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ABSTRACT. Linear matrix inequalities (LMIs) Ia+3>9_, Ajz; +327_, Ajaj = 0 play arole in many
areas of applications. The set of solutions of an LMI is a spectrahedron. LMIs in (dimension—free)
matrix variables model most problems in linear systems engineering, and their solution sets are
called free spectrahedra. Free spectrahedra are exactly the free semialgebraic convex sets.

This paper studies free analytic maps between free spectrahedra and, under certain (generically
valid) irreducibility assumptions, classifies all those that are bianalytic. The foundation of such
maps turns out to be a very small class of birational maps we call convexotonic. The convexotonic
maps in g variables sit in correspondence with g-dimensional algebras. If two bounded free spectra-
hedra D4 and Dp meeting our irreducibility assumptions are free bianalytic with map denoted p,
then p must (after possibly an affine linear transform) extend to a convexotonic map corresponding
to a g-dimensional algebra spanned by (U —I)Ay,..., (U —I)A, for some unitary U. Furthermore,
B and U A are unitarily equivalent.

The article also establishes a Positivstellensatz for free analytic functions whose real part is pos-
itive semidefinite on a free spectrahedron and proves a representation for a free analytic map from
Da to Dp (not necessarily bianalytic). Another result shows that a function analytic on any radial
expansion of a free spectrahedron is approximable by polynomials uniformly on the spectrahedron.
These theorems are needed for classifying free bianalytic maps.

1. INTRODUCTION

Given a tuple A = (A44,...,Ay) of complex d x d matrices and indeterminates x = (z1,...,2),
the expression
g g
La(w) =1+ Ajo;+ Y At
j=1 j=1

is a monic linear pencil. The set
Da(1) = {z € CY: La(z) is positive semidefinite}

is known as a spectrahedron (synonymously LMI domain). Spectrahedra p N central role in
semidefinite programming, convex optimization and in real alge rail(f %%Owﬁtﬁ ) inél?ii]. They also
figure prominently in the study of d 1nantal representations [Bra T K- T12, Vin93|,
%gg 1§)olut10n of the Lax conjecture %HV%&Q%P %ll}e solutlon of the Kadlson—Slnger pavmg conjecture

15], and in systems engineering [BGF1397, Sl(}%]. The monic linear pencil L4 is naturally
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evaluated at a tuple X = (Xi,...,X,) of n x n matrices using the Kronecker product as

9 9
La(X)=1a® L+ Y A4 0X;+) Aj0X]
j=1 j=1

with output a dn x dn self-adjoint matrix. Let M, (C) denote the n x n matrices with entries from
C and M, (C)Y denote the set of g-tuples of n x n matrices. We call the sequence (D4(n)),, where

Da(n) ={X € M,(C)Y : Ls(X) is positive semidefinite}

a free spectrahedron (or a free LMI domain). Free spec %%gga arise naturally in many sys-

tems engineering problems descrj eﬂKR e%ssignal flow diagram P09]. They are also canonical
examples of matrix convex sets )7, HKM17] and thus ar ai&lltimately connected to the theory
of completely positive maps and operator systems and spaces %Pﬁu(ﬁ].

In this article we study bianalytic maps p between free spectrahedra. Our belief, ppporte F@){ the
resu %Ii&bthis paper and our experience with free spectrahedra (see for instance 12], MS]
and 12b]), is that the existence of bianalytic maps imposes rigid, but elegant, structure on

both the free spectrahe'dra as well as the map p. MotlYatlon for this study con 6y 12{%1 'ﬁze‘ﬁ%rsa]m 15 BGM. Pol. Po:
sources. Free analysis, including free analytic functions, is a recent development I, TayrZ,
%‘56144’ K{%M&B’ BGMO06, Pop()G., Popl(),' KS17, H g]ﬁgﬁgng{})w] with clos(? ties‘ to free probability
0104, Voil0] and quantum information theory 1T, M17]. In engineering systems theory
certain model problems can be described by a system of matrix inequalities. For optimization and
design purposes, it is hoped that these inequalities have a convex so W&on set. In this case, under
a boundedness hypothesis, the solution set is a free s 1_rgthedron M12]. If the domain is not

convex one might replace it by its matrix convex hull [16] or map it bianalytically to a free
spectrahedron. Two such maps then lead to a bianalytic map between free spectrahedra.

Studying 1plauaad ‘Eg?},%g’g llgg‘lgv\f%%q @ﬁ@ &pﬁgg‘%%ledra is a free analog of rigidity .problems in several
complex variables n93, For8Y, For93, , HJY14, a(}%] Indeed, there is a large literature
on bianalytic maps on convex sets. For instance, Faran [Farg6] showed that any proper analytic
map from the unit ball in C” to the unit ball in CV with N < 2n — 2 that is real analytic up to the
boundary, is (up to automorphisms of the domai d codomain) the standard linear embedding
z — (2,0). When N = 2n — 1, Huang and Ji [HJ01] c())lyed this map and the Whitney map
z=(2,2,) — (7, 2,2) are the only such maps. Forstneri¢ E‘or93] showed that any proper ,glmmldytic
map between balls with sufficient regularity at the boundary must be rational. We refer to %H;l Y 14]
for further recent developments.

The remainder of tstI]éSc .iglécsriocduction is organized as follows. Basic terminology and background
appear in Subsection [[.T. A novel family of maps we call convexotonic maps and that we believe
comprise, up to affine linear eqcuivalence, exactlé/ the bianalytic maps between free spectrahedra,
. i . K sec:ct i sec:cCt K . K
is des ]ﬁutl)ed in Subsection T.Z." Subsection [[.Z also contains the main result of the article, The-

fthm:main . . . sec:approsématrtrosatz
orem [[.5 on bianalytic mappings between free spectrahedra. Subse tiopsyll,3 and .4 describe
Positivstellensétze and results related to recent free Oka-Weil theorems [ANTIZ, BMV] on (uniform)
polynomial approximation of free spectrahedra and functions an %i_cm EillzﬁLlnau suitable neighborhood
of a spectrahedron. Both are ingredients in the proof of Theorem [[.5.

sec:basic

1.1. Basic definitions. Notations, definitions and background needed, but not already introduced,
to describe the results in this paper are collected in this section.

1.1.1. Free polynomials. Let x = (x1,...,24) denote g freely noncommuting letters and (x) the
set of words in z, including the empty word denoted by either 1 or &. The length of a word
w € (x) is denoted by |w|. Let C(x) = C(x1,...,z4) denote the C-algebra freely generated by x.
Its elements are linear combinations of words in « and are called analytic free polynomials. We
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shall also consider the free polynomials C(x,z*) in both the variables z = (z1,...,2,) and their
formal adjoints, z* = (7, ... ,:UZ). For instance, z1xo + zow1 + 51':1)’ is analytic, but zjz2 + 3:102:6‘;’ is
not. A polynomial is hereditary provided all the x* variables, if any, always appear on the left of
all x variables. Thus an hereditary polynomial is a finite linear combination of terms v*w where v
and w are words in x. A special case are polynomials of the form analytic plus anti-analytic; that
is f + g* for some f, g € C(x). These definitions naturally extend to matrices over polynomials.
Given a word w = xj, @, - - - T4, and a tuple X = (X1,...,Xy) € M,(C)Y, let w(X) = XV =
Xi, Xi, -+ X;,,. A matrix-valued free polynomial p = > p,w is evaluated at X using the Kronecker

product as
X) =2 pu@ulX

1.1.2. Free domains, matriz convex sets and spectrahedra. Let M (C)Y denote the sequence (M, (C)9),,.
A subset I" of M(C)Y is a sequence (I'(n)), where I'(n) C M,,(C)9. The subset I is a free set if
it is closed under direct sums and unitary similarity; that is, if X € I'(n) and Y € I'(m), then

xor= (5 0 (% 2)) erimem

and if U is an n X n unitary matrix, then
U'XU = (U*X U,...,.U*X,U) € I'(n).

The free set I' is a matrix convex set (alternately free convex set) if it is also closed under
simultaneous conjugation by isometries; i.e., if X € I'(n) and V' is an n x m isometry, then V*XV €
I'(m). In the case that 0 € I'(1), I" is a matrix convex set if and only if it is closed under direct sums
and simultaneous conjugation by contractions. It is straightforward to see that a matrix convex set
is levelwise convex; i.e., each I'(n) is a convex set in M,,(C)Y. The converse is true if I', in addition
to being a free set, is closed with respect to restrictions to reducing subspaces.

A distinguished class of matrix convex domains are those described by a linear matrix inequality.
Given a positive integer d and Aq,..., A; € My(C), the linear matrix-valued free polynomial

Aa(x) =) Ajz; € My(C) @ Clxy,. .., )

j=1
is a (homogeneous) linear pencil. Its adjoint is, by definition, Aa(z)* = >_7_; Ajx}. Thus
LA(J}) =1;+ AA(.r) + AA(.r)*

In particular, D4 = Dy, and it is immediate that the free spectrahedron D4 is a matrix convex set
that contains a neighborhood of 0.

1.1.3. Free functions. Let D C M(C)9. A free function f from D into M(C)! is a sequence
of functions f[n] : D(n) — M,(C) that respects intertwining; i.e., if X € D(n), Y € D(m),
r.c™— C", and

XT'=(XqI,...,X,I') = (IY,,...,I'Y,) =TY,

then f[n](X)I' =T'f[m](Y). Equivalently, f respects direct sums and similarity The definition of a
free function naturally extends to vector-valued functions f: D — M(C)", m Wﬁv‘?lued functions
[ : D — M.(C) and even operator-valued functions. We refer the reader to %K‘V—VLWJ—V()HO] for a
comprehensive study of free function theory.
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1.1.4. Formal power series and free analytic functions. Here, assuming, as we always will, its domain
I' C M(C)Y is a free open set (meaning each I'(n) C M,,(C)? is open), a free function f = (f[n])n :
KHiEM (C) is free analytic if each f 55 analytic. Very weak additional hypotheses (e.g. continuity
11] or even local boundedness , AM14]) on a free function imply it is analytic.

An important fact for us is that a formal power series with positive radius of convergence deter-
mines a free analytic functio Vsﬂﬁhin its radius of co Yshggnee and (under a mild local boundedness
assumptions) vice versa, cf. 14, Chapter 7] or 12b, Proposition 2.24]. Given a positive
integer d and Hilbert space H, an operator-valued formal power series f in x is an expression of

the form - -
DR Wi
) m=0

m=0 we(z
|w|=m
where f,, : C¢ — H are linear maps and f(™ is the homogeneous component of degree m of f;
that is, the sum of all monomials in f of degree m. Given X € M, (C)9, define
oo
m=0 we(zx)
|w|=m
provided the series converges (summed in the indicated order). If the norms of the coefficients of f
grow slowly enough, then, for || X || sufficiently small, the series f(X) will converge. For the purposes
of this article, the formal radius of convergence 7(f) of a formal power series f(z) = > fac
with operator coefficients is

() = - 1 -
lim sup (ZM:N Hfa“) N

with the obvious interpretations in the cases that the limit superior is either zero or infinity. Simi-
larly, the spectral radius of a tuple X € M, (C)? is

p(X) = lim sup max{[|X®||™ : || = N}.
N
A tuple of matrices E € (C"*™)9 is (jointly) nilpotent if there exists an N such that E* = 0

for all words w of length |w| > N. The smallest such N is the order of nilpotence of E. In
particular, if X is (jointly) nilpotent, then p(X) = 0. In any event, if X € M(C)9 and p(X) < 7(f),

then the series -
f(X): Z Z fa®Xa

N=0|a|=N
converges. Let A, = {X € M(C)9 : p(X) < 7}.

1.1.5. Free Rational Functions. Free rational functions regular at 0 (in the free variables z =

(x1,...,24)) appear in many areas of mathematics and its applications including automata the-
ory and s oS engineering. There ar oﬁyeral different, but equivalent definitions. Based on the
results of 09, Theorem 3.1] and [VoII7, Theorem 3.5]) a free rational functions regular

at 0 can, for the purposes of this article, be defined with minimal overhead as an expression of the
form

(1.1) r(z) = ¢ (I — Ag(z)) b

where e is a positive integer, E € M.(C)J and b,c € C¢ are vectors. The expression r is evaluated
in the obvious fashion for a tuple X € M, (C)? so long as I — Ag(X) is invertible. In particular,
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this natural domain of r contains a free neighborhood of 0. Often in the sequel by rational function
it will be clear from the context that we mean free rational function reqular at 0. An exercise shows
that free polynomials are (free) rational functions. Moreover, it is true that the sum and preodua(l‘{_cr
of rational functions are again rational. Likewise a free rational function r as in equation (h—qﬁ
free analytic. It is a fundamental result that the sin%gk@%ty set of r coincides wi oﬂ]; singularity
set (i.e., the free locus [KV17]) Zg of I — Ap (see 09, Thegrem 3.1] and lV [7, Theorem
3.5]) if E is of minimal size among all representations of the form (h’qTﬁﬁ" r. That is, r can not be
extended analytically to a (open) set strictly containing the free locus Zg.

1.2. Bianalytic maps between free spectrahedra. A free analytic mapping (or simply an
analytic mapping) p is, for some pair of positive integers g, g, an expression of the form

p=(p*....p9),

where each p’ is an analytic function in the free variables 2 = (x1,...,24). Given free domains D
and D, we write p:D— D to indicate D is a subset of the domain of P and p maps D into D. The
domains D and D are bianalytic if there exist free analytic mappings p : D — Dandq:D — D
such that poq and g o p are the identity mappings on D and D respectively. To emphasize the role
of p (and q), we say that D and D are p-bianalytic.

In this paper we introduce a small and highly structured class of birational maps we call con-
vexotonic and to each such map p describe the pairs of spectrahedra (D, 75) bianalytic via p. We
conjecture these triples (p, D, D) account for all bianalytic free spectrahedra (up to affine linear
equivalence) and establish the result under certain irreducibility hypotheses on D and D. We start
with the definition of the convexotonic maps.

1.2.1. Convezotonic maps. A tuple E = (Z1,...,24) € My(C)Y satisfying

g

(1.2) EpEj = Z(Ej)k,sEs

s=1

for each 1 < j, k < g is convexotonic. We say the rational mappings p and ¢ whose entries have
the form

(x) = Za:j (I—AE(JU));Z-1 and Za:] I+ Ag( ))jl ,

that is, in row form,

(1.3) p(a) =2l - As(@)™  and g =a(l + As(x)”?
are convexotonic. It turns out (see Proposition TO :Cog mappings p and ¢ are inverses of one
another, hence they are birational maps.
Given a g-tuple R = (R1,...,Ry) of n x n matrices that spans a g-dimensional algebra R, we
call the g-tuple of g x g matrices = = (Z,...,Z,) uniquely determined by
g
RpRj =Y (5))ksRs,
s=1

the structure matrices for R (suppressing the obvious dependence on the choice of basis R). By

Proposition %Tg:gls convexotonic. Moreover, if Z is convexotonic, then X equal the span 0£ oH:icson

an algebra of dimension at most g for which Z; ire éc%;ceﬁ sfructure matrices. See Proposition
Conversely, each convexotonic g-tuple = as in (%Zﬂﬁpefn if linearly dependent) arises as the set of

structure matrices for a g-dimensional algebra. For instance, letting R; denote the (g+1) x (g+1)
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0 e*
m=(y )

with respect to the orthogonal decomposition C @ CY (here e; is the j-th standard basis vector for
CY) as an easy computation reveals.

Convexotonic maps are fundamental objects and to each are attached pairs of bianalytic spectra-
hedra. Let R = span{R1,..., Ry} € My(C) be a g-dimensional algebra with structure matrices Z,
and suppose that C' a d x d is a unitary matrix and a tuple A € My(C)9, such that R; = (C' —1)A;
for 1 <j<g, and

matrices

g
:Astructure| (1.4) AR = Z(Ej)k,sAs-

s=1

:Ast t
In particular, the span A of the A; is a right R-module and if C' — I is invertible then (el .ﬁ;sﬁgudcsure
automatically. We call the so constructed (D4, Dca) a spectrahedral pair associated to the
algebra R.

1.2.2. Owerview of free bianalytic maps between free spectrahedra.

thm:ctok| Theorem 1.1. If (D4, Dca) is a spectrahedral pair associated to a g-dimensional algebra R and C
1s unitary, then Dy is bianalytic to Doa under the convexotonic map p whose structure matrices =
are assoctated to the algebra R.

Proof. A proof appears immediately after Theorem 6.7. [

We conjecture that convexotonic maps are the only bianalytic maps between free spectrahedra.

Conjecture 1.2. Up to conjugation with affine linear maps, the only bounded free spectrahedra
D4, Dp that are p-bianalytic arise as spectrahedral pairs associated to an algebra R with p as the

corresponding convexotonic map.
A weaker version of the conjecture adds the hypothesis that the the ranges of the A; and By, span
their respective spaces.

thm:main
conThf:?i%em mw says the conjecture is true in a generic sense. An unusual feature of Conjecture
mthe viewpoint of traditional several complex variables is that typical bianalytic mapping
results would be stated up to conjugation with automorphisms of D4 and gs B :Iélﬁrle we are actually
asserting conjugation up to affine linear equivalence. See also Subsection 0.3.

We emphasize there are few indecomposable g-dimensional complex algebras. To give a clear
picture we have calculated the convexotonic maps for these algebras explicitly for g = 2 and g = 3.
These calculations were done in Mathematica using NCAlgebra in a n B%lgi)é)k you can use after
downloading from https://github.com/NCAlgebra/UserNCNotebooks %:THV[S]

prop:g2g3| Proposition 1.3. We list a basis Ry1, Ro for each of the four 2-dimensional indecomposable algebras
over C. Then we give the associated “indecomposable” convexotonic map and its (convexotonic)
1nverse.

(1) Ry is nilpotent of order 3 and Ry = R?

p(x1,22) = (z1 2+ 27) q(x1,22) = (w1 w2 — 7).

(2) R = R1, RiRs = Ry

pl@)=(1—z) oy (1—=z1) " a) q() = (L+z1) o (T4 21) tag).
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(3) R2 = Ry, RoR, = Ry
pa) = (t1(1—z)™" 2l —2)™") @)= (11 +z)"" z(l+21)7").
(4) R? = Ry, R\Ry = Ra, RoRy = Ry
p(x) = (z1(l —21)™" (1 =) el —a1)7")
q(x) = (xl(l +a)™h (1) a1+ $1)_1) .

For g = 3 there are exactly ten plus a one parameter family of indecomposable convexotonic maps,
since there are exactly this many corresponding indecomposable 3-dimensional algebras, see Appendix
A to the arXiv posting https://arxiv.org/abs/1604.04952 of this paper.

