
POSITIVSTELLENSÄTZE AND MOMENT PROBLEMS
WITH UNIVERSAL QUANTIFIERS

XIAOMENG HU, IGOR KLEP, AND JIAWANG NIE

Abstract. This paper studies Positivstellensätze and moment problems for sets K that are given by uni-

versal quantifiers. Let Q be a closed set and let g = (g1, . . . , gs) be a tuple of polynomials in two vector

variables x and y. Then K is described as the set of all points x such that each gj(x, y) ≥ 0 for all y ∈ Q.

Fix a measure ν with supp(ν) = Q, and assume it satisfies the Carleman condition.

The first main result of the paper is a Positivstellensatz with universal quantifiers: if a polynomial

f(x) is positive on K, then f(x) belongs to the quadratic module QM[g, ν] associated to (g, ν), under the

archimedeanness assumption on QM[g, ν]. Here, QM[g, ν] denotes the quadratic module of polynomials in x

that can be represented as

τ0(x) +

∫
τ1(x, y)g1(x, y) dν(y) + · · ·+

∫
τs(x, y)gs(x, y) dν(y),

where each τj is a sum of squares polynomial.

Second, necessary and sufficient conditions for a full (or truncated) multisequence to admit a representing

measure supported in K are given. In particular, the classical flat extension theorem of Curto and Fialkow is

generalized to truncated moment problems on such a set K. Finally, applications of these results for solving

semi-infinite optimization problems are presented.

1. Introduction

Positivstellensätze and moment problems are pillars of real algebraic geometry [BCR98,

Lau09, Sce09] and are of broad interest in computational and applied mathematics. This pa-

per concerns these two topics when the constraining sets are given by universal quantifiers.

Let x = (x1, . . . , xn) and y = (y1, . . . , ym) be tuples of variables. We are interested in sets K

in Rn that are given by inequalities in x, with y as a universal quantifier. Let Q ⊆ Rm be

a given closed set. For a given tuple g = (g1, . . . , gs) of polynomials in R[x, y], consider the
following set given by the universal quantifier y:

(1.1) K = {x ∈ Rn : g1(x, y) ≥ 0, . . . , gs(x, y) ≥ 0 ∀y ∈ Q}.

When there is no universal quantifier y, the set K is a classical basic closed semialgebraic set.

By Tarski’s transfer principle [BCR98], if the quantifier set Q is semialgebraic, thenK is semi-

algebraic, but a quantifier-free description ofK may not be readily available or easy to obtain.

Positivstellensätze concern representations of polynomials that are positive (or nonnega-

tive) on a setK. Equivalently, for a given polynomial f ∈ R[x], what is a test or certificate for
f ≥ 0 on K? When does such a certificate hold necessarily? When K has no universal quan-

tifier y (i.e., the polynomials gi in (1.1) do not depend on y), Positivstellensätze have been

studied extensively, see, e.g., the surveys and books [HKL20, Las15, Lau09, Nie23, Sce09] or
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the following small sample of recent papers [CKS09, EP20, Fri21, GKKS15, LPR20, MNR23,

PV99, Rie16, SS+, Scw03] and the references therein. For instance, consider the Putinar

certificate

(1.2) f = σ0 + σ1g1 + · · ·+ σsgs,

where all σi are sum-of-squares (SOS) polynomials in R[x]. Clearly, if f has a representation

of the form (1.2), then f ≥ 0 on the set K. When the quadratic module of g is archimedean,

if f > 0 on K, then by Putinar’s Positivstellensatz [Put93] a representation of the form (1.2)

must hold. A representation more general than (1.2) is given by the Schmüdgen Positivstel-

lensatz [Smü91], which uses the preordering of g. All these classical results assume that K is

a basic closed semialgebraic set. However, when K depends on quantifiers as in (1.1), there

is little work on Positivstellensätze. This is remedied in the present paper.

Closely related to Positivstellensätze are moment problems. Let N denote the set of non-

negative integers and Nn denote the set of nonnegative integer vectors of length n. For a

given multisequence z = (zα)α∈Nn , i.e., z is a vector whose entries are labelled by nonnegative

integer vectors in Nn, the moment problem concerns the existence of a Borel measure µ on

Rn such that

(1.3) zα =

∫
xα dµ(x) ∀α ∈ Nn.

In the above, xα := xα1
1 · · ·xαn

n for the multiindex α = (α1, . . . , αn). The sequence z is

said to be a moment sequence if such a Borel measure µ exists, and in this case µ is called

a representing measure for z. We refer the reader to the surveys [Ber87, Fia16], books

[Akh65, Smü17], or papers [BS16, BL20, CMN11, CGIK23, IK17, KW13, Net08, PS01] and

the references therein for more details about moment problems.

In many applications, the support of the measure µ is often required to be supported in a set

K, i.e., supp(µ) ⊆ K. The z is called a K-moment sequence if (1.3) holds for a Borel measure

µ with supp(µ) ⊆ K. WhenK is described without quantifiers, this is the classicalK-moment

problem (see [Fia16, Smü17]). However, there is little work on the K-moment problem when

K depends on the quantifier y. This is the second main topic of the present paper.

Positivstellensätze and moment problems with universal quantifiers are useful for solving

semi-infinite optimization problems. A typical problem of semi-infinite optimization is

(1.4)

{
min
x∈X

f(x)

s .t . g(x, y) ≥ 0 ∀y ∈ Q.

Here, the constraining function g depends on both x and y as is the case for the gj in (1.1),

and X ⊆ Rn is another given constraining set for x that does not depend on the quantifier y.

The quantifier set Q in (1.4) need not be a basic closed semialgebraic set. Solving this kind

of semi-infinite optimization problem is typically a highly challenging task. However, Pos-

itivstellensätze and moment problems with universal quantifiers are powerful mathematical

tools for solving them. This is the third main topic of our paper.
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Contributions. The new contribution of this paper is to solve the three above mentioned

major topics.

The first contribution is a Positivstellensatz for sets K defined with universal quantifiers

as in (1.1). For a polynomial f ≥ 0 on K, a natural representation is

(1.5) f(x) = σ(x) +
s∑

j=1

∫
τj(x, y)gj(x, y) dν(y),

where σ is an SOS polynomial in x, τ1, . . . , τs are SOS polynomials in (x, y) and ν is a Borel

measure on Rm such that supp(ν) ⊆ Q. The Positivstellensatz concerns when the reverse

implication is also true. The set of all polynomials in R[x] that can be written as in (1.5) is

denoted by QM[g, ν]. It is called the quadratic module generated by g and ν. Assume ν is a

Borel measure on Rm such that supp(ν) = Q and ν satisfies the Carleman condition

(1.6)
∞∑
d=0

(∫
y2dj dν(y)

)− 1
2d

= ∞ for j = 1, . . . ,m.

We show in Theorem 3.4 that if f > 0 on K and QM[g, ν] is archimedean (i.e., N−x21−· · ·−
x2n ∈ QM[g, ν] for some scalar N), then f ∈ QM[g, ν] must hold. This is a generalization of

Putinar’s Positivstellensatz to sets given by universal quantifiers. Since the truncations of

the quadratic module QM[g, ν] for given degrees can be represented by semidefinite programs

(SDPs), Theorem 3.4 gives rise to a Moment-SOS hierarchy of SDP relaxations to optimize

a polynomial over K.

The second contribution is on moment problems for sets given with universal quantifiers. A

key tool for studying moment problems is the Riesz functional. A multisequence z = (zα)α∈Nn

gives rise to the linear functional:

Rz : R[x] → R, xα 7→ zα.

This is equivalent to Rz(f) =
∑

α fαzα for the polynomial f =
∑

α fαx
α. The functional Rz

is called the Riesz functional of z. If µ is a representing measure for z, then

Rz(f) =

∫
f(x) dµ(x) for all f ∈ R[x].

If the measure µ has supp(µ) ⊆ K, then

(1.7) Rz(f) ≥ 0 for all f ∈ R[x] : f |K ≥ 0.

