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This paper, which would not exist without techniques he pioneered, is dedicated to Joe Ball on the

occasion of his 70th birthday.

Abstract. Given a tuple 𝐸 = (𝐸1, . . . , 𝐸𝑔) of 𝑑×𝑑 matrices, the collection ℬ𝐸 of those

tuples of matrices 𝑋 = (𝑋1, . . . , 𝑋𝑔) (of the same size) such that ‖
∑︀

𝐸𝑗 ⊗𝑋𝑗‖ ≤ 1 is

a spectraball. Likewise, given a tuple 𝐵 = (𝐵1, . . . , 𝐵𝑔) of 𝑒× 𝑒 matrices the collection

𝒟𝐵 of tuples of matrices 𝑋 = (𝑋1, . . . , 𝑋𝑔) (of the same size) such that 𝐼 +
∑︀

𝐵𝑗 ⊗
𝑋𝑗 +

∑︀
𝐵*

𝑗 ⊗𝑋*
𝑗 ⪰ 0 is a free spectrahedron. Assuming 𝐸 and 𝐵 are irreducible, plus

an additional mild hypothesis, there is a free bianalytic map 𝑝 : ℬ𝐸 → 𝒟𝐵 normalized

by 𝑝(0) = 0 and 𝑝′(0) = 𝐼 if and only if ℬ𝐸 = ℬ𝐵 and 𝐵 spans an algebra. Moreover 𝑝

is unique, rational and has an elegant algebraic representation.

1. Introduction

In this article we continue our investigation of free bianalytic mappings between

matrix convex domains. The results in this article stands on the bedrock of the noncom-

mutative state space methods introduced to the operator theory community by Joe and

his collaborators and they are inseparable from the profound influence of Joe’s work in

function theoretic operator theory and free analysis.

Fix 𝑔 a positive integer. Given a positive integer 𝑛, let 𝑀𝑛(C)𝑔 denote the 𝑔-tuples

𝑋 = (𝑋1, . . . , 𝑋𝑔) of 𝑛 × 𝑛 matrices with entries from C. Given 𝐴 ∈ 𝑀𝑑(C)𝑔, the set

𝒟𝐴(1) consisting of 𝑥 ∈ C𝑔 such that

𝐿𝐴(𝑥) = 𝐼 +
∑︁

𝐴𝑗𝑥𝑗 +
∑︁

𝐴*
𝑗𝑥

*
𝑗 ⪰ 0
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is a spectrahedron. Here 𝑇 ⪰ 0 indicates the selfadjoint matrix 𝑇 is positive semidefinite.

Spectrahedra are basic objects in a number of areas of mathematics; e.g. semidefinite

programming, convex optimization and in real algebraic geometry [BPR13]. They also

figure prominently in determinantal representations [Brä11, GK-VVW16, NT12, Vin93],

the solution of the Lax conjecture [HV07], in the solution of the Kadison-Singer paving

conjecture [MSS15], and in systems engineering [BGFB94, SIG96].

For 𝑋 ∈ 𝑀𝑛(C)𝑔 and still with 𝐴 ∈ 𝑀𝑑(C)𝑔, let

Λ𝐴(𝑋) =
∑︁

𝐴𝑗 ⊗𝑋𝑗

and

𝐿𝐴(𝑋) = 𝐼 + Λ𝐴(𝑋) + Λ𝐴(𝑋)* = 𝐼 +
∑︁

𝐴𝑗 ⊗𝑋𝑗 +
∑︁

𝐴*
𝑗 ⊗𝑋*

𝑗 .

The free spectrahedron determined by 𝐴 is the sequence of sets 𝒟𝐴 = (𝒟𝐴(𝑛)), where

𝒟𝐴(𝑛) = {𝑋 ∈ 𝑀𝑛(C)𝑔 : 𝐿𝐴(𝑋) ⪰ 0}.

Free spectrahedra arise naturally in applications such as systems engineering [dOHMP09]

and in the theories of matrix convex sets, operator algebras, systems and spaces and

completely positive maps [EW97, HKM17, Pau02]. They also provide tractable useful

relaxations for spectrahedral inclusion problems that arise in semidefinite programming

and engineering applications such as the matrix cube problem [B-TN02, HKMS+].

Given a tuple 𝐸 ∈ 𝑀𝑑(C)𝑔, the set

ℬ𝐸 = {𝑋 : ‖Λ𝐸(𝑋)‖ ≤ 1}

is a spectraball [EHKM17, BMV18]. Spectraballs are special cases of free spectrahedra.

Indeed, it is readily seen that

ℬ𝐸 = 𝒟( 0 𝐸
0 0 ).

Let 𝑀(C)𝑔 denote the sequence (𝑀𝑛(C)𝑔)𝑛. A subset Γ of 𝑀(C)𝑔 is a sequence

(Γ𝑛)𝑛 where Γ𝑛 ⊂ 𝑀𝑛(C)𝑔. (Sometimes we will write Γ(𝑛) in place of Γ𝑛.) The subset

Γ is a free set if it is closed under direct sums and unitary similarity; that is, if 𝑋 ∈ Γ𝑛

and 𝑌 ∈ Γ𝑚, then

𝑋 ⊕ 𝑌 =

(︂(︂
𝑋1 0

0 𝑌1

)︂
, . . . ,

(︂
𝑋𝑔 0

0 𝑌𝑔

)︂)︂
∈ Γ𝑛+𝑚;

and if 𝑈 is an 𝑛× 𝑛 unitary matrix, then

𝑈*𝑋𝑈 =
(︀
𝑈*𝑋1𝑈, . . . , 𝑈

*𝑋𝑔𝑈
)︀
∈ Γ𝑛.

We say the free set Γ = (Γ𝑛)𝑛 is open if each Γ𝑛 is open. (Generally adjectives are

applied levelwise to free sets unless noted otherwise.)
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A free function 𝑓 : Γ → 𝑀(C) is a sequence of functions 𝑓𝑛 : Γ𝑛 → 𝑀𝑛(C) that

respects intertwining; that is, if 𝑋 ∈ Γ𝑛, 𝑌 ∈ Γ𝑛, 𝑇 : C𝑚 → C𝑛, and

𝑋𝑇 = (𝑋1𝑇, . . . , 𝑋𝑔𝑇 ) = (𝑇𝑌1, . . . , 𝑇𝑌𝑔) = 𝑇𝑌,

then 𝑓𝑛(𝑋)𝑇 = 𝑇𝑓𝑚(𝑌 ). Assuming Γ is an open free set, a free function 𝑓 : Γ → 𝑀(C)

is analytic if each 𝑓𝑛 is analytic. Given free sets Γ ⊂ 𝑀(C)𝑔 and ∆ ⊂ 𝑀(C)ℎ, a

free mapping 𝑓 : Γ → ∆ consists of free maps 𝑓 𝑖 : Γ → 𝑀(C) such that 𝑓(𝑋) =(︀
𝑓 1(𝑋) . . . 𝑓ℎ(𝑋)

)︀
. In this case we write 𝑓 =

(︀
𝑓 1 . . . 𝑓ℎ

)︀
. We refer the reader to

[Voi04, KVV14] for a fuller discussion of free sets and functions.