X sec:examples
Proof. See Section b u

Remark 1.4. All g variable convexotonic maps ar egl(i)g%gtsesums of convexotonic maps associated
to indecomposable algebras. See Subsection 0.2. Ssec: compose
The composition of two convexotonic maps may not be convexotonic (see Subsection R.1); a

further indication of the very restrictive nature of convexotonic maps. %

1.2.3. Results on free b;%ga{%giicnmaps tﬁg:enfagzngeneﬁcity assumption. The main result of this paper
supporting Conjecture [[.21s Theorem .5 below. It says, in part, under certain irreducibility condi-
tions on A and B, if D4 and Dp are p-bianalytic, then p and its inverse ¢ are in fact convexotonic.
Let d be a positive integer. A set {u!,...,u%"!} is a hyperbasis for C? if each d element subset
is a basis. The tuple A € My(C)9 is sv-generic if there exists o',...,a® and B',..., 5% in CY
such that I — A4(a’)*Aa(a?) is positive semidefinite and has a one-dimensional kernel spanned by
w/ and the set {u', ..., u?1} is a hyperbasis for C%; and I — A4 (8¥)A4(8*)* is positive semidefinite,
its kernel spanned by v* and the set {v!,...,v?} is a basis for C?. Generic tuples A satisfy this
rem:sv=gen
property, see Remark [7.5." Weaker (but stislslssetéf:li(iient) versions of the sv-generic condition are given
in the body of the paper, see Subsection [7.T.Z.

thm:main| Theorem 1.5. Suppose A € My(C)9 and B € M.(C)9 are sv-generic and Dy is bounded. If p is a
birational map between Da and Dp with p(0) = 0 and p/(0) = I, then

(1) d=¢;
(2) there exists a d x d matriz C such that B is unitarily equivalent to CA;

(3) the tuple R = (C — I)A spans an algebra R;

(4) the span of A is a right R-module; and eq tropic
(5) letting = denote the structure matrices for this module, p has the convexotonic form of (I.3);

5
that is,
pla) = x(I — Az(2)) ™"
:red
Proof. A proof appears at the end of Section [ [ |

We point out the normalization conditions p(0) = 0 and p’s (eoc).n?n.nfalcﬁz% be enforced e.g. by an
affine linear change of V&I‘%%E}%g on the range of p, see Sec‘tion % for aefa‘lls. ‘

The g(gog o£ ;}F{?H(?gcreem [.5 1s based on several intermediate results of independent interest. Sub-
S%%‘qii%r%ro.ga; ontains results approximating free spectrahedra by more tractable free sets. Subsection
.4 describes Positivstellensatz for (matrix-valued) free analytic functions with positive real part on

a free spectrahedron.
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1.3. Approximating free spectrahedra and free analytic functions. This subsection con-
cerns approximation of functions analytic on free spectrahedra by analytic polynomia qtpat is, a
free Qka-Weil theorem. An example is the remarkable theorem of Agler and McCarthy A VI14] (see
also IV]) stated below as Theorem [T.6.

Given a matrix-valued free analytic polynomial @), the set
Go ={X e M(C): lQX)[l <1}
is a (semialgebraic) free pseudoconvex set. Given ¢ > 1, let
Kig ={X:tJQ(X)| <1} € Go.

A (matrix-valued) free analytic function f on a free domain D C M(C)? is uniformly approx-
imable by polynomials on a subset £ C D if for each € > 0 there is a polynomial ¢ such that
| f(X) —q(X)|| < e for each n and X € E(n).

Theorem 1.6. If f is a bounded free analytic function on a free pseudoconvex set Gg, then f can
be uniformly approximated by analytic free polynomials on each smaller set Kyq, t > 1.

M14
Proof. This result is prov gi 4though not stated in this form, in Section 9 of [AN14] (cf. their proof
of Corollary 9.7; see also 14, Corollary 8.13)). [ ]

Free spectrahedra are approximable by free pseudoconvex sets.

Proposition 1.7. If Dy is bounded and t > 1, then there exists free analytic polynomial @) such
that

Dy CGg CtDa.
Moreover, if Gg is a free pseudoconvex set and Dy C Gq, then there is an s > 1 such that Dy C Kyq.
Finally, if p is a free rational function analytic on Dy, then there is a t > 1 such that p is analytic
and bounded on tD4.

.. . |sec:igorcomments
Proof. A proof is given near the end of Section 2.Z. [

Theorem 1.8. Suppose A € My(C)9 and D4 is bounded. If f is analytic and bounded on a free

pseudoconvex set Gg containing Dy, then f is uniformly approximable by polynomials on D4.
|[sec:igorcomments

Proof. A proof is given at the end of Section A [ ]

1.4. Positivstellensitze and representations for analytic functions. We begin this section
with Positivstellensidtze and then turn to representations they imply. We use nonnegative and
positive as synonyms for positive semidefinite and positive definite respectively.

Theorem 1.9 (Analytic convex Positivstellensatz). Let A € My(C)Y and e be a positive integer.
Assume Dy is bounded and G : Gg — M.(M(C)) is a matriz-valued free function analytic on a
free pseudoconvex set Gg containing the free spectrahedron Da. If G(0) = 0 and I + G + G* is
nonnegative on D4, then there exists

(1) a Hilbert space H;

(2) a formal power series W = 3_ .y Waaw with coefficients Wo : C* — H ® cY;

(3) a unitary mapping C : H® C¢ — H ® C? and an isometry W : C° — H ® CY,

such that the identity

(1.5) I+ G(z)+ G(x)" =W(z) Ligalx)W(x)

holds in the rin ofexe matrices over formal power series in x,x* and there exists a T > 0 such
that equation (IT.5) holds at each X € A,.
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Moreover, letting & = HRC? A =TIy ®A and R = (C —I)A, the functions G and W are given
by
g
(1.6) G(z)=w*C()_ Ajz;) W(x)
j=1

and

[ea:Gup]
(17) Wi(a) = (e =Y Rya;) W
j=1
1:goneral0t|

and the coefficients Gy,o of G are given by
q:generalO+| (1.8) Grjoa = W CA;RW;

for all words a.

. |sec:proofanalpossIntro
Proof. See Subsection b.T. [

An analytic (not neces?%l}érgiﬂg})%ggiccl)omap p maps Dy into Dp if and only if L4(X) > 0 implies
Lp(p(X)) = 0. Theorem [I.9 thus provides a representation for G(x) = Ag(p(x)) with a state space
realization flavor.

hm:analPoss| Corollary 1.10 (Rational convex Positivstellensatz). Let A € My(C)9, B € M.(C)9, assume that
D4 is bounded and p : Do — Dp satisfies p(0) = 0. Let G(x) = Ag(p(x)). If p is either a
rational function or a free function analytic and bounded on a free pseudoconvex set Gg containing
Dy, then there exists a Hilbert space H, a formal power series W = Zaew Waa with coefficients

Wy :C¢ — H®C?, aunitary C: Ho C* - H® C% and q isomet%W : Qe — H 8 C% such that
. eq:poss :generalO+ thm:analPossIntro
Lp(p(z)) = I+ G(x)* + G(x) and the conclusions (ID) — | Igi of Theorem [T.9 hold.

. rop:approxIntro . . ..

Proof. By Proposition l. 7, 1n any case we may assume p is analytic on a pseudoconvex set containing

Da. 'SIIICG p is analytic in a ps?udoconvex' neighborhood of D A S? is G; and sincg p IIalrEILﬁ%(;Zs) 4 0to

Dp, it follows that I + G + G* is nonnegative on D4. An application of Theorem [[.9 completes the

proof. [
X . . fthm:analPossIntro [prop:multi generallntro

A key ingredient in the proof of Theorem [T.U is Proposition E.B. [t shows that a POSIthSteHeI}S&tZ

. . . eq:posst+ L. . thm:analPossIntro

certificate like that of equation (1.5; suffices to deduce the remaining conclusions of Theore D 1PossIntro

For hereditary polynomials positive on a free spectrahec ré)rr(laaghe conclusion of Theorem 1.9 1s
stronger. The weight(s) W in the positivity certificate (IT.9) are polynomial, still analytic and we

get optimal degree bounds.

dposSSIntro| Theorem 1.11 (Hereditary Convex Positivstellensatz). Let A € M(C)Y, and let h € C"*¥(x, z*)
be an hereditary matriz polynomial of degree d. Then h|p, = 0 if and only if

finite finite

(1.9) h=Y " hihi+ > fiLaf;
k J

or some analytic polynomials h; Exviay o fe REY(x),. Moreover, if D4 is bounded, then
J Yeq:here + J

the pure sum of squares term in (IL.Y) may be omitted, provided the f; are allowed to have degree
<d+1.

X sec:null . thm:heredposSS
Proof. See Section }3 and in particular Theorem }3. [. ]

thm:all ) L. .
Thegreﬁel .12 shows, under the assumption of a square one term Positivstellensatz certifi-
cate (T.10) for a mapping p : D4 — Dp between free spectrahedra, that p is convexotonic and in
particular birational between D4 and Dp.
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Theorem 1.12. Suppose A, B € My(C)?, the set {A1,..., Ay} is linearly independent and p =
(p',...,p%) is a free formal power series map in x (no ;) with p(0) = 0 and p’(0) = I. If there
exists a d X d free formal power series W such that

eq:Ltern] (1.10) Li(p(a)) = W(z)* La(z)W(z),

then p is a convexrotonic map

p(x) = z(I - A=(2))™
:tro
as in (1.35 éeiermmed by a module spanned by the set {Ai,..., Ay} over an algebra of dimension

at most g with structure matrices =.

thm:shotinthedark
Proof. See Theorem k). . [

thm main
In the context of Theorem V—generlc condition is used to show the one term Positivstel-

lensatz hypothesis of Theorem l2 Eo
1.5. Read Is gaulde The paper is O%anlzego%s SfeoglowfI The polynomial approxi at1gn resu ‘%%ﬁlft o
§$1J3§1%%%1<9§1 i 3 are provea in Section u bectlon Lﬂ contains the proof of Theorem l j [. In %ecﬁon

ey algebraic consequences of an Hereditary Posmlv%mellenfgtz fepresentatlo are cq]llected for
use in the following sections. The proof onglq_eiorem (1 9 appearmﬁ mn Sectlon ot uses the results

of the previous thre%hlsne:g‘gl%ns Theorem hﬁTg J:)roged in Section Somewhat more general
version of Theorem [I.5 1s The topic of Section mughout much of the article the 1b12analg oo
maps are assumed to satisfy the normalization p(0) = 0 and Lp argO} a projection. Section escribes
the consequences of relaxing this assumption. Section bmxamples of convexotonic maps.
In the several complex variables spirit of classifying domains up to affine linear equivalence, it is
natural to ask if there exist matrix convex domains that are polynomially, but not. Eﬁg}nea 11}111early,
bianalytic. The hard won answer is yes. A class of examples appears in Section

sec:guide

2. APPROXIMATING FREE ANALYTIC FUNCTIONS BY POLYNOMIALS

i i L rop:approxIntro [prop:okadron . .
In this section we prove Proposition II.7 and Theorem .3 approximating free spectrahedra with

free pseudoconvex sets and approximating free mappings analytic on free spectrahedra by free
polynomials, respectively.

sec:approx

2.1. Approximating free spectrahedra and free analytic functions using free polynomi-
als. For C > 0, let §¢ denote the free set of matrices 7" such that C' — (T'+T*) = 0 and for M > 0,
let ¢ denote those T € F¢ such that ||T']] < M. Let ¢ denote the linear fractional mapping
¢(z) = 2(1 — z)~'. In particular, ¢ maps the region {z: Rez < 1} in the complex plane to the set
{z:|2] <1,z # —1}. The inverse of ¢ is ¥(w) = w(l +w)~!. Given € > § > 0 sufficiently small,
the ball Bs(e) = {z : |z — €| < 14 d} does not contain —1 and there exists a K € (1,2) such that
P(Bs(e)) C{z:Rez < £}

lem:reAhalf | Lemma 2.1. If2 > C and T € Fo, then I — T is invertible. Moreover, given M > 0 and t > 0,
there exists 2> C > 1, andt > € > 0 > 0 such that if T € §c,n, then

l(T) — el <1+

Proof. A routine argument establishes the first part of the lemma. To prove the moreover part, fix
M > 0 and t > 0 and suppose min{1,¢} > ¢ > 0. Choose 0 < p < 1 such that both

(2(1 —p)+e(l— ,02))M2 < 1,

2
142 — (1 = p?)e?

lcc— 12 e (L= p)e <2
1+2(p— D)e — (1 — p2)e?
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Let T' € §c,m be given. It follows that

6(2(1 —p)+e(l - ,02))T*T ~ %

—_

<<y (1 +2(p— 5)e— (1 - P2)62> (C—(T+1)

eq:epsrtho| (2.1) 5

N DN

<4 <(1 £2p— e~ (1)) — (14200~ De—(1- p2)62)(T+T*)> .

Let 6 = pe and observe,

(2.2) 6(2(1_p>+6(1_p2>):<1+6>2_<1+5)2,

€ 1 € €

1420 - e—(1—pHe == +1+4+2pe — = — 2 + (pe)?
(2.3) 9 (p 4) ( p) 9 P 9 (pe)

=14+20+02 -2 =(146)2—¢€,
and
1

(2.4) 1+2(p—§)e—(1—p2)62:1—1—2pe—e—62+(p6)2:(1+5)2—6(1+6).

eq:epsrho eq: epsidgl eps@egl@psdel3
Thus, substituting § = pe into equation (bl ) and using equations (Z.2), (2-3), (Z.4) yields,

((1 v (14 6)2)T*T < ((1 +6)2— 62) - ((1 162 (14 e))(T T,
Rearranging gives,
14+ e?T*T —e(1+e)(T+T*)+ 2 (1+0)*(I — (T +T*) + T*T)
and hence
(I+eT—¢)" (1+eT —€) 2 (140> -T)*(I-T).
The lemma follows from this last inequality together with (14 ¢€)T'—e=T —¢(I —T). u

n:uniffrakT| Proposition 2.2. Foreach M > 0 and p > 0 there exists 2 > Cy > 1 such that for each 1 < C < Cy
there exists p > € > § > 0 such that for each n > 0 there is an analytic polynomial q in one variable
such that for all T € oM,
(1) llo(T) —el| <1+0;
(2) 9(T) = (D)l <.
Proof. The linear fractional map ©0(2) = z(1 — 2)~! is analytic on $§ = {z € C : Rez < 1}. By
Lemma 2.T wi = p, given M > 0 and p > 0 there exists a2 > C > 1 and p > ¢ > § > 0 such
that if 7' € Fo,m, then ||p(T) —€]| < 14 6. Let p(2) = p(2) — e. Its inverse is 1, (w) = Y (w + €).
In particular, 1, is analytic in a neighborhood of the closed ball B5(0) = {z € C: |z| <1+ 6} and
for § > 0 sufficiently small, 1,(Bs(0)) is a compact subset of §). Thus, by Runge’s Theorem, there
exists a polynomial p such that

1P = @xlly.@s0)) = sup{lp(z) — ¢«(2)| : 2 € ¢ (Bs)} <.

Hence,

lpothu — 2”135(0) <.
Now let T' € §c i be given. The matrix S = ¢(T') — € has norm at most 1+ ¢ and hence

[(po)(S) =S| <n.
Equivalently,

Ip(T) = (T < .
Choosing q¢ = p + €, completes the proof. u
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Corollary 2.3. There exists a 2 > Cy > 1 such that for each M > 0 and Cy > C > 1, the set
{lle(M)|| : T € Fom} is bounded.
L. lem:uniffrakT
Proof. By Proposition b.Z, there exists €,0 > 0 such that ||p(T) —¢€|| <146 for T' € Fc,m. Hence,
(M) <1+e+6
for T' € §co,m- ]

Lemma 2.4. For each M > 0 and 2 > C > 1 there exists an analytic (2 X 2 matriz) polynomial s
i one variable such that

S € Gs ={T: [s(T)]| < 1} € Fem-
Proof. Choose p > 0 such that
M?+1
p
and let R? = M2 + 1 + p+ p?. In particular,
p p
Let s1(x) = z—;p, sy(x) = 47 and s = 51 @ so. Thus, [|s(T)|| < 1 if and only if ||T"+ p|| < R and
|T|| < M. Suppose T' € §1,n. Then automatically |[so(T")|| < 1. Using 7'+ T < I, estimate
(T+p)(TH+p) =TT +p(T+T*) +p> < M? + p+ p*> < R%.
Thus [[s1(T)|| < 1 and the first inclusion of the lemma is proved.
Now suppose ||s(T)|| < 1. Equivalently || T|| < M and ||T + p|| < R. Hence,
0= R~ (T+p)*(T+p) = R* =TT — p(T +T*) — p*
}%24__p2

<(C-1

C.

(2.5)

=< (

. eq:rhoR . . . L
where equation (bo; was used to obtain the last inequality. Thus, ||s(T)| < 1 implies T € Fc.m
and the proof is complete. [

* 1 . *
(T+T )) = p(c (T* + 7)),

Lemma 2.5. If Dy is bounded and t > 1, then there exists a matriz-valued free polynomial @) such
that
Da CGg CtDa.

Proof. Since Dy is hounded, there is an M > 0 such that ¢[[As(X)[| < M for all X € Ds. By
Proposition b.?; there exists a 2 > C' > 1 and a sequence of g polynomials converging uniformly
to ¢(z) on Feo,ur. Passing to a subsequence if needed, we can assume

1

lax(T) ~ (7)) < 7

for T' € §c ar. Writing
(2:6) 2(qr(T)*qr(T) — o(T)*p(T))
= (q(T) — (1)) (qr(T) + ©(T)) + (q(T) + @(T))" (qr(T) — (T)),

. . . cor:varphibound .
and using ¢(7') is uniformly bounded on §¢ ar (see Corollary bmconstant k (independent
of k and T') such that

ar(T)*qr(T) — o(T)*p(T) =

> =

Hence,

I+ = () (D) = I = p(T) (D).
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Thus, if T € Fo,ur and I — o(T)*@(T) = 0, then I — (14 %) qu(T)*qi(T) = 0.
Now, given a monic linear pencil Ly = I + Ay + A%, let

Qr = (1%-:)é qr o Aa.

If X € Dy, then T' = Ay(X) € §1,1m 1121(36 I — Qr(X)*"Qr(X) = 0; that is, Dy C Kg,, in the
notation Kq, :={X : [|Qr(X)| < } of 14]. Moreover, since qi(7T) converges to ¢(T),

Dy = ﬂKQk.
k

lem:FGF
Choose s as in Lemma P-1 50 that Sim CH{T : ||s(T)|| <1} € §e,m- Thus,
Da C (X s(A4(X))] < 1.

A (Qk 0
Qk(o soAA>’

Da C{X 1 |Qu(X)] <1}

We now_turn to showing, given ¢ > 1, there is a k such that {X : |Qr(X)|| < 1} C tD4. The
estimate (72.&.)) works reversing the roles of ¢ and ¢ giving the inequality

Consequently, letting

we have

eq:unnaned2|  (2.7) A(T)"¢(T) = ay(T) ay(T) < g
for T € Fc,ar- Now suppose X € M(C)? and I — Qp(X)*Q ) = 0. Let, as before T' = Ay (X). It
follows that ||s(T")|] < 1 and hence T' € Fc,p. We can thus apply % conclude

0=1-QrX)Qr(X)=1~ (1 + %)_1 ar(T)*qr(T)

<14 % (1 + %) T (1 + g)_l o(T)*o(T).
Let 7, =1+ 2?" This last inequality implies
(I-T)*T*T(I-T)"' <.
A bit of algebra shows this inequality is equivalent to
% — (T +T) + (1, — T*T = 0.

Since 1, — 1, for all sufficiently large k,
t>14 2ty
Tk
Using T*T < M? | it follows that
Tt — (T+T%) = 1+ (s — YM? = (T +T*) = 70,(I — (T + T%)) + (7, — )T*T = 0.
Thus X € tD4. Summarizing, for sufficiently large k,
Da C{X : [|Qx(X)| <1} CtDa. .

@ Lemma 2.6. Let A € My(C)9. If Dy is bounded and Gg is a free pseudoconvex set such that

Dy C Gg, then there is s > 1 such that

(2.8) Da C Ksg C Go-
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Proof. By definition, D4 C Gg is equivalent to ||Q(X)|| < 1 on D4. For each M the set Dy(M)
is compact (as Dy is bounded and closed). Thus, for each M there is an 0 < rp; < 1 such that
JQUX)|| < rag on Da(M).

