
A NOTE ON VALUES OF NONCOMMUTATIVE POLYNOMIALS
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Abstract. We find a class of algebras A satisfying the following property: for

every nontrivial noncommutative polynomial f(X1, . . . , Xn), the linear span of

all its values f(a1, . . . , an), ai ∈ A, equals A. This class includes the algebras

of all bounded and all compact operators on an infinite dimensional Hilbert

space.

1. Introduction

Starting with Helton’s seminal paper [Hel] there has been considerable interest
over the last years in values of noncommuting polynomials on matrix algebras. In
one of the papers in this area the second author and Schweighofer [KS] showed that
Connes’ embedding conjecture is equivalent to a certain algebraic assertion which
involves the trace of polynomial values on matrices. This has motivated us [BK] to
consider the linear span of values of a noncommutative polynomial f on the matrix
algebra Md(F); here, F is a field with char(F) = 0. It turns out [BK, Theorem 4.5]
that this span can be either:

(1) {0};
(2) the set of all scalar matrices;
(3) the set of all trace zero matrices; or
(4) the whole algebra Md(F).

From the precise statement of this theorem it also follows that if 2d > deg f , then
(1) and (2) do not occur and (3) occurs only when f is a sum of commutators.

What to except in infinite dimensional analogues of Md(F)? More specifically, let
H be infinite dimensional Hilbert space, and let B(H) and K(H) denote the algebras
of all bounded and compact linear operators on H, respectively. What is the linear
span of polynomial values in B(H) and K(H)? A very special (but decisive, as
we shall see) case of this question was settled by Halmos [Hal] and Pearcy and
Topping [PT] (see also Anderson [And]) a long time ago: every operator in B(H)
and K(H), respectively, is a sum of commutators. That is, the linear span of values
of the polynomial X1X2 − X2X1 on B(H) and K(H) is all of B(H) and K(H),
respectively. We will prove that the same is true for every nonconstant polynomial.
This result will be derived as a corollary of our main theorem which presents a class
of algebras with the property that the span of values of “almost” every polynomial
is equal to the whole algebra.

2. Results

By F〈X̄〉 we denote the free algebra over a field F generated by X̄ = {X1, X2, . . .},
i.e., the algebra of all noncommutative polynomials in Xi. Let f = f(X1, . . . , Xn) ∈
F〈X̄〉. We say that f is homogeneous in the variable Xi if all monomials of f have
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the same degree in Xi. If this degree is 1, then we say that f is linear in X1. If f
is linear in every variable Xi, 1 ≤ i ≤ n, then we say that f is multilinear.

Let A be an algebra over F. By f(A) we denote the set of all values f(a1, . . . , an)
with ai ∈ A, i = 1, . . . , n. Recall that f = f(X1, . . . , Xn) ∈ F〈X̄〉 is said to be an
identity of A if f(A) = {0}. If f(A) is contained in the center of A, but f is not
an identity of A, then f is said to be a central polynomial of A. By span f(A)
we denote the linear span of f(A). We are interested in the question when does
span f(A) = A hold.

For the proof of our main theorem three rather elementary lemmas will be needed.
The first and the simplest one is a slightly simplified version of [BK, Lemma 2.2].
Its proof is based on the standard Vandermonde argument.

Lemma 2.1. Let V be a vector space over an infinite field F, and let U be a subspace.

Suppose that c0, c1, . . . , cn ∈ V are such that
∑n

i=0 λ
ici ∈ U for all λ ∈ F. Then

each ci ∈ U .

Recall that a vector subspace L of A is said to be a Lie ideal of A if [`, a] ∈ L for
all ` ∈ L and a ∈ A; here, [u, v] = uv − vu. For a recent treatise of Lie ideals from
an algebraic as well as functional analytic viewpoint we refer the reader to [BKS].

Our second lemma is a special case of [BK, Theorem 2.3].

Lemma 2.2. Let A be an algebra over an infinite field F, and let f ∈ F〈X̄〉. Then

span f(A) is a Lie ideal of A.

Every vector subspace of the center of A is obviously a Lie ideal of A. Lie ideals
that are not contained in the center are called noncentral. The third lemma follows
from an old result of Herstein [Her, Theorem 1.2].

Lemma 2.3. Let S be a simple algebra over a field F with char(F) 6= 2. If M is

both a noncentral Lie ideal of S and a subalgebra of S, then M = S.

We are now in a position to prove our main result.

Theorem 2.4. Let S and B be algebras over a field F with char(F) = 0, and let

A = S ⊗ B. Suppose that S is simple, and suppose that B satisfies

(a) every element in B is a sum of commutators; and

(b) for each n ≥ 1, every element in B is a linear combination of elements bn,

b ∈ B.

If f ∈ F〈X̄〉 is neither an identity nor a central polynomial of S, then

span f(A) = A.

(In case A is nonunital, only polynomials f with zero constant term are considered.)

Proof. Let f = f(X1, . . . , Xn). Let us write f = gi + hi where gi is a sum of all

monomials of f in which Xi appears and hi is a sum of all monomials of f in which

Xi does not appear. Thus, hi = hi(X1, . . . , Xi−1, Xi+1, . . . , Xn) and hence

hi(a1, . . . , ai−1, ai+1, . . . , an) = f(a1, . . . , ai−1, 0, ai+1, . . . , an)

for all ai ∈ A. Therefore spanhi(A) ⊆ span f(A), which clearly implies span gi(A) ⊆
span f(A). At least one of gi and hi is neither an identity nor a central polynomial

of S. Therefore there is no loss of generality in assuming that either Xi appears

in every monomial of f or f does not involve Xi at all. Since f cannot be a con-

stant polynomial and hence it must involve some of the Xi’s, we may assume, again

without loss of generality, that each monomial of f involves all Xi, i = 1, . . . , n.