In this note, we characterize the free bianalytic maps 𝑝 : ℬ𝐸 → 𝒟𝐵 under some

mild conditions on 𝐸 ∈ 𝑀𝑑(C)𝑔 and 𝐵 ∈ 𝑀𝑒(C)𝑔 and on 𝑝 and its inverse 𝑞. These

free functions take a highly algebraic form that we call convexotonic. A tuple Ξ =

(Ξ1, . . . ,Ξ𝑔) ∈ 𝑀𝑔(C)𝑔 satisfying

Ξ𝑘Ξ𝑗 =

𝑔∑︁
𝑠=1

(Ξ𝑗)𝑘,𝑠Ξ𝑠

for each 1 ≤ 𝑗, 𝑘 ≤ 𝑔 is convexotonic. Convexotonic tuples naturally arise from finite

dimensional algebras. If {𝐽1, . . . , 𝐽𝑔} ⊂ 𝑀𝑑(C) is linearly independent and spans an

algebra, then there exists a uniquely determined tuple Ψ ∈ 𝑀𝑔(C)𝑔 such that

(1.1) 𝐽𝑘𝐽𝑗 =

𝑔∑︁
𝑠=1

(Ψ𝑗)𝑘,𝑠𝐽𝑠

and Proposition 2.1 says Ψ is convexotonic.

Given a convexotonic tuple Ξ ∈ 𝑀𝑔(C)𝑔, the expressions 𝑝 =
(︀
𝑝1 · · · 𝑝𝑔

)︀
and

𝑞 =
(︀
𝑞1 · · · 𝑞𝑔

)︀
whose components have the form

(1.2) 𝑝𝑖(𝑥) =
∑︁
𝑗

𝑥𝑗 (𝐼 − ΛΞ(𝑥))−1
𝑗,𝑖 and 𝑞𝑖(𝑥) =

∑︁
𝑗

𝑥𝑗 (𝐼 + ΛΞ(𝑥))−1
𝑗,𝑖 ,

that is, in row form,

𝑝(𝑥) = 𝑥(𝐼 − ΛΞ(𝑥))−1 and 𝑞 = 𝑥(𝐼 + ΛΞ(𝑥))−1

are, by definition, convexotonic. The components of 𝑝 (resp. 𝑞) are free functions

with (free) domains consisting of those 𝑋 for which 𝐼 − ΛΞ(𝑋) (resp. 𝐼 + ΛΞ(𝑋)) is

invertible. Hence 𝑝 and 𝑞 are free functions. It turns out (see [AHKM18, Proposition

6.2]) the mappings 𝑝 and 𝑞 are inverses of one another.

Before continuing, we would like to point out that the component functions 𝑝𝑖 of

the convexotonic map 𝑝 of equation (1.2) are in fact free rational functions regular at 0.

Accordingly we refer to 𝑝 and 𝑞 as birational or free birational maps. Free rational func-

tions are most easily described and naturally understood in terms of realization theory
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as developed in the series of papers [BGM05, BGM06a, BGM06b] of Ball-Groenewald-

Malakorn. Indeed, based on those articles and on the results of [KVV09, Theorem 3.1]

and [Vol17, Theorem 3.5]) a free rational function regular at 0 can, for the purposes of

this article, be defined with minimal overhead as an expression of the form

𝑟(𝑥) = 𝑐*
(︀
𝐼 − Λ𝑆(𝑥)

)︀−1
𝑏

where 𝑠 is a positive integer, 𝑆 ∈ 𝑀𝑠(C)𝑔 and 𝑏, 𝑐 ∈ C𝑠 are vectors. The expression

𝑟 is known as a realization. Realizations are easy to manipulate and the theory of

realizations is a powerful tool. The realization 𝑟 is evaluated in the obvious fashion for a

tuple 𝑋 ∈ 𝑀𝑛(C)𝑔 as long as 𝐼 −Λ𝑆(𝑋) is invertible. Free polynomials are free rational

functions that are regular at 0 and free rational functions regular at 0 are stable with

respect to the formal algebraic operations of addition, multiplication and inversion in the

sense that if 𝑟 is a free rational function regular at 0 and 𝑟(0) ̸= 0, then its multiplicative

inverse 𝑟−1 is also a free rational function regular at 0. Thus, expressing 𝑝𝑖 as

𝑝𝑖 =

𝑔∑︁
𝑠=1

𝑥𝑠𝑒
*
𝑠(𝐼 − ΛΞ(𝑥))−1𝑒𝑖

shows it is a free rational function regular at 0.

To state our main theorem precisely we need a bit more terminology. A subset

{𝑢1, . . . , 𝑢𝑑+1} of C𝑑 is a hyperbasis for C𝑑 if each 𝑑 element subset is a basis. The tuple

𝐴 ∈ 𝑀𝑑(C)𝑔 is sv-generic if there exists 𝛼1, . . . , 𝛼𝑑+1 and 𝛽1, . . . , 𝛽𝑑 in C𝑔 such that,

for each 1 ≤ 𝑗 ≤ 𝑑 + 1, the matrix 𝐼 − Λ𝐴(𝛼𝑗)*Λ𝐴(𝛼𝑗) is positive semidefinite, has a

one-dimensional kernel spanned by 𝑢𝑗 and the set {𝑢1, . . . , 𝑢𝑑+1} is a hyperbasis for C𝑑;

and, for each 1 ≤ 𝑘 ≤ 𝑔, the matrix 𝐼 − Λ𝐴(𝛽𝑘)Λ𝐴(𝛽𝑘)* is positive semidefinite, has a

one-dimensional kernel spanned by 𝑣𝑘 and the set {𝑣1, . . . , 𝑣𝑑} is a basis for C𝑑. Generic

tuples 𝐴 satisfy this property, see [AHKM18, Remark 7.5]. Given a matrix-valued free

analytic polynomial 𝑄, the set

𝒢𝑄 = {𝑋 ∈ 𝑀(C)𝑔 : ‖𝑄(𝑋)‖ < 1} ⊂ 𝑀(C)𝑔

is a free pseudoconvex set.

Theorem 1.1. Suppose 𝐸 ∈ 𝑀𝑑(C)𝑔 and 𝐵 ∈ 𝑀𝑒(C)𝑔. If

(i) 𝐸 is sv-generic and linearly independent;

(ii) 𝐵 is sv-generic and 𝒟𝐵 is bounded;

(iii) 𝑝 : ℬ𝐸 → 𝒟𝐵 is bianalytic with 𝑝(0) = 0 and 𝑝′(0) = 𝐼; and

(iv) 𝑝 is defined on a pseudoconvex domain containing ℬ𝐸 and 𝑞 : 𝒟𝐵 → ℬ𝐸, the inverse

of 𝑝, is defined on a pseudoconvex domain containing 𝒟𝐵,

then there exist 𝑔 × 𝑔 unitary matrices 𝑍 and 𝑀 and a tuple Ξ ∈ 𝑀𝑔(C)𝑔 such that

(1) 𝐵 = 𝑀*𝑍𝐸𝑀 ;
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(2) for each 1 ≤ 𝑗, 𝑘 ≤ 𝑔,

(1.3) 𝐸𝑘𝑍𝐸𝑗 =
∑︁
𝑠

(Ξ𝑗)𝑘,𝑠𝐸𝑠;

(3) the tuple 𝐵 spans an algebra and

𝐵𝑘𝐵𝑗 =
∑︁
𝑠

(Ξ𝑗)𝑘,𝑠𝐵𝑠;

(4) Ξ is convexotonic and 𝑝 is the corresponding convexotonic map 𝑝 = 𝑥(𝐼 −ΛΞ(𝑥))−1.

Remark 1.2. Several remarks are in order.

(i) A free spectrahedron 𝒟 is sv-generic if there exists an sv-generic tuple 𝐴 such that

𝒟 = 𝒟𝐴. The article [AHKM18] contains a version of Theorem 1.1 for bianalytic

mappings between sv-generic free spectrahedra (actually a weaker, but more com-

plicated to formulate, condition from [AHKM18] that we call eig-generic would

also suffice here). The sv-generic free spectrahedra are in fact generic among free

spectrahedra in the sense of algebraic geometry. However, spectraballs, within the

class of free spectrahedra, are never sv-generic in view of Lemma 4.1. Hence, The-

orem 1.1 extends Theorem [AHKM18, Theorem 1.8], to the important special case

of maps from spectraballs to free spectrahedra.

