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Abstract. This paper presents an algorithm and its implementation in the software package
NCSOStools for finding sums of hermitian squares and commutators decompositions for poly-
nomials in noncommuting variables. The algorithm is based on noncommutative analogs of
the classical Gram matrix method and the Newton polytope method, which allows us to use
semidefinite programming. Throughout the paper several examples are given illustrating the
results.

1. Introduction

The main problem studied in this paper is whether a given real polynomial in free non-
commuting variables (nc polynomial) can be decomposed as a sum of hermitian squares and
commutators. This question can be reformulated as a semidefinite programming problem. As
the size of these semidefinite programs tends to be very large, we present a method to reduce
it significantly.

1.1. Motivation. The interest in finding decompositions of an nc polynomial as a sum of
hermitian squares and commutators is based on the following simple fact. If such a decom-
position exists, the given nc polynomial is necessarily trace-positive, i.e., all of its evaluations
at tuples of matrices have nonnegative trace. Following Helton’s seminal paper [Hel02], this
belongs to free real algebraic geometry (including free positivity) where one is interested in
positivity of nc polynomials. Much of today’s interest in (free) real algebraic geometry is
due to its powerful applications. For instance, the use of sums of squares and the trun-
cated moment problem for polynomial optimization on Rn established by Lasserre and Parrilo
[Las01, Las09, Par03, PS03, Sch05] is nowadays a common fact in real algebraic geometry
with applications to control theory, mathematical finance and operations research. In the free
context there are many facets of applications as well. A nice survey on connections to control
theory, systems engineering and optimization is given by de Oliveira, Helton, McCullough,
Putinar [dOHMP08]. Applications of the free case to quantum physics are explained e.g. by
Pironio, Navascués, Aćın [PNA10] who also consider computational aspects related to sums
of hermitian squares (without commutators). Trace-positive nc polynomials fill a gap between
these two cases, so we expect a considerable development of their applications in the future.

On the theoretical level, trace-positive nc polynomials occur naturally in von Neumann
algebras and functional analysis. For instance, Connes’ embedding problem [Con76] on finite
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II1-factors is a question about the existence of a certain type of sum of hermitian squares
(sohs) certificates for complex trace-positive nc polynomials [KS08a]. It is widely believed that
Connes’ conjecture is false and our results will enable us to look for a counterexample using a
computer algebra system. In addition, trace-positive nc polynomials arise in the Lieb-Seiringer
reformulation of the recently solved [Sta] Bessis-Moussa-Villani (BMV) conjecture [BMV75]
from statistical quantum mechanics. Many results on this problem have been obtained with the
aid of computer programs – using sums of hermitian squares and commutators decompositions
– written in an ad-hoc manner.

As a consequence of this surge of interest in free real algebraic geometry and sums of
(hermitian) squares of nc polynomials we have developed NCSOStools [CKP11] – an open source
Matlab toolbox for solving such problems using semidefinite programming. As a side product
our toolbox implements symbolic computation with noncommuting variables in Matlab.

1.2. Related work and contribution. We will denote the convex cone of sums of hermitian
squares and commutators by Θ2. Sum of hermitian squares decompositions were intensively
studied by several authors. An outstanding result is due to Helton [Hel02], who has proved
that for an nc polynomial f ∈ R〈X〉, we have f(A1, . . . , An) � 0 for all symmetric matrices
Ai of the same size if and only if f is a sum of hermitian squares. We also refer the reader to
[McC01, MP05] for nice alternative proofs. In [KP10] the third and the fourth author presented
an algorithm for finding sums of hermitian squares decompositions (without commutators)
using a variant of the Gram matrix method. The key ingredient of the method was semidefinite
programming together with the Newton chip method to reduce the size of the semidefinite
programming problems, which eventually turned out to be linear in the length and in the
degree of the nc polynomial. Extending this method we proposed in [BCKP] another variant
of the Gram matrix method to answer the question whether f ∈ Θ2 holds. However, an
important topic that remained open in [BCKP] was how to provide efficiently numerical or
exact certificates for either f ∈ Θ2 or f 6∈ Θ2.

Therefore the main contribution of this paper is the following: we present the tracial
Gram matrix method, tailored for sums of hermitian squares and commutators, to resolve the
separability question for Θ2, using a cyclic extension of the Newton chip method from [KP10]
which reduces the dimensions of the underlying semidefinite programs to a more manageable
level. Our method can be understood as a noncommutative generalization of the classical
[Rez78] Newton polytope method.