We say z is K-positive if (1.7) holds. The K-positivity is necessary for z to have a K-

representing measure. For a closed setK, beingK-positive is also sufficient. This is a classical

result of M. Riesz (n = 1) and Haviland (n > 1); see the works [Akh65, Smü17, Ber87, Fia16]

for details. When the quadratic module QM[g, ν] is archimedean, we show in Section 4 that

z is a K-moment sequence if and only if Rz(f) ≥ 0 for all f ∈ QM[g, ν]. Moreover, we also

give concrete conditions for Rz ≥ 0 on QM[g, ν] in terms of moment and localizing matrices

(cf. Theorem 4.2).
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The third contribution is on semi-infinite optimization. Suppose the constraining set

X = {x ∈ Rn : ceq(x) = 0, cin(x) ≥ 0},

for two tuples ceq, cin of polynomials in x. When QM[g, ν]+Ideal[ceq]+QM[cin] is archimedean,

we show in Section 5 that the semi-infinite optimization problem (1.4) is equivalent to
min Rz(f)

s .t . Rz ≥ 0 on QM[g, ν] + Ideal[ceq] + QM[cin],

Rz(1) = 1, z ∈ RNn
.

When the ideals and quadratic modules are truncated by degrees, the above produces a hier-

archy of Moment-SOS type semidefinite programming relaxations. We prove the convergence

property for this hierarchy in Theorem 5.2. Finally, we also discuss how to estimate moments

of the measure ν by sampling when the moments are not known explicitly.

The paper is organized as follows. Notation is fixed and some background on polynomial

optimization and moment problems is given in Section 2. Positivstellensätze for sets given by

universal quantifiers are presented in Section 3. Moment problems are studied in Section 4.

Semi-infinite optimization is discussed in Section 5. Some computational experiments are

presented in Section 6. Finally, in Section 7, we present our conclusions and engage in a

detailed discussion of our findings.

2. Preliminaries

2.1. Notation. The symbol R[x] = R[x1, · · · , xn] denotes the ring of polynomials in x =

(x1, . . . , xn) with real coefficients. The symbol R+ stands for the set of nonnegative real

numbers. For a symmetric matrix W , W ⪰ 0 means that W is positive semidefinite. For a

vector u, ∥u∥ denotes its standard Euclidean norm. The notation In denotes the n×n identity

matrix. The superscript T denotes the transpose of a matrix or vector. The e denotes the

vector of all ones, i.e., e = (1, . . . , 1). We use ⊗ to denote the classical Kronecker product.

For x = (x1, . . . , xn) ∈ Rn and α := (α1, . . . , αn) ∈ Nn, the notation xα := xα1
1 · · ·xαn

n

stands for the monomial of x with power α. We denote the power set

Nn
d = {α ∈ Nn |α1 + · · ·+ αn ≤ d}.

Denote by RNn
d the space of real vectors that are labeled by α ∈ Nn

d . For a positive integer

k, the vector of all monomials in x of degrees at most d, ordered with respect to the graded

lexicographic ordering, is denoted as

[x]d :=
[
1 x1 · · · xn x21 x1x2 · · · xdn

]T
.

A polynomial σ ∈ R[x] is said to be a sum of squares (SOS) polynomial if σ = σ2
1+ · · ·+σ2

k

for some σ1, . . . , σk ∈ R[x]. The symbol Σ2[x] denotes the cone of SOS polynomials in x. An

interesting fact is that SOS polynomials can be represented through semidefinite program-

ming [Nie23]. Clearly, each SOS polynomial is nonnegative, while not every nonnegative

polynomial is SOS. The approximation performance of SOS polynomials is given in [Nie12].

Moreover, SOS polynomials are also very useful in tensor optimization [Nie17, NZ18].
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For two sets S, T ⊆ R[x], their product and addition are defined as

S · T = {pq : p ∈ S, q ∈ T}, S + T = {p+ q : p ∈ S, q ∈ T}.

In particular, if S = {p} is a singleton, then we also use

p · T = {pq : p ∈ S, q ∈ T}, p+ T = {p+ q : p ∈ S, q ∈ T}.

A polynomial tuple h = (h1, . . . , hm) in R[x] generates the ideal

Ideal[h] := h1 · R[x] + · · ·+ hm · R[x],

which is the smallest ideal containing all hi. The kth truncation of Ideal[h] is

Ideal[h]k := h1 · R[x]k−deg(h1) + · · ·+ hm · R[x]k−deg(hm).

A tuple q = (q1, . . . , qt) of polynomials in R[x] gives rise to the quadratic module (let

q0 := 1)

QM[q] :=

{
t∑

i=0

σiqi

∣∣∣σi ∈ Σ2[x]

}
.

For a degree k ∈ N with 2k ≥ deg(q), the kth truncation of QM[q] is

QM[q]2k :=

{
t∑

i=0

σiqi

∣∣∣σi ∈ Σ2[x], deg (σiqi) ≤ 2k

}
.

The quadratic module QM[q] is said to be archimedean if there exists a scalar N > 0 such

that

N − x21 − · · · − x2n ∈ QM[q].

Quadratic modules are basic concepts in polynomial optimization and moment problems. We

refer to [HKL20, Las15, Lau09, Nie23, Sce09] for recent work in this area.

Let Q ⊆ Rm be a closed set and ν be a Borel measure on Rm such that supp(ν) = Q. We let

L2(Rm, ν) denote the Hilbert space of all L2-integrable functions ϕ on Q, i.e.,
∫
ϕ(y)2 dν(y) <

∞. The inner product on L2(Rm, ν) is given by

⟨ϕ, ψ⟩L2 =

∫
ϕ(y)ψ(y) dν(y), ϕ, ψ ∈ L2(Rm, ν).

3. Positivstellensätze with universal quantifiers

This section proves a Positivstellensatz for polynomials f positive on a set K given by a

universal quantifier as in (1.1). Let Q ⊆ Rm be a given closed set. We fix a Borel measure ν

on Rm satisfying the following assumption.

Assumption 3.1. The Borel measure ν has the support supp(ν) = Q and it satisfies the

multivariate Carleman condition

(3.1)
∞∑
d=0

(∫
y2dj dν(y)

)− 1
2d

= ∞ for j = 1, . . . ,m.
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A measure ν satisfying (3.1) is known to be determinate (i.e., it is uniquely determined by

its moments
∫
yα dν(y)), and it is strictly determinate (i.e., R[y] is dense in L2(Rm, ν)) by

Nussbaum’s theorem. See, e.g., [Smü17, Section 14.4] for details and proofs. It is interesting

to remark that the Carleman condition (3.1) is satisfied automatically if Q = supp(ν) is

bounded.

3.1. Density of SOS polynomials. In this subsection we prove the following strengthening

of the above-mentioned Nussbaum’s theorem:

Proposition 3.2. Let ν be a measure satisfying Assumption 3.1. Then, SOS polynomials

are dense in the cone of nonnegative functions in L2(Rm, ν).

Proof. Suppose that the conclusion is not true. Then there exists a nonnegative function

ϕ ∈ L2(Rm, ν) that is not in the L2-closure of the convex cone Σ2[y]. By the Hahn-Banach

separation theorem (see [Bar02, Theorem III.3.4]), there is a continuous linear functional

ℓ : L2(Rm, ν) → R satisfying

(3.2) ℓ
(
Σ2[y]

)
⊆ R+, ℓ(ϕ) < 0.

By adding a small multiple of the linear functional f 7→
∫
f dν to ℓ, we can without loss of

generality assume there exists ε > 0 such that

ℓ(σ) ≥ ε > 0 for all σ ∈ Σ2[y] with ∥σ∥L2 = 1.

The Riesz representation theorem implies there is h ∈ L2(Rm, ν) such that

ℓ(f) = ⟨f, h⟩L2 =

∫
fh dν

for all f ∈ L2(Rm, ν). Since R[y] is dense in L2(Rm, ν) (see, e.g., [Smü17, Theorem 14.2]),

there is a sequence of polynomials {pn}∞n=1 ⊆ R[y] that converges to h in the L2-norm.

Applying the Cauchy-Schwartz inequality yields∣∣∣⟨f, h⟩L2 − ⟨f, pn⟩L2

∣∣∣ = ∣∣∣⟨f, h− pn⟩L2

∣∣∣ ≤ ∥f∥L2 ∥h− pn∥L2 .

Hence, for n large enough, the continuous linear functional

(3.3) ℓn : f 7→ ⟨f, pn⟩L2

also satisfies (3.2), i.e., ℓn is nonnegative on Σ2[y] while it is negative at ϕ.

We now adapt the argument in [Smü17, Theorem 14.25] to show that pn ≥ 0 on supp(ν).