(ii) Let

(1.4) 𝐹1 =

⎛⎝0 1 0

0 0 1

0 0 0

⎞⎠ =

(︂
0 𝐸1

0 0

)︂
and 𝐹2 = 𝐹 2

1 =

(︂
0 𝐸2

0 0

)︂
,

where the tuple 𝐸 is given in equation (4.1). The tuple 𝐹 is nilpotent. Thus,

by Lemma 4.1, it is not sv-generic and the results of [AHKM18] do not apply to

bianalytic maps 𝑟 : 𝒟𝐹 → 𝒟𝐵 with 𝑟(0) = 0 and 𝑟′(0) = 𝐼. Moreover, 𝒟𝐹 is

not a spectraball by Proposition 4.3 and thus Theorem 1.1 does not directly apply

either. However, as we show, there is an sv-generic tuple 𝐸 and a bianalytic map

𝑝 : ℬ𝐸 → 𝒟𝐹 with 𝑝(0) = 0 and 𝑝′(0) = 𝐼 (see Proposition 4.3). On the other

hand, Theorem 1.1 does apply to bianalytic maps 𝑓 : ℬ𝐸 → 𝒟𝐵. By composing

𝑓 with 𝑝−1, Propositions 4.4 and 4.6 classify the choices for 𝐵 and all bianalytic

maps between 𝒟𝐹 and 𝒟𝐵. In particular, these maps are convexotonic.

(iii) It is easy to check that item (1) implies ℬ𝐸 = ℬ𝐵.

(iv) Since 𝐸 is assumed linearly independent Ξ is uniquely determined by equation

(1.3). Further, by Proposition 2.1, Ξ is convexotonic.

(v) Items (2) and (3) are equivalent.

(vi) Note that, while 𝑝 is only assumed to be bianalytic, the conclusion is that 𝑝 is bi-

rational, a phenomena encountered frequently in rigidity theory in several complex

variables, cf. [For93].
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(vii) A key ingredient in the proof of Theorem 1.1 is a suitable Positivstellensätze.

Namely, 𝑝 maps ℬ𝐸 into 𝒟𝐵 if and only if 𝐿𝐵(𝑝(𝑋)) ⪰ 0 for all 𝑋 ∈ ℬ𝐸, and

this equivalence feeds naturally into Positivstellensätze, a pillar of real algebraic

geometry. The one used here (from [AHKM18]) is related to that of [AM14], which

was developed in full generality in [BMV18].

(viii) An easy argument shows, for 𝐴 ∈ 𝑀𝑑(C)𝑔, if 𝒟𝐴 is bounded, then 𝐴 (really

{𝐴1, . . . , 𝐴𝑔}) is linearly independent [HKM13, Proposition 2.6(2)]. The con-

verse fails in general; e.g., if each 𝐴𝑗 is positive semidefinite. On the other hand,

𝐸 ∈ 𝑀𝑑(C)𝑔 is linearly independent if and only if ℬ𝐸 is bounded [HKM13, Propo-

sition 2.6(1)].

There is a natural converse to Theorem 1.1. Let int(𝒟𝐴) and int(ℬ𝐴) denote the

interiors of 𝒟𝐴 and ℬ𝐴 respectively. Recall a mapping between metric spaces is proper

if the inverse image of compact sets are compact. Thus, for open sets 𝒰 ⊂ 𝑀(C)𝑔 and

𝒱 ⊂ 𝑀(C)ℎ, a free mapping 𝑓 : 𝒰 → 𝒱 is proper if each 𝑓𝑛 : 𝒰𝑛 → 𝒱𝑛 is proper.

Proposition 1.3. Suppose 𝐽 ∈ 𝑀𝑑(C)𝑔 is linearly independent, spans an algebra, Ξ is

the resulting convexotonic tuple,

𝐽𝑘𝐽𝑗 =

𝑔∑︁
𝑠=1

(Ξ𝑗)𝑘,𝑠𝐽𝑠,

and 𝑞 is the convexotonic (birational) map,

𝑞(𝑥) = 𝑥(𝐼 + ΛΞ(𝑥))−1.

Then

(1) The domain of 𝑞 contains 𝒟𝐽 .

(2) 𝑞 is a bianalytic map between int(𝒟𝐽) and int(ℬ𝐽); that is 𝑝, the (convexotonic)

inverse of 𝑞, maps int(ℬ𝐽) into int(𝒟𝐽). In particular, 𝑞 is proper.

(3) 𝑞 maps the boundary of 𝒟𝐽 into the boundary of ℬ𝐽 ;

(4) if, in addition, 𝒟𝐽 is bounded, then 𝑞 is a bianalytic map between 𝒟𝐽 and ℬ𝐽 . In

particular, the domain of 𝑝 contains ℬ𝐽 .

In case 𝐽 does not span an algebra, we have the following corollary of Proposition

1.3.

Corollary 1.4. Let 𝐴 ∈ 𝑀𝑑(C)𝑔 and assume 𝐴 is linearly independent (e.g. 𝒟𝐴 is

bounded). Let 𝒜 denote the algebra spanned by the tuple 𝐴. If 𝐶1, . . . , 𝐶ℎ ∈ 𝑀𝑑(C) and

the tuple 𝐽 = (𝐽1, . . . , 𝐽𝑔+ℎ) = (𝐴1, . . . , 𝐴𝑔, 𝐶1, . . . , 𝐶ℎ) is linearly independent and spans

𝒜, then there is a rational map 𝑓 with 𝑓(0) = 0 and 𝑓 ′(0) = 𝐼 such that

(1) 𝑓 is an injective proper map from int(𝒟𝐴) into int(ℬ𝐴); and
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(2) 𝑓 maps the boundary of 𝒟𝐴 into boundary of ℬ𝐴.

Further, the tuple Ξ ∈ 𝑀𝑔+ℎ(C)𝑔+ℎ, uniquely determined by

𝐽𝑘𝐽𝑗 =
ℎ∑︁

𝑠=1

(Ξ𝑗)𝑘,𝑠𝐽𝑠,

is convexotonic and

𝑓(𝑥) =
(︀
𝑥1 · · · 𝑥𝑔 0 · · · 0

)︀ (︃
𝐼 +

𝑔∑︁
𝑗=1

Ξ𝑗𝑥𝑗

)︃−1

.

For further results, not already cited, on free bianalytic and proper free analytic

maps see [HKMS09, HKM11a, HKM11b, Pop10, KŠ17, MS08] and the references therein.

The remainder of the article is organized as follows. Proposition 1.3 and Corollary

1.4 are established in Section 2. Theorem 1.1 is proved in Section 3. The article concludes

with several examples; see Section 4.

2. Proof of Proposition 1.3

This section gives the proof of Proposition 1.3. Implicit in the statement of that

result, and used in the proof of Theorem 1.1, is the connection between finite dimensional

algebras and convexotonic tuples described in the following proposition.

Proposition 2.1. Suppose 𝐺 ∈ 𝑀𝑑×𝑒(C)𝑔 and {𝐺1, . . . , 𝐺𝑔} is linearly independent,

𝐶 ∈ 𝑀𝑒×𝑑(C) and Ψ ∈ 𝑀𝑔(C)𝑔. If

(2.1) 𝐺ℓ𝐶𝐺𝑗 =

𝑔∑︁
𝑠=1

(Ψ𝑗)ℓ,𝑠𝐺𝑠,

then the tuple Ψ is convexotonic. In particular, if 𝐽 ∈ 𝑀𝑑(C)𝑔 is linearly independent and

spans an algebra, then the tuple Ψ uniquely determined by equation (2.1) is convexotonic.