2. Preliminaries

2.1. Words, nc polynomials and involution. Fix n ∈ N and let 〈X〉 be the set of words in
the n noncommuting letters X1, . . . , Xn (including the empty word denoted by 1), i.e., 〈X〉 is
the monoid freely generated by X := (X1, . . . , Xn). We consider linear combinations

∑
w aww

with aw ∈ R, w ∈ 〈X〉 of words in the n letters X which we call nc polynomials. The set of all
nc polynomials is actually a free algebra, which we denote by R〈X〉. An element of the form
aw where a ∈ R \ {0} and w ∈ 〈X〉 is called a monomial and a its coefficient. The length of
the longest word in an nc polynomial f ∈ R〈X〉 is the degree of f and is denoted by deg f .
The set of all nc polynomials of degree ≤ d will be denoted by R〈X〉≤d. If an nc polynomial
f involves only two variables, we use R〈X,Y 〉 instead of R〈X1, X2〉.

We equip R〈X〉 with the involution ∗ that fixes R∪{X} pointwise and thus reverses words,
e.g. (X1X

2
2X3 − 2X3

3 )∗ = X3X
2
2X1 − 2X3

3 . Hence R〈X〉 is the ∗-algebra freely generated by n
symmetric letters. The involution extends naturally to matrices (in particular, to vectors) over
R〈X〉. For instance, if V = (vi) is a (column) vector of nc polynomials vi ∈ R〈X〉, then V ∗ is
the row vector with components v∗i . We use V t to denote the row vector with components vi.

http://ncsostools.fis.unm.si/
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2.2. Sums of hermitian squares and commutators. Let SymR〈X〉 denote the set of all
symmetric elements, that is,

SymR〈X〉 := {f ∈ R〈X〉 | f = f∗}.

An nc polynomial of the form g∗g is called a hermitian square and the set of all sums of
hermitian squares will be denoted by Σ2. Clearly, Σ2 ( SymR〈X〉.

Example 2.1. The nc polynomial f = X2 −X2Y − Y X2 + Y X2Y +XY 2X ∈ SymR〈X〉, is
a sum of hermitian squares, in fact, f = (X −XY )∗(X −XY ) + (Y X)∗(Y X). In particular,
f(A,B) is positive semidefinite for all symmetric matrices A,B.

The next notation we need is cyclic equivalence [KS08a] whose definition is motivated by
the fact that we are interested in the trace of a given nc polynomial under matrix evaluations.

Definition 2.2. An element of the form [p, q] := pq − qp, where p, q are polynomials from

R〈X〉, is a commutator. Polynomials f, g ∈ R〈X〉 are called cyclically equivalent (f
cyc∼ g) if

f − g is a sum of commutators:

f − g =

k∑
i=1

[pi, qi] =

k∑
i=1

(piqi − qipi) for some k ∈ N and pi, qi ∈ R〈X〉.

It is clear that
cyc∼ is an equivalence relation. The following remark motivates its name

and shows how to test if given nc polynomials are cyclically equivalent.

Remark 2.3.

(a) For v, w ∈ 〈X〉, we have v
cyc∼ w if and only if there are v1, v2 ∈ 〈X〉 such that v = v1v2

and w = v2v1. That is, v
cyc∼ w if and only if w is a cyclic permutation of v.

(b) Polynomials f =
∑

w∈〈X〉 aww and g =
∑

w∈〈X〉 bww (aw, bw ∈ R) are cyclically equivalent

if and only if for each v ∈ 〈X〉, ∑
w∈〈X〉

w
cyc
∼ v

aw =
∑
w∈〈X〉

w
cyc
∼ v

bw. (1)

Example 2.4. We have 2X2Y 2X3 +XY 2X2 +XY 2X4 cyc∼ 3Y X5Y + Y X3Y as

2X2Y 2X3 +XY 2X2 +XY 2X4 − (3Y X5Y + Y X3Y )

= [2X2Y, Y X3] + [XY, Y X4] + [XY, Y X2].

Definition 2.5. Let

Θ2 := {f ∈ R〈X〉 | ∃g ∈ Σ2 : f
cyc∼ g}

denote the convex cone of all nc polynomials cyclically equivalent to a sum of hermitian squares.
By definition, the elements in Θ2 are exactly the nc polynomials which can be written as sums
of hermitian squares and commutators.