The restriction ℓn : R[y] → R is a positive linear functional and satisfies the multivariate

Carleman condition (see [Smü17, Corollary 14.22]). So it is of the form

ℓn(f) =

∫
f dτ

for some measure τ on Rm. Set

M+ := {y ∈ Rm | pn(y) ≥ 0}, M− := Rm \M+.
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Let χ+, χ− denote the characteristic functions of M+,M− respectively. Then define positive

Borel measures

dν+ = χ+dν, dν− = χ−dν, dθ+ = pndν+, dθ− = −pndν−.

By definition, ν = ν+ + ν−, so∫
y2kj dν+(y) ≤

∫
y2kj dν(y) for all j, k,

whence ν+ satisfies the Carleman condition (3.1). Hence, so does θ+, again by [Smü17, Corol-

lary 14.22]. In particular, the measure θ+ is determinate. Since dθ+ − dθ− = pndν, we have∫
yα dθ+(y) =

∫
yα dθ−(y) +

∫
yα dτ(y) =

∫
yα d(θ− + τ)(y).

Thus by determinacy, θ+ = θ− + τ . This yields

0 = θ+(M−) ≥ θ−(M−) ≥ 0,

so θ−(M−) = 0 and θ− = 0.

Next, assume, for sake of contradiction, that pn(y0) < 0 for some y0 ∈ supp(ν). Then

−pn(y) ≥ δ > 0 for all y in a small ball B around y0. This yields the contradiction

0 = θ−(B) =

∫
(−pn(y)) dν−(y) =

∫
(−pn(y)) dν(y) ≥ δν(B) > 0,

so pn ≥ 0 on supp(ν). Finally, this again leads to the contradiction

0 > ℓn(ϕ) =

∫
ϕpn dν ≥ 0,

which completes the proof.

3.2. The Positivstellensatz. Now we consider the set K ⊆ Rn as in (1.1). Since K is

defined by the universal quantifier y in Q, one can write K equivalently as the intersection

(3.4) K =
⋂
y∈Q

{x ∈ Rn : g1(x, y) ≥ 0, . . . , gs(x, y) ≥ 0} .

Clearly, K is closed since each gi is a polynomial. If the quantifier set Q is semialgebraic,

then so is K by Tarski’s transfer principle [BCR98]. If Q is not semialgebraic, then K may

not be semialgebraic.

For notational convenience, denote

g0 := 1, g := (g0, g1, . . . , gs).

For f ∈ R[x], if there exist SOS polynomials τ0, τ1, . . . , τs ∈ Σ2[x, y] such that

(3.5) f(x) =
s∑

j=0

∫
τj(x, y)gj(x, y) dν(y)
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then clearly f(x) ≥ 0 for all x ∈ K. The set of all polynomials in R[x] that can be represented

as in (3.5) is

(3.6) QM[g, ν] :=

{
s∑

j=0

∫
τj(x, y)gj(x, y) dν(y)

∣∣∣ each τj ∈ Σ2[x, y]

}
.

The set QM[g, ν] is a convex cone in R[x]. It is called the quadratic module associated to g

and ν, since
1 ∈ QM[g, ν], QM[g, ν] + QM[g, ν] ⊆ QM[g, ν],

Σ2[x] ·QM[g, ν] ⊆ QM[g, ν].

Apparently, all polynomials in QM[g, ν] are nonnegative on K. The Positivstellensatz con-

cerns the reverse of this implication. We start with the key Proposition 3.3 stating that the

positivity domain of QM[g, ν] is K.

Proposition 3.3. K = {x ∈ Rn | ∀f ∈ QM[g, ν] : f(x) ≥ 0}.

Proof. By the definition (3.6), every polynomial in QM[g, ν] is nonnegative on K, whence

K ⊆ {x ∈ Rn | ∀f ∈ QM[g, ν] : f(x) ≥ 0} =: D.

To establish the converse inclusion, assume x̂ /∈ K. Then there is a ŷ ∈ Q and a j ∈
{1, . . . , s} such that gj(x̂, ŷ) < 0. In a small open disk Bε1(x̂, ŷ) of radius ε1 about (x̂, ŷ) in

Rn+m, gj(x, y) ≤ −λ for some λ > 0. Consider a continuous function ϕ positive on the open

ball B ε1
2
(ŷ) ⊆ Rm and zero outside of B ε1

2
(ŷ). Clearly,

ψ(x) =

∫
Q

ϕ(y)gj(x, y) dν(y) ∈ R[x]

is negative at x̂.

By Proposition 3.2, there is a sequence (σk)k in Σ2[y] that converges to ϕ in the L2-norm.

Hence for each x, as k → ∞, we have∫
Q

σk(y)gj(x, y) dν(y) −→
∫
Q

ϕ(y)gj(x, y) dν(y) = ψ(x).

In particular, for k large enough,

f(x) =

∫
Q

σk(y)gj(x, y) dν(y) ∈ QM[g, ν]

is negative at x̂. That is, x̂ ̸∈ D, whence D ⊆ K and we are done.

3.3. Bounded K. In Positivstellensätze, we typically require that for f > 0 on K and the

quadratic module associated to K is archimedean. Since K is given by a universal quantifier

over y ∈ Q, we form the quadratic module QM[g, ν]. We assume it is archimedean, i.e., there

exists N > 0 such that

N − x21 − · · · − x2n ∈ QM[g, ν].

Clearly, the archimedeanness of QM[g, ν] implies that K is bounded (so it is compact since

it is closed). Conversely, if K is bounded, we can generally assume QM[g, ν] is archimedean,
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because one can add the inequality N −
∑
x2i ≥ 0 (no y) to the description of the set K.

The following is a generalization of the Putinar Positivstellensatz to sets given by universal

quantifiers.

Theorem 3.4. Let K ⊆ Rn be as in (1.1) and assume the measure ν satisfies Assumption 3.1.

Suppose QM[g, ν] is archimedean. For a polynomial f ∈ R[x], if f > 0 on K, then we have

f ∈ QM[g, ν].

Proof. We shall apply a strengthening of Putinar’s Positivstellensatz as presented in [Mar08,

Chapter 5]. Consider the quadratic module M = QM[g, ν]. By Proposition 3.3, its posi-

tivity domain (KM in Marshall’s notation) is equal to K. Hence the version of Putinar’s

Positivstellensatz presented by Marshall in [Mar08, Theorem 5.4.4] implies that every poly-

nomial positive on KM = K belongs to the quadratic module M = QM[g, ν].

Theorem 3.4 clearly yields the following two corollaries.

Corollary 3.5. Let K,QM[g, ν] be as in Theorem 3.4. Then the following are equivalent for

f ∈ R[x]:

(i) f ≥ 0 on K;

(ii) for all ε > 0, f + ε ∈ QM[g, ν].

Corollary 3.6. Let K,QM[g, ν] be as in Theorem 3.4. Then the following are equivalent:

(i) K = ∅;

(ii) −1 ∈ QM[g, ν].

3.4. The non-archimedean case. When the quadratic module QM[g, ν] is not archimedean

(e.g., this is the case when K is unbounded), the conclusion of Theorem 3.4 may not hold.

However, Proposition 3.3 allows us to get a perturbation type Positivstellensatz as in Lasserre-

Netzer [LN07], for all (including unbounded) K. For r ∈ N, denote

Ωr :=
n∑

j=1

r∑
k=0

x2kj

k!
∈ R[x].

We now have the following Positivstellensatz.

Corollary 3.7. Let K ⊆ Rn be as in (1.1) and assume the measure ν satisfies Assump-

tion 3.1. Then the following are equivalent for f ∈ R[x]:

(i) f ≥ 0 on K;

(ii) for all ε > 0, there exists r ∈ N such that f + εΩr ∈ QM[g, ν].

Proof. We shall apply a strengthening of the Lasserre-Netzer perturbative Positivstellensatz

[LN07] proved in [KMV+] that can handle arbitrary constraints, and is proved as a corollary

of more general results on “moment” polynomials.

Consider the constraint set S = QM[g, ν]. In the notation of [KMV+], K(S) = K and

Q(S) = QM[g, ν]. Now we simply apply [KMV+, Corollary 6.13] (polynomials nonnegative

on K(S) are up to a perturbation as in (ii) contained in Q(S)) to deduce Corollary 3.7.
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3.5. Some illustrative examples. In the following examples, the measure ν is the classical

Lebesgue measure. Recall that g0 = 1.

