegative if and only if it admits a weighted sum of hermitian

squares decomposition; (2) (eigenvalue) optima for nc polynomials can be computed using

a single semidefinite program (SDP) – this sharply contrasts the commutative case where

sequences of SDPs are needed; (3) the dual solution to this “single” SDP can be exploited to

extract eigenvalue optimizers with an algorithm based on two ingredients:
• solution to a truncated nc moment problem via flat extensions;
• Gelfand-Naimark-Segal (GNS ) construction.

The implementation of these procedures in our computer algebra system NCSOStools is pre-

sented and several examples pertaining to matrix inequalities are given to illustrate our results.

1. Introduction

Starting with Helton’s seminal paper [Hel02], free real algebraic geometry is being es-
tablished. Unlike classical real algebraic geometry where real polynomial rings in commuting
variables are the objects of study, free real algebraic geometry deals with real polynomials in
noncommuting (nc) variables and their finite-dimensional representations. Of interest are no-
tions of positivity induced by these. For instance, positivity via positive semidefiniteness, which
can be reformulated and studied using sums of hermitian squares and semidefinite program-
ming. In the sequel we will use SDP to abbreviate semidefinite programming as the subarea of
nonlinear optimization as well as to refer to an instance of semidefinite programming problems.

1.1. Motivation. Among the things that make this area exciting are its many facets of ap-
plications. Let us mention just a few. A nice survey on applications to control theory, systems
engineering and optimization is given by Helton, McCullough, Oliveira, Putinar [HMdOP08],
applications to quantum physics are explained by Pironio, Navascués, Aćın [PNA10] who also
consider computational aspects related so noncommutative sum of squares. For instance, opti-
mization of nc polynomials has direct applications in quantum information science (to compute
upper bounds on the maximal violation of a generic Bell inequality [PV09]), and also in quan-
tum chemistry (e.g. to compute the ground-state electronic energy of atoms or molecules,
cf. [Maz04]). Certificates of positivity via sums of squares are often used in the theoretical
physics literature to place very general bounds on quantum correlations (cf. [Gla63]). Fur-
thermore, the important Bessis-Moussa-Villani conjecture (BMV) from quantum statistical
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mechanics is tackled in [KS08b] and by the authors in [CKP10]. How this pertains to opera-
tor algebras is discussed by Schweighofer and the second author in [KS08a], Doherty, Liang,
Toner, Wehner [DLTW08] employ free real algebraic geometry (or free positivity) to consider
the quantum moment problem and multi-prover games.

We developed NCSOStools [CKP11] as a consequence of this recent interest in free posi-
tivity and sums of (hermitian) squares (sohs). NCSOStools is an open source Matlab toolbox
for solving sohs problems using semidefinite programming (SDP). As a side product our tool-
box implements symbolic computation with noncommuting variables in Matlab. Hence there
is a small overlap in features with Helton’s NCAlgebra package for Mathematica [HMdOS].
However, NCSOStools performs only basic manipulations with noncommuting variables, while
NCAlgebra is a fully-fledged add-on for symbolic computation with polynomials, matrices and
rational functions in noncommuting variables.

Readers interested in solving sums of squares problems for commuting polynomials are
referred to one of the many great existing packages, such as GloptiPoly [HLL09], SOSTOOLS
[PPSP05], SparsePOP [WKK+09], or YALMIP [Löf04].

1.2. Contribution. This article adds on to the list of properties that are much cleaner in
the noncommutative setting than their commutative counterparts. For example: a positive
semidefinite nc polynomial is a sum of squares [Hel02], a convex nc semialgebraic set has an
LMI representation [HM], proper nc maps are one-to-one [HKM11], etc. More precisely, the
purpose of this article is threefold.

First, we shall show that every noncommutative (nc) polynomial that is merely positive
semidefinite on a ball or a polydisc admits a sum of hermitian squares representation with
weights and tight degree bounds (Nichtnegativstellensatz 3.4). Note that this contrasts sharply
with the commutative case, where strict positivity is needed and nevertheless there do not
exist degree bounds, cf. [Sch09].

Second, we show how the existence of sharp degree bounds can be used to compute (eigen-
value) optima for nc polynomials on a ball or a polydisc by solving a single semidefinite
programming problem (SDP). Again, this is much cleaner than the corresponding situation
in the commutative setting, where sequences of SDPs are needed, cf. Lasserre’s relaxations
[Las01, Las09].

Third, the dual solution of the SDP constructed above, can be exploited to extract eigen-
value optimizers. The algorithm is based on 1-step flat extensions of noncommutative Hankel
matrices and the Gelfand-Naimark-Segal (GNS) construction, and always works – again con-
trasting the classical commutative case.

1.3. Reader’s guide. The paper starts with a preliminary section fixing notation, introduc-
ing terminology and stating some well-known classical results on positive nc polynomials (§2).
We then proceed in §3 to establish our Nichtnegativstellensatz. The last two sections present
computational aspects, including the construction and properties of the SDP computing the
minimum of an nc polynomial in §4, and the extraction of optimizers in §5. We have im-
plemented our algorithms in our open source Matlab toolbox NCSOStools freely available at
http://ncsostools.fis.unm.si/. Throughout the paper examples are given to illustrate our
results and the use of our computer algebra package.

http://ncsostools.fis.unm.si/
http://ncsostools.fis.unm.si/
http://ncsostools.fis.unm.si/
http://ncsostools.fis.unm.si/
http://ncsostools.fis.unm.si/
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2. Notation and Preliminaries

2.1. Words, free algebras and nc polynomials. Fix n ∈ N and let 〈X〉 be the monoid
freely generated by X := (X1, . . . , Xn), i.e., 〈X〉 consists of words in the n noncommuting
letters X1, . . . , Xn (including the empty word denoted by 1). We consider the free algebra
R〈X〉. The elements of R〈X〉 are linear combinations of words in the n letters X and are
called noncommutative (nc) polynomials. An element of the form aw where a ∈ R \ {0} and
w ∈ 〈X〉 is called a monomial and a its coefficient. Words are monomials with coefficient 1.
The length of the longest word in an nc polynomial f ∈ R〈X〉 is the degree of f and is denoted
by deg f . The set of all words and nc polynomials with degree ≤ d will be denoted by 〈X〉d
and R〈X〉d, respectively. If we are dealing with only two variables, we shall use X,Y instead
of X1, X2.

By Sk we denote the set of all symmetric k×k real matrices and by S+
k we denote the set of

all real positive semidefinite k × k real matrices. Moreover, S :=
⋃
k∈N Sk and S+ :=

⋃
k∈N S+

k .
If A is positive semidefinite we denote this by A � 0.