Example 2.6. Consider f = X2Y 2+XY 2X+XYXY +Y X2Y +Y XY X+Y 2X2 ∈ R〈X,Y 〉.
This nc polynomial is of the form

f = (XYXY + Y XY X +XY 2X + Y X2Y ) + 2XY 2X + [Y 2X,X] + [X,XY 2]

= (XY + Y X)∗(XY + Y X) + 2(Y X)∗(Y X) + [Y 2X,X] + [X,XY 2],

hence f ∈ Θ2. In particular, tr(f(A,B)) ≥ 0 for all symmetric matrices A,B but in general
f(A,B) is not positive semidefinite.
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3. The improved tracial Gram matrix method

Testing whether a given f ∈ R〈X〉 is an element of Σ2 or Θ2 can be done efficiently by
using semidefinite programming as first observed in [KS08b, Section 3], see also [KP10, BCKP].
The method behind it is a variant of the Gram matrix method and arises as a natural extension
of the results for sums of hermitian squares (cf. [Hel02, Section 2.2] or [KP10, Theorem 3.1
and Algorithm 1]) or for polynomials in commuting variables [CLR95, Section 2]; see also
[Par03]. In this section we present the improved tracial Gram matrix method which is based
on a tracial version of the classical Newton polytope used to reduce the size of the underlying
semidefinite programming problem. The concrete formulation is a bit technical but the core
idea is straightforward and goes as follows. Define the Newton polytope of an nc polynomial
f as the Newton polytope of an appropriate interpretation of f as a polynomial in commuting
variables. Now apply the Newton polytope method and then lift the obtained set of monomials
in commuting variables to a set of monomials in noncommuting variables.

3.1. The cyclic degree. Our viewpoint focuses on the dual description of the tracial version
of the Newton polytope, described by the so-called cyclic-α-degree. This viewpoint clarifies
the chosen interpretation of an nc polynomial as a polynomial in commuting variables which
is used in the algorithm.

We will need to consider the free monoid [x] in commuting variables x := (x1, . . . , xn) and

its semigroup algebra R[x] of polynomials. Its monomials are of the form xd = xd11 · · ·xdnn for
d = (d1, . . . , dn) ∈ Nn. There is a natural mapping 〈X〉 → [x]. For a given word w ∈ 〈X〉 its
image under this mapping is of the form xdw , where dw,i denotes how many times Xi appears
in w. It is called the commutative collapse of w. Similarly, we introduce the commutative
collapse of a set of words V ⊆ R〈X〉. For f =

∑
w aww ∈ R〈X〉 we define the set

cc(f) := {xdw ∈ [x] | aw 6= 0}.

We generalize the degree of an nc polynomial as follows: given α = (α1, . . . , αn) ∈ Rn we
define the α-degree degα of a word w ∈ 〈X〉 as the standard scalar product between α and the

exponent of the commutative collapse xdw of w, i.e.,

degαw :=
n∑
i=1

αidw,i = 〈α, dw〉. (2)

We also set degα 0 := −∞. Note that for all α ∈ Rn, we have u
cyc∼ v ⇒ degα u = degα v and

degα(uv) = degα u+ degα v.

This notion extends naturally to the α-degree of an nc polynomial f =
∑

w aww ∈ R〈X〉:

degα f := max
aw 6=0

degαw. (3)

As special cases, note that the (total) degree corresponds to the α with all ones and the degree
in variable Xi corresponds to the standard unit vectors ei.

Two cyclically equivalent nc polynomials in general do not have the same α-degree. We
therefore modify the definition to obtain the more robust cyclic-α-degree cdegα:

cdegα f := min
g
cyc∼ f

degα g. (4)

For instance, for f = X2
1X

2
2X

2
1 +X4

2X
4
3 −X4

3X
4
2 +X1X2 −X2X1

cyc∼ X4
1X

2
2 we have

deg(1,1,3) f = 16 , cdeg(1,1,3) f = 6.
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Definition 3.1. Let w ∈ R〈X〉. The canonical representative [w] of w is the first with
respect to the lexicographic order among words cyclically equivalent to w. For f =

∑
w aww ∈

SymR〈X〉 we define the canonical representative [f ] of f as follows:

[f ] :=
∑
[w]

a[w][w] ∈ R〈X〉.

That is, [f ] contains only canonical representatives of words from f with coefficients

a[w] :=
∑
u
cyc∼ w

au.

For example, if f = 2Y 2X2 −XY 2X +XY − Y X, then [f ] = X2Y 2.

The next proposition shows that the cyclic-α-degree is compatible with the equivalence

relation
cyc∼ and equals the degree of the canonical representative.

Proposition 3.2.

(1) If f =
∑

w aww
cyc∼ g =

∑
w bww, then a[w] = b[w] for all w ∈ 〈X〉.

(2) For all α ∈ Rn and f ∈ R〈X〉 we have cdegα f = degα[f ].

Proof. Property (1) is obvious. Let us consider (2). Since f
cyc∼ [f ], cdegα f ≤ degα[f ].