Proof. For notational ease let 𝑇 = 𝐶𝐺 ∈ 𝑀𝑒(C)𝑔. The hypothesis implies 𝑇 spans an

algebra (but not that 𝑇 is linearly independent). Routine calculations give

[𝐺ℓ𝑇𝑗]𝑇𝑘 =

𝑔∑︁
𝑡=1

(Ψ𝑗)ℓ,𝑡𝐺𝑡 𝑇𝑘 =
∑︁
𝑠,𝑡=1

(Ψ𝑗)ℓ,𝑡(Ψ𝑘)𝑡,𝑠𝐺𝑠 =
∑︁
𝑠

(Ψ𝑗 Ψ𝑘)ℓ,𝑠𝐺𝑠.

On the other hand

𝐺ℓ[𝑇𝑗𝑇𝑘] = 𝐺ℓ𝐶[𝐺𝑗𝑇𝑘] =
∑︁
𝑡

𝐺ℓ(Ψ𝑘)𝑗,𝑡𝑇𝑡 =
∑︁
𝑠,𝑡

(Ψ𝑡)ℓ,𝑠(Ψ𝑘)𝑗,𝑡𝐺𝑠.

By independence of 𝐺,

(Ψ𝑗Ψ𝑘)ℓ,𝑠 =
∑︁
𝑡

(Ψ𝑘)𝑗,𝑡(Ψ𝑡)ℓ,𝑠
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and therefore

Ψ𝑗Ψ𝑘 =
∑︁
𝑡

(Ψ𝑘)𝑗,𝑡Ψ𝑡

and the proof is complete. �

Lemma 2.2. Suppose 𝐹 ∈ 𝑀𝑑(C)𝑔. If 𝐼 + Λ𝐹 (𝑋) + Λ𝐹 (𝑋)* ⪰ 0, then 𝐼 + Λ𝐹 (𝑋) is

invertible.

Proof. Arguing the contrapositive, suppose 𝐼 + Λ𝐹 (𝑋) is not invertible. In this case

there is a unit vector 𝛾 such that

Λ𝐹 (𝑋)𝛾 = −𝛾.

Hence,

⟨(𝐼 + Λ𝐹 (𝑋) + Λ𝐹 (𝑋)*)𝛾, 𝛾⟩ = ⟨Λ𝐹 (𝑋)*𝛾, 𝛾⟩ = ⟨𝛾,Λ𝐹 (𝑋)𝛾⟩ = −1. �

Lemma 2.3. Let 𝑇 ∈ 𝑀𝑑(C). Then

(a) 𝐼 + 𝑇 + 𝑇 * ⪰ 0 if and only if 𝐼 + 𝑇 is invertible and ‖(𝐼 + 𝑇 )−1𝑇‖ ≤ 1;

(b) 𝐼 + 𝑇 + 𝑇 * ≻ 0 if and only if 𝐼 + 𝑇 is invertible and ‖(𝐼 + 𝑇 )−1𝑇‖ < 1.

Similarly if 𝐼 − 𝑇 is invertible, then ‖𝑇‖ ≤ 1 if and only if 𝐼 + 𝑅 + 𝑅* ≻ 0, where

𝑅 = 𝑇 (𝐼 − 𝑇 )−1.

Proof. (a) We have the following chain of equivalences:

‖(𝐼 + 𝑇 )−1𝑇‖ ≤ 1 ⇐⇒ 𝐼 −
(︀
(𝐼 + 𝑇 )−1𝑇

)︀(︀
(𝐼 + 𝑇 )−1𝑇

)︀* ⪰ 0

⇐⇒ 𝐼 − (𝐼 + 𝑇 )−1𝑇𝑇 *(𝐼 + 𝑇 )−* ⪰ 0

⇐⇒ (𝐼 + 𝑇 )(𝐼 + 𝑇 )* − 𝑇𝑇 * ⪰ 0

⇐⇒ 𝐼 + 𝑇 + 𝑇 * ⪰ 0.

The proof of (b) is the same. �

Proposition 2.4. For 𝐹 ∈ 𝑀𝑑(C)𝑔 we have

𝒟𝐹 = {𝑋 : ‖(1 + Λ𝐹 (𝑋))−1Λ𝐹 (𝑋)‖ ≤ 1}.

Proof. Immediate from Lemma 2.3. �

Proof of Proposition 1.3. Let 𝑞 denote the convexotonic map associated to the convex-

otonic tuple Ξ in the statement of the proposition,

𝑞(𝑥) =
(︀
𝑥1 · · · 𝑥𝑔

)︀
(𝐼 + ΛΞ(𝑥))−1 = 𝑥 (𝐼 + ΛΞ(𝑥))−1 .
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Compute

Λ𝐽(𝑞(𝑥)) Λ𝐽(𝑥) =

𝑔∑︁
𝑠,𝑘=1

𝑞𝑠(𝑥)𝑥𝑘𝐽𝑠𝐽𝑘 =

𝑔∑︁
𝑗=1

𝑔∑︁
𝑠=1

𝑞𝑠(𝑥)

[︃
𝑔∑︁

𝑘=1

𝑥𝑘(Ξ𝑘)𝑠,𝑗

]︃
𝐽𝑗

=

𝑔∑︁
𝑗=1

𝑔∑︁
𝑠=1

𝑞𝑠(𝑥)(ΛΞ(𝑥))𝑠,𝑗𝐽𝑗 =

𝑔∑︁
𝑗=1

𝑔∑︁
𝑡=1

𝑥𝑡

[︃
𝑔∑︁

𝑠=1

(𝐼 + ΛΞ(𝑥))−1
𝑡,𝑠 (ΛΞ(𝑥))𝑠,𝑗

]︃
𝐽𝑗

=

𝑔∑︁
𝑗=1

𝑔∑︁
𝑡=1

𝑥𝑡[(𝐼 + ΛΞ(𝑥))−1ΛΞ(𝑥)]𝑡,𝑗𝐽𝑗.

Hence,

Λ𝐽(𝑞(𝑥)) (𝐼 + Λ𝐽(𝑥)) =

𝑔∑︁
𝑗=1

𝑔∑︁
𝑡=1

𝑥𝑡[(𝐼 + ΛΞ(𝑥))−1(𝐼 + ΛΞ(𝑥))]𝑡,𝑗𝐽𝑗 = Λ𝐽(𝑥).

Thus, as free (matrix-valued) rational functions regular at 0,

(2.2) Λ𝐽(𝑞(𝑥)) = (𝐼 + Λ𝐽(𝑥))−1 Λ𝐽(𝑥) =: 𝐹 (𝑥).

Since 𝐽 is linearly independent, given 1 ≤ 𝑘 ≤ 𝑔, there is a linear functional 𝜆 such

that 𝜆(𝐽𝑗) = 0 for 𝑗 ̸= 𝑘 and 𝜆(𝐽𝑘) = 1. Applying 𝜆 to equation (2.2), gives

(2.3) 𝑞𝑘(𝑥) = 𝜆(𝐹 (𝑥)).

Since 𝜆(𝐹 (𝑥)) is a free rational function whose domain contains

D = {𝑋 : 𝐼 + Λ𝐽(𝑋) is invertible},

the same is true for 𝑞𝑘. (As a technical matter, each side of equation (2.3) is a rational

expression. Since they are defined and agree on a neighborhood of 0, they determine

the same free rational function. It is the domain of this rational function that contains

D . See [Vol17], and also [KVV09], for full details.) By Lemma 2.2, D contains 𝒟𝐽 (as

𝑋 ∈ 𝒟𝐽 implies 𝐼 +Λ𝐽(𝑋) is invertible). Hence the domain of the free rational mapping

𝑞 contains 𝒟𝐽 . By Lemma 2.3 and equation (2.2), 𝑞 maps the interior of 𝒟𝐽 into the

interior of ℬ𝐽 and the boundary of 𝒟𝐽 into the boundary of ℬ𝐽 .

