A NOTE ON VALUES OF NONCOMMUTATIVE POLYNOMIALS

MATEJ BREŠAR¹ AND IGOR KLEP²

ABSTRACT. We find a class of algebras A satisfying the following property: for every nontrivial noncommutative polynomial $f(X_1, \ldots, X_n)$, the linear span of all its values $f(a_1, \ldots, a_n)$, $a_i \in \mathcal{A}$, equals \mathcal{A} . This class includes the algebras of all bounded and all compact operators on an infinite dimensional Hilbert space.

1. INTRODUCTION

Starting with Helton's seminal paper [\[Hel\]](#page-3-0) there has been considerable interest over the last years in values of noncommuting polynomials on matrix algebras. In one of the papers in this area the second author and Schweighofer [\[KS\]](#page-3-1) showed that Connes' embedding conjecture is equivalent to a certain algebraic assertion which involves the trace of polynomial values on matrices. This has motivated us [\[BK\]](#page-3-2) to consider the linear span of values of a noncommutative polynomial f on the matrix algebra $M_d(\mathbb{F})$; here, $\mathbb F$ is a field with char($\mathbb F$) = 0. It turns out [\[BK,](#page-3-2) Theorem 4.5] that this span can be either:

- (1) {0};
- (2) the set of all scalar matrices;
- (3) the set of all trace zero matrices; or
- (4) the whole algebra $M_d(\mathbb{F})$.

From the precise statement of this theorem it also follows that if $2d > \deg f$, then (1) and (2) do not occur and (3) occurs only when f is a sum of commutators.

What to except in infinite dimensional analogues of $M_d(\mathbb{F})$? More specifically, let H be infinite dimensional Hilbert space, and let $\mathcal{B}(\mathcal{H})$ and $\mathcal{K}(\mathcal{H})$ denote the algebras of all bounded and compact linear operators on H , respectively. What is the linear span of polynomial values in $\mathcal{B}(\mathcal{H})$ and $\mathcal{K}(\mathcal{H})$? A very special (but decisive, as we shall see) case of this question was settled by Halmos [\[Hal\]](#page-3-3) and Pearcy and Topping $[PT]$ (see also Anderson [\[And\]](#page-3-5)) a long time ago: every operator in $\mathcal{B}(\mathcal{H})$ and $\mathcal{K}(\mathcal{H})$, respectively, is a sum of commutators. That is, the linear span of values of the polynomial $X_1X_2 - X_2X_1$ on $\mathcal{B}(\mathcal{H})$ and $\mathcal{K}(\mathcal{H})$ is all of $\mathcal{B}(\mathcal{H})$ and $\mathcal{K}(\mathcal{H})$, respectively. We will prove that the same is true for every nonconstant polynomial. This result will be derived as a corollary of our main theorem which presents a class of algebras with the property that the span of values of "almost" every polynomial is equal to the whole algebra.

2. RESULTS

By $\mathbb{F}\langle \bar{X}\rangle$ we denote the free algebra over a field \mathbb{F} generated by $\bar{X} = \{X_1, X_2, \ldots\}$, i.e., the algebra of all noncommutative polynomials in X_i . Let $f = f(X_1, \ldots, X_n) \in$ $\mathbb{F}\langle \bar{X}\rangle$. We say that f is homogeneous in the variable X_i if all monomials of f have

Date: 02 December 2009.

²⁰⁰⁰ Mathematics Subject Classification. 08B20, 16R99, 47L30.

Key words and phrases. Noncommutative polynomial, Lie ideal, Hilbert space, bounded operator, compact operator.

¹Supported by the Slovenian Research Agency (program No. P1-0288).

²Supported by the Slovenian Research Agency (program No. P1-0222).

the same degree in X_i . If this degree is 1, then we say that f is linear in X_1 . If f is linear in every variable X_i , $1 \leq i \leq n$, then we say that f is multilinear.