Next we claim that there is no loss of generality in assuming that f is homoge-

neous in X1. Write f = f1 + . . . + fm, where fi is the sum of all monomials of f
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that have degree i in X1. Note that

f(λa1, a2, . . . , an) =

m∑
i=1

λifi(a1, . . . , an) ∈ span f(A)

for all λ ∈ F and all ai ∈ A, so fi(a1, . . . , an) ∈ span f(A) by Lemma 2.1. Thus,

span fi(A) ⊆ span f(A). At least one fi is neither an identity nor a central poly-

nomial of S. Therefore it suffices to prove the theorem for fi. This proves our

claim.

Let us now show that there is no loss of generality in assuming that f is linear in

X1. If degX1
f > 1, we apply the multilinearization process to f , i.e., we introduce

a new polynomial ∆1,n+1f = f ′(X1, . . . , Xn, Xn+1):

f ′ = f (X1 +Xn+1, X2, . . . , Xn)− f (X1, X2, . . . , Xn)− f (Xn+1, X2, . . . , Xn) .

This reduces the degree in X1 by one. Clearly, span f ′(A) ⊆ span f(A). Observe

that f can be retrieved from f ′ by resubstituting Xn+1 7→ X1, more exactly

(2degX1
f − 2)f = f ′(X1, . . . , Xn, X1).

Hence f ′ is not an identity nor a central polynomial of S. Note however that f ′ is

not necessarily homogeneous in X1, but for all its homogeneous components f ′i we

have span f ′i(A) ⊆ span f ′(A); one can check this by using Lemma 2.1, like in the

previous paragraph. At least one of these components, say f ′j , is not an identity nor

a central polynomial of S. Thus we restrict our attention to f ′j . If necessary, we

continue applying ∆1, , and after a finite number of steps we obtain a polynomial

∆f linear in X1, which is neither an identity nor a central polynomial of S, and

satisfies span ∆f(A) ⊆ span f(A). Hence we may assume f is linear in X1.

Repeating the same argument with respect to other variables we finally see that

without loss of generality we may assume that f is multilinear.

Set L = span f(A) and M = {m ∈ S |m ⊗ B ⊆ L}. By Lemma 2.2, L is a

Lie ideal of A. Therefore [m, s] ⊗ b2 = [m ⊗ b, s ⊗ b] ∈ L for all m ∈ M, b ∈ B,

s ∈ S. Using (b) it follows that [m, s] ∈ M. Therefore M is a Lie ideal of S. Pick

s1, . . . , sn ∈ S such that s0 = f(s1, . . . , sn) does not lie in the center of S. For every

b ∈ B we have

s0 ⊗ bn = f(s1 ⊗ b, s2 ⊗ b, . . . , sn ⊗ b) ∈ L.
In view of (b) this yields s0 ∈ M. Accordingly, M is a noncentral Lie ideal of S.

Next, given m ∈M and b, b′ ∈ B, we have

m2 ⊗ [b, b′] = [m⊗ b,m⊗ b′] ∈ L.

By (a), this gives m2 ∈M. From

m1m2 =
1

2
([m1,m2] + (m1 +m2)2 −m2

1 −m2
2)

it now follows thatM is a subalgebra of S. Using Lemma 2.3 we now conclude that

M = S, i.e., A = S ⊗ B ⊆ L ⊆ A.

From the identity

n! b =

n−1∑
i=0

(−1)n−1−i
(
n− 1

i

)(
(b+ i)n − in

)
it is immediate that (b) is fulfilled if B has a unity. In this case the proof can be
actually slightly simplified by avoiding use of powers of elements in B. Further,
every C∗-algebra B satisfies (b). Indeed, every element in B is a linear combination
of positive elements, and for positive elements we can define nth roots.
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Corollary 2.5. Let H be an infinite dimensional Hilbert space. Then

span f(B(H)) = B(H)

for every nonconstant polynomial f ∈ C〈X̄〉.

Proof. It is well known that there does not exist a nonzero polynomial that is an

identity of Md(C) for every d ≥ 1, cf. [Row, Lemma 1.4.3]. Therefore there exists

d ≥ 1 such that [f,Xn+1] is not an identity of Md(C). This means that f is neither

an identity nor a central polynomial of Md(C). Since H is infinite dimensional, we

have B(H) ∼= Md(B(H)) ∼= Md(C)⊗B(H). Now we are in a position to use Theorem

2.4. Indeed, Md(C) is a simple algebra, and the algebra B(H) satisfies (a) by [Hal],

and satisfies (b) since it is unital.

Corollary 2.6. Let H be an infinite dimensional Hilbert space. Then

span f(K(H)) = K(H)

for every nonzero polynomial f ∈ C〈X̄〉 with zero constant term.

Proof. The proof is essentially the same as that of Corollary 2.5. The only difference

occurs in verifying whether K(H) satisfies the conditions of Theorem 2.4. For this

we just note that (a) is shown in [PT], and (b) follows by the remark preceding the

statement of Corollary 2.5.
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