For C' € Ry, we have ||Q(X)| < C on Dy4 if and only if CQKmZQ*Q > 0 on Dy if and only if
C?—Q*Q = 0on Dy(N) for N := N(degQ, g,d) large enough ( [12a, Remark 1.2]) if and only
if |QIX)| <, Cgn Da(N). Slnce |Q(X)| < rn < 1on Dy(N), it follows that ||Q(X)| <rny <1

on Dy. So Eﬁ%olds with s = —N - - |

2.2. Rational functions analytic on D4. In this subsection we show a rational function p Wlthoul‘gOX
singularities on D, is analytic and bounded on tD4 for some ¢ > 1. Hence, by Lemma b D, p 1S
analytic and bounded on a free pseudoconvex set Gg containing D4.

Lemma 2.7. Suppose Dy is bounded and let r be an analytic noncommutative rational function
with no singularities on Dy. Then there is a t > 1 such that r is bounded with no singularities on
tDy.
Proof. Since r is analytic on D4 and D4 contains 0, we can consider its minimal realization,
r(z) =c* (I - AE(:c))_lb

for some e x e tuple E € M,.(C)9 vectors b, c € C°. The si %%rlty set of r coincides w tg e
singularity set (i.e., the free locus [KV17]) Zg of I — Ag (see 09, Theorem 3.1] and [VoIT7
Theorem 3.5]).

We claim that Zg N Dy = @ if and only if Uj<c<. (Zp(e) NDa(e)) = @. To prove the claim,

suppose X € ZgNDa(m). Then for some nonzero v = > 5_; e; ®v;, where the e; are standard unit
vectors in C¢ and v; € C™,

7=1

e
OZ(I—AE)( )U—(I@I ZEk®Xk Z€]®U] Zej@)vj—ZEkej@kaj.
st — ,
Let P denote the orthogonal projection C™ — V = span{vi,...,v.} and let ¢ = dim V. Then
P*XP € Zg. Indeed, for any u =7, e; ® u; € CleVv,

uw*(I — Ap)(P*XP)v = Z.ez@uz IT - ZEkQ@P X P) Zej(gwj

7j=1
e

= uivi = O ei@u) (O By @ PP P) () e; @ ;)

i i k j=1
=u'v — Z e; Epeju; P* X, Pvj = u*v — Z e; Epeju; Xpv;

W9,k .5,k
e

=Y eou)Il=Y BoX) () eouv)

i k j=1
=u"( —Ag)(X)v=0.

This calculation shows P*X P € Zg(e')NDa(e’). Hence Ui<er<e (Z(€’) NDa(e’)) # &. The reverse
implication is evident and so the claim is proved.

Since each Dy(€’) is compact and disjoint from the closed set Zg(€’), there exists ¢ > 1 such that
tDa(e') N Zg(e') = @ for each 1 < ¢’ < e. But now using tDy = D1A, the above claim proves there
is a t > 1 such that r has no singularities on tD4; that is Zg N DtA =

We now argue that in fact r is bounded on ¢D4. First observe that 1f X, € tD4 and ||r(X,)]|
grows without bound, then so does |[(I — Ag(X,))~!||. Hence, there is a sequence 7, of unit
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vectors such that (||[({ — Ag(Xy,))Vnl|)n tends to zero. By the argument above, we can replace X,
with Y,, = V7 X,,V,, where V,, includes an e-dimensional space containing 7, and assume that the
Y., € Dia(e). By compactness of Dy4(e) = tD4(e), and passing to a subsequence if needed, without
loss of generality Y, converges to some Y € D;y(e) and 7, to some unit vector v. It follows that
(I —Ag(Y))y =0, and we have arrived at the contradiction that Y € tD;4 and Y is a singularity
of I — Ag (x) L

. . . .. fprop: appipaxinbkadron
The ingredients are now in place to prove Propositions [[77 and IT-3.

. rop:approxIntro . . lem:apprdlkem: approx2
f’rq% tof Proposition 7 7.1 e hrst statements are immediate from Lemmas 2.5 and %.i’i. Femma

em
b.? finishes off the proof. [ |
rop:okadron . . L.
I?T'()of %éoT@aeorreggln%trgb Supp.ose f is analytic and bounded on some Gg qontammg Da. ﬁ%/’[oEgOpo'
sition [[.7, there is s > 1 with Dy C K, C Gg. By the free Oka-Weil Theorem [I.6,  f can be
uniformly approximated by polynomials on Ky and thus on Dy. [
3. HEREDITARY CONVEX POSITIVSTELLENSATZ

In this section we present a strengthening of the Convex Positivstellensatz %[12&], charac-
terizing hereditary polynomials nonnegative on free spectrahedra. In the obtained sum of squares
certificate all weights will be analytic.

Fix a symmetric ¢ € C™*(x, 2*), let

Dy(n) :={X € M,(C)9 : ¢(X) = 0}

for positive integers n and let Dy = (Dy(n))y. Given «, 8 € N, set

eq:Malbeta| (3.1)
finite finite

v,her * * *
Ma:[}e (Q) = { E (PjSOj+ E % Q¢i : wl € szy<$>,3v ©j € Cuxu<x>a} - RVXV('fBax >max{2a,25+a}7
7 )

where a = deg(q). Observe that M ”’her(q) is a proper subset of the quadratic module M .(q)

. 2 B8 7 eq: Malbetd
as defined in [12a]. We emphasize that ¢;,1; are assumed to be analytic in (bl ; defining
Mayger(q) Obviously, if f € M(Z:ger(q) then f|p, = 0.

For notational convenience, let ©%"°" denote the cone of sum of squares obtained from Ma”;ger(q)
with ¢ = 1.

We call Mcl:’ger(q) the truncated hereditary quadratic module defined by ¢. We often
abbreviate M;’:ger(q) to MY, 5. If ¢(0) = I (g is monic), then D, contains an free neighborhood
of 0; i.e., there exists € > 0 such that for each n € N, if X € M, (C)? and ||X|| < ¢, then X € D,.
Likewise D, is called bounded provided there is a number N € N for which all X € D E%tﬁsfy

4 . . . . %thm:hefedposSSIntro
|IX|| < N. The following theorem is, using the notations above, a restatement of Theorem [T.TT.

:heredposSS| Theorem 3.1 (Hereditary Convex Positivstellensatz). Suppose L € C*(z, x*) is a monic linear
pencil and h € C**¥{(x, x*) is a symmetric hereditary matriz polynomial. If deg(h) = d, then

(3.2) hX) =0 foral X €D, <<= he M (L)

If, in addition, the set Dy, is bounded, then the right-hand side of this equivalence is further equivalent
to

finite

(3.3) he { N Wil € fovmdﬂ} — MR (D).
J
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ithm:heredposSS
3.1. Proof of Theorem 3.1. The proof consists of two main steps: a separation argument together
with a partial Gelfand-Naimark-Segal (GNS) construction.

> her

3.1.1. Step 1: Towards a separation argument. Let C**¥(x,z* denote the vector space of all

hereditary v x v matrix polynomials.

her

Lemma 3.2. Ma'/’}ﬁler(L) is a closed convex cone in C”X”<Jr,x*>max{2a 25+1}"

KM12
Proof. The proof is the same as for the corresponding free non-hereditar gg&ting %TKKHQ&, Propo-
sition 3.1]; its main ingredient is Carathéodory’s theorem on convex hulls [Bar02, Theorem 1.2.3]. =

3.1.2. Step 2: A GNS construction. Proposition E%)EB%%W, embodies the well known connection,
through the Gelfand-Naimark-Segal (GNS) construction, between operators and positive linear
functionals. It is adapted here to hereditary matrix polynomials.

Given a Hilbert space .7 and a positive integer v, let %" denote the orthogonal direct sum of
S with itself v times. Let L be a monic ¢ x £ linear pencil and abbreviate

v b
My, = MkVJrf,rk(L)‘

Proposition 3.3. If A : C"*¥(x, x*}lgziQ — C is a symmetric linear functional that is nonnegative

on ZZ’_E? and positive on EZ’her \ {0}, then there exists a tuple X = (X1,...,Xy) of operators on a

Hilbert space F of dimension at most voy (k) = v dimR(x)y, and a vector v € AP such that
(3.4) M) = {(F(X)7.7)

for adll f € (C”X”(:I:,x*)zer, where (_,_) is the inner product on €. Further, if X is nonnegative on
My, then X € Dy,.
Conversely, if X = (X1,...,Xy) is a tuple of operators on a Hilbert space F of dimension N, vy

is a vector in P, and k is a positive integer, then the linear functional \ : C”XV<33,:U*>}21212 —C

defined by
Af) = {(F(X)7,7)

is nonnegative on ¥y . Further, if X € Dy, then X is nonnegative also on My, .

e v,her

Proof. First suppose that A : C"*¥(x, a:*>]§,§r+2 — C is nonnegative on EZ’j_llr and positive on 37\
{0}. Consider the symmetric bilinear form, defined on the vector space K = C"*!(x)x11 (row
vectors of length v whose entries are analytic polynomials of degree at most k + 1) by,

(3.5) (fh) = A" [).
From the hypotheses, this form is positive semidefinite.
A standard use of Cauchy-Schwarz inequality shows that the set of null vectors

N:={feK:(ff)=0}

is a vector subspace of K. Whence one can endow the quotient H =K N W'gh_f%l%ce) Iigllduced positive
definite bilinear form making it a Hilbert space. Further, because the form &%}Tpositive definite
on the subspace 5# = C**!(x)}, each equivalence class in that set has a unique representative which
is a v-row of analytic polynomials of degree at most k. Hence we can consider 7 as a subspace of
# with dimension voy (k).

Each x; determines a multiplication operator on . For f = ( fi - fy) €, let

vif = (zjfr - wxify) €A
and define X : 7 — J€ by
Xjf:Px]fa feﬁulg.]gg)
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where P is the orthogonal projection from A onto H (which is enl_){) f%%(rended on the degree k + 1
part of x;f). From the positive definiteness of the bilinear form (3.5) on J#, one easily sees that
each X; is well defined.

Let v € A% denote the vector whose j-th entry, v, has the empty word (the monomial 1) in
the j-th entry and zeros elsewhere. Finally, given words vs; € (z); and ws; € (z);, for 1 <s,t <,
choose f € C"*(z,z*)*" to have (s,t)-entry w} vss. In particular, with e1,...,e, denoting the
standard orthonormal basis for R”,

174
_ * *
f= E Wy Vs t€5€Y -

s,t=1
Thus,

P77 = S a7 = 30t (X)0eu (X7, 735) = 3 (e (X, w0 (X))
= Z@s,t@:a wg€5) = Z )\(w;tv&tesef) = )‘( Z(wﬁ,tvs,tesei“)) = A(f).

Since any f € CY*¥(x,z*)1° can be writt en as g linear combination of words of the form w*v with
v, w € (), as was done above, equation (E%f%established.

To prove the further statement, suppose A is nonnegative on M/, ;. Write L = I + A+ A*, where
A is the homogeneous linear analytic part of L. Given

Y1
b=\ | e,
e
note that
(LX), )

(1 + AX) + AX)), v) = (T + (X)), ¥) + (1, A(X))
b+ Y AP, )+ (0,) APy = (Y + > Ajagd, ) + (1, > Ajaeb)
(1 + A(@))e, ¥) + (@, A@)p) = M9" (1 + Aa(2))¥) + AW A(z) )
=A@ (I + A(z) + A))) = A" Lyp) > 0.
Hence, L(X) = 0.

The proof of the converse is routine and is not used in the sequel. |

eq:posssl
3.1.3. Step 3: Conclusion. Let us first prove (%.2;. The reversgm_iléri i
the forward implication assume h & M*™"(L). By Lemma 3.2 then there is a linear functional

d+1,d
A CV¥(x, x*>12125r2 — C satistying

Ah) <0, MMy C R

(
(
(
glication is obvious. To prove

By adding a small multiple of a linear functional that is strictly positive on Esﬁr \ {0} (see
e.g. [12a, Lemma 3.2] for its existence), we may assume moreover that

b
AMELT\{0}) € R
Now Proposition B épli)sies: there exjsts a tuple X = (X1,...,Xy) € D of vou(d) x voyu(d)
matrices, and a vector v such that (%3&) holds for all f € C**¥(x,z*)i°". Hence

0> A(h) = (h(X)7,7)-

Thus h(X) 0. eso
Finally, (3.3) follows from the I-?I){ 1112—Banach theorem. Namely, if Dy is bounded, then I =

> Vi L(X)V; for some Vj, see e.g. [HIXM12a, Section 4.1]. |

a s
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4. PosITivity CERTIFICATES FOR ANALYTIC MAPPINGS
sec:HeredEq 00 Dosst4
This sectlon Chl“O]I_llcleS consequences of a Positivstellensatz certificate like that of equation (IB ;

t1 genera
Proposition El 5 is the principal result.
Given a g-tuple A of operators on a Hilbert space &, a positive integer e and a formal powers series

W(z) = > Wya with coefficients W, : C¢ — &, and G = > G,a with coefficients G, : C¢ — C*
and G(0) = Gy = 0, the identity

ti general0| (4.1) I+ G(z)+ G(z)" = W(x) La(x)W(x)

is interpreted as holding in the ring of (matrices over) formal power series in z,x*. Equivalently,
for words «, 8 and 1 < j < g,

WEALW 0 + Wi 5 AW + W sWeio =0

:preisolalt| (4.2) WE(AW, + Waa) = Gapa
WiWg = 1.

formalveval| Proposition 4.1. Suppose e is a positive integer, G is an e X e matriz-valued free analytic function,
€ is a (not necessarily finite-dimensional) Hilbert space, W is a formal power series with coefficients
Weq : C¢ — & and A is a g-tuple of operators on E.

The following are equivalent.
. . eq:multi generalQ ) . . eq:preisolalt
it:fel (i) Equation (1 olds wn the ring of formal power series. Equivalently, the equations (4. old.

it:fe2| (ii) For all nilpotent X € M(C)9,

(4.3) I+ G(X)+G(X)* = W(X)*La(X)W(X).

it:fel
In ddfz'ta'on, if W and G have positive formal radii of convergence at least T > 0, then items (Ei )

and (E are equivalent to
:GX0
(iii) Fquation (E.B} holds for all X € A;.
prop:formalveval

Before beginning the proof of Proposition 1.1, we first state and prove a routine lemma. Fix N
a positive integer. Consider the truncated Fock Hilbert space %y with orthonormal basis {« €
(x) : |a] < N}. Let S (we suppress the dependence on N) denote the tuple of shifts determined by
S;w = xjw if the length of the word w is strictly less than IV and Sjw = 0 if the length of the word
w is N. In particular, .S is nilpotent of order V.

=HS

Lemma 4.2. Given Hilbert spaces H and K and operators F,, g : H — K parameterized over words
a, B, of length at most N, if

Y Fape 85 =0
], |BI<N
then Fy g = 0 for all o, 3.

Proof. We argue by induction on the length of . In the case a = @, evaluating at vectors of the
form h ® @ with h € H gives

Y Fuph®8°S*@ =) Fyzh®p.
lal,|B|<N BI<N

Hence Fy g = 0 for all |5| < N. Now suppose 0 <n < N and Fy, g = 0 for all || <n and [3| < N.
Let a word v with length n + 1 be given. Evaluating at vectors of the form h ® v and using the



eq:psCalc2

enerallntro
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induction hypothesis gives,

> Fushe s
lal,|8|<N

= Z Fo5h® SPS*y
n<la|<N,[B|<N

= EE: lzﬁgh/@>5

[BI<N

Hence F, g =0 for all || < N. |

p:formalveval it:

Proof of Proposition [4 7 Suppose item ((11) holds Thus for all nilpotent tuples X,
I+GX)+GX)" —W(X)"La(X)W(X)=0.

lem:faith eq:preisolalt . it:fe2 = |
t?ISi case Lerp.m% E[ 2 mp] pli ies the identities of equation (h?; hold. Hence item (El) implies item
(E; Th (

at item (h) implies hl) 1S ev1dent itofe3 itfeo
Under the added hypotheses on the radii of convergence, item (th)Tnplies (). remains to
prove the convers Q&%’ordmgly, suppose X € A;. Let R and L denote the values of the right and
left hand side of (elzlg'f)ievaluated at X respectively and let GN) and W) denote the N-th partial
sums of the respective series G(X) and W (X). Given € > 0 there is an N such that

11+ GM(X)+GN(X)* = R| <,
WX LaX)WN(X) - L|| < e

eq:preisolalt
Use (1.Z) to compute

(44) T+GM(X)+GM(X)" =W (X)) La(X)WM(X)

g g
=33 Y WAL e XXX =3 ST N WA WL @ XX

k=1|8|=N |a|<N 3=1|B|<N |a|=N
(ZW5®X5) M) (D Wawx) - (ZW5®X5) M) (Y Wawxe).
1BI=N la|l<N IBI<N la|=N
:psCalc2
The norm of each of the two summands in the last line of (E.ﬁ;slsaafc most
(4.5) Z”Ak®XkH Do WX IWalllXe).
|Bl=N lal<N

e sCalc
By hypothesis the second factor in (bS; fends to 0 with N Bld the first and third factor are
uniformly bounded on A,. Thus the left hand side of (hﬁ; fenﬂs to zero with N and the proof is
complete. [

With the notations already introduced, let
rg(A, W) ={AjWah:1<j<g, a, heC}.

Proposition 4.3. Suppose e is a positive integer and £ is a separable Hilbert space. If

(a) A is a g-tuple of operators on E;
(b) W is a formal power series with coefficients Wy, : C¢ — &; and

s aijormalrg%uer series with G(0) = 0 and e x e matrixz coefficients G, such that equation
(é i) holds,



it:recure

it:Bj

it:Balpha

el

ldegenerall

eq:preiso2w

|
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then W = Wy : C° — £ is an isometry and there exists a contraction C : &€ — & that is isometric
on rg(A, W) such that

g
Gx) =w*C(>_ Aja;)W(x),

j=1
eq:WIntro
where, letting R = (C — Ig)A, the function W is given as in equation (IL.7) =

W(l‘) = (Ig - Zijj)_IV/.
j=1

Moreover, if £ is finite dimensional, then C can be chosen unitary. In any case, choosing an
auziliary separable infinite dimensional Hilbert space &' and a tuple A’ acting on &' and letting

5 ;s (A0 o (N e s G (W
E=EDE, A(O A’)’ 7/(0).@ — &, W(0)7

we have
L+ G(z) + G(z)* = W(2)*L 4(x)W (),

and there is a unitary mapping C : € — € such that, letting R = (C‘ —Is)A,
~ g ~ 1~ ~ o~ g ~ ~
W(x)=(Ie = > Rjz;) #, Ga)=#"C()_ Ajz;)W(x).
j=1 j=1
In particular,

(1) the following recursion formula holds,
Wi = (C = I)AjWa, Waa = (C —Iz)A;Wy;
(2) the x; coefficient of G(x) is
G, =W CAW = W*CAW;
(3) more generally, Gy ,a, the zja coefficient of G, is
(4.6) Gojo = W CARW = W*CA;R*W .
Conversely, given a tuple A on a Hilbert space € a contraction C : £ — £ that is isometric on

the range o AGand an isometry W : C¢ — Ei, ldeﬁm'ng R=(C—-1)A, and W and G as in equations
(ei.?‘i and (e; .%*S)T%he identities of (Eé Fhotd. :

X X X eq:preisolalt
Proof. Completing the square in the first equation of (1.2) gives,

(4.7) (AgWs + Wa,5)" (AjWa + Wyja) = WAL A;W,.

