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Abstract. We show that all the coefficients of the polynomial

tr((A + tB)m) ∈ R[t]

are nonnegative whenever m ≤ 13 is a nonnegative integer and A and B are
positive semidefinite matrices of the same size. This has previously been known
only for m ≤ 7. The validity of the statement for arbitrary m has recently been
shown to be equivalent to the Bessis-Moussa-Villani conjecture from theoretical
physics. In our proof, we establish a connection to sums of hermitian squares of
polynomials in noncommuting variables and to semidefinite programming. As
a by-product we obtain an example of a real polynomial in two noncommuting
variables having nonnegative trace on all symmetric matrices of the same size,
yet not being a sum of hermitian squares and commutators.

1. Introduction

While attempting to simplify the calculation of partition functions in quantum
statistical mechanics, Bessis, Moussa and Villani (BMV) conjectured in 1975 [BMV]
that for any hermitian n × n matrices A and B with B positive semidefinite, the
function

ϕA,B : R → R, t 7→ tr
(
eA−tB

)
is the Laplace transform of a positive measure µA,B on R≥0. That is,

ϕA,B(t) =
∫ ∞

0

e−tx dµA,B(x)

for all t ∈ R. By Bernstein’s theorem, this is equivalent to ϕA,B being completely
monotone, i.e.,

(−1)s ds

dts
ϕA,B(t) ≥ 0

for all s ∈ N0 and t ∈ R≥0.
Due to its importance (cf. [BMV, LiSe]) there is an extensive literature on this

conjecture. Nevertheless it has resisted all attempts at proving it. For an overview
of all the approaches before 1998 leading to partial results, we refer the reader to
Moussa’s survey [Mou].
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In 2004, Lieb and Seiringer [LiSe] achieved a breakthrough paving the way to a
series of new attempts at proving the BMV conjecture. They succeeded in restating
the conjecture in the following purely algebraic form:

Conjecture 1.1 (BMV, algebraic form). The polynomial

p := tr((A + tB)m) ∈ R[t]

has only nonnegative coefficients whenever A and B are n×n positive semidefinite
matrices.

The coefficient of tk in p is the trace of Sm,k(A,B), the sum of all words of length
m in A and B in which B appears exactly k times (and therefore A exactly m− k
times). It is easy to see that these coefficients are real for hermitian A,B.

Suppose A,B are positive semidefinite n× n matrices. For k ≤ 2 or m− k ≤ 2,
each word appearing in Sm,k(A,B) has nonnegative trace as is easily seen. This
proves the conjecture for m ≤ 5. For n ≤ 2, A can (as always) be assumed to be
diagonal and after a diagonal change of basis also B has only nonnegative entries.
Hence the conjecture is trivial for n ≤ 2. The first nontrivial case (m, k, n) = (6, 3, 3)
was verified by Hillar and Johnson [HJ] with the help of a computer algebra system
by considering entries of both 3 × 3 matrices, A and B, as scalar and therefore
commuting variables. Hägele [Häg] shifted the focus from scalars to symbolic com-
putation with matrices (regardless of their size) and gave a surprisingly simple
argument settling the case (m, k) = (7, 3) and thus also (m, k) = (7, 4) by symme-
try. Combined with the easy observations from above, this proves Conjecture 1.1
for m = 7.

Hägele then deduced the case m = 6, which he could not solve directly with
his technique, by appealing to the following seminal result due to Hillar [Hi1]: If
Conjecture 1.1 is true for m, then it is also true for all m′ < m [Hi1, Corollary
1.8]. A strengthening [Hi1, Theorem 1.7] of this result (see Section 4 for a precise
statement) is crucial for our main contribution:

Theorem 1.2. The BMV Conjecture 1.1 holds for m ≤ 13.

We exploit semidefinite programming to find certain certificates for nonnegativity
of tr(Sm,k(A,B)) which are dimensionless (i.e., valid for all n). These certificates
are algebraic identities in the ring of polynomials in two noncommuting variables
involving sums of hermitian squares. The found identities are exact though obtained
with the help of numerical computations. But they exist only for certain pairs (m, k)
and we have to rely on Hillar’s work to deduce Theorem 1.2. For instance, such a
sum of hermitian squares certificate does not exist for (m, k) = (6, 3), see Example
3.5.