Similarly,

(2.4) (𝐼 − Λ𝐽(𝑥))−1 Λ𝐽(𝑥) = Λ𝐽(𝑝(𝑥)),

where 𝑝(𝑥) = 𝑥(𝐼 −ΛΞ(𝑥))−1. Arguing as above shows the domain of 𝑝 contains the set

E = {𝑋 : 𝐼 − Λ𝐽(𝑋) is invertible},

which in turn contains int(ℬ𝐽) (since ‖Λ𝐽(𝑋)‖ < 1 allows for an application of Lemma

2.3). By Lemma 2.3 and equation (2.4), 𝑝 maps the interior of ℬ𝐽 into the interior of
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𝒟𝐽 . Hence 𝑞 is bianalytic between these interiors. Further, if 𝑋 is in the boundary of

ℬ𝐽 , then for 𝑡 ∈ C and |𝑡| < 1, we have 𝑝(𝑡𝑋) ∈ int(𝒟𝐽) and

Λ𝐽(𝑝(𝑡𝑋)) = (𝐼 − Λ𝐽(𝑡𝑋))−1 Λ𝐽(𝑡𝑋).

Assuming 𝒟𝐽 is bounded, it follows that 𝐼 − Λ𝐽(𝑋) is invertible and thus 𝑋 is in the

domain of 𝑝 and 𝑝(𝑋) is in the boundary of 𝒟𝐽 . �

Proof of Corollary 1.4. Letting 𝑧 = (𝑧1, . . . , 𝑧𝑔+ℎ) denote a 𝑔 + ℎ tuple of freely non-

commuting indeterminants, and Ξ the convexotonic 𝑔 + ℎ tuple as described in the

corollary, by Proposition 1.3 the birational mapping

𝑞(𝑧) = 𝑧(𝐼 + ΛΞ(𝑧))−1

is a bianalytic (hence injective and proper) mapping between int(𝒟𝐽) and int(ℬ𝐽) that

also maps boundary to boundary. The mapping 𝜄 : 𝒟𝐴 → 𝒟𝐽 defined by 𝜄(𝑥) = (𝑥, 0) is

proper from int(𝒟𝐴) to int(𝒟𝐽) and maps boundary to boundary. Hence, the composition

𝑟(𝑥) = 𝑝(𝜄(𝑥)) =
(︀
𝑥 0

)︀
(𝐼 − ΛΞ(𝑥, 0))−1

is a proper map from int(𝒟𝐴) into int(ℬ𝐽) that also maps boundary to boundary. �

3. Proof of Theorem 1.1

Given 𝐸, let

𝐴 =

(︂
0 𝐸

0 0

)︂
.

Thus ℬ𝐸 = 𝒟𝐴 and, among other things, by assumption there is a bianalytic map

𝑝 : 𝒟𝐴 → 𝒟𝐵. It follows by the analytic Positivstellensätze [AHKM18, Theorem 1.9]

applied to the matrix-valued free analytic function

𝐺(𝑧) = Λ𝐴(𝑝(𝑧))

that there exists a Hilbert space 𝐻, an isometry ̃︀𝐶 on the range of 𝐼𝐻 ⊗ 𝐴 and an

isometry W : C𝑒 → 𝐻 ⊗ C2𝑑 such that, with ̃︀𝑅 = ( ̃︀𝐶 − 𝐼)𝐼𝐻 ⊗ 𝐴,

(3.1) 𝐿𝐵(𝑝(𝑥)) = 𝐼 + 𝐺(𝑧)* + 𝐺(𝑧) = W *(𝐼 − Λ ̃︀𝑅(𝑥))−*𝐿𝐼𝐻⊗𝐴(𝑥)(𝐼 − Λ ̃︀𝑅(𝑥))−1W .

That the analytic Positivstellensätze requires 𝒟𝐴 to be bounded and 𝐺 to extend ana-

lytically to a pseudoconvex set containing 𝒟𝐴 explains the need for the hypotheses that

𝒟𝐴 = ℬ𝐸 is bounded (equivalently 𝐸 is linearly independent) and 𝑝 extends analytically

to a pseudoconvex set containing 𝒟𝐴.

Since 𝐸 is sv-generic, both ker(𝐸) := ∩ ker(𝐸𝑗) = {0} and ker(𝐸*) = {0}. In

particular,

rg(𝐴) := span(

𝑔⋃︁
𝑗=1

rg(𝐴𝑗)) = C𝑑 ⊕ {0}.
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In particular, dim(rg(𝐴)) = 𝑑. Likewise dim(rg(𝐴*)) = 𝑑 too.

The next step involves a call to [AHKM18, Lemma 7.7]. That lemma is stated in

terms of conditions referred to as eig-generic, weakly eig-generic, *-generic and weakly

*-generic formally defined in [AHKM18, Definition 7.3]. It is readily seen that if a 𝑔-

tuple 𝐹 of 𝑁 ×𝑁 matrices is sv-generic, then it is both eig-generic and *-generic (and

thus weakly eig-generic and weakly *-generic). In particular, rg(𝐹 ) = C𝑁 = rg(𝐹 *).

Thus, both 𝐸 and 𝐵 are both eig-generic and *-generic. That 𝐸 is eig-generic implies

𝐴 is weakly eig-generic; and that 𝐸 is *-generic implies 𝐴 is weakly *-generic.

By [AHKM18, Lemma 7.7(1)], 𝑑 = dim(rg(𝐴*)) ≤ dim(rg(𝐵*)) = 𝑒. Applying

[AHKM18, Lemma 7.7(1)] to 𝑞 : 𝒟𝐵 → 𝒟𝐴 (so reversing the roles of 𝐴 and 𝐵), it also

follows that 𝑒 ≤ 𝑑. Hence dim(rg(𝐴*)) = 𝑑 = 𝑒 = dim(rg(𝐵*)) and dim(rg(𝐴)) = 𝑑 =

𝑒 = dim(rg(𝐵)). Thus we may now invoke (the weakly version of) [AHKM18, Lemma

7.7(4)] that says there is a vector 𝜆 ∈ 𝐻 and a unitary 𝑀 : rg(𝐵*) → rg(𝐴*) and an

isometry 𝑁 : rg(𝐵*) ∩ rg(𝐵) → rg(𝐴) such that W 𝑣 = 𝜆 ⊗ 𝜄𝑀𝑣 for 𝑣 ∈ rg(𝐵*) and̃︀𝐶(𝜆 ⊗ 𝜄𝑁𝑣) = 𝜆 ⊗ 𝜄𝑀𝑣 for 𝑣 ∈ rg(𝐵*) ∩ rg(𝐵) (where we over use 𝜄, letting it denote

the inclusions rg(𝐴*) ⊂ C2𝑑 and rg(𝐵*) ⊂ C2𝑑). This general statement in our case

specializes, because rg(𝐵*) = C𝑑, rg(𝐵) = C𝑑 and dim(rg(𝐴)) = 𝑑, to give

(i) 𝑀 : C𝑑 → rg(𝐴*) is unitary;

(ii) 𝑁 : C𝑑 → rg(𝐴) is unitary;

(iii) W 𝑣 = 𝜆⊗ 𝜄𝑀𝑣; and

(iv) ̃︀𝐶(𝜆⊗ 𝜄𝑁𝑣) = 𝜆⊗ 𝜄𝑀𝑣 for 𝑣 ∈ C𝑑.

It follows that there is a unitary mapping 𝑍 : rg(𝐴) → rg(𝐴*) such that, for 𝑤 ∈
rg(𝐴), ̃︀𝐶(𝜆⊗ 𝑤) = 𝜆⊗ 𝜄𝑍𝑤.

Let [𝜆] = C𝜆, the one-dimensional subspace of 𝐻 spanned by the unit vector 𝜆.

Let

𝐶 =

(︂
0 0

𝑍 0

)︂
.