Fix, for the moment, a positive integer N. Recall W, : C°* = £ and A; : £ = €. Let Ky =
®q|<nC®, the Hilbert space direct sum of C® over the set of words of length at most N in the
variables © = (x1,...,24). Finally, let Ly = EB?ZIICN and note that h € Ly takes the form
h = @j @|Q\SN hj,a — @hj,a- Let

5N:{ N AWahja i hje €Cofor 1< j<g, |a|gN}grg(A)gg.
Jila|<N

The subspaces Ey are nested increasing and rg(A4, W) = UyEn.



ive-general

ive general

q:W general

BIANALYTIC MAPS BETWEEN FREE SPECTRAHEDRA 21
Define XN,YN : ,CN — 5,
XN (D)) Spajzn hja) = Y (AWa + Wa,a)hja

Jlal<N
YN (T @lajen hja) = Y (AWa)hja
Jlal<N
Note that the range of Yy is En. Equation (E’?l:ffil;?rilsﬁ)%s that
(4.8) XNyXN=YyYN: Ly — Ly

In particular, if YN = 0 then Xnh = 0. Hence, Yyh — Xnh is a well-defined map Cy : Ey — £.
Further, equation ( phes that C'y is an isometry. Since &y is finite-dimensional, C'y can be
extended to a unitary CN : £ = &. Thus, there is a unitary mapping Cy : £ — £ such that

Xy = CNYN.

Moreover, for N > M,
Xy = CNYM.

Since (Cn)n is a sequence of unitaries on £, a subsequence (Cy;); converges in the weak operator
topology (WOT) to a contraction operator C. (In the case & is finite dimensional, C' is unitary.)
Fix M. For N; > M, Cn,;Yy = Xy . Hence, for a vector h € Ly and a vector e € &,

(CYrrh,e) = li§n<CN].YMh, e) = (Xrh,e).

Thus, CYy = Xy for all M. In particuear:, rC'e iisso%]l jcsometry on rg(A, W) and, combined with the

second and third identities in equation (1.2}, for each j, «
AjWo + W0 = CAW,
(4.9) W5 (AWa + Wea) = Gapa
WiWgs = 1.

q:pre-recursive-general

The first identity in equation (IKL .9) is equivalent to
(4.10) Wija = (C —1)A;W,.

Now s ppose C:€& — &is . contraction that is isqmetric_ony rg(A, W) and the identities of
re— recur51ve— ene. recursiv
equation (h ‘); hold. In parflcular equation (E} [0} also holds. For notational ease, if not consistency,

let W = and W, .= W?i . }n particular, from # is an isometry. Moreover, it follows from
‘isorecursive gefiera )

equation (1. at W; = (C — I)A;# for each j. Thus W; = R;#, where R; =

(C—-1)A;.

leq:isorecursive general
For each k an application of equation (kl “T0) with o = z; yields

Wie, = (C — ) AyWj = Ry Ry W/,

for j,k =1,...¢. Induction on the length of words gives,
Wy = RW
where R = (R1, ..., Ry). Hence,
(4.11) W(x)=(I-Y Rjz;)"'W.
Now using the second and third equations of (E’(.;Z:F’f—f&g?éﬁl% with (e. i ge{leésa s
W+ Agr)(I =D Rewg) "W =1+ G(w).
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Hence,

Gla) = [(1+ 3 Ayag) (T - i Rew) ™ = 1|

g
:W*(Z Ak—l—Rk a:k ZR(%Z
k_

=#*C (> Apzi) (I—-(C—1) ZAW
= W*C(ZAkxk - ZRgxg Ly

eq:multi generalO
At this point we have proved that if W and G solve equation (bjil'gl,_f%r%mxists a contraction
C that is isometric on £ such that W and G have the claimed form. Further, in the case £ is finite
dimensional C' can be chosen unitary.
oy dleeteng e,r/h)W and W be given as in the statement of the proposition. In particular equation
(h’q@m—olﬁs—F—ﬂﬂer Let rg(A, W) = rg(A, W)@ (0) C £. The orthogonal complements of rg(A, W)
and C (rg(A W)) in € are infinite dimensional separable Hilbert spaces. Hence there exists a unitary
operator C : € — € such that C(h & 0) = Ch & 0 rfgrréacgs%]gA Ol) Thus C is unitary and C, W
and A together satisfy the analog of equation ( 95) and hence the conclusmns of the proposition.
To prove the converse, given a tuple A = (Ay,...,Ay) of operators on the Hilbert space £, and
a contraction C' : £ — £ that is isometric on the range of A and an 1E0rréetry W Ct— &, let

R=(C—1)Aand W(x) = (I — Ar(z))"'# and define G by equation (

G(x) = #W*CAa(z)(I — Ar(z))" ¥
By construction, W, = R*# . Moreover, for each word o and 1 < j < g,
(C—=10A;Wo = RiR*W = Wy,a-
Hence,
CAW, = AjWo + Wy
Since C' is isometric on the range of A, given 1 < k < g and a word S,
WEAL AW = WEAL AW + WEAW + W, g AW, + W;ﬁija.

: lalt
Thus the first of the identities of equation (E.Z rﬁeésao.a T'he third identity holds since # = Wy
is an isometry and, as # = Wy, the second identity holds by the choice of G and the proof is
complete. [

prop:multi generallntro
Remark 4.4. We note that the proof of the converse of Proposition .3 would, under some con-

vergence ass m_'%tlons follow from the following formal calculation starting from the formula for G
of equation (I 5). 'Usmg R; = (C —1)A; gives

I —Ap(z) =1+ As(z) — CAy(z).
Let
H(x) = CAa(a)(I — Ap(2)) ™ = Aca(a)(I — Ag(z)) ™
and note that
W*(I+ H(x)+ H*(2))# =1+ G(z) + G ().



or :poly-nil

it:control

it:observe

ec:analPoss

em:betterpl
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Now,

I+ H(x)+ H(z)*
= (I-Ar(2) 7 [(I-Ar(2)) (I -Agr(2))+ ~Ar(2)) CAa(2) +Aa(2)" C*(I-AR(2))|(I - Ar(2)) ™
= (I = Ag(2))"[(I = Ar(z) + CAa(2))" (I — Ag(z )+CAA( ) = Aa(x)*C*CAA(2)](I — Ag(x)) ™!

— (I = Ag(@))"*[¥(2)"¥(x) — Au(2)" Aa(@)](I — Ap(x))”"
— (I = Ag(@) ™[I + Aa(@) + Aa(@)]( - Ag(a) ™,
from which it follows that
W Lp(x)™* (I + Aa(z) + A2($))LR($)_1W =1+ G(z)+ G (). O
4.1. Polynomials correspond to nilpotent R.

Corollary 4.5. Suppose, in the context of Proposition 1.3, that Wy 1s e X D. If

(a) G is a polynomial;

(b) span{R*Wyh : h € C* w € (x)} = CP; and

(c) M{ker(WZCA;RY) - w € (z), 1 <j <g}=(0),

then the tuple R is nilpotent. In particular, if D = d and G is a polynomial, then R is nilpotent.

. it:contrgit:observe
In the language of systems theory, the hypotheses of items (b; and () are that the system
s W, i}) is controllable and observable respectively.
R, Wg, {W5CA;}) i trollabl d ob bl tivel

Proof. Since W5CA4(x)(I — > R;jz;) Wy is a polynomial, there exists a positive integer N such
that
WECAR*Wy =0
for all words w for which |w| > N. Hence, if |£| > N, then for words «, f3,
0= W;CA;R*Wy = W;CA;R*R*R°W

. it:contrdlt:observe
Conditions (b) and (ci now imply that R¢ = 0. u

Remark 4.6. In any case, W is a polynomial if and only if R*Wg = 0 for |«| large enough. Of
course if Wy is square, then it is invertible. Thus, in this case, the R; are jointly nilpotent if and
only if W is a polynomial. O

5. EXTENDING THE HEREDITARY POSITIVSTELLENSATZ TO ANALYTIC FUNCTIONS
fthm:analPossIntro

In tlgg_ ﬁglggaon _Yg prove Theorem .9, extending the Hereditary Convex Positivstellensatz (The-
opem . Ly L0 a0 Yﬁc and ra%ona | maps betvv(f(fn free spectrahedra. The proof combines Theorems

: generallntro
B.Tand [I.8 and Proposition A.3.

Lemma 5.1. Suppose e is a positive integer, G : G — M.(M(C)) is analytic on a pseudoconvex set
G containing D and I + G + G* is nonnegative on Dy and G(0) = 0. If (Gy) is a sequence of e X e
matriz polynomials converging uniformly to G on Dy, then there exists a sequence of polynomials
(Qr) converging uniformly to G on D4 such that Q(0) = 0 and I + Qj + Q}, is nonnegative on D 4.

Proof. Note that (G¢(0)), converges to 0 since 0 € D4 and G(0) = 0. Let Hy = Gy — G¢(0). In
particular, Hy converges uniformly to G on D4 and Hy(0) = 0. Choose a sequence (t); such that
0 <t <1 and limtg = 1. Note that, for X € Dy,

I+t(GX)+GX)) =1 -ti) I +t,(I+G(X)+G(X)") = (1 —tp)I.
For each k there is an ¢, such that Hy, (X) is uniformly sufficiently close to G so that
I+t (Hy (X) + Ho (X)) = T+ t,(G(X) + G(X)*) — (1 — t)] = 0.
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Hence, the sequence (Qj = tyHy, ), converges uniformly to G on D4 and satisfies Q(0) = 0 and
I 4+ Qp + Qj, is nonnegative on Dy. [ |

alpossIntro fthm:analPossIntro(lem:betterpl ; okadron
5.1. Proof of Theorem [1 9. By Lemma b.T and 1 heorem I 8 (using, in particular, the bound-

edness assumption on D4), without loss of generality there is a sequence (Gy), of polynomials con-

verging uxE}]f;ﬁ)rEl g on Dy and such that I + Gy + G is nonnegative on D4 and G¢(0) = 0. By

Theorem again usmg the boundedness of D 4), there is a separable infinite-dimensional Hilbert
space H such that for each ¢ there exists a polynomial W, with coefficients Wy, : C* - H ® cd
such that

(1) 1+ Gula) + Gy(@)" = We' (@) Liyoa (@) We(a).

prop:multi generallntro

Applying Proposition .3, there exists a contraction C; on H®C? and an isometry #; : C¢ — H®C?
such that, with Ry, = (Cy — I)[Ig ® A],
Wi) = (I - Ag,(2)" .
Moreover, from the identity Wy ;.o = (Cp — I)[Ig ® Aj]Wyq of item (H’S:—é?%l%posmlon E)lrdop multl generallntro
Weajall < 2max{[|Au],..., [|Agll} [[Weal-

Thus, using the fact that #; = W, o is an isometry and hence has norm one, ||[Wy || has a uniform
bound depending only on the length of the word « (independent of ¢).

Observe that for each o, the dimension of the range of W, is at most e. Hence, for a fixed N,
there is a constant Dy such that for each ¢ the dimension of the span of

Hye= \/ re(Wia)
la]<N

is at most Dy. (Indeed one can take Dy to be de times the number of words of length at most N.)
It follows that, given N, for each /¢ there exists a subspace Hy ¢ of H of dimension Dy such that
the ranges of Wy, all lie in Hy, ® C?. For technical reasons that will soon be apparent, choose
a basis {e1,ez,...} for H and inductively construct subspaces Hy ¢ of H of dimension 2Dy such
that H ¢ contains both Hy  and span({e1,...,ep, }) and such that Hy ¢ C Hyy1,¢. In particular,
H =a%__(HNt+140 S Hny), where H_y = {0}. Set D_y = 0 and let E,, = 2(Dp, — Dip—1).
Letting K,, = C”" and K denote the Hilbert space Doo_oKm, it follows that for each ¢ there is a
unitary mapping py : H — K such that p,(Hne) = @%:()Km. We have,

We(x)*(pe ® 1q)* [Ix @ La()](pe ® Ig)We(z) = We(x)*[Ig @ La(z)]We(x).

Hence, we can replace Wy(z) with (py @ I)Wy(x) in (E%hus, given a word « of length N,
assume that W, , maps into EB%:OKm independent of £.

For a fixed word «, the set {Wy 4 : £} maps into a common finite-dimensional Hilbert space and
is, in norm, uniformly bounded. Hence, by passing to a subsequence, we can assume for each word
a the sequence Wy, converges to some W, in norm. Let W denote the corresponding formal power
series. We will argue that

I+G(z)+G(z)" = W(2) Liyealz)W(z)
in the sense explained as follows. Since Gy(0) = 0, it follows that WZQWW = ] for each /. Hence

preisoaltO+| (5.2) WiWg = 1.

Likewise, given « and j, for every /,

WZZ(IH X Aj)WZ,a + Wé,xja = (Gé)r]-on



preisoaltl+

preisoalt2+

sec:.square

11s kitchen
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the coefficient of the zja term of Gy. From what has already been proved, the left hand side above
converges to (I ® Aj)Wa+Wa,q. Since Gy converges uniformly to G on Dy, the sequence ((Gr)z;a)
converges to G ;q, the zja coefficient of G. Thus,

(5.3) Wo(In @ Aj)Wa + Wea = Guja-
Moreover, also by construction, for each «, 8 and j, k,

Wis(Ua @ Ap) Wigsa+ Wiy, s(In © Aj)Wea + Wiy, sWeaja =0

Hence,
(5.4) WE(IH®A;€)*W%O¢+W*I€6(IH®A YW +W*kﬁWx]a =0.
preggoptréefisogddivreisoalt2+ reisolalt
Equations ({ 2) (b.3) and [H.1) foe cther show the equatlons of EQEI tZ% Egenaer a{PIthe ring of formal power
series. Thus, equation ( . olds. Hence Proposition Kl d apphes and there 1<le><;1s‘us a ﬁ?ntractlon
C:H®C?— H®C? that is isometric on rg(A, W) such that egﬂatlonsl( Land (IT-7) hold.
To complete the proof, in the notation of Proposition ES choose E H & C? and make the

identification £ = £ @ £ = (C?* ® H) ® C%. Likewise, let A’ = A and make the identification

Prop: mult:L generallntro -~

A= Iy ® A Theemogeécs)ver gortlon of Proposition 1.3 produces a unitary C' and isometry Y

satisfying equations (II.5) and (IT. Finally, from the formulas for G and W ,there series have
positive I“adl[l of f convergence say both at least 7 > 0. Hence equation ( Ri o s for X € A; by

orma.

Proposition 4. i

6. CONSEQUENCES OF A ONE TERM POSITIVSTELLENSATZ

In this section, we consider the consequences of a one term square Positivstellensatz. In particular,
a one term Positivstellensatz produces a convexotonic map. Accordingly, suppose p = (p!,...,pY)
where each p’ is a free formal power series in z = (z1,...,24) such that p(0) = 0 and p/(0) = I.
Further assume A, B € M4(CY) and W is a formal power series with coefficients in My(C) (square
matrices) satisfying

(6.1) Lp(p(z)) = W(z)" La(x)W (z)
:preisolal
in the sense that the relations of equation (E.b;rﬁelslao Sith G(z) = Ap(p(x)). Thus the sizes of A

and B are the same and both L4 and L L are R;sncﬂs in g variables. As we will see, under this
assumption (that W is square), equation (6 [) implies p is a convexotonic map and imposes rigid

structure on t%e trl%lel ég) g
’génerallntro
Proposition 4.3 produces d X d unitary matrices C' and # such that, with R = (C' — I)A,

W(z) = (I — Ag(z)"' W

(6.2) Ap(p(z)) = W*C(Z Ajai)W ().

Jj=1
Before continuing, we pause to collect some consequences of these relations.

Lemma 6.1. Let d,e and g < § denote positive integers. Suppose p = (p',...,p9) and each p' is a
formal power series. Further suppose p(0) =0 and p(x) = (x,0) + h(x), where h consists of higher

(two and larger) degree terms. Write
=22 Phjatic
7 a

If
(a) A€ My(C)9 and B € M,(C)9;
(b) C is a d x d unitary matriz and ¥ : C¢ — C% is an isometry;
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‘WG
(¢) with R=(C —1)A, W and Ap(p(x)) are as in equation (e. w;

then
it:Bjagain| (1) Bj = #*CA;W for1<j<g;
g
it:LambdaBp| (2) Ap(p(z)) = Bp'(z) =) > W*CAR W aro;
t

k=1 «

(3) for each word w and 1 <k < g,

b

g
WCARW = pl., Bj;

j=1
t:billtgisg| (4) in the case g = g, for all words w and 1 <k < g,
g g
q:billgtisg| (6.3) W CALRW = Zpg:kw B; = Zp;?kw WCAW .
j=1 j=1

Proof. The result follow by comparing power series expansions terms and using the normalization
hypotheses on p. [
Llem:hells kitchen

In the case e = d and § = g, Lemma 6.1 1(e lie B = "//Tlce’é%mgv}ﬁ%ghzg = W(0) = Wy is
2%) of 1.

unitary. Further, since # is unitary, equation emma 6.1 gives A;(C —I)A; is in the span
of Ay,..., Ay for all j, k; that is, for each 1 < j < g there is a g X g matrix =; (described explicitly
in terms of the coefficients of p) such that for all 1 < k < g,

g
eq:AZA| (6.4) AR(C = DA; =) (5))ksAs.

s=1

. . . b%e :AZA . .
The structure inherent in equation (6.7) is analyzed in the next subsection.

ecretdevils
6.1. Lurking algebras.

prop:con| Proposition 6.2. If = = (Z;,...,5,) is a convexotonic tuple, then X, the span of {Z1,...,E4} is
an algebra whose structure matrices are the Z;; that is, for all 1 < k < g and words «,

REY =D (E%)ksEs.

S

.t i
Moreover, the associated convexotonic rational mappings of equation (el .E%iro =
p(z) = z(I — A=(x)) ! and q=xz(I+ As=(z)) L,

[1]

1l

eq:con| (6.5)

are inverses of one another.

eq:cttuple

. . . e : Con . . .
Proof. Inducting on the length of « in equation (k?.%) and using the relation of equation (IT.Z) at the
third equality, gives

azy

_ =
=, =
iy )
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:tropic
To prove the maps of equation (1.3) are inverses of one another, expand ¢! in a series gives to
obtain

—1 —
(@)= aj(I+Az(2),, = > (D) (E) 0z
J Jra€(z)
Using equation (kei.% C) oelmlt the fourth equality below obtains,

I—Ag( )=1— Zatq—f Z Z (EY)j 0
=] — Z |O“ZE)]t_t:njoz—I Z |a‘~‘~ “zja

t

7 Z Dlelzmega =14+ 3 (- \ﬁ|~55

131>0

—Z DPIEP8 = (I + As(2) ™!

Thus,

poq(x) = q(x) [T — As(q(x))] " q<x><<I+Aa<x>>—1>*1
=z (I+A=(z)" (I +Az(2)) =

{11:(1 rigtfsollows that ¢ is a right inverse for p. By symmetry, it is also a left inverse establishing item
h). ]

An algebra &/ has order of nilpotence N € N if the produ trco)f any N elements of &7 is 0 and N
is the smallest natural number with this property. Proposition % 6 be oW Eﬁ)lains how convexotonic
maps naturally arise from the algebra-module structure of equation ((;ﬁ ).

Proposition 6.3. Suppose R and E are g-tuples of matrices of the same size d and let $B denote
the span of {Ex,...,Eg}. If the set {En, ..., Ey} is linearly independent and E;R™ € A for each
1 <j < g and word «, then the g-tuple = of g X g matrices uniquely determined by

(6.6) ExR;j = Z(Ej)k,sEs

s

is convexotonic and
g
(6.7) ExR* =) =} E,

for each 1 < j < g and word «, is convexotonic.
If = is nilpotent of order v, then v < g. Moreover, if R* = 0, then 2% = 0 and hence if R is
nilpotent of order p, then v < p.