With the benefit of hindsight, Hägele’s argument can be read as such a certificate
for the case (m, k) = (7, 3). However, the certificates we give for (m, k) = (14, 4)
and (m, k) = (14, 6) are much more involved and seem to be impossible to find by
hand.

This paper is organized as follows. Section 2 develops the appropriate algebraic
framework needed for the desired nonnegativity certificates. In Section 3 the ex-
istence of such a certificate is transformed into a linear matrix inequality (LMI)
enabling us to search for these certificates using semidefinite programming (SDP).
Section 4 explains the overall argument for the proof of Theorem 1.2. The proof
itself is presented in full detail in Section 5. A synopsis of our results and other
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recent developments is given in Section 6, where we also relate the BMV conjec-
ture to another just as old open problem of Connes on II1 factors. Finally, in the
appendix we streamline the proof of the mentioned crucial result of Hillar and give
an alternative argument to prove the BMV conjecture for m = 13 avoiding Hillar’s
theorem.

2. From matrices to symbols

The gist of our method is to model the matrices as noncommuting variables
instead of disaggregating them into scalar entries modeled by commuting variables.
To this end we introduce the ring of polynomials in two noncommuting variables.

Remark 2.1. It is easy to see [KS2, Lemma 3.15] that the nonnegativity of
tr(Sm,k(A,B)) for all positive semidefinite complex A and B of all sizes need only
be checked for all positive semidefinite (in particular symmetric) real A and B of
all sizes (by identifying n × n complex matrices with 2n × 2n real matrices). We
therefore work over the real numbers.

We write 〈X, Y 〉 for the monoid freely generated by X and Y , i.e., 〈X, Y 〉 consists
of words in two letters (including the empty word denoted by 1). Let R〈X, Y 〉 denote
the associative R-algebra freely generated by X and Y . The elements of R〈X, Y 〉
are polynomials in the noncommuting variables X and Y with coefficients in R.
An element of the form aw where 0 6= a ∈ R and w ∈ 〈X, Y 〉 is called a monomial
and a its coefficient. Hence words are monomials whose coefficient is 1. We endow
R〈X, Y 〉 with the involution p 7→ p∗ fixing R ∪ {X, Y } pointwise. Recall that an
involution has the properties (p + q)∗ = p∗ + q∗, (pq)∗ = q∗p∗ and p∗∗ = p for all
p, q ∈ R〈X, Y 〉. In particular, for each word w ∈ 〈X, Y 〉, w∗ is its reverse.

Definition 2.2. Two polynomials f, g ∈ R〈X, Y 〉 are called cyclically equivalent
(f

cyc∼ g) if f − g is a sum of commutators in R〈X, Y 〉. Here elements of the form
pq − qp are called commutators (p, q ∈ R〈X, Y 〉).

This definition reflects the fact that tr(AB) = tr(BA) for square matrices A and
B of the same size. The following proposition shows that cyclic equivalence can
easily be checked and will be used tacitly in the sequel. Part (c) is a special case of
[KS2, Theorem 2.1] motivating the definition of cyclic equivalence.

Proposition 2.3. (a) For v, w ∈ 〈X, Y 〉, we have v
cyc∼ w if and only if there are

v1, v2 ∈ 〈X, Y 〉 such that v = v1v2 and w = v2v1.
(b) Two polynomials f =

∑
w∈〈X,Y 〉 aww and g =

∑
w∈〈X,Y 〉 bww (aw, bw ∈ R) are

cyclically equivalent if and only if for each v ∈ 〈X, Y 〉,∑
w∈〈X,Y 〉

w
cyc
∼ v

aw =
∑

w∈〈X,Y 〉

w
cyc
∼ v

bw.

(c) Suppose f ∈ R〈X, Y 〉 and f∗ = f . Then f
cyc∼ 0 if and only if tr(f(A,B)) = 0

for all real symmetric matrices A and B of the same size.