Example 3.8. Consider f = −x31 − x32 +
1
9
x21x2 +

1
9
x1x

2
2 + 8x21 + 8x22 and the set K given as

g(x, y) :=

(
1− x21y

2
1 − x22y

2
2

x1y
2
2 + x2y

2
1 − 3x1x2y1y2

)
≥ 0

for all y ∈ Q :=

{
(y1, y2)

∣∣∣∣ y1 + y2 ≤ 1,

y1 ≥ 0, y2 ≥ 0

}
.

A Positivstellensatz certificate for f ∈ QM[g, ν] is

f(x) =
2∑

i=0

∫ 1

0

∫ 1−y2

0

τi(x, y)gi(x, y) dy1dy2,

where the SOS polynomials τi(x, y) are

τ0 = (2x21 − x1)
2 + (2x22 − x2)

2 + 5(x1 + x2)
2,

τ1 = 60(x1y1 − x2y2)
2,

τ2 = 20(x1y2 − x2y1)
2 + 4(x21 + x22).

We remark that a Positivstellensatz certificate for f ∈ QM[g, ν] can be computed numeri-

cally by solving a semidefinite program. The following is such an example.

Example 3.9. Consider f(x) = x21x2 − x1x
2
2 + x21 + x2 and the set K given as

g(x, y) =

(
x21y2 + x2y

2
1 − x1 + x2 − y1

x2y
2
2 − x22y1 − x1y2 + x2y1

)
≥ 0

for all y ∈ Q = {(y1, y2) : |y1|+ |y2| ≤ 1}.

The Positivstellensatz certificate f ∈ QM[g, ν] is

f(x) =
2∑

i=0

∫
Q

τi(x, y)gi(x, y) dy,
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where the SOS polynomials τi(x, y) are

τ0 =

 1

x1
x2

T  0.0288 0.0988 −0.0265

0.0988 0.3385 −0.0909

−0.0265 −0.0909 0.0244

 1

x1
x2

 ,

τ1 =


1

x1
x2
y1
y2


T 

0.0905 −0.0988 0.0455 0.0865 −0.2965

−0.0988 0.1080 −0.0497 −0.0945 0.3239

0.0455 −0.0497 0.0229 0.0435 −0.1492

0.0865 −0.0945 0.0435 0.0827 −0.2835

−0.2965 0.3239 −0.1492 −0.2835 0.9717



1

x1
x2
y1
y2

 ,

τ2 =


1

x1
x2
y1
y2


T 

0.3787 0.4577 0.0895 0.5813 −0.1114

0.4577 1.9459 −0.0505 1.0328 −0.1879

0.0895 −0.0505 0.0392 0.0998 −0.0203

0.5813 1.0328 0.0998 0.9704 −0.1836

−0.1114 −0.1879 −0.0203 −0.1836 0.0348



1

x1
x2
y1
y2

 .
The above matrices in the middle are all positive semidefinite. For neatness, only four decimal

digits are shown (the errors for matching coefficients are in the order of 10−11).

4. Moment problems with universal quantifiers

This section considers K-moment problems for the set K given by a universal quantifier

as in (1.1). Recall from the introduction that a multisequence z = (zα)α∈Nn gives rise to the

Riesz functional

(4.1) Rz : R[x] → R, xα 7→ zα.

Equivalently,

Rz

(∑
α

fαx
α
)
=

∑
α

fαzα,

where fα ∈ R are coefficients. If µ is a representing measure for z, then

Rz(f) =

∫
f(x) dµ(x) for all f ∈ R[x].

If the measure µ has the support supp(µ) ⊆ K, then z must satisfy

(4.2) Rz(f) ≥ 0 for all f ∈ R[x] : f |K ≥ 0.

The multisequence z is said to be K-positive if (4.2) holds. Clearly, being K-positive is

a necessary condition for z to have a K-representing measure. When the set K is closed

(this is the case if K is given as in (1.1)), being K-positive as in (4.2) is also sufficient for

z to be a K-moment sequence. This is a classical result of Riesz and Haviland. The reader

is referred to the surveys [Ber87, Fia16] and books [Akh65, Smü17] for more details about

classical moment problems.

Using the quadratic module QM[g, ν] introduced in (3.6), we have the following character-

ization of a K-moment sequence.
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Theorem 4.1. Let K ⊆ Rn be as in (1.1) and suppose the measure ν satisfies Assump-

tion 3.1. Assume the quadratic module QM[g, ν] is archimedean. Then, the multisequence

z is a K-moment sequence if and only if the Riesz functional Rz ≥ 0 on QM[g, ν], i.e.,

Rz(f) ≥ 0 for all f ∈ QM[g, ν].

Proof. (⇒) If f ∈ QM[g, ν], then f |K ≥ 0. Hence (4.2) implies Rz ≥ 0 on QM[g, ν].

Conversely, if Rz ≥ 0 on QM[g, ν], then Rz is also nonnegative on each f ∈ R[x] that is

nonnegative on K by Theorem 3.4 or Corollary 3.5. The implication (⇐) now follows by the

Riesz-Haviland theorem mentioned above.

In the sequel, we determine concrete conditions on z for Rz ≥ 0 on QM[g, ν].

4.1. Moment and localizing matrices. The multisequence z = (zα)α∈Nn gives rise to the

infinite matrix

H[z] := (zα+β)α,β∈Nn .

That is, H[z] is the matrix labelled by nonnegative integer vectors α, β ∈ Nn and

H[z]α,β = zα+β

for all α, β. It is called the moment matrix or multivariate Hankel matrix of the multisequence

z. For a vector u = (uα)α∈Nn with finitely many nonzero entries, we have

uTH[z]u = Rz

(
u(x)2

)
, where u(x) =

∑
α

uαx
α.

Hence, if Rz ≥ 0 on Σ2[x], then H[z] ⪰ 0. For a degree k, we denote the truncation

H(k)[z] := (zα+β)α,β∈Nn
k
.

One can easily verify that H(k)[z] ⪰ 0 if Rz ≥ 0 on Σ2[x] ∩ R[x]2k.
Next we give localizing matrices for the quadratic module QM[g, ν]. For a given multi-

sequence z, Rz

( ∫
p(x, y)2gj(x, y) dν(y)

)
is a quadratic form in the vector of coefficients of

p(x, y). For convenience, we use p to denote the vector of coefficients of p(x, y). Let L
(k,l)
ν,gj [z]

be the matrix associated to this quadratic form. Here superscripts k, l denote degree bounds

on x and y, respectively, so that

Rz

(∫
p(x, y)2gj(x, y) dν(y)

)
= pT

(
L(k,l)
ν,gj

[z]
)
p,

for all p(x, y) ∈ R[x, y] with degrees

(4.3) degx(p(x, y)
2gj(x, y)) ≤ 2k, degy(p(x, y)

2gj(x, y)) ≤ 2l.

Explicit expressions for L
(k,l)
ν,gj [z] can be given as follows. For convenience, denote

(4.4) k′ := k − ⌈degx(gj(x, y))/2⌉, l′ := l − ⌈degy(gj(x, y))/2⌉.



POSITIVSTELLENSÄTZE AND MOMENT PROBLEMS WITH QUANTIFIERS 13

Then we can write

p(x, y) = pT ([x]k′ ⊗ [y]l′)

where [x]k denotes the vector of all monomials in x of degrees at most k, and likewise for [y]l.

The constraining polynomial gj(x, y) can be written in the form

gj(x, y) =
∑
i

gji(x)hji(y),

for some polynomials gji ∈ R[x] and hji ∈ R[y]. Then, one can see that

Rz

( ∫
p(x, y)2gj(x, y) dν(y)

)
= pT

(
Rz

∫
gj(x, y)([x]k′ ⊗ [y]l′)([x]k′ ⊗ [y]l′)

T dν(y)
)
p

= pT
(
Rz

∫
gj(x, y)([x]k′ [x]

T
k′)⊗ [y]l′ [y]

T
l′ dν(y)

)
p

= pT
(∑

i

( ∫
hji(y)[y]l′ [y]

T
l′d ν(y)

)
⊗ Rz

(
gji(x)[x]k′ [x]

T
k′

))
p.

(In the above, when Rz is applied to a matrix, it means that it is applied entrywise, for

convenience of notation.) Denote the matrices

(4.5) Y
(l′)
ν,hji

:=

∫
hji(y)[y]l′ [y]

T
l′ dν(y), L(k′)

gji
[z] := Rz

(
gji(x)[x]k′ [x]

T
k′

)
.