In particular 𝐶 is isometric on the range of 𝐴. Let 𝑅 = (𝐶 − 𝐼)𝐴. For 1 ≤ 𝑗 ≤ 𝑑, and

𝛾 ∈ C2𝑑, ̃︀𝑅𝑗(𝜆⊗ 𝛾) = ( ̃︀𝐶 − 𝐼)[𝐼𝐻 ⊗ 𝐴𝑗](𝜆⊗ 𝛾)

= ( ̃︀𝐶 − 𝐼)(𝜆⊗ 𝐴𝑗𝛾)

= 𝜆⊗ (𝜄𝑍 − 𝐼)𝐴𝑗𝛾

= 𝜆⊗ (𝐶 − 𝐼)𝐴𝑗𝛾

= 𝜆⊗𝑅𝑗𝛾.
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Thus [𝜆] ⊗ C2𝑑 is invariant for the tuple ̃︀𝑅 and further̃︀𝑅𝑗(𝜆⊗ 𝐼) = 𝜆⊗𝑅𝑗.

It follows that [𝜆] ⊗ C2𝑑 is invariant for the mapping (𝐼 − Λ ̃︀𝑅(𝑥))−1 and moreover,

(𝐼 − Λ ̃︀𝑅(𝑥))−1(𝜆⊗ 𝐼) = 𝜆⊗ (𝐼 − Λ𝑅(𝑥))−1.

Finally, since W maps into [𝜆] ⊗ C2𝑑 and W 𝛾 = 𝜆⊗ 𝜄𝑀𝛾,

𝑊 (𝑥) := (𝐼 − Λ ̃︀𝑅(𝑥))−1W = 𝜆⊗ (𝐼 − Λ𝑅(𝑥))−1𝜄𝑀.

Since also [𝜆] ⊗ C2𝑑 is invariant for 𝐿𝐼𝐻⊗𝐴(𝑥),

𝐿𝐼𝐻⊗𝐴(𝑥)𝑊 (𝑥) = 𝜆⊗ 𝐿𝐴(𝑥)(𝐼 − Λ𝑅(𝑥))−1𝜄𝑀.

Returning to equation (3.1) and using 𝜆*𝜆 = 1,

𝐿𝐵(𝑝(𝑥)) = (𝜆* ⊗ (𝜄𝑀)*(𝐼 − Λ𝑅(𝑥))−*(𝜆⊗ 𝐿𝐴(𝑥)(𝐼 − Λ𝑅(𝑥))−1𝜄𝑀

= 𝑀*𝜄*(𝐼 − Λ𝑅(𝑥))−*𝐿𝐴(𝑥)(𝐼 − Λ𝑅(𝑥))−1𝜄𝑀.
(3.2)

Comparing the coefficients of the 𝑥𝑗 terms in equation (3.2) gives

𝐵 = 𝑀*𝜄*𝐶𝐴𝜄𝑀.

Since 𝑀 : C𝑑 → rg(𝐴*) is unitary,

(3.3) 𝜄𝑀 =

(︂
0

𝑈

)︂
: C𝑑 → C2𝑑 = C𝑑 ⊕ C𝑑 = rg(𝐴) ⊕ rg(𝐴*)

for a unitary mapping 𝑈 : C𝑑 → C𝑑. Thus,

𝐵 = 𝑈*𝑍𝐸𝑈.

Since

𝑅 = (𝐶 − 𝐼)𝐴 =

(︂
0 −𝐸

0 𝑍𝐸

)︂
.

it follows that

𝐹 (𝑥) := (𝐼 − Λ𝑅(𝑥))−1 =

(︂
𝐼 −Λ𝐸(𝑥)(𝐼 − Λ𝑍𝐸(𝑥))−1

0 (𝐼 − Λ𝑍𝐸(𝑥))−1

)︂
.

Consequently,

𝐹 (𝑥)*𝐿𝐴(𝑥)𝐹 (𝑥)

=

(︃
𝐼 0

−(𝐼 − Λ𝑍𝐸(𝑥))−*Λ𝐸(𝑥)* (𝐼 − Λ𝑍𝐸(𝑥))−*

)︃ (︃
𝐼 Λ𝐸(𝑥)

Λ𝐸(𝑥)* 𝐼

)︃ (︃
𝐼 −Λ𝐸(𝑥)(𝐼 − Λ𝑍𝐸(𝑥))−1

0 (𝐼 − Λ𝑍𝐸(𝑥))−1

)︃

=

(︃
𝐼 0

0 (𝐼 − Λ𝐸(𝑥))−*(𝐼 − Λ𝐸(𝑥)*Λ𝐸(𝑥))(𝐼 − Λ𝐸(𝑥))−1

)︃
.
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Hence, from equations (3.2) and (3.3),

𝐿𝐵(𝑝(𝑥)) = 𝑈*(𝐼 − Λ𝐸(𝑥))−*(𝐼 − Λ𝐸(𝑥)*Λ𝐸(𝑥))(𝐼 − Λ𝐸(𝑥))−1𝑈.

Further, letting ̃︀𝐵 = 𝐶𝐴 =

(︂
0 0

0 𝑍𝐸

)︂
,

we have

𝐿 ̃︀𝐵(𝑝(𝑥)) = 𝒲*𝐹 (𝑥)*𝐿𝐴(𝑥)𝐹 (𝑥)𝒲
where

𝒲 =

(︂
𝐼 0

0 𝑈

)︂
.

By [AHKM18, Theorem 6.7], 𝑝 is a convexotonic mapping determined by the (uniquely

determined) convexotonic tuple Ξ satisfying

𝐴𝑘(𝐶 − 𝐼)𝐴𝑗 =

𝑔∑︁
𝑠=1

(Ξ𝑗)𝑘,𝑠𝐴𝑠.

Equivalently,

(3.4) 𝐸𝑘𝑍𝐸𝑗 =

𝑔∑︁
𝑠=1

(Ξ𝑗)𝑘,𝑠𝐸𝑠.

Finally to prove item (3), multiply equation (3.4) by 𝑍 on the left and use 𝐵 = 𝑍𝐸

to obtain,

𝐵𝑘𝐵𝑗 =

𝑔∑︁
𝑠=1

(Ξ𝑗)𝑘,𝑠𝐵𝑠.

4. Examples

In this section we take up some examples that motivate Theorem 1.1 and Corollary

1.4. First we show that a spectraball, as a member of the class of free spectrahedra, is

never sv-generic.

Lemma 4.1. Suppose 𝐵 ∈ 𝑀𝑑(C)𝑔.

(a) If 𝐵 is sv-generic, then ker(𝐵) := ∩𝑔
𝑗=1 ker(𝐵𝑗) = {0}.

(b) If 𝐵 is nilpotent, then ker(𝐵) ̸= {0}.
(c) If 𝐵 is nilpotent, then 𝒟 = 𝒟𝐵 is not sv-generic.

(d) If 𝒟 is a spectraball, then 𝒟 is not sv-generic.

Remark 4.2. In fact item (a), and thus items (c) and (d), remain true with sv-generic

replaced by eig-generic [AHKM18, Definition 7.3].
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Proof. If 𝛼 ∈ C𝑔, 𝑢 ∈ C𝑑 and [𝐼 − Λ𝐵(𝛼)*Λ𝐵(𝛼)]𝑢 = 0, then 𝑢 ∈ rg(𝐵*) = ker(𝐵)⊥.

Hence, if 𝐵 is sv-generic, then there exists a basis {𝑢1, . . . , 𝑢𝑑} of C𝑑 such that each

𝑢𝑗 ∈ rg(𝐵*). Thus C𝑑 = rg(𝐵*) = ker(𝐵)⊥ and therefore ker(𝐵) = {0}.

Now suppose 𝐵 is nilpotent. Thus there is an 𝑁 such that if 𝛽 is a word whose

length exceeds 𝑁 , then 𝐵𝛽 = 0. Hence there is a word 𝛼 (potentially empty) such that

𝐵𝛼 ̸= 0, but 𝐵𝑗𝐵
𝛼 = 0 for 1 ≤ 𝑗 ≤ 𝑔. It follows that {0} ≠ rg(𝐵𝛼) ⊂ ker(𝐵), proving

item (b).