Let A be an algebra over F. By $f(A)$ we denote the set of all values $f(a_1, \ldots, a_n)$ with $a_i \in \mathcal{A}, i = 1, \ldots, n$. Recall that $f = f(X_1, \ldots, X_n) \in \mathbb{F}\langle \overline{X} \rangle$ is said to be an *identity* of A if $f(\mathcal{A}) = \{0\}$. If $f(\mathcal{A})$ is contained in the center of A, but f is not an identity of A, then f is said to be a *central polynomial* of A. By span $f(A)$ we denote the linear span of $f(A)$. We are interested in the question when does span $f(\mathcal{A}) = \mathcal{A}$ hold.

For the proof of our main theorem three rather elementary lemmas will be needed. The first and the simplest one is a slightly simplified version of [\[BK,](#page-3-2) Lemma 2.2]. Its proof is based on the standard Vandermonde argument.

Lemma 2.1. Let V be a vector space over an infinite field \mathbb{F} , and let U be a subspace. Suppose that $c_0, c_1, \ldots, c_n \in V$ are such that $\sum_{i=0}^n \lambda^i c_i \in U$ for all $\lambda \in \mathbb{F}$. Then each $c_i \in \mathcal{U}$.

Recall that a vector subspace $\mathcal L$ of $\mathcal A$ is said to be a Lie ideal of $\mathcal A$ if $[\ell, a] \in \mathcal L$ for all $\ell \in \mathcal{L}$ and $a \in \mathcal{A}$; here, $[u, v] = uv - vu$. For a recent treatise of Lie ideals from an algebraic as well as functional analytic viewpoint we refer the reader to [\[BKS\]](#page-3-6).

Our second lemma is a special case of [\[BK,](#page-3-2) Theorem 2.3].

Lemma 2.2. Let A be an algebra over an infinite field \mathbb{F} , and let $f \in \mathbb{F}\langle X \rangle$. Then span $f(A)$ is a Lie ideal of A.

Every vector subspace of the center of A is obviously a Lie ideal of A . Lie ideals that are not contained in the center are called noncentral. The third lemma follows from an old result of Herstein [\[Her,](#page-3-7) Theorem 1.2].

Lemma 2.3. Let S be a simple algebra over a field \mathbb{F} with char(\mathbb{F}) \neq 2. If M is both a noncentral Lie ideal of S and a subalgebra of S, then $M = S$.

We are now in a position to prove our main result.

Theorem 2.4. Let S and B be algebras over a field \mathbb{F} with char(\mathbb{F}) = 0, and let $\mathcal{A} = \mathcal{S} \otimes \mathcal{B}$. Suppose that S is simple, and suppose that B satisfies

- (a) every element in $\mathcal B$ is a sum of commutators; and
- (b) for each $n \geq 1$, every element in $\mathcal B$ is a linear combination of elements b^n , $b \in \mathcal{B}$.

If $f \in \mathbb{F}\langle \bar{X} \rangle$ is neither an identity nor a central polynomial of S, then

$$
\operatorname{span} f(\mathcal{A}) = \mathcal{A}.
$$

(In case A is nonunital, only polynomials f with zero constant term are considered.)

Proof. Let $f = f(X_1, ..., X_n)$. Let us write $f = g_i + h_i$ where g_i is a sum of all monomials of f in which X_i appears and h_i is a sum of all monomials of f in which X_i does not appear. Thus, $h_i = h_i(X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_n)$ and hence

$$
h_i(a_1,\ldots,a_{i-1},a_{i+1},\ldots,a_n)=f(a_1,\ldots,a_{i-1},0,a_{i+1},\ldots,a_n)
$$

for all $a_i \in \mathcal{A}$. Therefore span $h_i(\mathcal{A}) \subseteq$ span $f(\mathcal{A})$, which clearly implies span $g_i(\mathcal{A}) \subseteq$ span $f(\mathcal{A})$. At least one of g_i and h_i is neither an identity nor a central polynomial of S. Therefore there is no loss of generality in assuming that either X_i appears in every monomial of f or f does not involve X_i at all. Since f cannot be a constant polynomial and hence it must involve some of the X_i 's, we may assume, again without loss of generality, that each monomial of f involves all X_i , $i = 1, \ldots, n$.

