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Abstract. The main result of this short note is a generic version of Paz’ conjecture on the

length of generating sets in matrix algebras. Consider a generic g-tuple A = (A1, . . . , Ag) of

n × n matrices over an infinite field. We show that whenever g2d ≥ n2, the set of all words

of degree 2d in A spans the full n × n matrix algebra. Our proofs use generic matrices, are

combinatorial and depend on the construction of special kinds of directed multigraphs with

few edge-disjoint walks.

1. Introduction

Let F be an infinite field and let A be an associative F-algebra. Given a generating set S

of A containing 1, let Sk denote the set of all products of the form s1 · · · sk with si ∈ S. If

spanS`−1 ( spanS` = A,

we say that S has (generating) length `. These lengths feature prominently in the study of

growth of algebras and the Gelfand-Kirillov dimension [KL00, BoKr76].

A fundamental problem is to find bounds on the length of generating sets. Much activity

has focused on A = Mn(F) (see e.g. [Paz84, FGG97, Pap97, LR11, Ros12]), where the best

known bound on the length of generating sets is O(n3/2), due to Pappacena [Pap97]. The Paz

conjecture [Paz84] states that the bound is 2n− 2, and it is easy to see that this bound would

be sharp. We refer the reader to [LS09] for the study of an analogous problem in groups.

In this short note we establish a version of Paz’ conjecture in a generic setting: the length

of a generic1 generating set in Mn(F) is O(log n) (Corollary 2.3). To prove this bound we

establish the existence of “sweeping” words w1, . . . , wn2 of degree 2dlogg ne in g freely non-

commuting letters x1, . . . , xg. That is, there exist (symmetric) n×n matrices A1, . . . , Ag such

that w1(A1, . . . , Ag), . . . , wn2(A1, . . . , Ag) span Mn(F); see Theorem 2.2. Here is a simple corol-

lary. Given g2d ≥ n2 consider the set of all words w of degree 2d in g matrices A ∈ Mn(F)g.
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Vectorize each matrix w(A) and arrange these vectors into a matrix (of size n2 × g2d). Corol-

lary 2.4 shows that this matrix is generically of full rank, generalizing a theorem of Rosenthal

[Ros12] who established the special case d = 1.

The key step in the proofs is the construction of special kinds of directed multigraphs with

few edge-disjoint walks (Subsection 3.1). Another ingredient going into our proofs are generic

matrices and their properties [Row80, GRZ03].

The paper is organized as follows. Section 2 gives notation, preliminaries, and presents our

main results on sweeping words and lengths in matrix algebras. Section 3 gives proofs of our

results, including the graph-theoretic construction in Subsection 3.1.

Acknowledgments. The authors thank Benoit Collins for several stimulating discussions,

Jason P. Bell for sharing his expertise, and Jurij Volčič for carefully reading a preliminary ver-

sion of the manuscript. They would also like to thank the referees for many helpful suggestions

which considerably improved the presentation of this paper.

2. Main results

2.1. Notation and preliminaries. Let F denote an infinite field and Mn(F) the algebra of

n × n matrices over F. We denote the free associative algebra generated by x1, . . . , xg by

F〈x1, . . . , xg〉. By 〈x1, . . . , xg〉 we denote the free monoid generated by x1, . . . , xg, and by

〈x1, . . . , xg〉d words in 〈x1, . . . , xg〉 of degree d. In case g = 2 we write x, y instead of x1, x2.

The set {1, . . . , d} is denoted by Nd.

2.1.1. Generic matrices and the discriminant. We denote by C = F[x
(k)
ij | 1 ≤ i, j ≤ n, 1 ≤

k ≤ g] a commutative polynomial algebra. The elements Xk = (x
(k)
ij ) ∈Mn(C), 1 ≤ k ≤ g, are

called generic matrices. The discriminant ∆(A1, . . . , An2) of n × n matrices A1, . . . , An2

is the determinant of the n2 × n2 matrix whose k-th column v(k) is the vectorized matrix Ak;

i.e., v
(k)
(n−1)i+j = (Ak)ij . For future use we record the identity

(2.1) ∆(A1B, . . . , An2B) = det(B)∆(A1, . . . , An2).