To prove item (c), suppose 𝐵 is nilpotent and let 𝒟 = 𝒟𝐵. Let 𝑀 ∈ 𝑀𝑚(C)𝑔 be

a minimal defining tuple for 𝒟, meaning 𝒟 = 𝒟𝑀 and if 𝐶 ∈ 𝑀𝑠(C)𝑔 and 𝒟 = 𝒟𝐶 ,

then 𝑠 ≥ 𝑚. By [EHKM17, Proposition 2.2], there is a tuple 𝐽 such that 𝐵 is unitarily

equivalent to 𝑀 ⊕ 𝐽 . Since 𝐵 is nilpotent, so is 𝑀 . Hence ker(𝑀) ̸= {0} by item (b).

Now suppose 𝐶 is any other tuple so that 𝒟𝐶 = 𝒟𝐵. Another application of [EHKM17,

Proposition 2.2] gives a tuple 𝑁 such that 𝐶 is unitarily equivalent to 𝑀 ⊕ 𝑁 . Hence

ker(𝐶) ̸= {0} and by item (a), 𝐶 is not sv-generic. Thus 𝒟 = 𝒟𝐵 is not sv-generic.

Finally suppose 𝒟 is a spectraball. Hence there is a positive integer 𝑒 and tuple

𝐸 ∈ 𝑀𝑒(C)𝑔 such that 𝒟 = ℬ𝐸. Since 𝒟 = ℬ𝐸 = 𝒟𝐴, where

𝐴 =

(︂
0 𝐸

0 0

)︂
∈ 𝑀2𝑒,

and 𝐴 is nilpotent, item (c) implies 𝒟 is not sv-generic. �

4.1. A spectrahedron defined by a nilpotent tuple. A spectrahedron defined by a

nilpotent tuple cannot have sv-generic coefficients according to Lemma 4.1, but we give

an example here of how one can overcome this problem by mapping to a spectraball.

Let

(4.1) 𝐸1 = 𝐼2 and 𝐸2 =

(︂
0 1

0 0

)︂
and let 𝐹 denote the 2-tuple of 3 × 3 matrices given in equation (1.4). Note that

(1, 1) ∈ C2 is in 𝒟𝐹 , but −(1, 1) /∈ 𝒟𝐹 . Thus 𝒟𝐹 is not rotationally invariant and

hence not a spectraball. Hence Theorem 1.1 can not be applied to bianalytic mappings

𝜙 : 𝒟𝐹 → 𝒟𝐵. Since 𝐹 is nilpotent, 𝒟𝐹 is not sv-generic (Lemma 4.1) and therefore

Theorem [AHKM18, Theorem 1.8] can not be applied to bianalytic mappings 𝜙 : 𝒟𝐹 →
𝒟𝐵 (even assuming 𝐵 is sv-generic). On the other hand, 𝐹 does span an algebra and thus

Corollary 1.4 applies. A straightforward calculation shows that the origin-preserving

birational map 𝑞 : 𝒟𝐹 → ℬ𝐹 of Proposition 1.3 is given by 𝑞(𝑥1, 𝑥2) = (𝑥1, 𝑥2 + 𝑥2
1).

Evidently ℬ𝐹 = ℬ𝐸. The following proposition summarizes the discussion above.
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Proposition 4.3. The mapping

𝑞(𝑥1, 𝑥2) = (𝑥1, 𝑥2 + 𝑥2
1)

is a bianalytic map from 𝒟𝐹 onto ℬ𝐸. Further, 𝐸 is sv-generic, but 𝒟𝐹 is neither a

spectraball nor sv-generic.

According to Proposition 4.3, to classify bianalytic maps 𝑓 : 𝒟𝐹 → 𝒟𝐵 it suffices

to determine the bianalytic maps ℎ : ℬ𝐸 → 𝒟𝐵. Such maps are the subject of the next

subsection.

4.2. Bianalytic mappings of ℬ𝐸 to a free spectrahedron 𝒟𝐵. Theorem 1.1 applies

in the case that 𝐵 is sv-generic or has size 2.

Proposition 4.4. Suppose 𝐵 ∈ 𝑀𝑒(C)2 and either 𝑒 = 2 or 𝐵 is sv-generic. If 𝑓 :

ℬ𝐸 → 𝒟𝐵 is bianalytic, then 𝑒 = 2 and there is a unimodular 𝛼 and 2 × 2 unitary 𝑀

such that 𝐵 = 𝛼𝑀*𝐸𝑀 and further 𝑓 is the birational map

𝑓(𝑥) =
(︀
𝑥1(1 − 𝛼𝑥1)

−1 (1 − 𝛼𝑥1)
−1𝑥2(1 − 𝛼𝑥1)

−1
)︀
.

Remark 4.5. The mapping 𝑓 is a variant (obtained by the linear change of variable

(𝑥1, 𝑥2) maps to 𝛼(𝑥1, 𝑥2)) of those appearing in 𝑔 = 2 type IV algebra (see [AHKM18,

Section 8.3] or Subsubsection 4.3.4 below).

Proof of Proposition 4.4. In this case the 𝑍 in Theorem 1.1 is a unimodular multiple of

the identity. Indeed, by (3.4),

𝑍 = 𝐸1𝑍𝐸1 = (Ξ1)1,1𝐼 + (Ξ1)1,2𝐸2

and since 𝑍 is unitary, it follows that (Ξ1)1,2 = 0 and 𝑍 = 𝛼𝐼. It is now easy to verify

that Ξ = 𝛼𝐸. Hence the corresponding convexotonic map is

𝑓(𝑥) = 𝑥(𝐼 − ΛΞ(𝑥))−1

=
(︀
𝑥1 𝑥2

)︀ (︂1 − 𝛼𝑥1 −𝛼𝑥2

0 1 − 𝛼𝑥1

)︂−1

=
(︀
𝑥1(1 − 𝛼𝑥1)

−1 (1 − 𝛼𝑥1)
−1𝑥2(1 − 𝛼𝑥1)

−1
)︀
,

as desired. �

Composing the 𝑓 from Proposition 4.4 with the original 𝑞 = (𝑥1, 𝑥2 + 𝑥2
1), the

bianalytic map between 𝒟𝐹 and ℬ𝐸, gives the mapping from the original domain 𝒟𝐹 to

𝒟𝐵,

𝑓 ∘ 𝑞 =
(︀
𝑥1(1 − 𝛼𝑥1)

−1 (1 − 𝛼𝑥1)
−1 [𝑥2 + 𝑥2

1] (1 − 𝛼𝑥1)
−1
)︀
.

By [AHKM18, Theorem 1.8], if 𝐺, 𝐻 and 𝐾 are all sv-generic and 𝑟 : 𝒟𝐺 → 𝒟𝐻 and

𝑠 : 𝒟𝐻 → 𝒟𝐾 are bianalytic (and extend to be analytic on pseudoconvex domains
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containing 𝒟𝐺 and 𝒟𝐻 respectively), then 𝑟, 𝑠 and 𝑟 ∘ 𝑠 are convexotonic. However,

generally one does not expect an arbitrary composition of convexotonic maps to be

convexotonic. (See [AHKM18, Subsection 8.4].) Thus, it is of interest to note that, even

though our 𝐹 is not sv-generic, the map 𝑓 ∘ 𝑞 is convexotonic.

Proposition 4.6. The map 𝑓∘𝑞 is convexotonic corresponding to the tuple Ξ =
(︀
𝛼𝐼2 + 𝐸2, 𝛼𝐸2

)︀
.

Proof. Here is an outline of the computation that proves the proposition.