Next we claim that there is no loss of generality in assuming that f is homogeneous in X_1 . Write $f = f_1 + \ldots + f_m$, where f_i is the sum of all monomials of f

that have degree i in X_1 . Note that

$$
f(\lambda a_1, a_2, \dots, a_n) = \sum_{i=1}^m \lambda^i f_i(a_1, \dots, a_n) \in \text{span } f(\mathcal{A})
$$

for all $\lambda \in \mathbb{F}$ and all $a_i \in \mathcal{A}$, so $f_i(a_1, \ldots, a_n) \in \text{span } f(\mathcal{A})$ by Lemma [2.1.](#page-1-0) Thus, span $f_i(\mathcal{A}) \subseteq \text{span } f(\mathcal{A})$. At least one f_i is neither an identity nor a central polynomial of S. Therefore it suffices to prove the theorem for f_i . This proves our claim.

Let us now show that there is no loss of generality in assuming that f is linear in X_1 . If $\deg_{X_1} f > 1$, we apply the multilinearization process to f, i.e., we introduce a new polynomial $\Delta_{1,n+1} f = f'(X_1, ..., X_n, X_{n+1})$:

$$
f' = f(X_1 + X_{n+1}, X_2, \ldots, X_n) - f(X_1, X_2, \ldots, X_n) - f(X_{n+1}, X_2, \ldots, X_n).
$$

This reduces the degree in X_1 by one. Clearly, span $f'(\mathcal{A}) \subseteq \text{span } f(\mathcal{A})$. Observe that f can be retrieved from f' by resubstituting $X_{n+1} \mapsto X_1$, more exactly

$$
(2^{\deg_{X_1} f}-2)f = f'(X_1,\ldots,X_n,X_1).
$$

Hence f' is not an identity nor a central polynomial of S. Note however that f' is not necessarily homogeneous in X_1 , but for all its homogeneous components f_i' we have span $f'_{i}(\mathcal{A}) \subseteq \text{span } f'(\mathcal{A})$; one can check this by using Lemma [2.1,](#page-1-0) like in the previous paragraph. At least one of these components, say f'_j , is not an identity nor a central polynomial of S. Thus we restrict our attention to f'_j . If necessary, we continue applying $\Delta_{1, \mathcal{L}}$, and after a finite number of steps we obtain a polynomial Δf linear in X_1 , which is neither an identity nor a central polynomial of S, and satisfies span $\Delta f(\mathcal{A}) \subseteq$ span $f(\mathcal{A})$. Hence we may assume f is linear in X_1 .

Repeating the same argument with respect to other variables we finally see that without loss of generality we may assume that f is multilinear.

Set $\mathcal{L} = \text{span } f(\mathcal{A})$ and $\mathcal{M} = \{m \in \mathcal{S} \mid m \otimes \mathcal{B} \subseteq \mathcal{L}\}.$ By Lemma [2.2,](#page-1-1) \mathcal{L} is a Lie ideal of A. Therefore $[m, s] \otimes b^2 = [m \otimes b, s \otimes b] \in \mathcal{L}$ for all $m \in \mathcal{M}, b \in \mathcal{B}$, $s \in \mathcal{S}$. Using (b) it follows that $[m, s] \in \mathcal{M}$. Therefore $\mathcal M$ is a Lie ideal of \mathcal{S} . Pick $s_1, \ldots, s_n \in \mathcal{S}$ such that $s_0 = f(s_1, \ldots, s_n)$ does not lie in the center of \mathcal{S} . For every $b \in \mathcal{B}$ we have

$$
s_0 \otimes b^n = f(s_1 \otimes b, s_2 \otimes b, \dots, s_n \otimes b) \in \mathcal{L}.
$$

In view of (b) this yields $s_0 \in \mathcal{M}$. Accordingly, M is a noncentral Lie ideal of S. Next, given $m \in \mathcal{M}$ and $b, b' \in \mathcal{B}$, we have

$$
m^2\otimes [b,b'] = [m\otimes b,m\otimes b'] \in \mathcal{L}.
$$

By (a), this gives $m^2 \in \mathcal{M}$. From

$$
m_1 m_2 = \frac{1}{2} ([m_1, m_2] + (m_1 + m_2)^2 - m_1^2 - m_2^2)
$$

it now follows that $\mathcal M$ is a subalgebra of S. Using Lemma [2.3](#page-1-2) we now conclude that $\mathcal{M} = \mathcal{S}$, i.e., $\mathcal{A} = \mathcal{S} \otimes \mathcal{B} \subseteq \mathcal{L} \subseteq \mathcal{A}$.