2.1.2. Locally linearly independent words. We say that w1, . . . , wm ∈ 〈x1, . . . , xg〉 are Mn(F)-

locally linearly independent if w1(A), . . . , wm(A) are linearly independent for some A ∈
Mn(F)g. This concept first appeared in [CHSY03], later it has been studied algebraically in

[BrKl13], and recently in [BPŠ15].

We note the following easy observation.

Lemma 2.1. Words w1, . . . , wn2 ∈ 〈x1, . . . , xg〉 are Mn(F)-locally linearly independent if and

only if the discriminant of w1(X1, . . . , Xg), . . . , wn2(X1, . . . , Xg) is nonzero.

We say that words w1, . . . , wm ∈ 〈x1, . . . , xg〉 sweep Mn(F) if there exists A ∈Mn(F)g such

that w1(A), . . . , wm(A) span Mn(F).
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2.2. Main result on words.

Theorem 2.2. Let g ≥ 2 and d = dlogg ne. Then there exist Mn(F)-locally linearly inde-

pendent words w1, . . . , wn2 ∈ 〈x1, . . . , xg〉2d. That is, for some A ∈ Mn(F)g the matrices

w1(A), . . . , wn2(A) are linearly independent and thus span Mn(F).

2.2.1. Length of a vector space. Let V be a vector subspace of Mn(F). By V k we denote the

vector space spanned by the words of degree at most k evaluated at V . The length of V is

the integer ` yielding a stationary chain

V ( V 2 ( · · · ( V ` = V `+1.

Given a subset S of Mn(F)g, a vector space V ⊆Mn(F) of dimension g is S-general if it can

be spanned by elements A1, . . . , Ag satisfying (A1, . . . , Ag) ∈ S.

Corollary 2.3 (Generic version of Paz’ conjecture). Let g ≥ 2 and let F be an infinite field.

There exists a nonempty Zariski open subset S ⊆Mn(F)g such that the length of an S-general

vector subspace of Mn(F) is of order O(log n).

Note that if F ∈ {R,C}, then a nonempty Zariski open subset of Fm is automatically dense

in the Euclidean topology.

2.2.2. Words in random matrices span the full matrix algebra. By Corollary 2.3, given a g-

tuple A of random n× n matrices, words of degree O(log n) in A span Mn(F). In particular,

we have:

Corollary 2.4. For each g satisfying n2 ≤ g2d there exists a set of g matrices such that words

of degree 2d in those matrices span Mn(F).

Corollary 2.4 partially answers a question posed in [Ros12], where this result is established

in the case d = 1. The answer is complete for n ∈ N satisfying g2d−1 < n2 ≤ g2d. The question

whether the words of degree 2d− 1 sweep Mn(F) in the case n2 ≤ g2d−1 remains.

3. Proofs

The proof of Theorem 2.2 reduces to the study of special kinds of graphs which we introduce

in the first subsection. The main ideas can be revealed already in the case of two variables,

and the general case is only notationally more difficult, so we focus on g = 2. In the next

proposition we state for convenience this special case separately.

Proposition 3.1. Let d = dlog2 ne. There exist Mn(F)-locally linearly independent words

w1, . . . , wn2 ∈ 〈x, y〉2d.

3.1. Graphs. We recursively construct a family of graphs (Gd)d∈N. Let G0 be a graph with

one vertex labeled by 1 and no edges. We let Gd be a (directed) graph with 2d vertices labeled

by N2d , and define the edges as follows. There is a (directed) edge from i to j in Gd of

multiplicity 4e for 1 ≤ i, j ≤ 2d−1, if there is an edge of multiplicity e from i to j in Gd−1.

Moreover, each vertex i for 1 ≤ i ≤ 2d−1 has additionally 2d+1 loops, and there are 2d edges
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from i to i+ 2d−1 and back for 1 ≤ i ≤ 2d−1. We label the loops by x, and other edges by y.

Note that Gd contains 22d+1d edges, half of them labeled by x and the other half by y.