𝑥(𝐼 − ΛΞ(𝑥))−1 = 𝑥

(︂
1 − 𝛼𝑥1 −(𝑥1 + 𝛼𝑥2)

0 1 − 𝛼𝑥1

)︂−1

=
(︀
𝑥1 𝑥2

)︀ (︂(1 − 𝛼𝑥1)
−1 (1 − 𝛼𝑥1)

−1(𝑥1 + 𝛼𝑥2)(1 − 𝛼𝑥1)
−1

0 (1 − 𝛼𝑥1)
−1

)︂
=
(︀
(𝑥1(1 − 𝛼𝑥1)

−1 𝑥1(1 − 𝛼𝑥1)
−1(𝑥1 + 𝛼𝑥2)(1 − 𝛼𝑥1)

−1 + 𝑥2(1 − 𝛼𝑥1)
−1
)︀
.

Analyzing the second entry above gives

𝑥1(1 − 𝛼𝑥1)
−1(𝑥1 + 𝛼𝑥2)(1 − 𝛼𝑥1)

−1 + 𝑥2(1 − 𝛼𝑥1)
−1

= (1 − 𝛼𝑥1)
−1[𝑥2

1 + 𝛼𝑥1𝑥2 + (1 − 𝛼𝑥1)𝑥2](1 − 𝛼𝑥1)
−1

= (1 − 𝛼𝑥1)
−1[𝑥2 + 𝑥2

1](1 − 𝛼𝑥1)
−1,

as desired. �

4.3. Two dimensional algebras with 𝑔 = 2. In this section we consider, in view of

Corollary 1.4, the four indecomposable algebras 𝒜 of dimension two. In each case we

choose a tuple ℛ = (ℛ1,ℛ2) and compute the resulting convexotonic map 𝐺 : 𝒟ℛ → ℬℛ.

We adopt the names for these algebras used in [AHKM18].

4.3.1. 𝑔 = 2 type 𝐼 algebra. Let ℛ = 𝐹 , where 𝐹 is given by (1.4). In this case we

already saw 𝑞(𝑥1, 𝑥2) = (𝑥1, 𝑥2 + 𝑥2
1). In this case 𝒟𝐹 and ℬ𝐹 are both bounded. While

the tuple 𝐹 is not sv-generic, the tuple 𝐸 of equation (4.1) is and moreover ℬ𝐹 = ℬ𝐸.

Hence Theorem 1.1 does indeed apply (by replacing 𝐹 by 𝐸).

4.3.2. 𝑔 = 2 type 𝐼𝐼 algebra. Let

ℛ1 =

(︂
1 0

0 0

)︂
, ℛ2 =

(︂
0 1

0 0

)︂
.

We have

(𝐼 + Λℛ(𝑥))−1Λℛ(𝑥) =

(︂
(1 + 𝑥1)

−1𝑥1 (1 + 𝑥1)
−1𝑥2

0 0

)︂
.

Hence 𝑞 = ((1 + 𝑥1)
−1𝑥1 (1 + 𝑥1)

−1𝑥2) is a birational map from int(𝒟ℛ) to the

spectraball int(ℬℛ) that also maps the boundary of 𝒟ℛ into the boundary of ℬℛ. On
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the other hand, if 𝑋1 is skew selfadjoint, then (𝑋1, 0) ∈ 𝒟ℛ, so that 𝒟ℛ is not bounded

and, for instance, the tuple (︂(︂
0 −1

1 0

)︂
,

(︂
0 0

0 0

)︂)︂
is in ℬℛ but not the range of 𝑞. In this example, ℛ has a (common nontrivial) cokernel

and is thus not sv-generic. Hence Theorem 1.1 does not apply.

4.3.3. 𝑔 = 2 type 𝐼𝐼𝐼 algebra. This case, in which

ℛ1 =

(︂
1 0

0 0

)︂
, ℛ2 =

(︂
0 0

1 0

)︂
,

is very similar to the 𝑔 = 2 type 𝐼𝐼 case.

4.3.4. 𝑔 = 2 type 𝐼𝑉 algebra. Let ℛ = 𝐸, where 𝐸 is defined in equation (4.1), and

observe

(𝐼 + Λℛ(𝑥))−1 Λℛ(𝑥) =

(︂
(1 + 𝑥1)

−1𝑥1 (1 + 𝑥1)
−1𝑥2(1 + 𝑥1)

−1

0 (1 + 𝑥1)
−1𝑥1

)︂
.

In this case,

𝑞(𝑥) =
(︀
𝑥1(1 + 𝑥1)

−1 (1 + 𝑥1)
−1𝑥2(1 + 𝑥1)

−1
)︀

is bianalytic from int(𝒟ℛ) to int(ℬ𝐸) and maps boundary into boundary, but does not

map boundary onto boundary. In this case ℬℛ is bounded and sv-generic and hence

Theorem 1.1 does apply (with appropriate assumptions on 𝒟𝐵 and 𝑝 : 𝒟ℛ → 𝒟𝐵).
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[B-TN02] A. Ben-Tal, A. Nemirovski: On tractable approximations of uncertain linear matrix inequal-

ities affected by interval uncertainty, SIAM J. Optim. 12 (2002) 811–833. 2



18 M.L. AUGAT, J.W. HELTON, I. KLEP, AND S. MCCULLOUGH

[BPR13] G. Blekherman, P.A. Parrilo, R.R. Thomas (editors): Semidefinite optimization and convex

algebraic geometry, MOS-SIAM Series on Optimization 13, SIAM, 2013. 2

[BGFB94] S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan: Linear Matrix Inequalities in System and

Control Theory, SIAM Studies in Applied Mathematics 15, SIAM, 1994. 2
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2

[HKMS09] J.W. Helton, I. Klep, S. McCullough, N. Slinglend: Noncommutative ball maps, J. Funct.

Anal. 257 (2009), no. 1, 47–87. 7

[HKM11a] J.W. Helton, I. Klep, S. McCullough: Analytic mappings between noncommutative pencil

balls, J. Math. Anal. Appl. 376 (2011), no. 2, 407–428. 7

[HKM11b] J.W. Helton, I. Klep, S. McCullough: Proper Analytic Free Maps, J. Funct. Anal. 260 (2011)

1476–1490. 7

[HKM12a] J.W. Helton, I. Klep, S. McCullough: The convex Positivstellensatz in a free algebra, Adv.

Math. 231 (2012) 516–534. (this article succeeds [HKM13] but appeared earlier) 18

[HKM13] J.W. Helton, I. Klep, S. McCullough: The matricial relaxation of a linear matrix inequality,

Math. Program. 138 (2013) 401–445. (this article precedes [HKM12a] but appeared later) 6, 18

[HKM17] J.W. Helton, I. Klep, S. McCullough: The tracial Hahn-Banach theorem, polar duals, matrix

convex sets, and projections of free spectrahedra, J. Eur. Math. Soc. 19 (2017) 1845–1897. 2

[HKMS+] J.W. Helton, I. Klep, S. McCullough, M. Schweighofer: Dilations, Linear Matrix Inequalities,

the Matrix Cube Problem and Beta Distributions, to appear in Mem. Amer. Math. Soc., https:

//arxiv.org/abs/1412.1481 2

[HV07] J.W. Helton, V. Vinnikov: Linear matrix inequality representation of sets, Comm. Pure Appl.

Math. 60 (2007) 654–674. 2

[KVV09] D. Kaliuzhnyi-Verbovetskyi, V. Vinnikov: Singularities of rational functions and minimal

factorizations: the noncommutative and the commutative setting, Linear Algebra Appl. 430 (2009)

869–889. 4, 9

[KVV14] D. Kaliuzhnyi-Verbovetskyi, V. Vinnikov: Foundations of Free Noncommutative Function

Theory, Mathematical Surveys and Monographs 199, AMS, 2014. 3
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