2.1.1. Sums of hermitian squares. We equip R〈X〉 with the involution ∗ that fixes R ∪ {X}
pointwise and thus reverses words, e.g. (X1X

2
2X3 − 2X3

3 )∗ = X3X
2
2X1 − 2X3

3 . Hence R〈X〉
is the ∗-algebra freely generated by n symmetric letters. Let SymR〈X〉 denote the set of all
symmetric polynomials,

SymR〈X〉 := {f ∈ R〈X〉 | f = f∗}.
An nc polynomial of the form g∗g is called a hermitian square and the set of all sums of
hermitian squares will be denoted by Σ2. Clearly, Σ2 ( SymR〈X〉. The involution ∗ extends
naturally to matrices (in particular, to vectors) over R〈X〉. For instance, if V = (vi) is a
(column) vector of nc polynomials vi ∈ R〈X〉, then V ∗ is the row vector with components v∗i .
We use V t to denote the row vector with components vi.

We can stack all words from 〈X〉d using the graded lexicographic order into a column
vector Wd. The size of this vector will be denoted by σ(d), hence

σ(d) := |Wd| =
d∑

k=0

nk =
nd+1 − 1

n− 1
. (1)

Every f ∈ R〈X〉2d can be written (possible nonuniquely) as f = W ∗dGfWd, where Gf = G∗f is
called a Gram matrix for f .

Example 2.1. Consider f = 2 +XYXY + Y XY X ∈ SymR〈X〉. Let

W2 =
[
1 X Y X2 XY Y X Y 2

]t
.

Then there are many Gf ∈ S7 satisfying f = W ∗2GfW2; for instance

Gf (u, v) =

{
1 if u∗v = XYXY ∨ u∗v = Y XY X ∨ u∗v = 1,
0 otherwise.

Obviously f 6∈ Σ2 but we have

f = g∗1g1 + g∗2g2 + g∗3g3 + g∗4g4 +X(1−X2 − Y 2)X + Y (1−X2 − Y 2)Y, (2)

where

g1 =

√
3

2
, g2 =

√
2

2
(X2 − Y 2), g3 =

√
2

2
(1−X2 − Y 2), g4 = (XY + Y X).
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Alternately,

f = (XY + Y X)∗(XY + Y X) + (1−X2) + Y (1−X2)Y + (1− Y 2) +X(1− Y 2)X. (3)

2.2. Nc semialgebraic sets and quadratic modules.

2.2.1. Nc semialgebraic sets.

Definition 2.2. Fix a subset S ⊆ SymR〈X〉. The (operator) semialgebraic set D∞S associated
to S is the class of tuples A = (A1, . . . , An) of bounded self-adjoint operators on a Hilbert
space making s(A) a positive semidefinite operator for every s ∈ S. In case we are considering
only tuples of symmetric matrices A ∈ Sn satisfying s(A) � 0, we write DS . When considering
symmetric matrices of a fixed size k ∈ N, we shall use DS(k) := DS ∩ Snk .

We will focus on the two most important examples of nc semialgebraic sets:

Example 2.3.

(a) Let S = {1−
∑n

i=1X
2
i }. Then

B :=
⋃
k∈N

{
A = (A1, . . . , An) ∈ Snk | 1−

n∑
i=1

A2
i � 0

}
= DS (4)

is the nc ball. Note B is the set of all row contractions of self-adjoint operators on finite-
dimensional Hilbert spaces.

(b) Let S = {1−X2
1 , . . . , 1−X2

n}. Then

D :=
⋃
k∈N

{
A = (A1, . . . , An) ∈ Snk | 1−A2

1 � 0, . . . , 1−A2
n � 0

}
= DS (5)

is the nc polydisc. It consists of all n-tuples of self-adjoint contractions on finite-dimensional
Hilbert spaces.

In the rest of the paper we will

(§3) establish which nc polynomials f are positive semidefinite on B and D;
(§4) construct a single SDP which yields the smallest eigenvalue f attains on B and D;
(§5) use the solution of the dual SDP to compute an eigenvalue minimizer for f on B and D.

2.2.2. Archimedean quadratic modules. The main existing result in the literature concerning
nc polynomials (strictly) positive on B and D is due to Helton and McCullough [HM04]. For
a precise statement we recall (archimedean) quadratic modules.

Definition 2.4. A subset M ⊆ SymR〈X〉 is called a quadratic module if

1 ∈M, M +M ⊆M and a∗Ma ⊆M for all a ∈ R〈X〉.

Given a subset S ⊆ SymR〈X〉, the quadratic module MS generated by S is the smallest subset
of SymR〈X〉 containing all a∗sa for s ∈ S ∪ {1}, a ∈ R〈X〉, and closed under addition:

MS =
{ N∑
i=1

a∗i siai | N ∈ N, si ∈ S ∪ {1}, ai ∈ R〈X〉
}
.

The following is an obvious but important observation:

Proposition 2.5. Let S ⊆ SymR〈X〉. If f ∈MS, then f |D∞S � 0.
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The converse of Proposition 2.5 is false in general, i.e., nonnegativity on an nc semial-
gebraic set does not imply the existence of a weighted sum of squares certificate, cf. [KS07,
Example 3.1]. A weak converse holds for positive nc polynomials under a strong boundedness
assumption, see Theorem 2.7 below.

Definition 2.6. A quadratic module M is archimedean if

∀a ∈ R〈X〉 ∃N ∈ N : N − a∗a ∈M. (6)

Note if a quadratic module MS is archimedean, then D∞S is bounded, i.e., there is an
N ∈ N such that for every A ∈ D∞S we have ‖A‖ ≤ N . Examples of archimedean quadratic
modules are obtained by generating them from defining sets for the nc ball and the nc polydisc.

2.2.3. A Positivstellensatz. The main result in the literature concerning archimedean quadratic
modules is a theorem of Helton and McCullough. It is a perfect generalization of Putinar’s
Positivstellensatz [Put93] for commutative polynomials.

Theorem 2.7 (Helton & McCullough [HM04, Theorem 1.2]). Let S ∪ {f} ⊆ SymR〈X〉 and
suppose that MS is archimedean. If f(A) � 0 for all A ∈ D∞S , then f ∈MS.

We remark that if DS is nc convex [HM04, §2], then it suffices to check the positivity of
f in Theorem 2.7 on DS , see [HM04, Proposition 2.3]. Our Nichtnegativstellensatz 3.4 will
show that for B and D positive semidefiniteness of f is enough to establish the conclusion of
Theorem 2.7. Under the absence of archimedeanity the conclusions of Theorem 2.7 may fail,
cf. [KS07].

3. A Nichtnegativstellensatz

The main result in this section is the Nichtnegativstellensatz 3.4. For a precise formulation
we introduce truncated quadratic modules.