Then, we get the expression

(4.6) L(k,l)
ν,gj

[z] :=
∑
i

Y
(l′)
ν,hji

⊗ L(k′)
gji

[z].

Note that k′, l′ are the degrees defined in (4.4). Observe that L
(k′)
gji [z] is the localizing matrix

for the polynomial gji ∈ R[x], and is independent of ν. Similarly, the matrices Y
(l′)
ν,hji

are

independent of z. In particular, for g0 = 1, we get

(4.7) L
(k,l)
ν,1 [z] =

(∫
[y]l[y]

T
l dν(y)

)
⊗ H(k)[z].

4.2. The full moment problem. We give a full characterization for K-moment sequences

when K is defined by universal quantifiers.

Theorem 4.2. Let K ⊆ Rn be as in (1.1) and assume the measure ν satisfies Assumption 3.1.

Then, for a multisequence z, we have Rz ≥ 0 on QM[g, ν] if and only if for all j = 0, 1, . . . , s,

(4.8) L(k,l)
ν,gj

[z] ⪰ 0, k = 1, 2, . . . , l = 1, 2, . . . .

Moreover, when QM[g, ν] is archimedean, then z is a K-moment sequence if and only if it

satisfies (4.8).
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Proof. Observe that Rz ≥ 0 on QM[g, ν] if and only if

Rz

(∫
p(x, y)2gj(x, y) dν(y)

)
≥ 0

for all j and for all p(x, y) ∈ R[x, y]. When p is restricted to have degrees as in (4.3), then

(4.8) follows from the definition of L
(k,l)
ν,gj [z] for all k and l. When QM[g, ν] is archimedean,

the last statement follows from Theorem 4.1.

When K is given without quantifiers, there is a classical flat extension theorem [CF96,

CF05] that recognizes K-moment sequences. Here, we give a similar flat extension theorem

for sets K defined with universal quantifiers. Let

(4.9) dg := max{1, degx(g)}.

Theorem 4.3. Let K ⊆ Rn be as in (1.1) and assume the measure ν satisfies Assumption 3.1.

Let z be a multisequence satisfying (4.8). If there exists k ≥ dg such that

r := rankH(k−dg)[z] = rankH(k)[z],

then z admits an r-atomic measure µ supported in K and µ is the unique representing measure

for z.

Proof. By the flat extension theorem [CF96, CF05], we know that z admits an r-atomic

representing measure, say, µ. Moreover, the µ is the unique representing measure for z.

Since z satisfies (4.8), Rz ≥ 0 on QM[g, ν]. Pick an arbitrary f ∈ QM[g, ν], then (4.8)

implies that

L
(k)
f [z] ⪰ 0

for all k = 1, 2, . . . . As in [CF96, CF05], we have supp(µ) ⊆ {x : f(x) ≥ 0}. As this holds

for all f ∈ QM[g, ν], Proposition 3.3 implies that supp(µ) ⊆ K.

4.3. The truncated moment problem. Now we consider w = (wα)α∈Nn
2d
, a truncated mul-

tisequence of even degree 2d. We look for concrete conditions under which w is a K-moment

sequence, with a representing measure µ supported in K. As in the above calculations, for

w to be a K-moment sequence, it must satisfy

(4.10) Rw

(∫
p(x, y)2gj(x, y) dν(y)

)
≥ 0

for all j and for all p(x, y) ∈ R[x, y] with the degree

degx
(
p(x, y)2gj(x, y)

)
≤ 2d.

Note that (4.10) is equivalent to

(4.11) L(k,l)
ν,gj

[w] ⪰ 0, k = 1, 2, . . . d, l = 1, 2, . . . .

The following is a generalization of the flat extension theorem in [CF96, CF05].
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Theorem 4.4. Let K ⊆ Rn be as in (1.1) and assume the measure ν satisfies Assumption 3.1.

Let w ∈ RNn
2d be a truncated multisequence satisfying (4.11). If there exists a positive integer

k ≤ d− dg such that

(4.12) r := rankH(k)[w] = rankH(d)[w],

then w admits an r-atomic measure µ supported in K and µ is the unique representing

measure for w.

Proof. By the flatness condition (4.12), the truncated multisequence w can be extended to a

full multisequence z = (zα)α∈Nn with rankH[z] = r that represents an r-atomic measure µ.

Moreover, µ is the unique representing measure for w and z. This is shown in [Lau05]. It

now remains to show that supp(µ) ⊆ K. For all a(x) ∈ R[x]d and b(y) ∈ R[y]l, it holds that

Rw

(
a(x)2

∫
b(y)2gj(x, y) dν(y)

)
= Rw

(∫
a(x)2b(y)2gj(x, y) dν(y)

)
≥ 0.

Since z is an extension of w, we get

Rz

(
f(x)2

∫
b(y)2gj(x, y) dν(y)

)
≥ 0

for all f ∈ R[x]. This implies that for each j,

supp(µ) ⊆
{
x ∈ Rn

∣∣∣ ∫ b(y)2gj(x, y) dν(y) ≥ 0

}
.

The above is true for all b ∈ R[y]l and l = 1, 2, . . .. Hence, as in the proof of Proposition 3.3,

we can infer that the intersection over j of the right-hand side sets in the above equation is

equal to K. That is, supp(µ) ⊆ K, which completes the proof.

We remark that the rank condition (4.12) implies that the truncated multisequence w

admits a unique r-atomic representing measure µ, say, w = λ1[u1]2d + · · · + λr[ur]2d, for

distinct points u1, . . . , ur and positive scalars λ1, . . . , λr, as in [CF96, CF05]. The condition

(4.11) ensures that all u1, . . . , ur ∈ K. Note that (4.11) requires it to hold for all l = 1, 2, . . ..

If this is not checkable, one can verify ui ∈ K by checking nonnegativity of g(ui, y) on Q.

The following is such an example.

Example 4.5. For the following set

K =
{
x ∈ R2 | 1− xTy ≥ 0 ∀y ∈ R2 : y41 + y42 ≤ 1

}
,

we consider the truncated multisequence w ∈ RN2
4 given such that

H(2)[w] =



3 0 2
3

2
3

− 5
18

17
18

0 2
3

− 5
18

−2
9

13
54

7
108

2
3

− 5
18

17
18

13
54

7
108

8
27

2
3

−2
9

13
54

2
9

− 23
162

61
324

− 5
18

13
54

7
108

− 23
162

61
324

− 17
648

17
18

7
108

8
27

61
324

− 17
648

209
648


.
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One can check that rankH(1)[w] = rankH(2)[w] = 3, so the condition (4.12) of Theorem 4.4

holds. As in [CF05], we obtain w = [u1]4 + [u2]4 + [u3]4 for the points

u1 =

(
−2

3
,
1

2

)
, u2 =

(
1

3
,
2

3

)
, u3 =

(
1

3
,−1

2

)
.

It is easily seen (e.g., by Hölder’s inequality) that these three points belong to the set K.

5. Semi-Infinite Optimization

An important application of Positivstellensätze and moment problems with universal quan-

tifiers is to solve semi-infinite optimization. Consider the semi-infinite program (SIP):

(5.1)

{
min
x∈X

f(x)

s .t . g(x, y) ≥ 0 ∀y ∈ Q.

The constraining function g in (5.1) is the s-dimensional vector of polynomials,

g(x, y) :=
(
g1(x, y), . . . , gs(x, y)

)
,

f ∈ R[x], and X ⊆ Rn is another given constraining set that does not depend on y ∈ Rm.

We assume X is given as

(5.2) X = {x ∈ Rn | ci(x) = 0 (i ∈ I), cj(x) ≥ 0 (j ∈ J )} .

Here, all ci, cj are polynomials in x and I, J are finite label sets. For convenience of notation,

we denote the polynomial tuples:

ceq = (ci)i∈I , cin = (cj)j∈J .

Semi-infinite optimization has broad applications, such as Chebyshev approximation [LS07]

and robustness support vector machines [XCM09]. Classical methods for solving semi-

infinite optimization include Karush–Kuhn–Tucker multipliers [SS12], discretization methods

[DM17], and Moment-SOS relaxations [HuN23, WG14]. In this section, we show how to use

Positivstellensätze and moment problems with universal quantifiers to solve SIPs.