Proof. By assumption, for each word o and 1 < ¢ < g the matrix E;R® has a unique representation
of the form

g

(6.8) ER* = (Ea)t4Er,
k=1

for some g x g matrix Z,. We now argue that Z, = = by induction on the length of the word «,
the case of length 0 holding by the choice of =. Accordingly, suppose E, = =Z¢. Applying R, on



undcontpoly

28 M.L. AUGAT, J.W. HELTON, I. KLEP, AND S. MCCULLOUGH

eq:EtRa
the right of equation (k)%i gives
g g g

Y Ear)tsEs = BR Ry =Y (Ea)eaBrRu =Y (Ea)ik Y (BureBr =Y (BaZu)ieFr.

s=1 k=1 k=1 (=1 (=1

Q
Q

By linear independence of {Ej, ..., E,} and the induction hypothesis,

—_

— «
=Ty,

Ty

[1]

—_
— —
—y —

U

[1]

—_
—
—

I
(1]

e’

S

To .prove that the tuple = is convexo‘gomc, fix .1 < é: Sdegx%nd compute the product F,R;R, in
two different ways. On the one hand, using equation (%.6) twice,

g 9 g g 9

ExRiRy = (E0)jsExRe =) (Z0)e ) Ed)rsBs =) ) (E0)e(E

t=1 t=1 s=1 s=1 t=1

On the other hand, using the already established equation (% 7 ) Wlth o =T, Ty,

ExRiRy =) (Z550)k,s Es.

s

For a fixed k, the independence of the set {E1, ..., E,} implies

Z(HZ)], (Ht)k,s = (E'jEﬁ)k,s

t

for each 1 < k, s < g and thus,

> (E0)jEr = 55
t
Hence = is a convexotonic tuple.

To prove the last part of the proposition suppose = is nilpotent of order v. Thus if =* = 0, then
ER® = 0 for each k. Let R¥ denote the algebra generated by {R* : |a| = k} and let B¥ = BR’“
Thus the (B¥); is a nested decreasing sequence of subspaces of B such that BY = (0). Letting
B° = B, it follows, for each j > 1, that either B/ = (0) or B/~! D B/. Thus the dimension of B/ is
at most dim(B) — j and hence there is a p < g such that B” = (0). In particular, for |a| > p and
each k,

0= Z(EQ)J, E
s=1
From the independence of the set {F1,...,E4}, it follows that =* = 0 and hence v < p < g.
Likewise it follows that if R® = 0, then Z% = 0. [ |

Corollary 6.64.:t§g pose = s a convexrotonic g-tuple with associated convexotonic maps p and q as
n equation (h—.qff)—%The tuple Z is nilpotent, then its order of nilpotency is at most g. Further =
s nilpotent if and only if p and q are polynomials. In this case the order of nilpotence of = is the
same as the degrees of p and q. In particular, the degrees of p and q are at most g. Finally, there
are examples where the degree of p and q are g.

sssec:contonics
Proof. As described in Subsection ﬁmm atuple R = (Ry,...,Ry)such that {Ri,..., Ry}
is linearly inde ggdent and spans an algebra with structure matrices =. Hence, choosing £ = R
in Proposition follows that if = is nilpotent, then its order of nilpotency is at most g. The
remainder of the corollary follows immediately from the form of p and ¢ and the bound on the order
of nilpotency of =. [
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ex:degp=g| Example 6.5. Given g, let S denote a (square) matrix nilpotent of order g + 1 and let R; = S7.
Let R denote the tuple (Ry, ..., Ry). On CY with its standard orthonormal basis {e1, ..., e, }, define
Sej =ej_1 for 7 > 2 and Se; = 0. Thus S is the truncated backward shift. The structure matrices
Z; for the algebra generated by R are then =Z; = S7. In this case the convexotonic polynomial p
associated to = is

p=a(l —Az(x))" = (',....p9),

where
= I =@
> jr=m
In particular, p™ has degree m and hence p has degree g. O

prop:AZA| Proposition 6.6. Let A = (Ay,..., Ay) € My(C)9 be given and assume that {Aq,..., Ag} is lin-

early independent. Suppose C is a d X d mgtm’ Asuch that, for each 1 < j < g there exists a matriz
Zj such that for each 1 < k < g equation (%ﬁ: holds. Let R = (C' —1)A and let 2 = (24, ...,5y).
Then:

it:Ralg| (1) the span R of {Ri,..., Ry} is an algebra;
it:Amodule| (2) the span M of {A1,..., Ay} is a right R-module and

i 1

eq:Amodule| (6.9) ARR* = Z(Ea)k,tAt§
t

it:Xialg| (3) the tuple (Z1,...,2,) is convexotonic; - tropic
it:ratspq| (4) the convexotonic rational mappings p and q associated to = by equation (HK)—a%mverses of
one another;
it:Rnil| (5) if R* =0, then E* = 0 and conversely, if =* =0, then RjR* =0 for all1 < j < g;
t:Rnil-more| (6) R is nilpotent if and only if X, the span of Z, is nilpotent. In this case, letting p and v denote
the orders of nilpotency of R and X respectively, p < v < p+ 1, and p < min{dim(R) + 1, g}.

E

lem:gt
Proof. From Proposition %3.3,

g
610 T S

j=1

: AkR
Multiplying (%. lli; on the left by (C —I) gives,

g
R = Y5,

j=1

. eq:AkRa
Thus the set .{Rl, ..., Ry} spans an aligebra. R.and equation Qké; m(lidls&Xs the spa.n M of the set
{A1,..., Aq} is a module over R. At fhis point items () an (bi haye been established.
Item (&3 1o ows from Proposition %.SEy choosing B = A. Ttem (7). ]s cou ained in Proposition
rop:con* ‘lit:Rnil | . . . lem: X it:Rnil-more
5. 2. %Izlngﬁli_rn%(%%e is contam(gd: 1\% Eroposfmon &).3 as 1s most of item (6). To prove the last part of

item (6), multiply equation on the left by (C — I) to obtain

g
0=RpR* = () Rs.

s=1

Thus, if = is nilpotent of order v, then R is nilpotent of order at most u+1 and hence p < v < u+1.
Finally, if R is nilpotent, then its order of nilpotency is at most the dimension of R. u
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c:ScottRulz

6.2. The convexotonic map p and its i verse q-. The following theorem is the main result of
this section. Its proof relies on Proposition Eib .

otinthedark | Theorem 6.7. Suppose A, B are g-tuples of matrices of the same size d, {Aq,...,Ag} is linearly
independent and p = (p',...,p9) where each p’ is a formal power series, p(0) = 0 a ed R&ﬁ% =1.
(6 ) an

If there exists a d X d gnqtgg—szé%élﬁd free formal power series W such that equation d the
identities of equation (A7) wi z) = Ap(p(z)) hold, then

it:formW| (1) there exists a uniquely determined d x d unitary matriz # and a unitary d X dGmatm' eri‘%fEﬁo
( 6) a (IT°7) and

that, with R = (C — I)A, the functions G and W are given as in equations nd
B=w*CAW (meaning B; = W*CA;W forg =2, 09)i s
it:Ralg-old| (2) there is a convexotonic tuple E satisfying (%glg fequz’valently (6.9)). In particular, the set of

matrices {R; = (C —1)A; : j=1,...,9} spans an algebra R; tropic

it:formp| (3) letting p and q denote the convexotonic mappings of equation (%ciated to 2, we have
p:Da — Dg is bianalytic with inverse q;

it:Rnil-old| (4) p is a polynomial if and only if the algebra X spanned by {Z; : 1 < j < g} is nilpotent and in
this case q is also a polynomial and the degrees of p and q and the order of nilpotence of = are
all the same and at most g, and there are examples where this degree is g.

1A

Conversely, if A = (A1, ..., Ag) is a linearly independent tuple of d x d matrices and C is a d x d
matriz that is unitary on the span of the ranges of the A; such that for each j,k the matriz A,(C —
IA; is in M, the span of {A1,..., Ay}, then R equals the span of {R; = (C —1)A; : 1 < j < g} is

an algebra and M is a right module over the algebra R. Let = = (Z1,...,Z,) denote the structure
matrices for the module M over t e %jﬁe@"g R. Given a unitary # and letting B = W*CAW,
the.function W given by equation .(l.ii Cflncd:f%l}%wrati()lgtqlﬁzy?_cﬂgn p(x) = x(I — Az(x))~"! together
satisfies equation (6:1) and hence items (II) through ().

[thm: shotinthedark thm: ctok

Before turning the proof of Theorem 6.7, we indicate how to use it to deduce Theorem [T.T.

thm:ctok
Proof of Theorem bﬁ._Sﬁppose R is a g-dimensional algebra spanned by the g-tuple of dx d matrices
(R1,...,Ry), the matrix C'is a d x d unitary and A = (A, ..., Ay) are as described in the definition
of a spectrahedral pair associated to the algebra R. In particular, lettin
the structure matrices for R (with the basis {R1,...,Ry}), equation (II. :
{Ri1,..., Ry} is linearly independent, so is the set {Ay,..., Ag}. We shall use the converse portion

hm:shotinthe K . k . i _

of ’]:’heoregcl: . Choosing 77 — tIi ives rise to thg conve)‘cotomc mapping p associated to =. Further,

by item (&3) of Theorem . 7, this p 1s a bianalytic mapping between D4 and Do 4. ]
fthm:shotinthedark lit:formW L prop:multi genergédniitAW .

Proof of Theorem [6.7. To prove item (II) apply Proposition 1.3 to equation (b.1) and use the finite

dimensionality of £ = C¢ in the present c ntext to ebt.%%n a d x d unitary matrix C' such that W

and G have the form given in equations (T.7) and (.5 with 7 = We, Since # is an isometric

mapping from C¢ to (Cdeit. i Hnitary. Thus, by Lem alb. T, olds. (See the discussion
surrounding equation (%)ie?s E giﬁegggg by lﬂﬁqggﬂ‘gq&n j’éhbe,nifem (
0

1

unitary, from equation (. emma 6.1,
g .
illoncemore| (6.11) AR RY = Zpgckw Aj.
j=1
. X eq:Amoduleq:AZA eq:billoncemore _
Comparing equations (6.9) (or (6.1)) and (ki.l [ shows Prw = (Bw)k,; and hence
.CU(I — Ag(x))_l = (Zj,a(Ea)lvjl‘ja ... Zj,a(Ea)g,jxja)

- (Zj,apﬁzlawja Zj,ap‘%gawjo‘) = p(@).
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it:f
Thus item (%) holds.

The converse statements of the theore earﬁrjﬁtablished by verifying that, with the choices of
A, B, #,C and W and finally p, equation (% 1) holds. [ |

. . . . fthm: shotinthedark .
6.3. Proper analytic mappings. In this section we apply Theorem 6.7 to the case of a mapping

p=(p',...,p%) in g (g < §) variables z where each p’ is a formal power series.

Proposition 6.8. Suppose

(a) A€ Md(C)g and B € My(C)9;
(b) p(0) =

(% P'(0) = (I 0); and

(d) the set {Bu,...,Bs} is linearly independent.
If there exists a matriz-valued formal power series W with coefficients from My(C) such that

Lp(p(x)) = W(z)"La(x)W (),

eq:preisolalt

and the identities of equation (1.2] w z) = Ap(p(x)) hold, then there ezists a § and a convex-
otonic g-tuple 2 of g x g matrices such that P(z,0;) = (p(x),0,), where P(x,y) is the convexotonic
rational function in the variables (z1,...,2g,y1,...,yr) (and where T = G —g and 0 = § — §)

associated to =,

P(z,y)=(z y)(I—Az(z,y)""

Proof. The strategy is to reduyce to the case g = g. From Lp(p(z)) = W(z)"La(z)W () and
Proposition EIB it Tollows that there exists d x d unitary matrices C' and # such that, with
R = (C - I)A, thqlg%“}t%ﬂspl?ivggﬁelsleries W is the rational function W(z) = (I — Ag(z))"'#.
Further, by Lemma 6.1, for I < 5 < g,

B =W*CA; W,
and generally #*CA;R“# is a linear combination of {By, ..., Bs}. Thus,
AR” € B,

where B denotes the span of {C*# B\#™*,...,C*# By#*}. (In particular, C*# B;#™* = A;
for 1 < j <g.) Let £ = {E1,...,E;} be any linearly independent subset of A;(C) such that
E; =C*""B;w* for1 <j<gand

Ei(C —I)E; € span £.

* _ —1
In particular § > g. Let FF =% CEWM setnﬁ?ltl gen&all)rgt%ld let Y(z,y) = (I — As(z,y))" ¥

By the converse portion of Proposition 1.3,

Y(.’E,y)*LE(.T,y)Y(IL‘, y) = LF(P(xvy))a

. fthm:shotinthedark . . X .
for some power series P. Indeed, by Theorem [6.7, P is the convexotonic rational function associated

to Z and is a bianalytic map between the free spectrahedra determined by E and F. Observe that
Y (z,0) = W(z), Lg(x,0) = La(z). Hence

Lp(P(x,0)) =Y (z,0)"Le(z,0)Y (2,0) = W(x)*La(x)W (x) = Lp(p(z)).

Since F; = Bj for 1 < j < g, the linear independence assumption implies P(x,0) = p(x). |
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7. BIANALYTIC MAPS

Suppose A € My(C)9 and B € M.(C)9, the domains D4 and Dp are bounded, p : D4 — Dp is an
analytic mapping such that p(0) =0, p’(0) = I and p %che boundary of D4 into the boundary
of Dp. Equivalently, p is proper and thus bianalytic 11]. In this sg%gghx?n\%v&ldgreg, up to
mild assumptions on A and B, that d = e and the hypothesis of Theorem .7 are met and hence p

is convexotonic.

7.1. An irreducibility condition. In this subsection we introc}%lcne H"re_duci ilii@z conditions on
X R X ‘thm:shotinthedar
tuples A and B that ultimately allow the application of Theorem 6.7.

7.1.1. Singular vectors. The following is an elementary linear algebra fact.

Lemma 7.1. Suppose T is an M x N matrixz of norm one and let & and &, denote the eigenspaces

corresponding to the (largest) eigenvalue 1 of T*T and TT* respectively. Thus, for instance,
&={xecCN . T"Te =2}

(1) The dimensions of & and &, are the same.
(2) The mapping x +— Tx is a unitary map from & to & with inverse y +— T™*y.

(3) Letting
I T
7= ()

the kernel of J is the set {-Tu®u:u € &}.

Proof. Simply note, if T*T'z = x, then TT*(T'z) = Tz and conversely if TT*y = y, then T*T(T*y) =
T*y to prove the first two items. To prove the last item, observe that vectors of the form —Tu ® u
are in the kernel of J. On the other hand, if v ® w is in the kernel of J, then v + Tw = 0 and
T*v +w = 0. From the first equation T*v + T*Tw = 0 and from the second T*Tw = w. Thus
wed andvBw=—-Twdw. ]

Lemma 7.2. Suppose d,e,g < g are positive integers and
(a) A€ My(C)9, B € M,(C)];

(b) H is a Hilbert space;
(c) C is a bounded linear operator on H @ C¢;
(d) # : C°® — H ®C? is an isometry;
(e) p= (p',...,p9) is a free analytic mapping D4 — Dp with p(0) = 0 and linear term ¢ such that
(7.1) Lp(p(x)) = W(z)" Liyea(z)W(z),
where
(7.2) W(a) = (I - An(a) 7

and R=(C —1)A; and

(f) a € (C™™)9 and the largest eigenvalue of Aa(a)Aa(a)* and Aa(a)*Aa(a) is 1; the eigenspaces
of Ap(a)Aa(a)* and Aa(a)*Aa(a) corresponding to the eigenvalue 1 are one-dimensional,
spanned by the unit vectors uy, us in C™ respectively; and

(g) v1 € C™ is a unit vector and Ap(¢(a))Ap(4(a))* vy = v1.

Let v9 = —Ap({(a))*v1 (note that vy is a unit vector) and write, for j = 1,2 and {e1,...,en} a

basis for C",

n
Uj ::jij?gﬁké§€k S (yiééan =
k=1
and similarly for v;. Then there is a unit vector A € H (depending on o, uj and v;) such that,
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(1) Ap(a)ug = —uy and Ay(@)*up = —ug;

(2) Ap(t(a ))vz —uv1 and Ap(l(a)) vy = —vy;

(3) Wvap =A@ ugy for each 1 <k <n;

(4) #W v =CA®@uy) for each 1 <k <n; and

(5) if A= B and l(x) = x, then, without loss of generality, vi = u1 and vy = us.

Note that if < M (C)Cg is of sufficiently small norm or nilpotent, th%l we may S%gg:gzlatfite X for
(7

x in equation ([T y using the forl%ulas for G and W in Proposition #. 3 Moreover i this case
we can evaluate W (x) from ( a as

W(X)=(I &L —[(C—1)® L]ALea(X) " (# @ 1,)
=(I®L,—[(C -1 e L)[ln®AsX))) (¥ & 1)

rather than appealing to convergence of a series expansion for W.

lem:even better
Proof of Lemma 7.2, Let
0 1
5= o)

and let X = S ® a. Thus X has size 2n. Conjugating L4(X) by the permutation matrix that
implements the unitary equivalence of A® S®a with S® A®«a shows, up to this unitary equivalence,

La(X) = (AA(IQ)* AAI(a)> .

. lem:elementary largest . L . i .
Thus the assumptions on A4(a) and Lemma [7.T imply that L4 is positive semidefinite with a

nontrivial kernel spanned by

2
u=> e @u;= <Z;> €eC?® (C"eCY.

Jj=1

In particular, if z is in the kernel of Iy ® L 4(X), then there is a vector A € H such that z = A ® u.
Also note, |lui|| = ||uz|| and we assume both are unit vectors.

Since, by assumption p(x) = ¢(x) + h(z), where ¢ is linear and h consists of higher order terms
and X is (jointly) nilpotent (of order 2),

p(X) = <8 E(g)) -

Thus,

_ ! Ap(f(a))
LB(p(X)) - <AB(Z(O£))* B I ) .

. . .. . . . eq:even better . . . )
Since L 4(X) is positive semidefinite, equation (I7.T) implies Lp(p(X)) is positive semidefinite. More-

over, the hypotheses imply that the vector v = 2521 ej ® v; satisfies Lp(p(X))v = 0. Another
application of equation (; i‘i shows W(X)v is in the kernel of Ly, g4(X); i.e., W(X)v = A ® u, for
some vector A € H with ||| = [[W(X)v]|. Hence,

2
) uj@e)=A@u=W ZR @ X)) N @I, ® L)v.
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Multiplying by (I — Y9, R; ® X;) on the left yields

(7 @ Lvj) @ej =[I = [(C = 1) ® Izp](I ® Ayea(X))](A @)

2
=1

J
= ()\®u1 - [(C—I)@In]()\®AA(oz)u2)) ®el+ A® us ® eo.

It follows that (# ® I,)va = A ® ug and, since # is an isometry, ||A|| = ||vz||. Further,
W @ L) =A@u — [(C — 1) @ L] (A ® Aa(a)us).
Using Aa(a)ug = —uy gives [# @ IyJvr = [C ® L] (A ® uy).