3.1. Truncated quadratic modules. Given a subset S ⊆ SymR〈X〉, we introduce

Σ2
S :=

{∑
i

h∗i sihi | hi ∈ R〈X〉, si ∈ S
}
,

Σ2
S,d :=

{∑
i

h∗i sihi | hi ∈ R〈X〉, si ∈ S, deg(h∗i shi) ≤ 2d
}
,

MS,d :=
{∑

i

h∗i sihi | hi ∈ R〈X〉, si ∈ S ∪ {1}, deg(h∗i shi) ≤ 2d
}
,

(7)

and callMS,d the truncated quadratic module generated by S. NoteMS,d = Σ2
d+Σ2

S,d ⊆ R〈X〉2d,
where Σ2

d := M∅,d denotes the set of all sums of hermitian squares of polynomials of degree at
most d. Furthermore, MS,d is a convex cone in the R-vector space SymR〈X〉2d. For example, if
S = {1−

∑
j X

2
j } then MS,d contains exactly the polynomials f which have a sum of hermitian

squares (sohs) decomposition over the ball, i.e., can be written as

f =
∑
i

g∗i gi +
∑
i

h∗i
(
1−

n∑
j=1

X2
j

)
hi, where (8)

deg(gi) ≤ d, deg(hi) ≤ d− 1 for all i.
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Similarly, for S = {1−X2
1 , 1−X2

2 , . . . , 1−X2
n}, MS,d contains exactly the polynomials f which

have a sohs decomposition over the polydisc, i.e., can be written as

f =
∑
i

g∗i gi +
n∑
j=1

∑
i

h∗i,j
(
1−X2

j

)
hi,j , where (9)

deg(gi) ≤ d, deg(hi,j) ≤ d− 1 for all i, j.

We also call a decomposition of the form (8) or (9) a sohs decomposition with weights.

Example 3.1. Note the the polynomial f from Example 2.1 has a sohs decomposition over
the ball, as follows from (2). Moreover, (3) implies that f also has a sohs decomposition over
the polydisc.

Let us consider another example.

Example 3.2. Let f = 2−X2 +XY 2X − Y 2 ∈ SymR〈X〉. Obviously f 6∈ Σ2 but

f = (Y X)∗Y X + (1−X2) + (1− Y 2), (10)

i.e., f has a sohs decomposition over the polydisc, as well over the ball, since

f = 1 + (Y X)∗Y X + (1−X2 − Y 2). (11)

Notation 3.3. For notational convenience, the truncated quadratic modules generated by the
generator for the nc ball B will be denoted by MB,d, i.e.,

MB,d :=
{∑

i

h∗i sihi | hi ∈ R〈X〉, si ∈ {1−
∑
j

X2
j , 1}, deg(h∗i sihi) ≤ 2d

}
⊆ SymR〈X〉2d,

(12)
Likewise, with s0 := 1 and si := 1−X2

i ,

MD,d :=
{∑

j

n∑
i=0

h∗i,jsihi,j | hi ∈ R〈X〉, deg(h∗i sihi) ≤ 2d
}
⊆ SymR〈X〉2d. (13)

3.2. Main result. Here is our main result. The rest of the section is devoted to its proof.

Theorem 3.4 (Nichtnegativstellensatz). Let f ∈ R〈X〉2d.

(1) f |B � 0 if and only if f ∈MB,d+1.
(2) f |D � 0 if and only if f ∈MD,d+1.

By [HM04, §2], f |B � 0 if and only if f |B(σ(d)) � 0. A similar statement holds for positive
semidefiniteness on D. These results will be reproved in the course of proving Theorem 3.4.

3.3. Proof of Theorem 3.4. To facilitate considering the two cases (the ball B and the
polydisc D) simultaneously, we note they both contain an ε-neighborhood Nε of 0 for a small
ε > 0. Here

Nε :=
⋃
k∈N

{
A = (A1, . . . , An) ∈ Snk | ε2 −

n∑
i=1

A2
i � 0

}
. (14)
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3.3.1. A glance at polynomial identities. The following lemma is a standard result in polyno-
mial identities, cf. [Row80]. It is well known that there are no nonzero polynomial identities
that hold for all sizes of (symmetric) matrices. In fact, it is enough to test on an ε-neighborhood
of 0. An nc polynomial of degree < 2d that vanishes on all n-tuples of symmetric matrices
A ∈ Nε(N)n, for some N ≥ d, is zero (this uses the standard multilinearization trick together
with e.g. [Row80, §2.5, §1.4]).

Lemma 3.5. If f ∈ R〈X〉 is zero on Nε for some ε > 0, then f = 0.

A variant of this lemma which we shall employ is as follows:

Proposition 3.6.

(1) Suppose f =
∑

i g
∗
i gi +

∑
i h
∗
i (1−

∑
j X

2
j )hi ∈MB,d. Then

f |B = 0 ⇔ gi = hi = 0 for all i.

(2) Suppose f =
∑

i g
∗
i gi +

∑
i,j h

∗
i,j(1−X2

j )hi,j ∈MD,d. Then

f |D = 0 ⇔ gi = hi,j = 0 for all i, j.

Proof. We only need to prove the (⇒) implication, since (⇐) is obvious. We give the proof of
(1); the proof of (2) is a verbatim copy.

Consider f =
∑

i g
∗
i gi +

∑
i h
∗
i (1 −

∑
j X

2
j )hi ∈ MB,d satisfying f(A) = 0 for all A ∈ B.

Let us choose N > d and A ∈ B(N). Obviously we have

gi(A)tgi(A) � 0 and hi(A)t(1−
∑
j

A2
j )hi(A) � 0.

Since f(A) = 0 this yields

gi(A) = 0 and hi(A)t(1−
∑
j

A2
j )hi(A) = 0 for all i.

By Lemma 3.5, gi = 0 for all i. Likewise, h∗i (1−
∑

j X
2
j )hi = 0 for all i. As there are no zero

divisors in the free algebra R〈X〉, the latter implies hi = 0.

3.3.2. Hankel matrices.

Definition 3.7. To each linear functional L : R〈X〉2d → R we associate a matrix HL (called
an nc Hankel matrix ) indexed by words u, v ∈ 〈X〉d, with

(HL)u,v = L(u∗v). (15)

If L is positive, i.e., L(p∗p) ≥ 0 for all p ∈ R〈X〉d, then HL � 0.

Given g ∈ SymR〈X〉, we associate to L the localizing matrix Hshift
L,g indexed by words

u, v ∈ 〈X〉d−deg(g)/2 with

(Hshift
L,g )u,v = L(u∗gv). (16)

If L(h∗gh) ≥ 0 for all h with h∗gh ∈ R〈X〉2d then Hshift
L,g � 0.

We say that L is unital if L(1) = 1.

Remark 3.8. Note that a matrix H indexed by words of length ≤ d satisfying the nc Hankel
condition Hu1,v1 = Hu2,v2 whenever u∗1v1 = u∗2v2, gives rise to a linear functional L on R〈X〉2d
as in (15). If H � 0, then L is positive.
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Definition 3.9. Let A ∈ Rs×s be a symmetric matrix. A (symmetric) extension of A is a

symmetric matrix Ã ∈ R(s+`)×(s+`) of the form

Ã =

[
A B
Bt C

]
for some B ∈ Rs×` and C ∈ R`×`. Such an extension is flat if rankA = rank Ã, or, equivalently,
if B = AZ and C = ZtAZ for some matrix Z.