As before, we let ν be a Borel measure ν on Rm satisfying Assumption 3.1. We assume

the moments
∫
Q
yα dν(y) are available. Then truncations for given degrees of the quadratic

module QM[g, ν] can be represented by semidefinite programs.

Proposition 5.1. Let g be as in (1.1) and let ν be a Borel measure satisfying Assumption

3.1. Assume that the quadratic module QM[g, ν]+Ideal[ceq]+QM[cin] is archimedean. Then,

the optimal value fmin of (5.1) is equal to the optimal value of the following optimization

problem

(5.3)


min Rz(f)

s .t . Rz ≥ 0 on QM[g, ν] + Ideal[ceq] + QM[cin],

Rz(1) = 1, z ∈ RNn
.
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Proof. The feasible set of (5.1) is X ∩K, where K is as in (1.1). Note that

X ∩K =

x ∈ Rn

∣∣∣∣∣∣∣∣

ceq(x)

−ceq(x)
cin(x)

g(x, y)

 ≥ 0 ∀y ∈ Q

 .

The polynomials ci can also be viewed as depending on y trivially. Observe that

QM[(ceq,−ceq, cin, g), ν] = QM[g, ν] + Ideal[ceq] + QM[cin].

Since QM[g, ν]+Ideal[ceq]+QM[cin] is archimedean, the set X∩K is bounded (cf. Proposition

3.3). Thus the optimal value fmin is finite, i.e., fmin ∈ R. Hence, fmin equals the minimum

value of the expectation
∫
X∩K f(x) dµ(x), over all probability measures µ supported inX∩K.

When z is a multisequence satisfying the constraints in (5.3), Theorem 4.1 implies that z is

the moment sequence of such a probability measure µ. Therefore, fmin is also the minimum

value of (5.3).

Proposition 5.1 can be used to give Moment-SOS type relaxations for solving the semi-

infinite optimization (5.1). The full multisequence z ∈ RNn
can be approximated by its

truncations

w = (zα)α∈Nn
2k
,

for a degree k. Note that Rw ≥ 0 on QM[g, ν]2k if and only if

L(k,l)
ν,gj

[w] ⪰ 0

for all l = 1, 2, . . . (cf. Theorem 4.2). The constraining polynomials cj do not depend on y,

so

L(k,l)
ν,cj

[w] =
(∫

1 dν(y)
)
· L(k)

cj
[w].

In computational practice, we typically scale ν so that
∫
1 dν(y) = 1, whence L

(k,l)
ν,cj [w] =

L
(k)
cj [w]. It is also interesting to note that Rz ≥ 0 on QM[g, ν] + Ideal[ceq] + QM[cin] if and

only if Rz ≥ 0 on each of the QM[g, ν], Ideal[ceq], QM[cin]. Moreover, Rz ≥ 0 on Ideal[ceq] if

and only if Rz ≡ 0 on Ideal[ceq], since Ideal[ceq] is a subspace of R[x]. Note that Rz ≡ 0 on

Ideal[ceq]2k is equivalent to L
(k)
ci [w] = 0, for each i ∈ I.

Suppose deg(ci) ≤ 2k for each i. Let V (2k)
ci [w] denote the vector such that

(5.4) Rw(ci(x)u(x)) =
(
V (2k)
ci

[w]
)T

u

for all u(x) ∈ R[x]2k−deg(ci). The V (2k)
ci [w] is called the localizing vector of the polynomial ci,

generated by the truncated multisequence w. It is important to observe that V (2k)
ci [w] = 0 if

w has a representing measure supported on ci(x) = 0.

To get a finite dimensional optimization problem, we choose a finite value for l, e.g., l = k.

Recall that

Rw(f) =
∑
α

fαwα for f(x) =
∑
α

fαx
α.
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In particular, w0 = Rw(1) = 1. Therefore, the kth order truncation of (5.3) is

(5.5)



γk := min
∑
α

fαwα

s .t . V (2k)
ci [w] = 0 (i ∈ I),

L
(k)
cj [w] ⪰ 0 (j ∈ J ),

L
(k,k)
ν,gj [w] ⪰ 0 (j = 0, 1, . . . , s),

w0 = 1, w ∈ RNn
2k .

Note g0 = 1 in the above. For each given k, (5.5) is a semidefinite program.

The following is the convergence property of the moment relaxations (5.5).

Theorem 5.2. Let K be as in (1.1). Assume QM[g, ν]+Ideal[ceq]+QM[cin] is archimedean.

Then, the sequence (γk)k of (5.5) is monotonically increasing and

γk → fmin as k → ∞.

Proof. Clearly, the sequence γk is monotonically increasing and γk ≤ fmin for all k. For all

ε > 0, the polynomial f(x)− fmin + ε > 0 on X ∩K, so

f(x)− fmin + ε ∈ QM[g, ν]2k + Ideal[ceq]2k +QM[cin]2k,

for k large enough, by Theorem 3.4. For each truncated multisequence w that is feasible in

(5.5), we have

Rw(f(x)− (fmin − ε)1) ≥ 0.

This implies that

Rw(f) ≥ (fmin − ε)Rw(1) = fmin − ε.

So the optimal value γk ≥ fmin− ε. Since ε > 0 can be arbitrarily small, the limit of γk must

be fmin.

5.1. Sampling. In the expression for the localizing matrix L
(k,l)
ν,gj [w] in (5.5), we need the

matrix Y
(l′)
ji , which then requires the moments

∫
yα dν(y), for the chosen measure ν with

supp(ν) = Q. If Q is a well-known and understood set (e.g., a box [−1, 1]n, a simplex, a unit

ball or a sphere), the moments can be given by explicit formulas, such as for the uniformly

distributed probability measure. If Q is not such a convenient set, the moments
∫
Q
yα dν(y)

may not be readily available. However, this issue can be fixed by sampling.

For a given degree l, the moment vector
∫
[y]2l dν(y) can always be written as a sample

average, i.e., there exist points u1, . . . , uN ∈ Q such that∫
[y]2l dν(y) =

1

N

N∑
i=1

[ui]2l.

This is guaranteed by Caratheodory’s theorem [Bar02, Theorem I.2.3]. Interestingly, the

above sample average is actually the moment sequence of a certain measure whose support
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equals supp(ν) = Q if the sample size is large enough. For a given degree d, consider the

cone of all possible moment sequences

(5.6) Pd :=
{∫

[y]d dµ(y)
∣∣∣µ is a Borel measure on Rm, supp(µ) ⊆ Q

}
.

Denote the relative interior of Pd by relint(Pd).

Theorem 5.3. Let Q be a closed set and let Pd be as above. For every ξ ∈ relint(Pd), there

exists a measure ν on Rm such that

(5.7) ξ =

∫
[y]d dν(y), supp(ν) = Q.

Moreover, for points u1, . . . , uD ∈ Q, if dimSpan{[u1]d, . . . , [uD]d} = dimPd, then the sample

average

A(u1, . . . , uD) :=
1

D
([u1]d + · · ·+ [uD]d)

belongs to the relative interior relint(Pd).

Proof. Consider the subcone

P ′
d :=

{∫
[y]d dµ(y)

∣∣∣µ is a Borel measure on Rm, supp(µ) = Q
}
.

We show that P ′
d is contained in the relative interior of Pd. Let T denote the embedding

Euclidean space of [y]d for all possible y ∈ Rm. Then P ′
d ⊆ Pd are both convex cones in T.

Let ℓ be any linear functional such that

ℓ ≥ 0 on Pd, ℓ(η) = 0 for some η ∈ P ′
d.

Note that the polynomial p(y) := ℓ([y]d) is nonnegative on Q. Let µ be the Borel measure

such that η =
∫
[y]d dµ(y) and supp(µ) = Q. Then

0 = ℓ(η) =

∫
ℓ([y]d) dµ(y) =

∫
p(y) dµ(y).

Since p(y) ≥ 0 on Q and supp(µ) = Q, the above implies that p(y) ≡ 0 on Q, i.e., ℓ ≡ 0

on Pd. This shows that every supporting hyperplane of Pd passing through any point of P ′
d

must also contain Pd entirely. So P ′
d lies in the relative interior of Pd. We remark that P ′

d is

dense in Pd. To see this, fix a measure ν such that supp(ν) = Q. Then for every ξ ∈ Pd and

each integer k > 0, we have ξ+ 1
k

∫
[y]d dν(y) ∈ P ′

d and it converges to ξ as k goes to infinity.