To complete the proof observe that

(W & [n)’Ug = Z WUQ,k & €.

k=1
Thus, # vy, = A ® ug k. Similarly,
n n
CRL)A®W)=(CRL)D ARuk@e) =Y CADuk) @ e
k=1 k=1
Thus, #v1 = C(A®uy ) for each 1 <k <n. ]
7.1.2. The FEig-generic condition. We now introduce some refinements of the notion of sv-generic
we saw in the introduction. A subset {b1,...,bs11} of a finite-dimensional vector space V is a
hyperbasis if each subset of £ vectors is a basis. In particular, if {b1,...,be} is a basis for V' and
bpi1 = Z?Zl cjbj and ¢; # 0 for each j, then {b1,...,by41} is a hyperbasis and conversely each

hyperbasis has this form. Given a tuple A € My(C)9, let
g
ker(A) = ﬂ ker(A;).
j=1

Given a positive integer m, let {e; : 1 < j < m} denote the standard basis for C™.

Definition 7.3. The tuple A € M,(C)9 is weakly eig-generic if there exists an ¢ < d + 1 and,
for 1 < j <4, positive integers n; and tuples o/ € (C"*"i)9 such that

(a) for each 1 < j </, the eigenspace corresponding to the largest eigenvalue of A A(a?)*Ag(ad)
has dimension one and hence is spanned by a vector u/ = szzl uy @ eq; and
the set =ug:1 <3<l 1 <a<n;; contains a hyperbasis for ker =rg .

b) th U 5:1<j<t1<a<n; ins a hyperbasis for ker(A)* A

The tuple is eig-generic if it is weakly eig-generic and ker(A) = (0). Equivalently, rg(A*) = C¢.
Finally, a tuple A is x-generic (resp. weakly x-generic) if there exists an ¢ < d and tuples
37 such that the kernels of I — A4(87)A4(B7)* have dimension one and are spanned by vectors

1 =3k @ eq for which the set {ud : j,a} spans C?¢ (resp. rg(A) = ker(A*)1).

Remark 7.4. It is illustrative to consider two special cases of the weak eig-generic condition. First
suppose nj = 1 for all 1 < j < £. The kernel of I — Aa(a’/)*A4(a) is spanned by a a single
(non-zero) vector u/ € C? and the set {u',... , u’} is a hyperbasis for ker(A)+. Hence £ — 1 is the
dimension of ker(A)+. If we also assume ker(A)+ = (0) and there exists 37 for j = 1,...,n such
that I —A4(87)Aa(B7)* is positive definite with one-dimensional kernel spanned by v/ and moreover

{v',...,v%} is a basis for C%, then A is sv-generic as defined in the introduction.
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For the second case, suppose, for simplicity, that ker(A) = (0). If there exists an a! € (C"*")9
such that I — Aa(a')*A4(al) is positive semidefinite with a one-dimensional kernel spanned by

n
u' :Zu}g(@ek eC'eC"
k=1
and if the set {u}c : 1 <k < n} spans C?, then A is eig-generic. To prove this statement, suppose,
without loss of generality, {ui : 1 < k < g} is a basis for C%. Now take a unitary matrix 7" such that
Ty # 0 for each 1 <k < dand Ty =0foreachd+ 1<k <n. Let a? = TalT*. Tt follows that

I — Aa(a®)*Aa(a?) is positive semidefinite with a one-dimensional kernel spanned by the vector
u? = (I; ® T)u' and further

n n n n n
u? = Zu}t ®Te, = Z z:u,lf ® Tk jej = Z (Z TkJu}f) ® ej.
k=1 j=1k=1 j=1 \k=1
Thus, in view of the assumptions on T,

n

=N

d
T ul = Tk
k11U, = k1U-
k=1 k=1

Since Ty # 0 for 1 < k < d, the set {ui,... ,u;,u%} is a hyperbasis for C% and the tuple A is
eig-generic. O

Remark 7.5. Let us explain why sv-genericity is a generic property in the standard algebraic

geometric sense. First notice that for a generic tuple A € My(C)9, the real-valued polynomial
pla) =det (I — Aa(a)*Aa(a)) = det (AA(Ia)* AAI(Q)>

is irreducible and changes sign on R?9; here we consider p(a) as a real polynomial in the real and

imaginary parts of the complex variables o € %%%T his fact is easily established by simply giving a

tuple A with this property. As a consequence, R98, Theorem 4.5.1] implies that each polynomial

vanishing on the zero set of p must be a multiple of p.

If A is not sv-generic, it fails one of the two properties in its definition. (It suffices to show this
while omitting the positive semidefiniteness condition.) Assume A fails the first property. Then for
every choice of d+ 1 vectors o/ € C? for which I —A4(a?)*A 4(a7) is singular with a one-dimensional
kernel spanned by u/, the set {u!,...,u%!} is not a hyperbasis. Observe that in this case u/ can
be chosen to be a column of the adjugate matrix of I — Aa(a?)*As(ad).

The latter condition can be expressed by saying that one of the d x d minors of the matrix
(u' --+ w?), whose columns v/ are columns of the adjugate of I — As(a/)*A4(a’), vanishes.
Equivalently, the product g of all these d x d minors vanishes on the zero set of p.

But, as follows from the first paragraph, on a generic set of As, this means that ¢ is a multiple of
p. However, it is easy to find examples of A for which this fails. The argument is similar if A fails
the second property of the definition of sv-generic. Hence being sv-generic is a generic property. ¢

Remark 7.6. The one-dimensional kernel ass %on is key for the eig-generic property, and has
been successfully analyzed in the two papers %V, KV17]. Namely, if the tuple A € My(C)9 is
minimal w.r.t. the size needed to describe the free spectrahedron D4, then dimker L4(X) = 1 for
all X in an open and dense subset of the boundary 0D 4(n) provided n is large enough. O
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7.2. The structure of bianalytic maps. In tgi‘s secti%n our main results on bianalytic maps

[thm:one-sided cor:main . .
between free spectrahedra appear as Theorem [.TU and Corollary [7.TT. We begin by collecting
consequences of the eig-generic assumptions.

Lemma 7.7. Suppose

(a) A€ My(C)9, B € M(C)Y;

(b) H is a Hilbert space, C is an isometry on H @ C* and
W(z) = (I = Ar(2))"'¥,

where R = (C — I[Ig ® A] and # : C° — H ® C? is an isometry;
(c) p=(p',...,p9) is a free analytic mapping D4 — Dp such that p(0) = 0, and

Lp(p(x)) = W(z)" Liyea(z)W (),
in the sense that
Lp(p(X)) = W(X)" L ea(X)W(X)

for each nilpotent X € M(C)9;

(d) p maps the boundary of D4 into the boundary of Dp; and

(e) there is a positive integer £ and, for 1 < j < £, tuples o in (C*"i)9 such that I —A(a?)*A(a)
is positive definite with a one-dimensional kernel spanned by

nj
J _ J .
up =) Uy ® ek
k=1

(1) If A is eig-generic (resp. weakly eig-genem’c), then d < dim(rg(B*)) <e (resp. dim(rg(A*) <
dim(rg(B*));

(2) If e = d (resp. dim(rg(A*)) = dim(rg(B*))) and the tuples o’ and unit vectors u} validate the
etg-generic (resp. weak ez’g—generic) assumption for A, then there exists a unit vector A € H
and unit vectors

nj
J J .
vy = E Uy @€
k=1

in the kernel of I — Ap(p(a?))*Ap(p(a?)) such that if T C {(j, k):1<j<Il,1<k<n;}and
{1/2’,~C : (j, k) € I} is a hyperbasis for C¢ (resp. rg(A*)), then {v%yk : (j, k) € I} is a hyperbasis
for C? (resp. rg(B*)), and for all (j, k) € Z,

J o J .
7/1}27,C = )\®u27k,

(3) If e = d and A is eig-generic (resp. dim(rg(A*)) = dim(rg(B*) and A is weakly eig-generic),
then there exists a unit vector A € H and a d x d unitary M (resp. a unitary map M from
rg(B*) to rg(A*)) such that W =A@ M (resp. W v =A® Mv for v € 1g(B*)); and

(4) If A is eig-generic and x-generic and e = d (resp. A is weakly eig-generic and weakly *-generic,
dim(rg(A*)) = dim(rg(B*)) and dim(rg(A)) = dim(rg(B))), then there is a vector X € H and
dxd unitary matrices M and Z such that # = A@M and C(A\®1;) = A\®Z (Tesp. a unitary map
M and an isometry N from rg(B*) to rg(A*) and from rg(B*) Nrg(B) into rg(A) respectively
such that #v = X® Mv for v € rg(B*) and C(A® Nv) = A ® Mv for v € rg(B*) Nrg(B)).

Remark 7.8. Note that the hypotheses on o/ and u% imply that each uék € rg(A*). Likewise

j . . Lo it:action dlee j . d
vy € 1g(B”). The eig-generic hypothesis in item () can be relaxed to {uy, : j,k} spans C
(respectively rg(A*) ), rather than that it contains a hyperbasis. O
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Proof. We begln with some calculation tprﬁh{mnary to proving all items claimed in the lemma.
Let of and u} be as described in item (&i (but do not necessarily assume that {u2 J} gontains a
hyperbasis yet) Let J ={(j,k):1<j <{, 1<Ek<n;}and, as in the proof of Lemma } 7, let

0 1
5= <0 O> .
For 1 <j </ let X/ =8 ®al. The hypotheses imply X7 is in the boundary of D4. By item (%rtﬁm
p(X) is in the boundary of Dg. Observe that p(X) = ¢(X), where £ is the linear part of p. Thus

(up to unitary equivalence)
I Ap(l(ad
L(p(x) = ( il o)

is positive semldeﬁnlte and there exist unit vectors v/ € C"¢ such that v/ = a® vl +e9® v% lies in
lem:elemeritary largest. i j

the kernel of L(p(X)), Hence, by Lemma [T, Ap(Z{a?)JAp(T(a”)) vy = vl and vy = —Ag(ad)*v].
Consequently, Lemma 7 i applies. In partlcular writing

J J
vy = E Ui 1 & €k,
k=1

there exist unit vectors A\; € H such that
V/Uik =\ ® uék
for (j,k) € J. A
Fix Z C J and let % = {u}, : (j, k) € I} C rg(A*) C C% Suppose

(7.3) Z ol 1)2 -
(j,k)eT
eq:sums to zero
Applying # to equation (7.E§§

0= > X @ul,

(J:k)eT
Given a vector n € H, applying the operator n* ® I yields
(7.4) 0= Z C’/?Jl”‘j“ik = Z aiuévk,
(k)T (4.k)€T

where ai = c,in*)\j. oq: pammad

Suppose %z is linearly independent and (p,m) € Z. Choosing n = A, in equation (H‘i?ﬁs
i = CmAsAp = 0. Thus ¢, = 0 for each (p,m) € Z. Hence ¥7 := {v%k : (j,k) € I} Crg(B*) C C©
is linearly independent and in particular the cardinality of Z is at most dim(rg(B*)). If Z7 = {u?k :
J, k} spans rg(A*), then choosing %z a basis for rg(A*) shows dim(rg(A*) < dim(rg(B*). Further if
dim(rg(A*)) = d, then d < rg(B*) <e.

To prove item (h’)Tmpr?erve if o/ and u validate the eig-generic (resp. weak eig-generic) hy-
pothesis, then % does span, C? (resp. rg(A*¥)) and hence d < e (resp. dim(rg(A*)) < dim(rg(B*))).

To prove item (b)Wt‘he tuples o/ and the vectors u’ validate the (resp. weakly) eig-generic
assumption. Thus, there is an Z C J such that %7 is a hyperbasis for C? (resp. rg(A*)). Since
a hyperbasis for C? contains d + 1 (resp. dim(rg(A*)) + 1) elements, the cardinality of Z is d + 1
(resp. dim(rg(A*))+1). Assuming d = e (resp. dim(rg(A*)) = dim(rg(B*))), the set {vi :(5,k) €T}
is then a set of e+ 1 (resp. dim(rg(B*)) + 1) elements in C¢ (resp. rg(B*)), so is linearly dependent.
On the other hand, if Z’ is a subset of Z of cardinality d, then Uz is a basis for C? (resp. rg(A*))
and hence ¥7 = {vjzk : (j,k) € T'} is a basis for C? (resp. rg(B*)). Hence ¥7 is a hyperbasis
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for C? ( re?) 11%1(5 C))Z.elfgence, there exists, for (j,k) € Z, scalars c/?C go:ngmg)nfa owhich are 0 such that

equation (I7: iven (p,m) € Z, an application of equation (/74) with a (nonzero) vector 7
orthogonal to )\p gives ah, = 0 and hence, again by the hyperbasis property, ai =0 for all (j,k) € Z.
Since CZC # 0, it follows that 7 is orthogonal to each )\; and consequently the unit vectors \; are all
colinear. By multiplying v/ by a unimodular constant as needed, it may be assumed that there is
a unit vector A € H such that A\; = A for all j. With this re-normalization, for (j,k) € Z,

(7.5) Wl =A@ u,,

£ of it:action d=e
completing the proof of item (b) it:action d=e alt S

Turning to the proof of item (3J, it follows immediately from equation (I7.5) that that for each
v € C? (resp. v € rg(B*)) there is a u € C? (resp. u € rg(A*)) such that

Hv=ARu,

since {v2 kU, k) € I} spans C? (vesp. rg(B*)). Hence, by linearity and since # is an isometry,
there is a unitary mapping M : C? — C? (resp. M : rg(B*) — rg(A*)) such that # = A® M (resp.
W|rg(3*) =A® M) lit:action one-term . . .

For the proof of item (1), assuming A 1s *-generic (resp. weakly #-generic), for 1 < j < ¢, there
exists tuples 37 of sizes n; and vectors

satisfying the *-generic (resp. weak *-generic) condition for A. That is, I—-A A(Bj)A 4(B7)* is positive
semidefinite with one-dimensional kernel spanéln?%vkgl 1y 2 and the set of vectors {ulk 1<j<,1<
k < n;} spans C? (resp. rg(A)). By Lemma [7.Z, there et veotors

j
J_ E J
k=1

such that I — A4(87)*A4(87) has a one-dimensional kernel spanned by u). On the other hand, the

tuples
. 0 B
J =
=5 )

lie in the boundary of D4. Hence, as before p(X7) lies in the boundary of Dg. Thus

; Ap(4(B7
Lp(p(X7)) = <AB(ffﬁj))* B(I(BJ))>

is positive semidefinite and h?s a }(e%grlletlaryqence there exists vectors v/ = V1 &) V2 such that

Lp(p(X7))v? = 0. By Lemma W T-these veciors ate related by
Ma(F) ] =~y Ap(U(8)"v] = —v,
Aa(B)ug = —ug,  Ap(U(F)vg = —vi.

Write

n;
SRR
i,k k-
k=1
lem:even better .
By Lemma [7.Z, for each j there exists a vector 7; € H such that

J o L J J o _ ) J
Wvlk =Tj ®uy, and WVM =CT1; ® ug g
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for each 1 < k < n;. Now suppose further that A isligvg%lg}éne(iig—egea?gric and dim(rg(B*)) =
dim(rg(A*)). In this case, by the already proved item (3), there is a unit vector A and unitary
mapping M : rg(B*) — rg(A*) such that #v = A® Mv on rg(B*). Since v}, € rg(B*) and # and

C' are isometries, it follows that 7; = p; A for some scalar p; # 0. Hence,

(7.6) W], = CA® pju],

for each 1 < % < ¢ and 1 <k < nj. Since {uJ1 i : J.k} spans rg(A) and both C and #  are unitary,
E€q :C¥sW )
equation (?.%’3) implies there is an isometry Z : rg(A) — rg(B) such that

C(A®u) = # Zu

for u € rg(A). In particular, dim(rg(4)) < dim(rg(B)). Hence, if rg(A) = C¢ (as is the case if A is
x-generic) and e = d, then rg(B) = C? and Z is onto. In the case that A is only weakly *-generic,
we have assumed the dimensions of rg(A) and rg(B) are the same and so again Z is onto. So in
either case, Z is unitary. In particular, given v € rg(B) Nrg(B*), there is a u € rg(A) such that
Zu =v and

CA®RZ*™V)=Wv.
On the other hand, as v € rg(B*), we have #'v =\ ® Mv. Hence,
(7.7) CARZ*V)=A® Mv.

Hence, letting N denote the restriction of Z* to rg(B) Nrg(B*) the desired conclusion follows.
We now take up the case A is eig:genleric and *-generic and e = d. In this case, M is a d X d
it:action 4=€ alt
unitary matrix by item (3). Moreover, as noted above d = dim(rg(A)) < dim(rg(B)) < d. On
the other hand, from item (), d < dim(rg(B*)) < d nd hence rg(B*) = C?. Tt follows that
Z : C% — C? is unitary and letting u = Z*v in equation (7.7) gives,

CA®u)=A® MNu
. it:action one-term
and the proof of item (1) is complete. ]

it:action one-term

Remark 7.9. In the context of item (1), the dimension of rg(B) Nrg(B*) is at most the dimension
of rg(A)Nrg(A*). In the case that these dimensions coincide, the identity C*(A® Mv) = A® Nv for
v € rg(B)Nrg(B*) implies there is a unitary mapping Z of rg(A)Nrg(A*) such that C*(A\®z) = A\®Zz
for z e rg(A) Nrg(A*); e, C*=1® Z on CA®@rg(A) Nrg(A*¥). O

Theorem 7.10. Suppose
(a) A, B € My(C)9;
(b) Dy is bounded;
(c) p is a mapping from Dy into Dp that is analytic and bounded on a free pseudoconvex set G
containing Da;
(d) p maps the boundary of Dy into the boundary of Dp.
If A is eig-generic and x-generic and p(x) = x + f(x), where f consists of terms of degree two and
higher, then there exists a d X d matriz-valued analytic function W such that
Lp(p(z)) = W(z)"La(z)u(z)

) fthm:shotinthedark . . .
and thus the conclusions of Theorem 0.7 hold. In particular, there exist d X d unitary matrices C, W

such that, B =#*CAW and (Da,Dp) is a spectrahedral pair with associated converotonic map p.

Corollary 7.11. Suppose
(a) Ae My(C)Y and B € M.(C)Y;
(b) D4 is bounded;

(c) A is eig-generic and *-generic;
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(d) p is an analytic mapping D4 — Dp analytic and bounded on a free pseudoconvex set Gp con-
taining D4 with p(x) = x + f(x) where f consists of terms of degree two and higher;

(e) r is an analytic mapping Dp — D4 analytic and bounded on a free pseudoconvexr set Gg con-
taining Dp, with r(x) = x + h(xz) where h consists of terms of degree two and higher;

(f) p maps the boundary of Da into the boundary of Dg and r maps the boundary of Dp to the
boundary of D4.

If B is eig-generic, then d = e. In any case, if d = e, then the maps p and r are bianalytic
(convezxotonic) between Qﬁ:%ggwiﬁgﬁwﬂﬂg}{between Dp and D4 respectively. Moreover, for each the
conclusions of Theorem 0.7 hold. In particular, there exist d X d unitary matrices C, # such that,
B=w*CAW and (Da,Dp) is a spectrahedral pair with associated converotonic map p.