For later reference we record the following easy linear algebra fact.

Lemma 3.10.

[
A B
Bt C

]
� 0 if and only if A � 0, and there is some Z with B = AZ and

C � ZtAZ.

3.3.3. GNS construction. Suppose L : R〈X〉2d+2 → R is a linear functional and let Ľ :
R〈X〉2d → R denote its restriction. As in Definition 3.7 we associate to L and Ľ the Hankel
matrices HL and HĽ, respectively. In block form,

HL =

[
HĽ B
Bt C

]
. (17)

If HL is flat over HĽ, we call L (1-step) flat.

Proposition 3.11. Suppose L : R〈X〉2d+2 → R is positive and flat. Then there is an n-tuple
A of symmetric matrices of size s ≤ σ(d) = dimR〈X〉d and a vector ξ ∈ Rs such that

L(p∗q) = 〈p(A)ξ, q(A)ξ〉 (18)

for all p, q ∈ R〈X〉 with deg p+ deg q ≤ 2d.

Proof. For this we use the Gelfand-Naimark-Segal (GNS) construction. Let HL, Ľ,HĽ be as
above. Note HL (and hence HĽ) is positive semidefinite. Since HL is flat over HĽ, there exist
s linearly independent columns of HĽ labeled by words w ∈ 〈X〉 with degw ≤ d which form
a basis B of E = RanHL. Now L (or, more precisely, HL) induces a positive definite bilinear
form (i.e., a scalar product) 〈 , 〉E on E.

Let Ai be the left multiplication with Xi on E, i.e., if w denotes the column of HL

labeled by w ∈ 〈X〉d+1, then Ai : u 7→ Xiu for u ∈ 〈X〉d. The operator Ai is well defined and
symmetric:

〈Aip, q〉E = L(p∗Xiq) = 〈p,Aiq〉E .

Let ξ := 1, and A = (A1, . . . , An). Note it suffices to prove (18) for words u,w ∈ 〈X〉 with
deg u+degw ≤ 2d. Since the Ai are symmetric, there is no harm in assuming deg u,degw ≤ d.
Now compute

L(u∗w) = 〈u,w〉E = 〈u(A)1, w(A)1〉E = 〈u(A)ξ, w(A)ξ〉E .

3.3.4. Separation argument. The following technical proposition is a variant of a Powers-
Scheiderer result [PS01, §2].

Proposition 3.12. MB,d and MD,d are closed convex cones in the finite dimensional real vector
space SymR〈X〉2d.
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Proof. We shall consider the case of the nc ball, whence let S = {1 −
∑

iX
2
i }; the proof for

the polydisc is similar. By Carathéodory’s theorem on convex hulls, each element of MS,d can
be written as the sum of at most m := σ(d) + 1 terms of the form g∗g and h∗(1−

∑n
i=1X

2
i )h

where g ∈ R〈X〉d, h ∈ R〈X〉d−1. Hence MS,d is the image of the map

Φ :

{
R〈X〉m+1

d × R〈X〉m+1
d−1 → SymR〈X〉2d

(g1, . . . , gm+1, h1, . . . , hm+1) 7→
∑m+1

j=1 g∗j gj +
∑m+1

j=1 h∗j
(
1−

∑n
i=1X

2
i

)
hj .

We claim that Φ−1(0) = {0}. If f =
∑m+1

j=1 g∗j gj +
∑m+1

j=1 h∗j
(
1 −

∑n
i=1X

2
i

)
hj = 0, then

Proposition 3.6 shows gj = 0 = hj for all j. This proves that Φ−1(0) = {0}. Together with the
fact that Φ is homogeneous [PS01, Lemma 2.7], this implies that Φ is a proper and therefore
a closed map. In particular, its image MS,d is closed in SymR〈X〉2d.

3.3.5. Concluding the proof of Theorem 3.4. We now have all the tools needed to prove the
Nichtnegativstellensatz 3.4. We prove (1) and leave (2) as an exercise for the reader. The
implication (⇐) is trivial (cf. Proposition 2.5), so we only consider the converse.

Assume f 6∈MB,d+1. By the Hahn-Banach separation theorem and Proposition 3.12, there
is a linear functional

L : R〈X〉2d+2 → R (19)

satisfying
L
(
MB,d+1

)
⊆ [0,∞), L(f) < 0. (20)

Let Ľ := L|R〈X〉2d .

Lemma 3.13. There is a positive flat linear functional L̂ : R〈X〉2d+2 → R extending Ľ.

Proof. Consider the Hankel matrix HL presented in block form

HL =

[
HĽ B

Bt C

]
.

The top left block HĽ is indexed by words of degree ≤ d, and the bottom right block C is
indexed by words of degree d+ 1.

We shall modify C to make the new matrix flat over HĽ. By Lemma 3.10, there is some
Z with B = HĽZ and C � ZtHĽZ. Let us form

H =

[
HĽ B

Bt ZtHĽZ

]
.

Then H � 0 and H is flat over HĽ by construction. It also satisfies the Hankel constraints
(cf. Remark 3.8), since there are no constraints in the bottom right block. (Note: this uses the
noncommutativity and the fact that we are considering only extensions of one degree.) Thus

H is a Hankel matrix of a positive linear functional L̂ : R〈X〉2d+2 → R which is flat.

The linear functional L̂ satisfies the assumptions of Proposition 3.11. Hence there is an
n-tuple A of symmetric matrices of size s ≤ σ(d) and a vector ξ ∈ Rs such that

L̂(p∗q) = 〈p(A)ξ, q(A)ξ〉
for all p, q ∈ R〈X〉 with deg p+ deg q ≤ 2d. By linearity,

〈f(A)ξ, ξ〉 = L̂(f) = L(f) < 0. (21)

It remains to be seen that A is a row contraction, i.e., 1 −
∑

j A
2
j � 0. For this we need to

recall the construction of the Aj from the proof of Proposition 3.11.
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Let E = RanHL̂. There exist s linearly independent columns of HĽ labeled by words

w ∈ 〈X〉 with degw ≤ d which form a basis B of E. The scalar product on E is induced by L̂,
and Ai is the left multiplication with Xi on E, i.e., Ai : u 7→ Xiu for u ∈ 〈X〉d.

Let u ∈ E be arbitrary. Then there are αv ∈ R for v ∈ 〈X〉d with

u =
∑

v∈〈X〉d

αvv.

Write u =
∑

v αvv ∈ R〈X〉d. Now compute〈
(1−

∑
j

A2
j )u, u

〉
=

∑
v,v′∈〈X〉d

αvαv′
〈
(1−

∑
j

A2
j )v, v

′
〉

=
∑
v,v′

αvαv′
〈
v, v′

〉
−
∑
v,v′

αvαv′
∑
j

〈
Ajv,Ajv′

〉
=
∑
v,v′

αvαv′L̂(v′∗v)−
∑
v,v′

αvαv′
∑
j

L̂(v′∗X2
j v)

= L̂(u∗u)−
∑
j

L̂(u∗X2
j u) = L(u∗u)−

∑
j

L̂(u∗X2
j u).