For example, the figures below show G1 and G2 with the numbers on edges corresponding

to their respective multiplicities, and instead of the labels x and y we use dashed (resp. solid)

edges for the edges corresponding to x (resp. y).
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Figure 1. G1
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Figure 2. G2

If p is a walk in the graph Gd then we associate to it a word corresponding to the labels on

the edges passed by p in the respective order. When partitioning a graph into (edge-disjoint)

walks we do not distinguish between the directed edges connecting the same vertices (i.e., two

walks are considered the same if the associated words are equal).

We now state a technical lemma that will be used extensively in the proof of Proposition

3.1.

Lemma 3.2. The graph Gd can be partitioned uniquely into 22d (edge-disjoint) walks pij of

length 2d for 1 ≤ i, j ≤ 2d, such that pij starts at i and ends at j, which yield all the words

in 〈x, y〉2d.

Proof. We prove the lemma by induction on d. Let us denote by G
(m)
d the graph obtained

from Gd by multiplying the multiplicity of each edge by m.

We claim that G
(m)
d can be partitioned in only one way into m22d walks of length 2d such

that m walks start at i and end at j for 1 ≤ i, j ≤ 2d, and such that each word in 〈x, y〉2d
corresponds to m walks. Consider first G

(m)
1 . Then the only way of obtaining the desired

partition is to take m walks {2→ 1, 1→ 2}, m walks {1→ 1, 1→ 2}, m walks {2→ 1, 1→ 1}
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and m walks {1 → 1, 1 → 1} as can easily be seen. Suppose that the claim holds for all

graphs G
(m)
` , ` < d. Consider now G

(m)
d . Since there are no loops on the vertices labeled by

i for 2d−1 + 1 ≤ i ≤ 2d, all words with the starting or ending point in these vertices need to

begin, resp. end, with y. By the condition on the partition, exactly half of the walks have

this property, thus words with another starting, resp. ending, point need to begin, resp. end,

with x. Removing the edges starting or ending at i for 2d−1 + 1 ≤ i ≤ 2d, and m2d+1 loops on

vertices i for 1 ≤ i ≤ 2d−1, we obtain a graph on 2d−1 vertices labeled by N2d−1 (ignoring the

isolated points) which coincides with G
(4m)
d−1 by construction, and which we need to partition

into 4m22(d−1) walks of length 2(d − 1) (as we have already removed the starting and the

ending edge of walks in G
(m)
d ) such that 4m walks start at i and end at j for 1 ≤ i, j ≤ 2d−1,

and each word in 〈x, y〉2d−2 corresponds to 4m walks. By the induction hypothesis, there is

only one such a partition. The lemma thus follows by taking m = 1.

For the proof of Theorem 2.2 we will need a slight generalization of the previous lemma.

We thus introduce a graph Ggd which has gd vertices and is defined recursively by setting Gg0
to be the graph with 1 vertex labeled by 1 and no edges. Having constructed Ggd−1 we let Ggd
be a directed graph with gd vertices labeled by Ngd , and having a (directed) edge from i to j

of multiplicity g2e, i, j ∈ Ngd−1 , if there is an edge of multiplicity e from i to j in Ggd−1, and

is labeled as the corresponding edge in Ggd−1, and there are gd edges from i to i+ (k− 1)gd−1

and back for 1 ≤ i ≤ gd−1, labeled by xk, 1 ≤ k ≤ g (for k = 1 every loop has multiplicity

g2d). Note that Ggd contains 2dg2d edges.

Lemma 3.3. There is a unique partition of the graph Ggd in g2d (edge-disjoint) walks pij of

length 2d for 1 ≤ i, j ≤ 2d, such that pij starts at i and ends at j, which yield all the words

in 〈x1, . . . , xg〉2d.

The proof of Lemma 3.3 is a straightforward modification of Lemma 3.2 and is omitted.