From the identity

$$
n! b = \sum_{i=0}^{n-1} (-1)^{n-1-i} \binom{n-1}{i} \left((b+i)^n - i^n \right)
$$

it is immediate that (b) is fulfilled if β has a unity. In this case the proof can be actually slightly simplified by avoiding use of powers of elements in β . Further, every C^* -algebra $\mathcal B$ satisfies (b). Indeed, every element in $\mathcal B$ is a linear combination of positive elements, and for positive elements we can define nth roots.

Corollary 2.5. Let H be an infinite dimensional Hilbert space. Then

span $f(\mathcal{B}(\mathcal{H})) = \mathcal{B}(\mathcal{H})$

for every nonconstant polynomial $f \in \mathbb{C}\langle \bar{X} \rangle$.

Proof. It is well known that there does not exist a nonzero polynomial that is an identity of $M_d(\mathbb{C})$ for every $d \geq 1$, cf. [\[Row,](#page-3-8) Lemma 1.4.3]. Therefore there exists $d \geq 1$ such that $[f, X_{n+1}]$ is not an identity of $M_d(\mathbb{C})$. This means that f is neither an identity nor a central polynomial of $M_d(\mathbb{C})$. Since H is infinite dimensional, we have $\mathcal{B}(\mathcal{H}) \cong M_d(\mathcal{B}(\mathcal{H})) \cong M_d(\mathbb{C}) \otimes \mathcal{B}(\mathcal{H})$. Now we are in a position to use Theorem [2.4.](#page-1-3) Indeed, $M_d(\mathbb{C})$ is a simple algebra, and the algebra $\mathcal{B}(\mathcal{H})$ satisfies (a) by [\[Hal\]](#page-3-3), and satisfies (b) since it is unital.

Corollary 2.6. Let H be an infinite dimensional Hilbert space. Then

$$
\operatorname{span} f(\mathcal{K}(\mathcal{H})) = \mathcal{K}(\mathcal{H})
$$

for every nonzero polynomial $f \in \mathbb{C}\langle \bar{X} \rangle$ with zero constant term.

Proof. The proof is essentially the same as that of Corollary [2.5.](#page-3-9) The only difference occurs in verifying whether $\mathcal{K}(\mathcal{H})$ satisfies the conditions of Theorem [2.4.](#page-1-3) For this we just note that (a) is shown in [\[PT\]](#page-3-4), and (b) follows by the remark preceding the statement of Corollary [2.5.](#page-3-9)

REFERENCES

- [And] J. Anderson, Commutators of compact operators, J. reine angew. Math. 291 (1977) 128-132.
- [BKS] M. Brešar, E. Kissin, V. Shulman, Lie ideals: from pure algebra to C*-algebras, J. reine angew. Math. 623 (2008) 73-121.
- [BK] M. Brešar, I. Klep, Values of noncommutative polynomials, Lie skew-ideals and tracial Nullstellensätze, Math. Res. Lett. 16 (2009), 605-626.
- [Hal] P. R. Halmos, Commutators of operators II, Amer. J. Math. 76 (1954) 191-198.
- [Hel] J.W. Helton, "Positive" noncommutative polynomials are sums of squares, Ann. of Math. (2) 156 (2002) 675-694.
- [Her] I. N. Herstein, Topics in ring theory, The University of Chicago Press, 1969.
- [KS] I. Klep, M. Schweighofer, Connes' embedding conjecture and sums of hermitian squares, Adv. Math. 217 (2008) 1816-1837.
- [PT] C. Pearcy, D. Topping, On commutators in ideals of compact operators, Michigan J. Math. 18 (1971) 247-252.
- [Row] L. H. Rowen, Polynomial identities in ring theory, Academic Press, 1980.

Faculty of Mathematics and Physics, University of Ljubljana, and, Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia

E-mail address: matej.bresar@fmf.uni-lj.si

E-mail address: igor.klep@fmf.uni-lj.si