(22)

Here, the last equality follows from the fact that L̂|R〈X〉2d = Ľ = L|R〈X〉2d . We now estimate

the summands L̂(u∗X2
j u):

L̂(u∗X2
j u) = HL̂(Xju,Xju) ≤ HL(Xju,Xju) = L(u∗X2

j u). (23)

Using (23) in (22) yields〈
(1−

∑
j

A2
j )u, u

〉
= L(u∗u)−

∑
j

L̂(u∗X2
j u)

≥ L(u∗u)−
∑
j

L(u∗X2
j u) = L

(
u∗(1−

∑
j

X2
j )u
)
≥ 0,

where the last inequality is a consequence of (20).

All this shows that A is a row contraction, that is, A ∈ B. As in (21),

〈f(A)ξ, ξ〉 = L(f) < 0,

contradicting our assumption f |B � 0 and finishing the proof of Theorem 3.4.

We note that a slightly different (and less self-contained) proof of Theorem 3.4 might be
given by combining our Lemma 3.13 with [PNA10, Theorem 2].

4. Optimization of nc polynomials is a single SDP

In this section we thoroughly explain how eigenvalue optimization of an nc polynomial
over the ball or polydisc is a single SDP.

4.1. Semidefinite Programming (SDP). Semidefinite programming (SDP) is a subfield of
convex optimization concerned with the optimization of a linear objective function over the
intersection of the cone of positive semidefinite matrices with an affine space [Nem07, BTN01,
VB96]. The importance of semidefinite programming was spurred by the development of
efficient (e.g. interior point) methods which can find an ε-optimal solution in a polynomial
time in s,m and log ε, where s is the order of the matrix variables m is the number of linear
constraints. There exist several open source packages which find such solutions in practice. If
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the problem is of medium size (i.e., s ≤ 1000 and m ≤ 10.000), these packages are based on
interior point methods (see e.g. [dK02, NT08]), while packages for larger semidefinite programs
use some variant of the first order methods (cf. [MPRW09, WGY10]). For a comprehensive
list of state of the art SDP solvers see [Mit03].

4.1.1. SDP and nc polynomials. Let S ⊆ SymR〈X〉 be finite and let f ∈ SymR〈X〉2d. We are
interested in the smallest eigenvalue f? ∈ R the polynomial f can attain on DS , i.e.,

f? := inf
{
〈f(A)ξ, ξ〉 | A ∈ DS , ξ a unit vector

}
. (24)

Hence f? is the greatest lower bound on the eigenvalues of f(A) for tuples of symmetric
matrices A ∈ DS , i.e., (f − f?)(A) � 0 for all A ∈ DS , and f? is the largest real number with
this property.

From Proposition 2.5 it follows that we can bound f? from below as follows

f? ≥ f
(s)
sohs := sup λ
s. t. f − λ ∈MS,s,

(SPSDPeig−min)

for s ≥ d. For each fixed s this is an SDP and leads to the noncommutative version of the
Lasserre relaxation scheme, cf. [PNA10]. However, as a consequence of the Nichtnegativstel-
lensatz 3.4, if DS is the ball B or the polydisc D then we do not need sequences of SDPs, a
single SDP suffices: the first step in the noncommutative SDP hierarchy is already exact.

4.2. Optimization of nc polynomials over the ball. In this subsection we consider S ={
1−

∑n
i=1X

2
i

}
and the corresponding nc semialgebraic set B = DS , the so-called nc ball.

From Theorem 3.4 it follows that we can rephrase f?, the greatest lower bound on the
eigenvalues of f ∈ R〈X〉2d over the ball B, as follows:

f? = fsohs = sup λ
s. t. f − λ ∈MS,d+1.

(PSDPeig−min)

Remark 4.1. We note that f? > −∞ since positive semidefiniteness of a polynomial f ∈
R〈X〉2d on B only needs to be tested on the compact set B(N) for some N ≥ σ(d).

Verifying whether f ∈MB,d is a semidefinite programming feasibility problem:

Proposition 4.2. Let f =
∑

w∈〈X〉2d fww. Then f ∈ MB,d if and only there exist positive

semidefinite matrices H and G of order σ(d) and σ(d − 1), respectively, such that for all
w ∈ 〈X〉2d,

fw =
∑

u,v∈〈X〉d
u∗v=w

H(u, v) +
∑

u,v∈〈X〉d−1
u∗v=w

G(u, v)−
n∑
j=1

∑
u,v∈〈X〉d−1

u∗X2
j
v=w

G(u, v). (25)

Proof. By definition MS,d contains only nc polynomials of the form∑
i

h∗ihi +
∑
i

g∗i
(
1−

∑
j

X2
j

)
gi, deg hi ≤ d, deg gi ≤ d− 1.

If f ∈ MS,d then we can obtain from hi, gi column vectors Gi and Hi of length σ(d) and
σ(d − 1), respectively, such that hi = Ht

iWd and gi = GtiWd−1. Let us define H :=
∑

iHiH
t
i
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and G :=
∑

iGiG
t
i. It follows that

f =
∑
i

W ∗dHiH
t
iWd +

∑
i

W ∗d−1Gi
(
1−

∑
j

X2
j

)
GtiWd−1

= W ∗d
(∑

i

HiH
t
i

)
Wd +W ∗d−1

(∑
i

GiG
t
i −
∑
j

Xj

(∑
i

GiG
t
i

)
Xj

)
Wd−1

= W ∗dHWd︸ ︷︷ ︸
=:S1

+W ∗d−1GWd−1︸ ︷︷ ︸
=:S2

−W ∗d
∑
i,j

Gji (G
j
i )
tWd︸ ︷︷ ︸

=:S3

,

(26)

where the column vectors Gji are defined by

Gji (u) =

{
Gi(v), if u = Xjv,

0, otherwise.

We have to show that (26) is exactly (25), i.e., G and H are feasible for (25). Let us consider

G̃ :=
∑

i,j G
j
i (G

j
i )
t. Suppose w = u∗v for some u, v ∈ 〈X〉d. Equation (26) implies that

fw is the sum of all coefficients corresponding to w in sums S1, S2 and S3. The coefficient

corresponding to w in S1 is
∑

u,v∈Wd
u∗v=w

H(u, v). If in addition w ∈ 〈X〉2d−2, then w appears also

in the summand S2 with coefficient
∑

u,v∈Wd−1
u∗v=w

G(u, v). In the third summand S3 appear exactly

the words w which can be decomposed as w = u∗v = u∗1X
2
j v1 for some 1 ≤ j ≤ n and some

u1, u2 ∈ 〈X〉d−1. Such w have coefficients

−
n∑
j=1

∑
u1,v1∈〈X〉d−1

u∗1X
2
j
v1=w

G̃(Xju1, Xjv1) = −
n∑
j=1

∑
u1,v1∈〈X〉d−1

u∗1X
2
j
v1=w

∑
i

Gji (Xju1)Gji (Xjv1)

−
n∑
j=1

∑
u1,v1∈〈X〉d−1

u∗1X
2
j
v1=w

∑
i

Gi(u1)Gi(v1) = −
n∑
j=1

∑
u1,v1∈〈X〉d−1

u∗1X
2
j
v1=w

G(u1, v1).