3.2. Proof of Theorem 2.2.

Proof of Proposition 3.1. By Lemma 2.1 we need to show that

p(x11, . . . , xnn, y11, . . . , ynn) := ∆(w1(X,Y ), . . . , wn2(X,Y ))

is nonzero for some w1, . . . , wn2 ∈ 〈x, y〉2d, where X = (xij), Y = (yij) are generic n × n

matrices. (We may and we will assume that X is diagonal [Row80, Proposition 1.3.15].) By

the definition of the discriminant,

(3.1) p(x11, . . . , xnn, y11, . . . , ynn) =
∑
σ∈Sn2

(−1)σ
∏

1≤i,j≤n
wσ(kij)(X,Y )ij ,

where kij = (i − 1)n + j, and wk(X,Y )ij denotes the commutative polynomial at the entry

(i, j) of the word wk evaluated at the tuple of generic matrices (X,Y ).

Let us define the lexicographic order on 〈x, y〉 with x > y and denote by vs the vector of the

words of degree s listed decreasingly with respect to this order. By vts we denote its transpose.
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We denote by eij , 1 ≤ i, j ≤ n, the standard matrix units, and write ek = e11 + · · · + ekk.

Let 2d−1 < n ≤ 2d, n′ = n− 2d−1, and let

(3.2) Wn = envdv
t
den =

(
xvd−1v

t
d−1x xvd−1v

t
d−1yen′

en′yvd−1v
t
d−1x en′yvd−1v

t
d−1yen′

)
be the block matrix consisting of words with blocks of the size 2d−1×2d−1, 2d−1×n′, n′×2d−1,

and n′ × n′, respectively. The word appearing at the (i, j)-entry of Wn will be denoted by

Wn,ij .

We proceed to find a monomial that appears in the product on the right-hand side of (3.1)

for a unique σ ∈ Sn2 . We write xi = xii and define

rn,ij =


xixj if 1 ≤ i, j ≤ 2d−1,

xiyj−2d−1,j if 1 ≤ i ≤ 2d−1, 2d−1 < j ≤ n,
xjyi,i−2d−1 if 2d−1 < i ≤ n, 1 ≤ j ≤ 2d−1,

yi,i−2d−1yj−2d−1,j if 2d−1 < i, j ≤ n.
We further inductively define

m1,11 = 1, mn,ij = m2d−1,idjd
rn,ij ,

where id ≡ i mod 2d−1, jd ≡ j mod 2d−1, 1 ≤ id, jd ≤ 2d−1. Consider the monomial defined

by

mn =
∏

1≤i,j≤n
rn,ij .

In particular, in the case n = 2d we have

m2d = (m2d−1)4
∏

1≤i,j≤2d

r2d,ij .

Let w(i−1)n+j = Wn,ij for Wn defined in (3.2). We claim that mn appears in

P σn =
∏

1≤i,j≤n
wσ(kij)(X,Y )ij

only for σ = id. By the construction of mn,ij ,mn and (3.2), mn,ij has a nonzero coefficient in

the commutative polynomial Wn,ij(X,Y )ij and thus the same holds for the monomial mn in∏
1≤i,j≤n

wkij (X,Y )ij =
∏

1≤i,j≤n
Wn,ij(X,Y )ij .

It remains to show that mn does not appear in P σn for σ 6= id. For this we use graph-theoretic

language.

We first consider the case n = 2d. We can present the monomial mn as a graph on n

vertices, in which there is a directed edge of multiplicity sij between vertices i and j labeled

by y if sij is the degree of yij in the monomial mn, and there are si loops on the vertex i

labeled by x if si is the degree of xi in mn. It follows by the (inductive) definition of mn that

the associated graph is Gd. Since mn needs to be written as a product of n2 monomials uij ,

1 ≤ i, j ≤ n, arising from monomials in wσ(kij)(X,Y )ij , wkij ∈ 〈x, y〉2d, our problem reduces
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to finding partitions of the graph associated to mn into n2 walks pij , 1 ≤ i, j ≤ n, of length 2d

that yield all the words in 〈x, y〉2d. Lemma 3.2 asserts that there is only one such partition,

and thus concludes the proof in the case n = 2d.