Suppose there exists g
cyc∼ f with degα0

g < degα0
[f ] for some α0 ∈ Rn. There is a word [w]

with degα0
[w] = degα0

[f ], and the coefficient of [w] in [f ] is non-zero. But by the first part of

the proposition the same is true for g, hence degα0
g ≥ degα0

[f ], which is a contradiction.

3.2. The tracial Newton polyotope. Given a polynomial f ∈ R[x] (in commuting variables)
the Newton polytope N(f) consists of all integer lattice points in the convex hull of the degrees
d = (d1, . . . , dn) of words appearing in f , considered as vectors in Rn (see e.g. [Rez78] for
details). That is, for f =

∑
d adx

d ∈ R[x],

N(f) := Zn ∩ conv
(
{d ∈ Zn | ad 6= 0}

)
.

We will also refer to the set 1
2N(f) := {d ∈ Zn | 2d ∈ N(f)}. Alternatively, by dualization,

one can describe the Newton polytope via the α-degree, namely

N(f) = Zn ∩ conv
(
{d ∈ Zn | degα(xd) ≤ degα(f) for all α ∈ Rn}

)
.

Similarly, N(S) and 1
2N(S) are defined, where S is a set of words in commuting variables.

By dualization one immediately derives the following lemma.

Lemma 3.3. A word w ∈ 〈X〉 with comutative collapse xdw satisfies degα(w) ≤ cdegα(f) for

all α ∈ Rn if and only if dw is contained in the convex hull of the vectors {dv | v ∈ cc([f ])}.

In other words, the tracial Newton polytope of an nc polynomial f ∈ R〈X〉 is given by the
classical Newton polytope for the commutative collapse of the canonical representative [f ] of f .
Hence a word w ∈ 〈X〉 should be included in the sum of hermitian squares and commutators
factorization for a given noncommutative polynomial f if and only if the exponent dw of its
commutative collapse is contained in one half times the Newton polytope of the commutative
collapse of [f ]. In fact, this will be shown in Theorem 3.7, where we present the augmented
tracial Gram matrix method.

Example 3.4. Let f = 1−XY 3 + Y 3X + 2Y 2− 4X5 ∈ R〈X,Y 〉. Then [f ] = 1 + 2Y 2− 4X5,

cc(f) = {1, xy3, y2, x5} ⊆ [x, y], cc([f ]) = {1, y2, x5} ⊆ [x, y],
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N(cc([f ])) = Z2 ∩ conv
(
{(0, 0), (0, 2), (5, 0)}

)
=
{

(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (0, 1), (1, 1), (2, 1), (0, 2)
}
.

x

y

0 1 2 3 4 5

1

2

Figure 1. The Newton polytope of f = 1−XY 3 + Y 3X + 2Y 2 − 4X5

We note that by taking the canonical representative [f ] instead of f itself we get a unique
Newton polytope for f which is also the smallest Newton polytope among all Newton polyotpes
of possible interpretations of f in R[x].

3.3. The tracial Gram matrix method. In this section we present the improved tracial
Gram matrix method based on the tracial Newton polytope. That is, to construct a tracial
Gram matrix for an nc polynomial f ∈ R〈X〉 we will only consider words w ∈ 〈X〉 whose
exponent dw of its commutative collapse is contained in one half times the tracial Newton
polytope of f . This will be expressed by the cyclic-α-degree using the following corollary,
which is an immediate consequence of Proposition 3.2(2) and Lemma 3.3.

Corollary 3.5. Let f ∈ R〈X〉 be an nc polynomial. Then

cc(W ) =
{
xd | d ∈ 1

2
N(cc([f ]))

}
(5)

for the vector W consisting of all words w ∈ 〈X〉 satisfying

2 degα(w) ≤ cdegα(f) for all α ∈ Rn.

Example 3.6. For f = 1−XY 3 + Y 3X + 2Y 2 − 4X5 ∈ R〈X,Y 〉 from Example 3.4 we have
1
2N(cc([f ])) =

{
(0, 0), (0, 1), (1, 0), (2, 0)

}
. One can easily verify that W =

[
1 Y X X2

]t
and hence (5) holds.

The next theorem is the theoretical underpinning of our improved tracial Gram matrix
method.

Theorem 3.7. Suppose f ∈ R〈X〉. Then f ∈ Θ2 if and only if there exists a positive semidef-
inite matrix G such that

f
cyc∼ W ∗GW, (6)

where W is a vector consisting of all words w ∈ 〈X〉 satisfying

2 degα(w) ≤ cdegα(f) for all α ∈ Rn. (7)

Furthermore, given such a positive semidefinite matrix G of rank r, one can construct nc

polynomials g1, . . . , gr ∈ R〈X〉 with f
cyc∼
∑r

i=1 g
∗
i gi.