Therefore matrices H and G are feasible for (25).

To prove the converse we start with rank one decompositions: H =
∑

iHiH
t
i and G =∑

iGiG
t
i. If we define hi = Ht

iWd and gi = GtiWd−1 then feasibility of H and G for (25) implies∑
i

h∗ihi +
∑
i

g∗i
(
1−

∑
j

X2
j

)
gi =

∑
i

∑
u,v∈〈X〉d

Hi(u)Hi(v)u∗v +
∑
i

∑
u,v∈〈X〉d−1

(
Gi(u)Gi(v)u∗v −

∑
j

Gi(u)Gi(v)u∗X2
j v
)

=
∑

w∈〈X〉2d

∑
u,v∈〈X〉d
u∗v=w

H(u, v)w +
∑

w∈〈X〉2d−2

∑
u,v∈〈X〉d−1

u∗v=w

G(u, v)w −
∑

w∈〈X〉2d

∑
j

∑
u,v∈〈X〉d−1

u∗X2
j
v=w

G(u, v)w

=
∑

w∈〈X〉2d

fww = f,

concluding the proof.
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Remark 4.3. The last part of the proof of Proposition 4.2 explains how to construct the sohs
decomposition with weights (8) for f ∈MB,d. First we solve semidefinite feasibility problem in

the variables H ∈ S+
σ(d), G ∈ S+

σ(d−1) subject to constraints (25). Then we compute by Cholesky

or eigenvalue decomposition vectors Hi ∈ Rσ(d) and Gi ∈ Rσ(d−1) such that H =
∑

iHiH
t
i and

G =
∑

iGiG
t
i. Polynomials hi and gi from (8) are computed as hi = Ht

iWd and gi = GtiWd−1.

By Proposition 4.2, the problem (PSDPeig−min) is a SDP; it can be reformulated as

fsohs = sup f1 − 〈E1,1, H〉 − 〈E1,1, G〉

s. t. fw =
∑

u,v∈〈X〉d+1
u∗v=w

H(u, v) +
∑

u,v∈〈X〉d
u∗v=w

G(u, v)−
n∑
j=1

∑
u,v∈〈X〉d
u∗X2

j
v=w

G(u, v),

for all 1 6= w ∈ 〈X〉2d+2,

H ∈ S+
σ(d+1), G ∈ S+

σ(d).

(PSDP’eig−min)
The dual semidefinite program to (PSDPeig−min) and (PSDP’eig−min) is:

Lsohs = inf L(f)
s. t. L : SymR〈X〉2d+2 → R is linear

L(1) = 1
L(q∗q) ≥ 0 for all q ∈ R〈X〉d+1

L(h∗(1−
∑

j X
2
j )h) ≥ 0 for all h ∈ R〈X〉d.

(DSDPeig−min)d+1

Proposition 4.4. (DSDPeig−min)d+1 admits Slater points.

Proof. For this it suffices to find a linear map L : SymR〈X〉2d+2 → R satisfying L(p∗p) > 0
for all nonzero p ∈ R〈X〉d+1, and L(h∗(1 −

∑
j X

2
j )h) > 0 for all nonzero h ∈ R〈X〉d. We

again exploit the fact that there are no nonzero polynomial identities that hold for all sizes of
matrices, which was used already in Proposition 3.6.

Let us choose N > d+ 1 and enumerate a dense subset U of N ×N matrices from B (for
instance, take all N ×N matrices from B with entries in Q), that is,

U = {A(k) := (A
(k)
1 , . . . , A(k)

n ) | k ∈ N, A(k)
j ∈ B(N)}.

To each B ∈ U we associate the linear map

LB : SymR〈X〉2d+2 → R, f 7→ tr f(B).

Form

L :=

∞∑
k=1

2−k
LA(k)

‖LA(k)‖
.

We claim that L is the desired linear functional.

Obviously, L(p∗p) ≥ 0 for all p ∈ R〈X〉d+1. Suppose L(p∗p) = 0 for some p ∈ R〈X〉d+1.

Then LA(k)(p∗p) = 0 for all k ∈ N, i.e., for all k we have tr p∗(A(k))p(A(k))) = 0, hence

p∗(A(k)))p(A(k))) = 0. Since U was dense in B(N), by continuity it follows that p∗p vanishes on
all n-tuples from B(N). Proposition 3.6 implies that p = 0. Similarly, L(h∗(1−

∑
j X

2
j )h) = 0

implies h = 0 for all h ∈ R〈X〉d.
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Remark 4.5. Having Slater points for (DSDPeig−min)d+1 is important for the clean duality
theory of SDP to kick in [VB96, dK02]. In particular, there is no duality gap, so Lsohs =
fsohs(= f?). Since also the optimal value fsohs > −∞ (cf. Remark 4.1), fsohs is attained. More
important for us and the extraction of optimizers is the fact that Lsohs is attained, as we shall
explain in §5.

4.3. Optimization of NC polynomials over the polydisc. In this section we consider

S = {1−X2
1 , . . . , 1−X2

n} (27)

and the corresponding nc semialgebraic set

D = DS =
⋃
k∈N

{
A = (A1, . . . , An) ∈ Snk | 1−A2

1 � 0, . . . , 1−A2
n � 0

}
,

the so-called nc polydisc. Many of the considerations here resemble those from the previous
subsection, so we shall be sketchy at times.

The truncated quadratic module tailored for this S is

MD,d =
{∑

i

h∗i sihi | hi ∈ R〈X〉, si ∈ S ∪ {1}, deg(h∗i sihi) ≤ 2d
}
.

Theorem 3.4 implies that the problem (PSDPeig−min), where S is from (27), yields also
the greatest lower bound on the eigenvalues of an nc polynomial f over the polydisc.

Similarly to Proposition 4.2 we can prove:

Proposition 4.6. Let f =
∑

w∈〈X〉2d fww. Then f ∈ MD,d if and only there exists a positive

semidefinite matrix H of order σ(d), and positive semidefinite matrices Gi, 1 ≤ i ≤ n of order
σ(d− 1) such that

fw =
∑

u,v∈〈X〉d
u∗v=w

H(u, v) +
∑
i

∑
u,v∈〈X〉d−1

u∗v=w

Gi(u, v)−
n∑
i=1

∑
u,v∈〈X〉d−1

u∗X2
i
v=w

Gi(u, v), for all w ∈ 〈X〉2d.