For arbitrary n we observe that if∑
σ∈Sn2

(−1)σ
∏

1≤i,j≤n
wσ((i−1)n+j)(X,Y )ij

equaled 0 then mn would appear in P id
n and in some other P ρn with ρ ∈ Sn2 . As mn,ij can be

identified with m2d,ij for 1 ≤ i, j ≤ n, m2d would have a nonzero coefficient in the product

P σ
2d

for σ = id and σ = ρ̃ ∈ S2d (here ρ̃ is the permutation in S2d induced by ρ and fixing all

i > n), which is impossible by the claim proved in the previous paragraph. Thus the words

Wn,ij , 1 ≤ i, j ≤ n, are Mn(F)-locally linearly independent.

Proof of Theorem 2.2. One follows the steps of the proof of Proposition 3.1 where initially one

needs to consider the case n = gd, and defines the monomial mn inductively corresponding to

the matrix

(3.3)

Wn = envdv
t
den =


x1vd−1v

t
d−1x1 . . . x1vd−1v

t
d−1xg−1 x1vd−1v

t
d−1xgen′

...
. . .

...
...

xg−1vd−1v
t
d−1x1 . . . xg−1vd−1v

t
d−1xg−1 xg−1vd−1v

t
d−1xgen′

en′xgvd−1v
t
d−1x1 . . . en′xgvd−1v

t
d−1xg−1 en′xgvd−1v

t
d−1xgen′

 ,

where gd−1 < n ≤ gd, n′ = n− gd−1, and vs denotes the vector of gs words of degree s listed

decreasingly in the monomial order induced by setting x1 > · · · > xg. Instead of applying

Lemma 3.2 one concludes the proof by applying Lemma 3.3.

Proof of Corollary 2.3. Let w1, . . . , wn2 be the Mn(F)-locally linearly independent words of

degree 2d = 2dlogg ne whose existence was established in Theorem 2.2. As then the discrim-

inant ∆ := ∆(w1(X1, . . . , Xg), . . . , wn2(X1, . . . , Xg)) is nonzero, the subset S of A ∈ Mn(F)g

where ∆ does not vanish is a nonempty Zariski open subset, and therefore dense in Mn(F)g. In

the case F ∈ {R,C}, S is also dense in the Euclidean topology. By the definition of S it follows

that every S-general vector subspace of Mn(F) is of length O(log n). Indeed, the upper bound

is 2dlogg ne, while the lower bound is dlogg n
2e (as the dimension of Mn(F) equals n2).

Proof of Corollary 2.4. Let w1, . . . , wn2 , ∆, and S be as in the proof of Corollary 2.3. Choose

A1, . . . , Am such that (A1, . . . , Am) ∈ S ⊆ Mn(F)m, where m is the least k ∈ N satisfying

kd ≥ n. For the remaining Am+1, . . . , Ag take arbitrary n×n matrices. As the set S is Zariski

open, we can further require that det(A1) 6= 0. Let r = 2d−2dlogm ne. Then wix
r
1, 1 ≤ i ≤ n2,

are words of degree 2d. As ∆(w1(X1, . . . , Xg)x
r
1, . . . , wn2(X1, . . . , Xg)x

r
1) = det(Xr

1)∆, which

is nonzero when evaluated at (A1, . . . , Ag), the words wix
r
1 for 1 ≤ i ≤ n2, evaluated at

(A1, . . . , Ag) span Mn(F).
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Remark 3.4. (a) It is not difficult to see that one can take the matrices in Corollary 2.4 to be

symmetric. One only needs to note that the proof of Lemma 3.3 also works for the undirected

version of the graphs Ggd and then use these in the proof of Theorem 2.2.

(b) The proof of Proposition 3.1 also leads to an explicit construction of n×n matrices such

that words of degree 2d = 2dlogg ne in these matrices span Mn(F). We give an example in

characteristic 0. Keep the notation from the proof of Corollary 2.4. Let M = n!(n2d−1)n. We

set all variables that do not appear in mn to zero, and denote by C ′ the polynomial algebra in

the remaining variables. Let us order the variables as follows: x
(k)
i,i+(k−1)ms−1 < x

(`)
j,j+(k−1)mt−1 ,

(resp. x
(k)
i,i+(k−1)ms−1 < x

(`)
j+(k−1)mt−1,j

), if (s, k, i) < (t, `, j) (resp. (s, k, i) ≤ (t, `, j)) in the

lexicographic order, and take the corresponding lexicographic ordering on C ′. Let

c1 = 3, cs = 2ms−1(m− 1) +ms−2 (s > 1), c =
d∑
s=1

cs.