[Lem : éiite:-gaemieni dlige action . L. . i . .
Proof. By Lemma [7.7 (IT) The assumption A4 is eig-generic implies d < e. If B is assumed eig-generic,

then reversingtti]}}ne; Orrglgssigg ((1 and B and using 7 in place of p, implies e < d. Thus in any case d = e
and Theorem 7. 10 applies to complete the proof. |

thm:one-sided . . . rem:one-sided -
Proof of Theorem [7.10. We begin by considering the case, as in Remark [7.TZ below, that § > g and

B € My(C)9, leaving the special case § = g for later. Since p maps D4 into D and p(0) = 0, b ht.mh%nalPoss
Analytic Positivstellensatz (here is where the hypothesis Dy is bounded is used), Corollary é.l('),

there exists a Hilbert space H, a unitary mapping C' on H ® C? and an isometry # : C¢ — H @ C?

such that

Lp(p(x)) = W(2)"(In ® La(z))W (@),
where
W(z) = (I — Agr(z))"'w
and R = (C —I)({g ® A). Moreover,
Lp(p(X)) = W(X)" Liyea(X)W(X)

:preisolalt
holds for nilpotent X ¢ Jg}gg:g and the identities of equation (B.Z;rﬁeésao with G(z) = Ap(p(x)).
Lemma %{ '(Ehmpnes there is a vector A € H and d X d unitary matrices M and N such that
W =A@ M and C(A®I)=A® N. To complete the proof, let

W(x) =[N ®@I|W(x).
Importantly, W is a square (d x d) matrix-valued analytic function. Further,

Lp(p(x)) = W(x)*(Ig ® La(x))W (z) =W(z)* [\ @ [](Ig ® La(z))[A @ I]u(z)
=W(x)" La(x)W(x).

~ thm:shotinthedark
If g = g then Theorem %’).7 applies and concludes the proof. ]

. . ‘thm:one-sided cor:main .
n:one-sided| Remark 7.12. If, in the setting of Theorem [7.TU or Corollary [7.TT, The assumptions are relaxed
tgoB gth((C)g with ¢ > g, then we can conclude that p satisfies the conclusions of Proposition
iR a— O
thm:main
This section concludes with a proof of Theorem [T.5.

thm:main . L. X .
Proof of Theorem [1.5. The assumption that A and B are both sv-generic immediately imply both
are eig-generic and x-generic. By assum 3},9% azznhas inverse r and r is a bianalyg]%‘%lﬁ% from Dp
to D4. Thus the hypotheses ofr _gn(a){gllary /.11 are validated by those of Theorem [T.5 and the result

thus follows from Corollary 7T |
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8. AFFINE LINEAR CHANGE OF VARIABLES

This section describes the effects of change of variables by way of pre and post composition with
an affine linear map on an analytic mapping between free spectrahedra.

Suppose A= (Aq,...,Ay) € Mg(C)9 determines a bounded LMI domain Dy, B = (By,...,B;) €
M.(C)Y and p : Da — Dp Js analytic with p(0) = b.

We first, in Subsection un our, attthlon to conditions on A and B that guarantee p’(0) is

finec
one to one. Next, in Subsectlon R.Z, assuming p’(0) is one to one, we apply a linear transforms on

the range of p placing p into the canonical form p(z) = Tw 0):11 stl(xg where h(z) consists of higher

order terms (h(0) = 0 and A/(0) = 0). In Subsection we consider an affine linear change of
variables on the domain of p.

8.1. Conditions guaranteeing p’(0) is one to one. Natural hypotheses on a mapping Dy to
Dp via p lead to the conclusion that p/(0) is one-one.

Lemma 8.1. Suppose A € My(C)9 and B € M.(C)9 and p : Da — Dp is analytic and p(0) is in
the interior of Dg. If

(a) p is proper; and

(b) D4 is bounded,

then p'(0) is one-one.

Proof. Let b denote the constant term of p. Thus b is a row vector of length § with entries from C
and ¢(z) = p(z) — b satisfies ¢(0) = 0. Let B = Lp(b). In particular, B is an e x e matrix (since
B € M,(C)9). Tt is also positive definite, since B = L (p(0)) and p(0) is in the interior of Dp. Let
$ denote the positive square root of B and define F' = H~1BH ™. Thus, F € M.(C)J is a § tuple
of e X e matrices and
9 Lp(p(2))H" = Lr(q(x)).

In particular, for a given n and tuple X € M,,(C)9, we have Lg(p(X)) > 0if and only if Lr(¢(X)) >
0 and ¢ is proper since p is assumed to be. If p/(0) = ¢/(0) is not one-one, then there exists a

non-zero a € C9 such that ¢’(0)a = 0. Given S, a non-zero matrix nilpotent of order two, let
X=a®8s= (alS, .. .,agS) . It follows that

q(tX) =t(¢'(0)a) ® S = 0.

Since D4 is bounded and contains 0 in its interior and X # 0, there exists a ¢ such that ¢X is in
the boundary of D4. On the other hand, since ¢(tX) = 0, the tuple ¢X is not in the boundary of
Dr, contradicting the fact that ¢ is proper. Hence ¢/(0) is one-one. [

8.2. Affine linear change of variables for the range of p. In this section we compute explicitly
the effect of an affine linear change of variables in the range space of p. This change of vaufJ ble can
be used to produce a new map p with p'(0) = I, used later in the proof of Theorem . Given a
g X g matrix M and an analytic mapping ¢ = (q1 e g9 ), let ¢M denote the analytic mapping,

q(@)M = (¢'(z) ...¢%(2)) M = (L ¢ (@) Mjy,..., 3¢ (2)Mj) -

On the other hand, for B € M, (C)Y, we often write M B for (M ® I)B where B is treated as a
column vector. Thus,

> M ;B
MB = :
> M, ;B

Since we are viewing z and p(x) as row vectors, in the case p has g entries, p’(0) is a g X § matrix.
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Proposition 8.2. Suppose A € My(C)9 and B € M.(C)I and p : Dao — Dpg is an analytic map
with p(0) = b € CI. Let § denote the positive square root of

g9 g
B=Lg(b)=I+Y bBi+> (b;B))"

and let F =p' (0)9H'BH 1 =H"1p(0)BH L.

Suppose p'(0) is one-one and choose any invertible g X g matriz M whose first g rows are those of
p'(0) and let ¢ denote the affine linear polynomial £(x) = (—b+ x)M 1. The analytic map p = Lop
maps Da into Dp and satisfies p(0) = 0 and p'(0) = (I3 0). Thus p(z) = (z 0) + h(z) where
h(0) =0 and h'(0) = 0. In particular, if p maps the boundary of D4 into the boundary of Dp, then
p maps the boundary of Da to the boundary of Dg; and if p is bianalytic, then so is p.

Written in more expansive notation, for each 1 <i < g,

Fi=$9""(MB)5™" Zp )i BiH T,

9
B; = Z i DEFS.

Proof. Consider

g
S (MB), @ pla)

k=1

(MB)j, @ ((=b+p(x)) M),

Il
X Eoud
M@ i M@ i MQQ'
— —

> My;B;| @ (Z(—bi +pi(z)) (Ml)i,k>

i—1 =1

g

> (:1 kMk,J> [Bj ® (b —l—pi(x))}

i=1

i )[By @ (= bi+pil)| = iB@pj Ei:

i=1

Il
—

J

Il
M

<.
Il
—
-.
&

Given a tuple X, it follows that

Lp

’Mmz I me

F; @ pj(X +ZF ® pj(X

g
(9 By )+ (9 H71); @ pi(X)”

=TI+
j=1 j=1
g g
=@ [ B+ (MB);@p;(X)+ ) (M pi(X) | (v eI
j=1 j=1
g g
=@ el Z j@pi(X)+ Y BiepX); | (9 el)
=1 j=1

=® '@ DLeEX) O 1)
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Since $~! ® I is invertible, Lp(5(X)) = 0 if and only if Lg(p(X)) = 0. Assuming p : Da — Dp
and X € Dy, it follows that p(X) € Dp.
Next we note that p(0) = (—=b+ p(0))M " = 0 and that ¢(z) = M~'. Hence, with P = (I 0),

7(0) = ¢ (p(0))p'(0) = M~'p/(0)

and thus, 7(0) = p(0)M ' = PMM~' = P. ]

[thm:mai
Remark 8.3. In Hl]iel%rem i ,“6311 thout the assumption p'(0) = thg remaining hypotheses imply

p'(0) is invertible 11, Theorem 3.4]. Applying Proposition %h b=0and M = p'(0), gives
$H=1Iand F =p'(0)B. Moreover since B is sv-generic, so is F'. The resulting p thus does satisfy
the hypotheses of Theorem ms now just a matter of undoing the linear change of variables
that sent B to F. O

t};}nﬁizrnll%% of basis in the R module generated by A. In the context of the results of The-
orem [[.5, the formula for the convexotonic mapping p depends (only) upon the structure matrices
= for the module generated by the tuple A over the algebra generated by the tuple R = (C'— I)A
with respect to the basis implicitly given by A = (Ay,...,A4). We now see that a linear change of
the A variables produces a simple linear “si ﬂrlty transform p of the mapping p.
Starting with the identity of equation (%gr;%on&der a linear change of variables determined by
an invertible matrix M € C9%9. That is, A = M A where A is regarded as the column of matrices
Ay
,s0 A; = ng':l M;;A; for i = 1,...,g. The matrix M implements a change of basis on
Ay
the span of {A1,..., A4} We et Pasme that the vectors of variables and maps are row vectors.
Observe, in view of equatlon

A(C - 1)A; = MA(C - I)( ZMkAk Z A(C —1)Ay))
k=1

Z ik(ERA)) Z kEr) M A,

- :AZA
Thus, (A, C) satisfy the hypotheses of Proposition %].:193 with structure matrices
~ (3

Concretely,

(8.1) (E)sg =Y MotM;i(Er)ep(M ™ )pg.
t,k,p

8.3.1. Computation of the mappings after linear change of coordinates. Recall the convexotonic
mapping p(y) = y(1 — > 7, v Z;)~! associated to the convexotonic tuple Z. We now look at the
effect of the linear chan%g of var1able implemented by M on p. The rational function p determined
by Zj of equation (B:T), 18
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Note that >°7_, y;M;y, is the k-th column of yM, thus p(y) = p(yM)M~L. Similarly for p inverse,
denoted ¢, so we can summarize this as

Ply) =plyM)M ™, ily) = q(yM)M".

eq:chCT
(For an example see (8:Z) below.)
The following proposition summarizes the mapping implications of this change of variable.

Proposition 8.4. If p: Da — Dp, then p: D ; — Dy where
D; :={y:yM € Da}, Dy :={z:2M € Dp}

Proof. Given y € Dj, set yM = x, which by definition is in D4. By the formula above p(y) =
p(z)M 1 =: 2. Thus zM = p(z) € Dp, hence by definition of Dy, we have p(y) = z € Dj. |

Sec:compose

8.4. Composition of convexotonic maps is not necessarily convexotonic. Suppose p :
Das — Dp and q : Dp — Dpg are convexotonic maps between the spectrahedral pairs (D4, Dp)

and (Dp,Dg). In particular, the pairs (A4, B) and (B, F) must satisfy rather stringent algebraic
conditions. In this case, generically gop is again convexotonic by Theorem : U. On the other hand,
in general, given convexotonic maps p and ¢ (without specifying domains and codomains), there is
no reason to expect that the composition q o p is convexotonic. Indeed the following example shows
it need not be the case.
i . . sec:examples

Let ¢ = 2 and let p be the indecomposable convexotonic map of Type I from Section b Let p

denote the convexotonic map

= (21 + 23, 2).
It can be obtained by reversing the roles of 1 and x2 in p or observing it belongs to the convexotonic
tuple

0 0
Z21=0, 5= .
o 5= (1)
. X X sec:chgstruc X .

In terms of the formalism in Subsection %.3, consider the change of basis matrix

01
u=(1 o)
and note

52) o) =) (§ ) = @+ 0? v).

Now
p(B(z,y) = (z+y* y+2®+ay* + v’z + )

lem:gt
is not convexotonic by Proposition %.23, since it is a polynomial of degree exceeding two.

9. CONSTRUCTING ALL CONVEXOTONIC MAPS
ec:examples

To construct all convexotonic maps in g variables first one lists the indecomposable ones, i.e.,
those associated with an indecomposable algebra. Then build general convexotonic maps as direct

Eums of tgﬁese. We illustrate this b giv%n% all convexotonic maps in dimension 2 in Subsections
sec:two sec:decompose K s€c:ball i R
J.T and 9.Z. Finally, in Subsection ﬁ;S we show how the automorphisms of the complex wild ball

ZXJ*X j = I are, after affine linear changes of variables, convexotonic.



sec:two dim

c:decompose
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9.1. Con €3 tonic maps for g = 2. In very small dimensions g < 5 indecomposable algebras are
classified [Maz79]. We work out the corresponding convexotonic maps for g = 2. The following is
the list of indecomposable two-dimensional algebras over C (with basis Ry, R2).

notation ‘ nonzero products ‘ properties
I R? = Ry commutative  nilpotent
I R? =R, RiRy = Ry
11 RI=Ry RyRy = Ry
I\Y R% =R R1Rs = Ry RoR; = Ry | commutative with identity

Accordingly we refer to these as algebras of type I — IV.

1
8 O> ,Zo = 0. These structure matrices

9.1.1. Type I. If Ry is nilpotent of order 3, then =y = (
produce the convexotonic maps
p(r1,a2) = (11 22 +2f)  glzr,a2) = (21 22 —af).

Note p(0) = 0, p’(0) = I and likewise for q.

0 0 0 0

A (I A
=170 0/ \o o)

p(z) = ((1 —xy) "ty (1- :1;1)_13:2) q(x) = ((1 +a) 7ty (14 a:l)_lxg) )

9.1.2. Type II. Let R} = (1 O> , Ry = (0 1> . The corresponding structure matrices = are

9.1.3. Type III. Let Ry = (é 8) , Ry = (1) 8) . The structure matrices are =1 = Iy, Z9 = 0. So

px) = (e1(1— )" 22(1—21)7t) q(z) = (x1(1+z1)"" z2(1+ 1)t

9.1.4. Type IV. Take Ry = <1 0) ,Ro = <0 1). The corresponding structure matrices are

0 1 0 0
- 1 0 0 1

MZQ)J’QZQ)O'%

pl@)=(z1(1—21)™ (1—z1) tae(l—z)t)
q(@) = (@11 +z1)" (I4z) tea(l4+21)7t).

(1]

The othe . ei!gdc%c%%llg(c)sable convexotonic maps correspond to these after a linear change of basis,
cf. Section 83 f*the change of basis corresponds to an invertible 2 x 2 matrix M, then the
corresponding convexotonic map is

Blz) = paM)M~".

9.2. Convexotonic maps associated to decomposable algebras. Here we explain which con-
vexotonic maps arise from decomposable algebras. Suppose R = R’ ® R” and R’, R” are indecom-
posable finite-dimensional algebras. Let { Ry, ..., Ry} be a basis for R’ and let {Rg41,..., Ry} be a
basis for R”. Then {R1®0,...,R;®0,0® Rgy1,...,0® Ry} is a basis for R with the corresponding
structure matrices

- JEj®0 :j<g

- 00E] :j>g,
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/ =
¥ and = ¥

corresponding to R is

where = denote the structure matrices for R’ and R”, respectively. The convexotonic map

h
—1
pn(x) = (:El cee ﬂfg (Eg+1 cee xh) (I— ZEjl’j)

j=1

_ -1
B -3 B 0
J=g+1=j

= (pR/(l‘l, o Zg) PR TG4, -, xh)) )

9.3. Biholomorphisms of balls. In this subsection we show how (linear fractional) biholomor-
phisms of balls in C9 can be presented using convexotonic maps. Let {é1,...,€é441} denote the
standard basis of row vectors for C9™! and let A; = éjé;jq for j = 1,...,g. Since Da(1) = {z €
Co: 375 |zj|* < 1} is the unit ball in CY, the free spectrahedron Dy is a free version of the ball.
That is, Da = {X : > X;X; < I} consisting of all row contractions. Fix a (row) vector v € CY
igh [v]| <1 and let 2v* = > v;x;, where © = (x1,...,%g) is a row vector of free variables. By
%\lg@pl()], up to rotation, automorphisms of D4 have the form,

N

Folw) =v— (1—v0*)2 (1 — 20*) a(l — v*)2
Modulo affine linear transformations, F, is of the form
(1—zv) 2= (1 —av) ey -+ (1—av?)ta,)
since (1 — w*)% is a number and (I — v*v)% is a matrix independent of z. Further,
(1—av) 'z =2(I —v'z)~"

Now let = denote the g-tuple of g X g matrices Z; = e; ® v*, where {e1,...,e5} is t e sg%%léi%d
basis of row vectors for C9. Then =;5, = 1,5, = ). (Ek);,sZs, so the tuple = satisfies (I.2); 1.e., 1t
is convexotonic. Moreover,

(I =dz(z) =2 —v'z) =1 —av") o

Thus F, is a convexotonic map.

10. BIANALYTIC SPECTRAHEDRA THAT ARE NOT AFFINE LINEARLY EQUIVALENT

In this section we present bounded free spectrahedra that are polynomially equivalent, but not
affine linearly equivalent (over C).

Suppose A and B are eig-generic tuples, D4 and Dp are bounded and there is a polynomial
bianalyticltﬁz?ghgt 1 Pa g De with p(z) =z + h(z) (h for higher orde}r tgrms). In particular, by
Theorem 6.7, A and B have the same size and B = W*V AW for unitaries V' and W. Further,
there is a representation for p in terms of the g-tuple = of g X g matrices determined by

g

s=1
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10.1. A class of examples. Let ) be an invertible 2 X 2 matrix, so that
Do(l)={ceC: L+ ((cQ)"+cQ) = 0}
is bounded. Choose P2, P71, Py invertible, same size as @ with Py Pio = —2Q). Now let

thisi (0 P2 (0 0
102) = (7)o 2=(5 o)
Given v unimodular, let
A 7[2 0
eq:thisisVg| (10.3) V, = 0 L)
Proposition 10.1. With notation as above,
2
(10.4) A(Vy = DA; = (Z))ksAs,
s=1

where = = (21, E9) is the tuple defined by

and 29 = 0. Thus the polynomial mapping
Py (@1, 22) = 2(I = Az(2)) ™" = (21,22 + 2(1 — 7)x})

is a bianalytic p : Dy — Dp with B = V, A.
Moreover, if Pag = a1Q + as(PjsPia + Po1Pyy), then for each unimodular ¢,

sp = (pr1, —(1 = ¢) (4a3p — a1) w1 + a2 + 2(1 — p?)ai)
+ (3(1 =), —a3(l — @) (2a3(1 — @) + a1)).
s a polynomial automorphism of D4.
eq:V
Proof. Equation ( EI.ZI; follows from the computations, (V, — I)Ay =0 = Ap(V, — I) and
Al(VW - I)Al = —2(’)/ - 1)A2

. [thm:shotinthedark
The converse portion of Theorem 6.7 now implies that

-1
p=all = Aza) ™ = (o ) (i 2070)

0 1

is bianalytic between Dy and Dy, 4 as claimed.
To prove the second part of the proposition, suppose ¢ is unimodular. Let § = a3(1 — ¢) and
n = —4pd + (1 — ¢)ay and let p denote the affine linear polynomial,

p(r1,z2) = (p1, T2 +M71) +6(1, 20 — a1).
With these notations,

La(p(x1,72)) = La(p(0,0)) + (¢A1 +nAa)xs + Asxo + (AT +1A5)x7 + Ajx5
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and, using Py — anQ = az(P5Pia + Po1 Py),
La(p(0,0)) =T+ 86A; + 6% A} + (26% — daq) Ag + (202 — dag) A
_ < I 3Py + 0P >
T \OPjy +8Pa1 Sas(PlyPia + Po1 Pyy) + 6as(PlyPra + Po1 Pyy) — 26%Q — 2(0)%Q*
=42

where

_ (el 90(5P12+8P2*1)
R )

Indeed, the only entry of this equality that is not immediate occurs in the (2,2) entry. Since ¢ is
unimodular, |6|> = a3é + daz and thus the (2,2) entry of #*% is
I+ (0P12+ 0P5) (6P1a + 6P5y) = I + |0 (PyPia + P Pyy) + 0°Por Pro + PP
= I + daz(PjyPia + Poy Pyy)+oas( Py Pia + Po Pyy) — 26°Q — 2(5)%Q%,
where Py Po = —2(@) was also used.
Next, let B = V, A, where v = ©?. For notational ease let Y = P12 + 0Py, and verify
©[Po1Y + Y Pia] + Poy = 0[6(Pa1 P12 + Pa1P12) + 6" (PraPly + Po1Pyy)| + Pao
= p[—46Q + (1 — P)as(Pr2Ply + PorPyy)] + Pao
= —4p6Q + (¢ — 1)(Pa2 — 1 Q) + Pao
= ((1 = p)on — 490)Q + ¢ Ps2
=nQ + @Paa.
Hence,

X 0 P
WY = <P21 o[PrY +¢Yi2P12] N P22) = pA] +nAs.
Likewise,

W*BoY = WAy = As.
It follows that
La(p(x)) =%"Lp(x)%

and thus, as % is invertible, p = p,, is a bianalytic affine linear map from Dp to D4. Thus, p, o py
is a polynomial automorphism of D4. Finally, since

P © Dy(T) = 8p(7),

the proof of the proposition is complete. [

I . " %%;\M . "
The next objective is to establish a converse of Proposition [[U.T under some mild additional
assumptions on Pj; and ). As a corollary, we produce examples of tuples A and B such that Dy
and Dp are polynomially, but not linearly, bianalytic.

thm:PQ| Theorem 10.2. Suppose { P}y Pi2, Po1P3,} is linearly independent and Dg is bounded. In this case
D4 is bounded.
Suppose further that A is eig-generic and x-generic and either B is eig-generic or has size 4 (the
same size as A).