(28)

Proof. If f ∈MD,d then we can find hi ∈ R〈X〉d and gi,j ∈ R〈X〉d−1 such that

f =
∑
i

h∗ihi +
∑
i,j

g∗i,j(1−X2
j )gi,j .

These polynomials yield column vectors Hi and Gi,j of length σ(d) and σ(d− 1), respectively,
such that hi = Ht

iWd and gi,j = Gti,jWd−1. Let us define H :=
∑

iHiH
t
i , Gj :=

∑
iGi,jG

t
i,j

and G :=
∑

j Gj . It follows that

f =
∑
i

W ∗dHiH
t
iWd +

∑
i,j

W ∗d−1Gi,j(1−X2
j )Gti,jWd−1

= W ∗d (
∑
i

HiH
t
i )Wd +W ∗d−1

(∑
i,j

Gi,jG
t
i,j −

∑
j

Xj(
∑
i

Gi,jG
t
i,j)Xj

)
Wd−1

= W ∗dHWd︸ ︷︷ ︸
=:S1

+W ∗d−1GWd−1︸ ︷︷ ︸
=:S2

−W ∗d
∑
i,j

Gji (G
j
i )
tWd︸ ︷︷ ︸

=:S3

,
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where the column vectors Gji are defined by

Gji (u) =

{
Gi,j(v), if u = Xjv,

0, else.

Let us consider G̃ :=
∑

i,j G
j
i (G

j
i )
t. Suppose w = u∗v for some u, v ∈ 〈X〉d. We can

find w in S1; the corresponding coefficient is exactly
∑

u,v∈〈X〉d
u∗v=w

H(u, v). If we additionally have

w ∈ 〈X〉2d−2 then w appears also in the summand S2 with coefficient
∑

u,v∈〈X〉d−1
u∗v=w

G(u, v). In the

third summand S3 there appear exactly the words w which can be decomposed as w = u∗1X
2
j v1

for some 1 ≤ j ≤ n and some u1, v1 ∈ 〈X〉d−1. Such w have coefficients

−
n∑
j=1

∑
u1,v1∈〈X〉d−1

u∗1X
2
j
v1=w

G̃(Xju1, Xjv1) = −
n∑
j=1

∑
u1,v1∈〈X〉d−1

u∗1X
2
j
v1=w

∑
i

Gji (Xju1)Gji (Xjv1) =

−
n∑
j=1

∑
u1,v1∈〈X〉d−1

u∗1X
2
j
v1=w

∑
i

Gi,j(u1)Gi,j(v1) = −
n∑
j=1

∑
u1,v1∈〈X〉d−1

u∗1X
2
j
v1=w

Gj(u1, v1).

Therefore matrices H and Gi are feasible for (28).

To prove the converse we start with rank one decompositions: H =
∑

iHiH
t
i and Gj =∑

iGi,jG
t
i,j . If we define hi = Ht

iWd and gi,j = Gti,jWd−1 then feasibility of H and Gj for (28)
implies∑

i

h∗ihi +
∑
i,j

g∗i,j(1−X2
j )gi,j =

∑
i

∑
u,v∈Wd

Hi(u)Hi(v)u∗v +
∑
i,j

∑
u,v∈Wd−1

(
Gi,j(u)Gi,j(v)u∗v −

∑
i,j

Gi,j(u)Gi,j(v)u∗X2
j v
)

=
∑

w∈W2d

∑
u,v∈Wd
u∗v=w

H(u, v)w +
∑

w∈W2d−2

∑
u,v∈Wd−1

u∗v=w

∑
j

Gj(u, v)w −
∑

w∈W2d

∑
j

∑
u,v∈Wd−1

u∗X2
j
v=w

Gj(u, v)w

=
∑

w∈W2d

fww = f.

Remark 4.7. Similarly to Remark 4.3, the proof of Proposition 4.6 shows how to construct
an sohs decomposition with weights (9) for f ∈MD,d.

By Proposition 4.6, the problem of computing f? over the polydisc is an SDP. Its dual
semidefinite program is:

Lsohs = inf L(f)
s. t. L : SymR〈X〉2d+2 → R is linear

L(1) = 1
L(q∗q) ≥ 0 for all q ∈ R〈X〉d+1

L(h∗(1−X2
j )h) ≥ 0 for all h ∈ R〈X〉d, 1 ≤ j ≤ n.

(DSDPeig−min)d+1
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For implementational purposes, problem (DSDPeig−min)d+1 is more conveniently given as

Lsohs = inf〈HL, Gf 〉
s. t. HL(u, v) = HL(w, z), if u∗v = w∗z, where u, v, w, z ∈ 〈X〉d+1

HL(1, 1) = 1, HL ∈ S+
σ(d+1), H

j
L ∈ S+

σ(d), ∀j
Hj
L(u, v) = HL(u, v)−HL(Xju,Xjv), for all u, v ∈ 〈X〉d, 1 ≤ j ≤ n

(DSDP’eig−min)d+1

where Gf is a Gram matrix for f , and Hj
L represents L acting on nc polynomials of the form

u∗(1−X2
j )v, i.e., Hj

L is the localizing matrix for 1−X2
j .

Proposition 4.8. (DSDPeig−min)d+1 admits Slater points.

Proof. We omit the proof as it is the same as that of Proposition 4.4.

Like above, by Proposition 4.8, Lsohs = fsohs(= f?) and the optimal value fsohs is attained.
Corollary 5.2 from the next section shows that also Lsohs is attained.

4.4. Examples. We have implemented the construction of the above SDPs in our open source
toolbox NCSOStools. Using a standard SDP solver (such as SDPA [YFK03], SDPT3 [TTT99]
or SeDuMi [Stu99]) the constructed SDPs can be solved. We demonstrate the software on the
polynomials from Examples 2.1 and 3.2.

>> NCvars x y

>> f1 = 2 + x*y*x*y + y*x*y*x;

>> f2 = 2 - x^2 + x*y^2*x - y^2;

We compute the optimal value f? on the ball by solving (DSDPeig−min)d+1.

>> NCminBall(f1)

ans = 1.5000

>> NCminBall(f2)

ans = 1.0000

Similarly we compute f? on the polydisc by solving (DSDP’eig−min)d+1.

>> NCminCube(f1)

ans = 4.0234e-013

>> NCminCube(f2)

ans = 1.0872e-011

Note: the minimum of the commutative collapse f̌1 of f1 over the ball B(1) = {(x, y) ∈
R2 | x2 + y2 ≤ 1} and the polydisc D(1) = {(x, y) ∈ R2 | |x| ≤ 1, |y| ≤ 1} is equal to 2 and
both minima for f̌2 are equal to 1.