For the proof we need one last ingredient, namely that the cyclic-α-degree of a sum of
hermitian squares is equal to its α-degree.

Lemma 3.8. If f
cyc∼ g =

∑
i g
∗
i gi, then cdegα f = degα g.
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Proof. If g = 0 then lemma is true for trivial reasons. Otherwise, by definition, cdegα f ≤
degα g for all α ∈ Rn. Suppose there exists α0 ∈ Rn with cdegα0

f < degα0
g. For [f ]

cyc∼ f we

have cdegα0
f = degα0

[f ] < degα0
g =: 2∆ 6= 0. Let pi be the homogeneous part of gi with

α0-degree equal to ∆ and ri = gi − pi. Then degα0
(ri) < ∆ and

[f ]
cyc∼
∑

g∗i gi =
∑

(pi + ri)
∗(pi + ri) =

∑
p∗i pi +

∑
p∗i ri +

∑
r∗i pi +

∑
r∗i ri. (8)

Since each word w in p∗i ri, r
∗
i pi and r∗i ri has degα0

w < 2∆, none of these can be cyclically
equivalent to a nontrivial word in p∗i pi, because each nontrivial word in p∗i pi has α0-degree

equal to 2∆ 6= 0 (note that for each i, p∗i pi 6
cyc∼ 0 or pi = 0 due to [KS08b, Lemma 3.2]).

Similarly, by assumption there is no word in [f ] with α0-degree equal to 2∆. Thus

0
cyc∼
∑

p∗i pi, [f ]
cyc∼
∑

p∗i ri +
∑

r∗i pi +
∑

r∗i ri.

However, [KS08b, Lemma 3.2] implies pi = 0 for all i contradicting degα0
g = 2∆.

Proof of Theorem 3.7. If f
cyc∼ g =

∑
i g
∗
i gi ∈ Σ2, then degα g = cdegα f for all α ∈ Rn, as

follows from Lemma 3.8. Therefore, 2 degα gi ≤ degα g = cdegα f for all i and for all α ∈ Rn,

hence gi contains only words satisfying (7). Write gi = GtiW, where Gti is the (row) vector
consisting of the coefficients of gi. Then g∗i gi = W tGiG

t
iW and, by setting G :=

∑
iGiG

t
i,

property (6) clearly holds. The inverse of this claim is obvious.

Given a positive semidefinite G ∈ RN×N of rank r satisfying (6), write G =
∑r

i=1GiG
t
i

for Gi ∈ RN×1. Defining gi := GtiW yields f
cyc∼
∑r

i=1 g
∗
i gi.

A matrix G satisfying (6) is called a tracial Gram matrix for f , which motivates the name
of the method. For an nc polynomial f ∈ R〈X〉 the tracial Gram matrix is in general not
unique, hence determining whether f ∈ Θ2 amounts to finding a positive semidefinite tracial
Gram matrix from the affine set of all tracial Gram matrices for f . Problems like this can in
theory be solved exactly using quantifier elimination. However, this only works for problems
of small size, so a numerical approach is needed in practice. Thus we turn to semidefinite
programming, which has become a standard tool in mathematical optimization in the last two
decades. The readers not familiar with this topic are referred to [WSV00, Tod01, VB96].

4. Implementation and computational algorithms

In this section we discuss an algorithm based on the tracial Gram matrix method for
testing the membership in Θ2 and its improvement using the tracial version of the Newton
polytope which we call the Newton cyclic chip method.

4.1. Sums of hermitian squares and commutators and semidefinite programming.
In this subsection we present a conceptual algorithm based on semidefinite programming for
checking whether an nc polynomial of degree ≤ 2d is cyclically equivalent to a sum of hermitian
squares. Following Theorem 3.7 we must determine whether there exists a positive semidefinite

matrix G such that f
cyc∼ W ∗GW . This is a semidefinite feasibility problem in the matrix

variable G, where the constraints 〈Ai, G〉 = bi are essentially equations (1).

Example 4.1. Let

f = 2XY 2XYX + 4XYX2Y X +XY 4X + 2Y XY 2X2

= (Y 2X + 2XYX)∗(Y 2X + 2XYX)− 2XYXY 2X + 2Y XY 2X2

cyc∼ (Y 2X + 2XYX)∗(Y 2X + 2XYX).



8 SABINE BURGDORF, KRISTIJAN CAFUTA, IGOR KLEP, AND JANEZ POVH

If we take W =
[
XYX Y 2X

]t
, then a tracial Gram matrix G for f is obtained as a solution

to the following semidefinite program (SDP):

inf 〈C,G〉
s. t.

XYX2Y X : G1,1 = 4
XYXY 2X : G1,2 = 2
XY 2XYX : G2,1 = 2

XY 4X : G2,2 = 1

G � 0.