We further define for gs−2 < i ≤ ms−1 and 1 ≤ j ≤ ms−1,

f1,s,i+ = f1,s,i− =
s−1∑
t=0

ct + j (ms−2 < j ≤ ms−1),

fk,s,j+ =
s−1∑
t=0

ct +ms−2 + 2ms−1(k − 2) + j, fk,s,j− =
s−1∑
t=0

ct +ms−2 + 2ms−1(k − 2) +ms−1 + j.

We set

A
(k)
i,i+(k−1)ms−1 = M2d(c−fk,s,i+ ),

A
(k)
i+(k−1)ms−1,i

= M2d(c−fk,s,i− ).

Since the monomial mn is the maximal monomial in C ′, the degree of monomials appearing

in ∆(w1(X1, . . . , Xg), . . . , wn2(X1, . . . , Xm)) is 2d, and there appear at most M monomials in

∆ (counted with multiplicity). It is easy to see that the constructed A(k), 1 ≤ k ≤ m, and

arbitrary A(k), m < k ≤ g, have the desired property of Corollary 2.4.

(c) It would be interesting to know whether arbitrary n2 words in x, y of fixed degree

d ≥ d2 log2 ne sweep Mn(F). If the answer were positive then we could deduce that a quasi-

identity of Mn(F) (see [BPŠ15] for the definition)
∑

M λMM with degM = d cannot be a sum

of fewer than n2 monomials, and this bound is sharp. This should be seen in contrast with

[Row80, Exercise 7.2.3], stating that a multilinear polynomial identity of Mn(F) cannot be a

sum of fewer than 2n monomials. However, the sharp bound is to the best of our knowledge

not known.
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[BPŠ15] M. Brešar, C. Procesi, Š. Špenko, Quasi-identities on matrices and the Cayley-Hamilton polynomial,

Adv. Math. 280 (2015), 439–471. 2, 8

[CHSY03] J. F. Camino, J. W. Helton, R. E. Skelton, J. Ye, Matrix inequalities: a symbolic procedure to

determine convexity automatically, Int. Eq. Oper. Th. 46 (2003), 399–454. 2

[FGG97] A. Freedman, R. Gupta, R. Guralnick, Shirshov’s theorem and representations of semigroups, Pacific

J. Math. 181 (1997), 159–176. 1

[GRZ03] A. Giambruno, A. Regev, M. Zaicev (editors), Polynomial identities and combinatorial methods,

Marcel Dekker, 2003. 2

[KL00] G. R. Krause, T. H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, Amer. Math.

Soc., 2000. 1

[LS09] M. Larsen, A. Shalev, Word maps and Waring type problems, J. Amer. Math. Soc. 22 (2009),

437–466. 1

[LR11] W. E. Longstaff, P. Rosenthal, On the lengths of irreducible pairs of complex matrices, Proc. Amer.

Math. Soc. 139 (2011), 3769–3777. 1

[Pap97] C. J. Pappacena, An upper bound for the length of a finite-dimensional algebra, J. Algebra 197

(1997), 535–545. 1

[Paz84] A. Paz, An application of the Cayley-Hamilton theorem to matrix polynomials in several variables,

Linear Multilinear Algebra 15 (1984), 161–170. 1

[Ros12] D. Rosenthal, Words containing a basis for the algebra of all matrices, Linear Algebra Appl. 436

(2012), 2615–2617. 1, 2, 3

[Row80] L. H. Rowen, Polynomial identities in ring theory, Academic Press, 1980. 2, 5, 8

Igor Klep, Department of Mathematics, The University of Auckland, New Zealand

E-mail address: igor.klep@auckland.ac.nz
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