Together with the optimal value f? our software can also return a certificate for positivity
of f − f?, i.e., a sohs decomposition with weights for f − f? as presented in (8) and (9). For
example:

>> params.precision=1e-6;

>> [opt,g,decom_sohs,decom_ball] = NCminBall(f2,params)

opt = 1.0000

g = 1-x^2-y^2

decom_sohs = 0

0
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0

0

0

0

y*x

decom_ball = 1

0

0

yields the following sohs decomposition of the form (8):

f2 - 1 = (y*x)’*(y*x) + 1’*(1-x^2-y^2)*1.

5. Extract the optimizers

In this section we establish the attainability of f? on B and D, and explain how to extract
the minimizers (A, ξ) for f . At the end of the section we present our implementation in
NCSOStools.

Proposition 5.1. f ∈ SymR〈X〉2d. There exists an n-tuple A ∈ B(σ(d)), and a unit vector

ξ ∈ Rσ(d) such that

fB? = 〈f(A)ξ, ξ〉. (29)

In other words, the infimum in (24) is really a minimum. An analogous statement holds for
fD? .

Proof. By the proof of Theorem 3.4 (or the paragraph on page 6 after the statement of the
theorem), f � 0 on B if and only if f � 0 on B(σ(d)). Thus in (24) we are optimizing

(A, ξ) 7→ 〈f(A)ξ, ξ〉 (30)

over (A, ξ) ∈ B(σ(d)) ×
{
ξ ∈ Rσ(d) | ‖ξ‖ = 1

}
, which is evidently a compact set. Hence by

continuity of (30) the infimum is attained. The proof for the corresponding statement for fD?
is the same.

Corollary 5.2. f ∈ SymR〈X〉2d. Then there exists linear functionals

LB, LD : SymR〈X〉2d+2 → R

such that LB is feasible for (DSDPeig−min)d+1, LD is feasible for (DSDPeig−min)d+1, and we
have

LB(f) = fB? and LD(f) = fD? . (31)

Proof. We prove the statement for LB. Proposition 5.1 implies that there exist A and ξ such
that fB? = 〈f(A)ξ, ξ〉. Let us define LB(g) := 〈g(A)ξ, ξ〉 for g ∈ SymR〈X〉2d+2. Then LB is
feasible for (DSDPeig−min)d+1 and LB(f) = fB? . The same proof work for (DSDPeig−min)d+1.

5.1. Implementation. In this subsection we explain how the optimizers (A, ξ) can be ex-
tracted from the solutions of the SDPs we constructed in the previous section.

Let f ∈ SymR〈X〉2d.

Step 1: Solve (DSDPeig−min)d+1. Let L denote an optimizer, i.e., L(f) = f?.

http://ncsostools.fis.unm.si/
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Step 2: To L we associate the positive semidefinite matrix HL =

[
HĽ B
Bt C

]
. Modify HL:

HL̂ =

[
HĽ B
Bt ZtHĽZ

]
,

where Z satisfies HĽZ = B. This matrix yields a flat positive linear map L̂ on

R〈X〉2d+2 satisfying L̃|R〈X〉2d = L|R〈X〉2d . In particular, L̃(f) = L(f) = f?.

Step 3: As in the proof of Proposition 3.11, use the GNS construction on L̃ to compute sym-
metric matrices Ai and a unit vector ξ with L̃(f) = f? = 〈f(A)ξ, ξ〉.

In Step 3, to construct symmetric matrix representations Ai ∈ Rσ(d)×σ(d) of the multipli-
cation operators we calculate their image according to a chosen basis B for E = RanHL̂. To
be more specific, Aiu1 for u1 ∈ 〈X〉d being the first label in B, can be written as a unique
linear combination

∑s
j=1 λjuj with words uj labeling B such that L

(
(u1Xi−

∑
λjuj)

∗(u1Xi−∑
λjuj)

)
= 0. Then

[
λ1 . . . λs

]t
will be the first column of Ai. The vector ξ is the eigen-

vector of f(A) corresponding to the smallest eigenvalue.

5.2. Examples. We implemented the procedure explained in Steps 1–3 under NCSOStools.
Here is a demonstration:

>> NCvars x y

>> f2 = 2 - x^2 + x*y^2*x - y^2;

>> [X,fX,eig_val,eig_vec]=NCoptBall(f2)

This gives a matrix X of size 2×25 each of whose rows represents one symmetric 5×5 matrix,

A = reshape(X(1, :), 5, 5) =


−0.0000 0.7107 −0.0000 0.0000 0.0000

0.7107 0.0000 −0.0000 0.3536 −0.0000
−0.0000 −0.0000 −0.0000 0.0000 0.4946

0.0000 0.3536 0.0000 0.0000 0.0000
0.0000 −0.0000 0.4946 0.0000 0.0000



B = reshape(X(2, :), 5, 5) =


−0.0000 0.0000 0.7035 0.0000 0.0000

0.0000 −0.0000 0.0000 −0.0000 0.0000
0.7035 0.0000 0.0000 −0.3588 0.0000
0.0000 −0.0000 −0.3588 0.0000 −0.0000
0.0000 0.0000 0.0000 −0.0000 0.0000


such that

fX = f(A,B) =


1.0000 −0.0000 −0.0000 0.0011 −0.0000
−0.0000 1.5091 −0.0000 −0.0000 −0.0000
−0.0000 −0.0000 1.1317 −0.0000 −0.0000

0.0011 −0.0000 −0.0000 1.7462 0.0000
−0.0000 −0.0000 −0.0000 0.0000 1.9080


with eigenvalues [1.0000, 1.1317, 1.5091, 1.7462, 1.9080]. So the minimal eigenvalue of f(A,B)
is 1 and the corresponding unit eigenvector is [−1.0000,−0.0000,−0.0000, 0.0015,−0.0000]t,
when rounded to four digit accuracy.
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6. Concluding remarks

In this paper we have shown how to effectively compute the smallest (or biggest eigenvalue)
a noncommutative (nc) polynomial can attain on the ball B and the polydisc D. Our algorithm
is based on sums of hermitian squares and yields an exact solution with a single semidefinite
program (SDP). To prove exactness, we investigated the solution of the dual SDP and used
it to extract eigenvalue optimizers with a procedure based on the solution to a truncated
noncommutative moment problem via flat extensions, and the Gelfand-Naimark-Segal (GNS )
construction. We have also presented the implementation of these procedures in our open source
computer algebra system NCSOStools, freely available at http://ncsostools.fis.unm.si/.

It is clear that the Nichtnegativstellensatz 3.4 works not only for B and D but also for all
nc semialgebraic sets obtained from these via invertible linear change of variables. What is less
clear (and has been established after we have obtained Theorem 3.4), is that this result can
be slightly strengthened. Namely, its conclusion holds for all convex nc semialgebraic sets (or,
equivalently [HM], nc LMI domains DL). However, this requires a different and more involved
proof. For details we refer the reader to [HKM].

Acknowledgments. The authors thank Stefano Pironio, Antonio Aćın, Miguel Navascués
Cobo, and two anonymous referees for a careful reading of our manuscript and for providing
us with useful comments.
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