Remark 4.2. The matrix C in Example 4.1 is arbitrary. One can use C = I, a commonly
used heuristic for matrix rank minimization [RFP10]. Often, however, a solution of high-rank
is desired (this is the case when we want to extract rational certificates, a topic we shall discuss
elsewhere). Then C = 0 is used, since under a strict feasibility assumption the interior point
methods yield solutions in the relative interior of the optimal face, which is in our case the whole
feasibility set. If strict complementarity is additionally provided, the interior point methods
lead to the analytic center of the feasibility set [HdKR02]. Even though these assumptions do
not always hold for the instances of SDPs we construct, in our experiments the choice C = 0
in the objective function almost always gave a solution of higher rank than the choice C = I.

Remark 4.3. As we restrict our attention to nc polynomials which are cyclically equivalent
to symmetric nc polynomials (the others are clearly not in Θ2), we may always merge the
equations corresponding to a particular word and its involution, e.g. in Example 4.1 we can
replace the second and the third equation with a single constraint G1,2 +G2,1 = 4.

We formalize the lesson from Remark 4.3 as follows:

Lemma 4.4. If f =
∑

w aww ∈ Θ2, then for every v ∈ 〈X〉∑
w

cyc∼ v

aw =
∑
w

cyc∼ v∗

aw. (9)

Corollary 4.5. Given f ∈ R〈X〉 we have:

(1) If f does not satisfy (9), then f 6∈ Θ2.
(2) If f satisfies (9), then we can determine whether f ∈ Θ2 by solving the following SDP with

only symmetric constraints:

inf 〈C,G〉
s. t.

∑
p,q, p∗q

cyc
∼ v

∨ p∗q
cyc
∼ v∗

Gp,q =
∑
w

cyc∼ v

(aw + aw∗), ∀v ∈W

G � 0.

(CSOHSSDP)

Thus we are left with the construction of W , which is a linear porgramming problem by
the following lemma.

Lemma 4.6. Verifying whether w ∈ 〈X〉 satisfies (7) is a linear programming problem.

Proof. Indeed, let f =
∑
avv ∈ R〈X〉 of degree ≤ 2d be given and let w ∈ 〈X〉 be a word for

which we want to verify (7). Then the following is true:

2 degαw ≤ cdegα f for all α ∈ Rn
⇔ 2 degαw ≤ degα[f ] for all α ∈ Rn
⇔ 2〈α, dw〉 ≤ maxv∈cc([f ]){〈α, dv〉} for all α ∈ Rn
⇔ 0 ≤ infα∈Rn maxv∈cc([f ]){〈α, dv − 2dw〉}
⇔ 0 ≤ inf{t | 〈α, dv − 2dw〉 ≤ t, ∀v ∈ cc([f ]), α ∈ Rn}.
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Verifying the last inequality can be done in two steps: (i) solve the linear programming problem

topt = inf t
s. t. 〈α, dv − 2dw〉 ≤ t, ∀v ∈ cc([f ])

α ∈ Rn,
(LP)

and (ii) check if topt ≥ 0.

The conceptual algorithm to determine whether a given nc polynomial is cyclically equiva-
lent to a sum of hermitian squares (the tracial Gram matrix method) is described in Algorithm
1:

Input: f ∈ R〈X〉 with f =
∑

w∈〈X〉 aww, where aw ∈ R.
Step 1: If f does not satisfy (9), then f 6∈ Θ2. Stop.
Step 2: Construct W .
Step 3: Construct data Av, bv, C corresponding to (CSOHSSDP).
Step 4: Solve (CSOHSSDP) to obtain G. If it is not feasible, then f 6∈ Θ2.

Stop.
Step 5: Compute a decomposition G = RtR.

Output: Sum of hermitian squares cyclically equivalent to f : f
cyc∼
∑

i g
∗
i gi,

where gi denotes the i-th component of RW .

Algorithm 1: The tracial Gram matrix method for finding Θ2-certificates.

In Step 5 we can take different decompositions, e.g. a Cholesky decomposition (which is
not unique if G is not positive definite), the eigenvalue decomposition, etc.

The implementation of Step 2 of the tracial Gram matrix method requires according to
Lemma 4.6 solving a small linear programming problem (LP) for each candidate w for the set
W . Each linear program has n+1 variables with card (cc([f ])) linear inequalities. Solving such
linear programs can be done easily for the problems we are interested in (note that due to other
limitations we are considering only nc polynomials f with n+d ≤ 20). If f is an nc polynomial
in 2 variables and has 10000 monomials, then we obtain a linear program (LP) in 3 variables
with at most 10000 constraints. Nowadays LP solvers solve such problems easily (within a
second); see [Mit03] for a comparison of the state-of-the-art LP solvers and [MPRW09] for a
list of efficient alternative methods to solve semidefinite programs. If f ∈ R〈X〉 is polynomial
in n variables with deg f = 2d then it is enough to consider at Step 2 only words w ∈ 〈X〉 such

that [w] has degree at most d. Since there are
(
n+d
d

)
different [w] of this type Step 2 might be

still time consuming.