Since P ′
d is dense in Pd, they have the same relative interior.

So, every ξ ∈ relint(Pd) is the expectation of [y]d for a certain measure ν whose support

equals Q. Let ℓ be a linear functional such that ℓ ≥ 0 on Pd. If ℓ(A(u1, . . . , uD)) = 0, then

Span{[u1]d, . . . , [uD]d} ⊆ ker ℓ.

If dimSpan{[u1]d, . . . , [uD]d} = dimPd, then

Pd ⊆ ker ℓ.

This implies that ℓ ≡ 0 on Pd. The above is true for every linear functional ℓ ≥ 0 on Pd.

Therefore, A(u1, . . . , uD) lies in the relative interior of Pd.
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We remark that the measure ν in (5.7) automatically satisfies the Carleman condition (3.1)

if Q is bounded. However, for unbounded Q, we are not sure if (3.1) still holds. For the

case of unbounded Q, we may apply the homogenization trick to transform to bounded sets.

We refer to the work [HNY23a, HNY23b] for how to do this. To summarize, to formulate

the localizing matrix L
(k,l)
ν,gj [w] in (4.6), we can select sample points u1, . . . , uN ∈ Q such that

Span{[u1]2l, . . . , [uN ]2l} has maximum dimension, and then let

(5.8) Y
(l′)
hji

=
1

N

N∑
t=1

hji(ut)[ut]l′ [ut]
T
l′ .

6. Numerical Experiments

This section reports numerical examples to show the hierarchy of moment relaxations (5.5)

for solving the SIP (5.1). The computations are implemented in MATLAB R2023b on a

laptop equipped with a 10th Generation Intel® Core™ i7-10510U processor and 16GB mem-

ory. The moment relaxations are implemented by the software Gloptipoly [HLL09], which

calls the software SeDuMi [Str01] to solve the corresponding semidefinite programs. For the

SIP (5.1), we use x∗ and f ∗ to denote the global minimizer and the global minimum value

respectively. The relaxation order is labelled by k. For each k, we use w(k) to denote the

minimizer of (5.5). The minimum value of (5.5) is denoted as γk, which is a lower bound for

the SIP (5.1).

The flat extension condition (4.12) can also be used to get minimizers. However, this works

only if the moment relaxation (5.5) is tight for solving the SIP. When (4.12) fails, a practical

way to get an approximate minimizer is to let

x̂k := (w(k)
e1
, . . . , w(k)

en ).

The feasibility of the computed point x̂k is measured as the function value

δk,j := min
y∈Q

gj(x̂k, y), j = 1, . . . , s.

Then x̂k satisfies the inequality constraint in (5.1) if and only if

δk := min
j∈[s]

δk,j ≥ 0.

For each example, if the measure ν is not specified, we set it to be the normalized Lebesgue

measure so that ν(Q) = 1. The consumed computational time is denoted as time. For

neatness of the presentation, all computational results are displayed with four decimal digits.

Example 6.1. (i) Consider the following SIP from [CG85, WY15]:

(6.1)

{
min
x∈R2

1
3
x21 + x22 +

1
2
x1

s .t . − (1− x21y
2)

2
+ x1y

2 + x22 − x2 ≥ 0 ∀y ∈ Q,

where Q = [0, 1]. Computational results are shown in Table 1.
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k x̂k γk δk time(s)

3 (−0.8433,−0.6041) 0.1803 −0.0310 0.4503

4 (−0.7847,−0.6140) 0.1899 −0.0090 0.4991

5 (−0.7650,−0.6164) 0.1926 −0.0036 0.5749

6 (−0.7574,−0.6173) 0.1935 −0.0017 0.9063

7 (−0.7541,−0.6176) 0.1940 −9.46 · 10−4 1.8849

Table 1. Computational results for SIP (6.1).

The true minimizer is x∗ ≈ (−0.7500,−0.6180) with the minimum value f ∗ ≈ 0.1945.

(ii) Consider the following SIP:

(6.2)


min
x∈X

(x1 − x2)(x1 − 1) + (x2 − x1)(x2 − 1)

+(x1 − 1)(x2 − 1) + x31 + x32
s .t . x1x2y1y2 − (x1x2 + x22 + 0.01)(y1y3 + y2 + 1)− x22y2y3 ≥ 0

∀y ∈ Q,

where the sets are

X = [−10, 10]2 ∩
{
(x1, x2) : x1x2 + x1 + 1 ≥ 0

}
,

Q =
{
y ∈ R3 : y1 ≥ 0, y2 ≥ 0, y3 ≥ 0, 1− y1 − y2 − y3 ≥ 0

}
.

As in [Las21], we have the moment formula:∫
Q

yα1
1 yα2

2 yα3
3 dy =

6α1!α2!α3!

(|α|+ 3)!
.

Computational results are shown in Table 2.

k x̂k γk δk time(s)

2 (0.3643,−0.0327) 0.8624 −0.0017 0.4783

3 (0.3661,−0.0340) 0.8645 −0.0012 0.6968

4 (0.3671,−0.0347) 0.8658 −9.28 · 10−4 3.1540

5 (0.3677,−0.0351) 0.8665 −7.71 · 10−4 66.2828

Table 2. Computational results for SIP (6.2).

The true minimizer is x∗ ≈ (0.3705,−0.0371) with the minimum value f ∗ ≈ 0.8697.

Example 6.2. (i) Consider the following SIP:

(6.3)


min
x∈R3

−x21(100− x1 − x2) + x22 + 2x23

s .t .

(
x1y

2
1 − x1x2y1y2 − x2x3y

3
2 + 0.1

x23(y
2
1 − y22) + x22y1y2 + x1y2 + 0.1

)
≥ 0 ∀y ∈ Q,
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where Q = {(y1, y2) : y41 + y42 = 1}. We use the sampling as in (5.8) to get moments for ν.

Computational results for Equation (6.3) are shown in Table 3.

k x̂k γk (δk,1, δk,2) time(s)

2 (−0.1253,−0.0078,−0.0000) −1.5728 (−0.0254,−0.0253) 0.4407

3 (−0.1128,−0.0062,−0.0000) −1.2747 (−0.0129,−0.0128) 0.7351

4 (−0.1016,−0.0051,−0.0000) −1.0340 (−0.0016,−0.0016) 4.3025

5 (−0.1009,−0.0049,−0.0000) −1.0247 (−9.52,−9.03) · 10−4 104.4387

Table 3. Computational results for SIP (6.3).

The true minimizer is x∗ ≈ (−0.1000,−0.0018, 0.0000), with minimum value f ∗ ≈ −1.0010.

(ii) Consider the following SIP:

(6.4)


min
x∈X

(
−

4∑
i=1

x4i
)
+ x31x

2
2 + x22x

3
3 + x3x

4
4 − x21x

2
2 + x1x2x3x4 + x1x3

s .t . yT

x21 − x2x3 x1 + x2x4 x23 − x1x2
x1 + x2x4 x1 − x24 1− eTx

x23 − x1x2 1− eTx x1x2 + x3x4

 y ≥ 0 ∀y ∈ Q,

where X = {x ∈ R4 : 4− xTx ≥ 0} and

Q =
{
y ∈ R3 : 1− yTy = 0, y ≥ 0

}
.

We apply the sampling as in (5.8) to get moments of ν. Computational results for Prob-

lem (6.4) are shown in Table 4.

The true minimizer is x∗ ≈ (0.1252, 0.0000,−1.9961, 0.0000), and the minimum value is

f ∗ ≈ −16.1250.

The following are examples where the quantifier set Q is not semialgebraic.

Example 6.3. (i) Consider the following SIP

(6.5)


min
x∈X

−x1x2x3 + x31 + x22 + x3

s .t . (x1x2 + 1)y42 + (eTx)y21y2 + (x1 + x2x3)y
3
1 − 0.1 ≥ 0

∀y ∈ Q,

k x̂k γk δk time(s)

3 (1.3903,−0.0000,−0.7310, 0.0000) −16.1250 −3.12 · 10−6 2.0730

4 (0.1252, 0.0000,−1.9961, 0.0000) −16.1250 2.62 · 10−6 192.2331

Table 4. Computational results for SIP (6.4).
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where the sets

X =

{
x ∈ R3

∣∣∣∣ 5− xTx ≥ 0,

x1x2 − x3 ≥ 0

}
, Q =

{
y ∈ R2

∣∣∣∣ 4− 3y
2
1 − 3y

2
2 ≥ 0,

3y1 − 3y2 − 1 ≥ 0

}
.