(1) If p: Dao — Dp is a polynomial bianalytic map with p(x) = x+ h(x), then there is a unimodular
v such that, up to unitary equivalence, B = V, A and

p = (v1,72 +2(1 — 7)27).
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Now suppose further that {Q,Q*, PjsPi2, Po1P3} is linearly independent, there is a ¢ # 0 so that
P5, + cPi2 is not invertible but Poy — cPya is invertible.
(2) If {Q, Po2, P P12, Po1 P3,} is linearly independent, then D has no non-trivial polynomial au-
tomorphisms: if q: Dy — Dy is a bianalytz'c polynomial, then q(z) = x.
(3) If Po2 = a1Q + a2Q* + az P P12 + P‘é %]n %a then ezther
(a) ag # 0 and conclusion of item (2) holds; or
(b) ag =0 in which case az = ay and a polynomial automorphism s of D must have the form

s = s, = (pa1, —(1 — @) (4039 — a1) 21 + 22 + 2(1 — ¥*)2?)
+ (@3(1 = ), —a3(1 — ) 2a3(1 — ) + 1))

for some unimodular .

Remark 10.3. Of course the polynomial automorphisms of D4 form a group 1%%1(1%11"1 ¢ gn%%gition. In
fact as is straightforward to verify, s, 05y, = s,y. Further, combining items (13) and ( [ i.of Fileorem

, produces a parameterization of all bianalytic polynomials D4 to Dp (under the prevailing
assumptions on A and B). O

Example 10.4. As a concrete example, choose

(0 2
Q‘(é o)'

We note that @ +ZQ has both positive and negative eigenvalues for x # 0, so D is bounded. Let

1 1 2 =2
P12=<1 0>, P21=(0 1>, Py = 1>,

eq:thisisA
and writing A as was done above we claim A, as described in equation (%lells—elg generic. Fur-
thgr ore {Q, Q*, P}y P12, Po1 Py, } and {Q, Pa2, P, P12, Po1 P3; } are linearly independent, so Theorem
Mppl1es thus p(z) = (71,79 + 422) is the unique l?llanalytlc map between D4 and Dp, where
B = V_1A and V_; is defined by equation (h%Bh)gl—lﬁgpartlcular Dy and Dp are bounded and
polynomially equivalent, but they are not affine linearly equivalent.
Alternatively, let

-1
then we have a form for ¢(x) and a class of affine linear automorphisms of Dy.
Finally, letting Pos = 0, we get our family of automorphisms of D4 parameterized by the uni-
modular complex numbers. %

thm:P ‘thm:P
10.2. The proof of Theorem [10.2. Before turning to the proof of Theorem [U.Z proper, we
record a few preliminary results.

10 _1 * *
Py = ( 9 > = Py1 Py + Py Pyo,

Proposition 10.5. Let L be a linear pencil. If Dy, is bounded, then Dr (1) is bounded. Conversely,
if D, is not bounded, then there exists o € CY such that to € D (1) for all t € Rsy.

Proof. This result is the complex version of the full strength of FEMK)HS, Proposition 2.4]. Unfortu-
nately, the statement of the result there is weaker than what is actually proved. Simply note that
over the complex numbers, if 7" is a matrix and (T"y,~) = 0 for all vectors v, then, by polarization,
(Ty,0) = 0 for all vectors «,d and hence T' = 0. (By comparison, over the real numbers the same
conclusion holds provided T is self-adjoint.) ]

Corollary 10.6. Let L be a monic linear pencil with truly linear part A. Thus, L(x) = I+ A(z) +

A(z)*. The domain Dy, is bounded if and only if A(«) has both positive and negative eigenvalues
for each o € C9\ {0}.
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[thm: P!
Proof of Theorem [10U.Z. First observe that independence of { P}, P12, P21 Py} implies independence
of { P12, Py} since Pjg = tPy; implies PjyPio = [t|? Py Py Let

« — 0 M
Z:xA1+xA1+yA2+yA2:<M* N>'

We claim Z has both positive and negative eigenvalues, provided not both x and y are 0.

In the case M # 0, the matrix Z has both positive and negative eigenvalues. Note M =
xP1o + TP3; and by independence M = 0 if and only if z = 0. In 1@& case r =0, (and thus y # 0),
N =yQ + (yQ)*. Since, by hypothesis, D¢ is bounded, Corol\ggx 0.0 implies has both positive
and negative eige %a]b%%s Therefore, once again by Corollary [[0.6, T4 1s a bounded domain.

To prove 1E%¥%m(153ﬂ—05§%rve the hypoth.eses (anq they 1mply D A is boun.ded)eal:lgﬁ Athe f.ipphcatlon
of Corollary m particular, there exists a unitary V satisfying equation (I0.T) and, in terms of
the tuple = of structure matrices,

p(x) = (I — As(x)) .
Write V' = (V1) as a 2 x 2 matrix to match the 2 x 2 block structure of A. Straightforward

computation gives,
0 V2@ >
V—1Ay = .
( )42 (0 (Vo — 1)Q
Hence

A(V —1)Ay = (8 P12](DZ2‘2/2:QI)Q> .

. . . . eq: AVIA o
Since Pj2 and @ are invertible and, by equation ( o ), A1(V — I)A; lies in the span of {41, Ao},
it follows that Vos — I = 0. Since V is unitary, VV* = I. Thus

Lﬁl ‘ﬁ2 L?E LSE _ Lﬁl‘ﬁﬁ +‘L32L€E Lﬁl‘éﬁ‘+'vﬁ2 _ I 0
Voo I Vi, I Voa Vi + Vi Voa Vo + 1 0 I/
It follows that V51 = 0 and thus V35 = 0 as well. Finally,

0 0
AV =DAr = <0 Py1 (Vi1 — I)P12> '

eq:AVIA
Hence equation ( o ) holds in this case (j = 1 = k) if and only if there is a A such that Ps; (V11 —
I)Pis = A\Q (note that A;(V —I)A; = A1 + AAg, but 6 = 0). Since Py P1a = —2Q), it follows that

A 1
Vit — I =\Py QP! = —AL

Thus Vi1 = (1 — 2A)I and |1 — )| = 1. Hence,

~I 0O
V:V’V:<0 I)

for some unimodular «. The tuple = of structure matrices and polynomial p are thus described in
PropositionWPF%:FC.)}E.:i]ABL ! v o g
Turning to the second part of the theorem, suppose g : D4 — D4 is a polynomial a%lt;co.l%orphism.
Let b = ¢(0) and let H denote the positive square root of L4(b). By Proposition ETZ’,P_'EHere exist
F and a bianalytic polynomial ¢ : D4 — Dp with §(x) = (=b+ q(x))q'(0)~!, such that G(0) = 0,
q(0)=1,
A; = (@ O) ) HFH A+ -+ (d(0)7) s HEH
and
Fj=q0) H "TAH "+ +d(0),,H AN
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Nov(\iz F' is the same size as A and A is eig-generic and A* is *-generic, hence we can apply item

it:bd
(T) to %ﬁe bianalytic polynomial ¢ : D4 — Dp. In parji&:ﬁglaﬁlT there is a unimodular v such that
F =V,A and § = (1,22 + 2(1 — v)2?). By Proposition 8.2,
g
A =

J

(07, 1A,

Since F; = V*V A;V,

7=1
where J¢ = VH. Setting
— A1

/ 0 1 _ ( 1 >

q(0) o o
gives

—x _ [ 0 Prpo ~1 ( 0 Ay P2 )

10.5 H TN = A =
(105) ! <P21 P22> A Po1 1@ + A Poo

and likewise

- - (0 0 _ 0 A2y P12
10.6 A AT = %1:( 2 :
(10.6) 2 <0 Q> AoPo1 2@ + Ao Pao
eq:B
By equation ( 05 %, A1 # 0 since A is invertible.
Let Y = %_1eapB write Y = (Y1) in the obvious way as a 2 x 2 matrix with 2 x 2 block entries.
From equation (IT0:

)

<Y2*1QY21 Y2*1QY12>:< 0 Aoy Pro )
* Y55QY5 MPor p12Q + XoPoy )

Thus, as @ is invertible, Yo; = 0 and therefore Ao = 0y We also record Y55QY29 = pa @ or equivalently
}/2*21321P12Y22 = /,L2P21P12. Turning to equation ( .-L)

)

< 0 Y71 PraYao > _ ( 0 Ay P >
Yoo PorYir Yoo Por1Yio + Y5 P12Ys 4 Y55 Pos Yoo MP Q@+ Py

Hence,
Ao =0
Y55 Po1 P12Yo2 = 12 Po1 P12
(10.7) Y71 P12Ye2 = Ay Pr2

Yoo Po1Y11 = M Py
Yoo Po1Yio 4+ Y15 P1aYos + Y95 PaaYoo = 111Q + A1 Pao.
2

Taking determinants in the second of these equations gives |det(Ya2)|?> = 3 and therefore us is

real. Taking determinants in the third and fourth equations gives \? = A242. Thus,
A=A,
In particular,
(10.8) P = a2y,
Multiplying the third equation on the left by the fourth equation gives
Yoo P Y11 Y1) P1oYas = AjyPa1 Pa.
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Using the second equation
Yoo PorY11Y 1 PioYos = iy Yoo Po1 P12Yoo.
2

Since Y55 P1 and Pj2Ys9 are invertible,

Aty

In particular, Y71 is a multiple of a unitary.
Next multiply the fourth equation by its adjoint on the right to obtain

)\2
IM[2Po1 Py = Yoy Por Y11 (Yay Por Y1) = ﬁY;QPQIP;lYQQ-
Multiplying the third equation by its adjoint on the left gives (as |y| = 1)
)\2
IM[2PyPra = (Y15 P1aYa2) Yy PiaYao = ﬁY;szgPuYzQ.

. X eq:lambda-gamma .
In view of equation (151.8;, if iz > 0, then A2y = |A\1|? and if 2 < 0, then —A2v = |\;|2. Hence,
with |k|? = |u2| and Z = kYay either ps > 0 and

Z*Py1P1oZ = Py1Pio Z* Py Py, Z = Po1 Py
or pug < 0 and
Z*Py1P1oZ = —Py1 Py Z* Py Py Z = Py Py
We will argue that this second case does not occur. Recall we are assuming P»; and Pjs are both
invertible. This implies Z is invertible. Observe that, assuming this second set of equations, for
complex numbers c,
(10.9) Z* (P12 + cP3))* (P12 + ¢Py)) Z = (P12 — c¢Py)* (Pi2 — cPyy).

By assumption there is a ¢ # 0 such that Py} 4+ cPj2 is not invertéib_le lcout P5, — cPy2 is invertible,
leading to the contradiction that the left hand side of equation (ﬁfs%s invertible, but the right
hand side is not. It follows that us > 0 and A2y = |\|2.

Assuming {Q, Q*, P21 Py, Py, P12} is linearly independent, this set spans the 2 x 2 matrices. Hence
(using the fact that A*X A = X for all 2 x 2 matrices X implies A is a mu giglleo tosf the identity)
Ya9 = wlI for some x with |k|? = p2. Hence many of the identities in equation (T0.7) now imply that
Y11 is also a multiple of the identity. For instance, using the third equality,

APy = Y5 Po1 Y11 = RPy Y1y

and hence Y71 = %I.
Thus,

and consequently

It follows that

2 _
W= P  TpEh )
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On the other hand,

HP=Lab) = (I+ ) _biAj+> (04;)")

_ r biPra + b1 Py B
b1 P + b1P1*2 I+ 050 + b2Q* 4+ b1 Pos + 61P2*2 '

It follows that,

W
| A2
3 _
(10.10) —WYQ =01 Ps+ blpikl
]. 1 * 7 * 7 *
WI + WY]_QYIQ =1+ b2Q + b2Q" + b1 Paz + b1 Pys.

Note that combining the first two of these equations gives,
(10.11) Y12 = —k(b1 Pia + b1 Py).
Since Yoo = kI, the last equality in equation (ﬁ?ﬁ%%ves
RPy1Yis + kY(5 P + K| Pos = 11Q + A1 Paa.
It follows, using the second equality in equation (%)7
1Q + (M — |£*) Pao = — | M2 Par (b1 P2 + b1 P3y) — [\ |? (1P + b1 Pa1) Pra
= — [M|? (b1 P21 Pia + b1 Po1 Py + b1 Py P + b1 Po Pro) .
Simplifying with P> P19 = —2@) and bringing to one side gives
(10.12) 0= (1 + 4b1| M1 [H)Q + bi| M| (Pa1 Pyy + PiyPra) + (M1 — |5[?) Paa.

. lit:1in indep case N N Lo .
We nOW_Dro eiendc‘%(g1 prove item (2). Assuming {Q, Pj5 P12, Po1 Py, Pa2} is linearly independent,
equation (TU.12) and the fact that A\; # 0 yields by = 0. So 1 = 0 and \; = |x|>. Furthermore,
|k| = |A\1], implies éi'ﬁ: |A1]. Hence A\ =1, |k| =1 and v = 1. It also follows that Y12 = 0 by the

third equation in ( ). Furthermore,

I=1T1+bQ+bhQ",
so by =0, as {Q,Q*} is linearly independent. Hence L4(b) = I = H and
VY =FRly.
Finally, Y12 = 0 also implies pup = 1. Thus, F,. = A and V =V, = I, ¢(0) = 0 and finally, ¢'(0) = I

H d fof; l‘it:lin indep case
too. e.znce, q(a:).— T alt:ltilrfz proot o item () is complete.
Moving on to item (1), assume now

Py = a1 Q + a2Q* + ag P Pio + ay Py Py, .

If c?zg #* Olitt}%‘il:rlln{gl’ d§§2£1s2 y Py P¥,, Pyo} must also be linearly independent, and hence the conclusions
of item () hold. caP lin com
To complete the proof of the theorem, suppose as = 0 and recall equation (T0.1ZJ,

0= (p1 +4b1| M > + oa (M — [6)Q
+ (b1|M]* + as(A1 — |6[*) Py Pia 4+ (bi|M|* 4+ aa(Ar — [£]%)) Por Py
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Since {Q, Py P12, P21 P35} is linearly independent,
1+ 4bi M2+ ar(A = M)
bi|Aif* +as(\ — M)
bilhaf? + aa(h = M)

0
0
0
It follows that a3 = a4 and

az(A—1
1013) p = B,
eq:YP

. . e :YP+ . . . . .
Now, using equation ( 11 ) and looking at the third equation in equation (T0U.10),

1 |/€’2
’/\1’2

|k [2
=1 +b2Q + b2Q* + b1 Pag + b1 Ps;.
Using Poy = a1Q + a3(PiyPi2 + Po1 Pyy),

* 7—2 * *
(161> Py Pra + 263Q + 2b1” Q" + |b1|* Pa1 P3y)

1 — — _
0= <1 — |I€|2) I+ (bg — Qb% + albl)Q + (bg — 2b12 —i—olel)Q*

+ (brasg + biag — |b1]*) (P Pra + Por Pyy).

(1019
eq:bl

Using equation (T0.13),

— AM—1 X\ -1 M =1 =1
1 1M1

1 1
2 2
‘ 3’ < |)\1|2> ’ 3| < |I€2>

:YComb
Let z = (by — 2b% + a1by), solving for the @ and Q* terms, equation (elﬁ. l%’;mBecomes
1
Q420" = (1 113 ) (14 losP(PaPra + PuPp)

Write C' = (1 — |x|™2), let t € R with tC' > 0 and consider
Lo(tz) = I +t2Q +t2Q* = (1 + tC)I + |as|*tC (Pl Pia + Po1 P3y).
But PjyPia, Po1Py; = 0, so Lo(tz) = 0 for all ¢ with tC > 0, contradicting the boundedness
of Dg. Hence both z = 0 and C(I + |as|?(PjyPia + P Pyy)) = 0. So either C = 0 or I =
—|as|?(PjyPia + Pa1Pyy). However I = 0 while —|as|?(Pjy P12 + Pa1Py;) = 0, hence this second
equality never holds. Thus C' = 0.
It follows that |k|? = [A\1]? = p2 = 1, so

by =a3(1— ) p = —=M(1— A1) (4azh + aq)

by =a3(1 — A1) (2a3(1 — M) — aq) Yio = k(a3(l — A1) P2 — as(l — A1) Ps),
and

Fi=H"'(\Bi+(1-XN)dash +a)B)H ', FB=H'BH "

Recall,

b0 =6 70 = (3 1) = (h ),

so plugging in; B B B
(0) = (@ (1= A1), as(l—X\) (2031 - i) —a1)),
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and _ -
¢(0) = <)E)1 (1-— /\1)(4<1343>\1 + Otl)) _

Next, we know that £(x) = (—b+ 2)¢'(0)~! and £~1(z) = x¢’(0) + b, , so yet again plugging in;
£(z) = (=M1q(0)1 + Miz1, Mg’ (0)12 — Aiq'(0)1 271 + 22),
) = (q(0)1 + A21,q(0)2 + ¢ (0)1 221 + 22) .
Using the fact that ¢ = ¢~! o0 g,

q(z) = 07" (g(x)) = (q(o)l + M1, q(0)2 + ¢ (0)1 201 4+ 22 +2(1 — )\712)$%> :

Observe q = 0y ie g depends upon the choice of the unimodular A;. Thus, taking a unimodular
¢ and setting s4 = gy,
3(11,(33) =a3(1l —¢) + o1
si(a) = —a3(1 = ¢) (2a3(1 — ¢) + 1) — (1 — ) (43¢ — 1) w1 + w2 + 2(1 — ¢°)at,
which by construction is an automorphism of D 4. Moreover, if 1 is another unimodular, then

S¢ o Sw = S¢,w
These automorphisms must be the only automorphisms of D4, since if there were some other
form of automorphism then by composing with ¢ we would get a different form for a bianalytic
polynomial from D4 to D4 which cannot happen. [
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