We present the details about the implementation of Step 2 of Algorithm 1 in Algorithm 2
below (the Newton cyclic chip method).

Remark 4.7. As mentioned above we need to run Step 3.1
(
n+d
d

)
-times. For each word w

which satisfies the condition in Step 3.2 we add at most d! words to W . Nevertheless, the
length of the constructed W is usually much smaller than the number of all words w ∈ 〈X〉 of
degree ≤ d. On the other hand, it is often much larger than the number of words obtained by
the Newton chip method [KP10] developed for the sum of hermitian squares decomposition.

4.2. Software implementation. Coding the tracial Gram matrix method together with the
Newton cyclic chip method needs to be done carefully due to several potential bottlenecks.
Obviously the most expensive part of the Gram matrix method is Step 4 (solving CSOHSSDP).
Its complexity is determined by the order of the matrix variable G and the number of linear
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Input: f ∈ R〈X〉 with deg f ≤ 2d, f =
∑

w∈〈X〉 aww, where aw ∈ R.
Step 1: Let Vd be the vector of all words in [x] with degree ≤ d.
Step 2: W := ∅.
Step 3: For every w ∈ Vd:

Step 3.1: Solve (LP) related to w to obtain topt.
Step 3.2: If topt ≥ 0 then

W = W ∪ {all (noncommutative) permutations of w}.
Output: W .

Algorithm 2: The Newton cyclic chip method

equations. Both parameters are strongly related to the vector W from Step 2. Indeed, the

order of G is exactly the length |W | and the number of linear equations is at least |W |2
(d+1)(2d−1)! .

This follows from the fact that for each product u∗v, u, v ∈ W there are at most d + 1 pairs
ui, vi such that u∗i vi = u∗v and at most (2d− 1)! cyclically equivalent products.

The vector W constructed by the Newton cyclic chip method is in general the best possible
and is the default procedure used by NCcycSos in our package NCSOStools [CKP11]. NCcycSos
takes an nc polynomial as input and returns the answer if it is a member of Θ2. It might be
time consuming, as we have already pointed out in Remark 4.7. However, if we know in
advance that it is enough to consider products u∗v for some V and u, v ∈ V (⊆ W ), then we
can add this V as an input to NCcycSos and skip Step 2 in the tracial Gram matrix method.

Remark 4.8. In a special case we can construct a further reduced vector W . Namely, if we

know that for a representation f
cyc∼ g ∈ Σ2 we have that

∑
w

cyc∼ v∗v
gw 6= 0 for all hermitian

squares v∗v appearing in g, then we can construct W by a slight generalization of the Newton
chip method from [KP10]. In this case we take the right chips satisfying (7) of all hermitian
squares which are cyclically equivalent to words from f instead of all words w ∈ 〈X〉 satisfying
(7). This works e.g. for the BMV polynomials1 but does not work for e.g.

f = 1− 4XYX + 2X2 +X2Y 4X2 cyc∼ 2(XY −X)(Y X −X) + (X2Y 2 − 1)(Y 2X2 − 1).

In fact, the hermitian square 2XY 2X cancels with −X2Y 2 and −Y 2X2 and we don’t get the
necessary words XY and Y X in W by applying the Newton chip method.

We point out that in general the semidefinite program (CSOHSSDP) might have no strictly
feasible points. Absence of (primal) strictly feasible points might cause numerical difficulties
while solving (CSOHSSDP). However, as in [KP10], we can enforce strong duality which is
crucial for all SDP solvers by setting the matrix C in (CSOHSSDP) equal to I (actually any
full rank matrix will do); see [KP10, Section 4.1] for details. Another source of numerical
problems is the infeasibility of (CSOHSSDP), which is the case when f 6∈ Θ2. We point out
that SDP solvers which are supported by NCSOStools have easily overcome these difficulties
on all tested instances.