We apply the sampling as in (5.8) to get moments of ν. Computational results are shown in

Table 5.

k x̂k γk δk time(s)

2 (−2.0115,−0.6861,−0.6951) −7.4037 −2.7956 0.4233

3 (0.4350,−0.3706,−2.1618) −2.2907 −7.89 · 10−4 0.5196

4 (0.4350,−0.3706,−2.1618) −2.2907 −7.71 · 10−4 1.4434

5 (0.4350,−0.3707,−2.1618) −2.2907 −6.25 · 10−4 19.9535

Table 5. Computational results for SIP (6.5).

The true minimizer is x∗ ≈ (0.4353,−0.3710,−2.1617), and the minimum value is f ∗ ≈
−2.2907. They are estimated by applying the 6th order Taylor expansion of the exponential

function.

(ii) Consider the following SIP:

(6.6)


min
x∈X

x31 − x33 + x1x
2
2 + (x2 + x23)

2

s .t . x1x3y2y3 + x1x2y3 + x2x3y1 + (x1 + 2x2 + x3)(y1y2 + 2y3) ≥ 0

∀y ∈ Q,

where X = [−1.5, 1.5]3 and

Q =

{
y ∈ R3

∣∣∣∣ 2− yTy ≥ 0,

2y3 − 2y1 − 2y2 ≥ 0

}
.

We apply the sampling as in (5.8) to get moments of ν. Computational results are shown in

Table 6.

k x̂k γk δk time(s)

3 (−1.5000, 1.5000,−0.0000) −4.5000 −6.76 · 10−6 0.7619

4 (−1.5000, 1.5000,−0.0000) −4.5000 −7.99 · 10−6 14.9845

Table 6. Computational results for SIP (6.6).

The true minimizer is x∗ ≈ (−1.5000, 1.5000, 0.0000) and f ∗ ≈ −4.5000. They are estimated

by applying the 6th order Taylor expansion of exponential functions.
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The following are examples where the quantifier set Q is a union of several sets.

Example 6.4. (i) Consider the following SIP:

(6.7)


min
x∈R3

(x21 + 1.8x23)
2 + x1x2x3 + x31 − 2x32 − 4x3

s .t .

(
x1x2y1y2 − x2x3(y1 + y23)− 0.01

x23y
2
1 − x22y2y3 + x21(y1 + y3 − 0.1)

)
≥ 0 ∀y ∈ Q,

where Q = Q1 ∪Q2 is the union of the following two sets:

Q1 =
{
y ∈ R3 : (y1 − 1)2 + (y2 − 1)2 + (y3 − 1)2 ≤ 1

}
,

Q2 = {y ∈ R3 : (y1 − 1)2 + y22 + (y3 − 1)2 ≤ 1}.

We apply the sampling as in (5.8) to get moments of ν. Computational results are shown in

Table 7.

k x̂k γk (δk,1, δk,2) time(s)

2 (1.8793, 2.2691,−0.2007) −3.7910 (−4.4703,−6.6000) 0.5968

3 (0.0047,−0.0231, 0.6758) −2.0274 (−4.44,−0.58) · 10−3 1.1363

4 (0.0047,−0.0230, 0.6758) −2.0274 (−4.42,−0.58) · 10−3 48.7642

Table 7. Computational results for SIP (6.7).

(ii) Consider the following SIP:

(6.8)


min
x∈X

(x21 − x2)
2 − 3x1x

2
2 + 3x31

s .t . −x1x2(y21 + 2y23) + x22(y1 − y2y3) + 2y1y3 − eTx− 1.4 ≥ 0

∀y ∈ Q,

where X = {x ∈ R2 : 8− xTx ≥ 0} and

Q =

{
y ∈ R3

∣∣∣∣ 10− yTy ≥ 0,

|y1|+ |y2|+ |y3| − 1 ≥ 0

}
.

Note that Q is a union of 8 basic closed semialgebraic sets, that is,

Q =
⋃

s1,s2,s3∈{−1,1}

Qs1,s2,s3 :=

y ∈ R3

∣∣∣∣∣∣
10− yTy ≥ 0,

s1y1 ≥ 0, s2y2 ≥ 0, s3y3 ≥ 0,

s1y1 + s2y2 + s3y3 − 1 ≥ 0

 .

We apply the sampling as in (5.8) to get moments of ν. Computational results are shown in

Table 8.
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k x̂k γk δk time(s)

2 (−2.4791, 0.7284) −12.4135 −6.46 · 10−4 0.4755

3 (−2.4791, 0.7284) −12.4135 −6.33 · 10−4 0.7434

4 (−2.4791, 0.7284) −12.4135 −6.36 · 10−4 2.8389

5 (−2.4779, 0.7272) −12.4099 4.01 · 10−4 53.6131

Table 8. Computational results for SIP (6.8).

We remark that the flat extension condition (4.12) can also be used to get minimizers when

it holds. This happens only if the moment relaxation is tight for solving the SIP. See the

following example.

Example 6.5. Consider the following SIP:

(6.9)

{
min
x∈X

−x21x22
s .t . (x1 + x2)y

2
2 − x1x2(y1y2 + 1) ≥ 0 ∀y ∈ Q,

where X = {x ∈ R2 : 1− xTx ≥ 0} and

Q = {y ∈ R2 : |y1|+ |y2| ≤ 1}.

For the relaxation order k = 2, we get the optimal w∗ such that

H(2)[w∗] =



1 0 0 1
2

−1
2

1
2

0 1
2

−1
2

0 0 0

0 −1
2

1
2

0 0 0
1
2

0 0 1
4

−1
4

1
4

−1
2

0 0 −1
4

1
4

−1
4

1
2

0 0 1
4

−1
4

1
4


.

The flat extension (4.12) holds. Indeed, we can get w = 1
2
([u∗1]4 + [u∗2]4) for points

u∗1 =
(
− 1√

2
,
1√
2

)
, u∗2 =

( 1√
2
,− 1√

2

)
.

They are both minimizers for this SIP.

7. Conclusions and Discussions

We study Positivstellensätze and moment problems for sets that are given by universal

quantifiers. For the set K as in (1.1) given by a universal quantifier y ∈ Q, we discuss repre-

sentation of polynomials that are positive on K. Let ν be a measure satisfying the Carleman

condition 3.1. When the quadratic module QM[g, ν] is archimedean, we show in Theorem 3.4

that a polynomial f(x) positive on K must be in QM[g, ν]. For the non-archimedean case,

we give a similar result in Corollary 3.7. We also study K-moment problems for the set
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K. Necessary and sufficient conditions for a full (or truncated) multisequence to admit a

representing measure supported in K are given. In particular, the classical flat extension

theorem is generalized for truncated moment problems with such a set K. These results

are presented in Theorems 4.1, 4.2 and 4.4, respectively. These new Positivstellensätze and

moment problems can be applied to solve semi-infinite optimization (SIP). For the SIP (5.1),

a hierarchy of moment relaxations (5.5) is proposed to solve it. Its convergence is shown in

Theorem 5.2. Various examples for semi-infinite optimization are demonstrated in Section 6.

Our work leads to many intriguing questions to explore in the future. For instance, without

assuming archimedeanness, is there a preordering version of Theorem 3.4? Equivalently,

does there exist a clean algebraic reformulation of the compactness (or emptiness) of the

set K given with a universal quantifier as in (1.1)? Is there an analog of the Krivine-

Stengle Positivstellensatz for such sets K? It would also be interesting to establish the

universal Positivstellensätze for matrix-valued polynomials and matrix-valued constraints.

In Theorem 4.4, the condition (4.11) is assumed to hold for all l = 1, 2, . . .. If it holds for

only finitely many l, the conclusion of Theorem 4.4 may not hold. It would be interesting to

find a finite set of conditions for a truncated multisequence to admit a representing measure

supported inK. Finally, in their previous joint work, the second and third author [KN20] gave

Positivstellensätze and solved moment problems for sets given with existential quantifiers.

A major future task will be to give a common extension of the results from [KN20] and

the present paper, that is, Positivstellensätze and moment problems for sets given with a

combination of universal and existential quantifiers.
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