Our implementation of the Newton cyclic chip method is augmented by an additional test
used to further reduce the length of W . Indeed, if w ∈W satisfies the following properties:

(a) if u∗v
cyc∼ w∗w for some u, v ∈ W , then u = v (i.e., any product cyclically equivalent to

w∗w is a hermitian square);
(b) neither w∗w nor any other product cyclically equivalent to w∗w appears in f ,

1A BMV polynomial Sm,k(X,Y ) is the sum of all words in X,Y of total degree m and degree k in Y .

http://ncsostools.fis.unm.si/
http://ncsostools.fis.unm.si/
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then we can delete w from W , and also all u with u∗u
cyc∼ w∗w. This test is implemented

in NCcycSos and is run before solving (CSOHSSDP). It amounts to finding (iteratively) all
equations of the type 〈Aw, G〉 = 0 with Aw diagonal.

Example 4.9. Consider the nc polynomial f = 4X2Y 10 + 2XY 2XY 4 + 4XY 6 + Y 2 of degree
12. There are 127 words in 2 variables of degree ≤ 6. Using the Newton cyclic chip method
(Algorithm 2) we get only 16 monomials and after the additional test mentioned in the previous
paragraph, we are reduced to only 12 words in W as we can see with the aid of NCSOStools:

>> NCvars x y

>> f = 4*x^2*y^10 + 2*x*y^2*x*y^4 + 4*x*y^6 + y^2;

>> par.precision = 1e-4;

>> [IsCycEq,G,W,sohs,g] = NCcycSos(f, par)

This yields a vector sohs = [XY 5 + Y + Y 5X YXY 2 Y 2XY XY 5 − Y 5X]t of nc poly-

nomials gi with f
cyc∼
∑

i g
∗
i gi = g; a Gram matrix G for the monomial vector W and IsCycEq

= 1 since f is an element of Θ2.

Example 4.10. Consider the BMV polynomial f = S8,2(X,Y ). To prove that f ∈ Θ2 with
the aid of NCSOStools, proceed as follows:

(1) Define two noncommuting variables:

>> NCvars x y

(2) Our nc polynomial f is constructed using BMV(8,2). For a numerical test whether f ∈ Θ2,
run

>> params.obj = 0;

>> [IsCycEq,G0,W,sohs,g,SDP_data] = NCcycSos(BMV(8,2), params);

This yields a floating point Gram matrix G0

G0 =


3.9135 2.0912 −0.1590 0.9430
2.0912 4.4341 1.0570 −0.1298
−0.1590 1.0570 4.1435 1.9088
0.9430 −0.1298 1.9088 4.0865


for the word vector

W =
[
X3Y X2Y X XYX2 Y X3

]t
.

The rest of the output: IsCycEq = 1 since f is (numerically) an element of Θ2; sohs

is a vector of nc polynomials gi with f
cyc∼
∑

i g
∗
i gi = g; SDP data is the SDP data for

(CSOHSSDP) constructed from f .
(3) To obtain rational decomposition for f we need to round and project the obtained floating

point solution G0. This can be done by feeding G0 and SDP data into RprojRldlt. This
rationalization scheme is based on the Peyrl-Parrilo technique [PP08] and will be described
elsewhere; see also [KLYZ12]. Note that their results are stated for SDPs arising from sum
of squares problems, but they carry over verbatim to the setting of (the seemingly more)
general SDPs.

>> [G,L,D,P,err]=RprojRldlt(G0,SDP_data,true)

This produces a rational Gram matrix G for f with respect to W and its LDU decomposi-
tion PLDLtP t, where P is a permutation matrix, L lower unitriangular, and D a diagonal
matrix with positive entries. We caution the reader that L,D, and G are cells, each contain-
ing numerators and denominators separately as a matrix. Finally, the obtained rational

http://ncsostools.fis.unm.si/
http://ncsostools.fis.unm.si/
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sum of hermitian squares certificate for f = S8,2(X,Y ) is

f
cyc∼

4∑
i=1

λig
∗
i gi,

where

g1 = X3Y + 1
2X

2Y X + 1
4Y X

3 g3 = XYX2 + 13
22Y X

3

g2 = X2Y X + 1
3XYX

2 − 1
6Y X

3 g4 = Y X3

and

λ1 = 4, λ2 = 3, λ3 =
11

3
, λ4 =

105

44
.

5. Conclusions

In this paper we considered polynomials in free noncommuting variables which can be
decomposed as a sum of hermitian squares and commutators. We presented a systematic way
of finding such a decomposition using our open source computer algebra system NCSOStools,
freely available at http://ncsostools.fis.unm.si/. The main part of the method – a variant
of the classical Gram matrix method – is given by the construction of a semidefinite program.
Its solution (if it exists) yields a numerical certificate for the decomposition. The presented
Newton cyclic chip method is used to reduce the size of the underlying semidefinite program
using Newton polytopes and linear programming. The results are illustrated by numerous
examples which also provide demonstrations how to use the proposed algorithm with our
computer algebra system NCSOStools.
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