Definition 2.4. For each subset S ⊆ R〈X, Y 〉, we introduce the set

Sym S := {g ∈ S | g∗ = g}
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of its symmetric elements. Elements of the form g∗g (g ∈ R〈X, Y 〉) are called
hermitian squares. We denote by

Σ2 := {
∑

i

g∗i gi | gi ∈ R〈X, Y 〉} ⊆ Sym R〈X, Y 〉

the convex cone of all sums of hermitian squares and by

Θ2 := {f ∈ R〈X, Y 〉 | ∃g ∈ Σ2 : f
cyc∼ g}

= Σ2 + {
∑

i

(gihi − higi) | gi, hi ∈ R〈X, Y 〉} ⊆ R〈X, Y 〉

the convex cone of all polynomials that are cyclically equivalent to a sum of her-
mitian squares.

The following theorem proved in [Hel] also holds for several variables and moti-
vates the use of sums of hermitian squares (see [HP] for a survey of recent develop-
ments). We will only use the easy implication from (i) to (ii).

Theorem 2.5 (Helton). The following are equivalent for f ∈ Sym R〈X, Y 〉:
(i) f ∈ Σ2;
(ii) f(A,B) is positive semidefinite for all n ∈ N and A,B ∈ Sym Rn×n.

To obtain the desired type of certificates we try to merge Proposition 2.3(c) with
Theorem 2.5. However, such certificates do not always exist.

Remark 2.6. Consider the following conditions for f ∈ R〈X, Y 〉:
(i) f ∈ Θ2;
(ii) tr(f(A,B)) ≥ 0 for all n ∈ N and A,B ∈ Sym Rn×n.

Then (i) implies (ii) but not vice versa. For instance,

Y X4Y + XY 4X − 3XY 2X + 1 ∈ Sym R〈X, Y 〉
satisfies (ii) but not (i) (see [KS2, Example 4.4] for details). Later on we will see
further such examples.

3. From symbols to matrices

To search systematically for the certificates just introduced, we develop a non-
commutative version of the Gram matrix method. The corresponding theory for
polynomials in commuting variables is well-known and has been studied and used
extensively, see e.g. [CLR, PS].

Checking whether a polynomial in noncommuting variables is an element of Σ2

or Θ2, respectively, is most efficiently done via the so-called Gram matrix method.
Given a symmetric f ∈ R〈X, Y 〉 of degree ≤ 2d and a vector v̄ containing all words
in X, Y of degree ≤ d, there is a real symmetric matrix G with f = v̄∗Gv̄. (Here
v̄∗ arises from v̄ by applying the involution entrywise to the transposed vector v̄t.)
Every such matrix G is called a Gram matrix for f . Obviously, the set of all Gram
matrices for f is an affine subspace.

Example 3.1. Consider the polynomial

h := X4 + 2XY X + 2X2 + Y 2 + 2Y + 1 ∈ Sym R〈X, Y 〉.
Since h has degree four, we choose

v̄ := [1, X, Y, X2, XY, Y X, Y 2]t.
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Then every Gram matrix for h has the form

G =



1 0 1 a 0 0 b

0 2− 2a 0 0 0 1 0
1 0 1− 2b 0 0 0 0
a 0 0 1 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
b 0 0 0 0 0 0


∈ Sym R7×7.

We will revisit this example below.

From Cholesky’s decomposition we deduce that f ∈ Sym R〈X, Y 〉 is a sum of
hermitian squares if and only if it has a positive semidefinite Gram matrix. Indeed,
if G = C∗C is a positive semidefinite Gram matrix for f , then f = v̄∗C∗Cv̄ =
(Cv̄)∗(Cv̄) =

∑
i g∗i gi ∈ Σ2 where gi ∈ R〈X, Y 〉 is the i-th entry of the vector Cv̄.

The converse follows the same line of reasoning.

Example 3.1 continued. There is no positive semidefinite Gram matrix G for h
since the determinant of the submatrix[

G22 G26

G62 G66

]
=
[
2− 2a 1

1 0

]

is always negative. Hence h 6∈ Σ2.

The existence of a sum of hermitian squares decomposition of f ∈ Sym R〈X, Y 〉
is equivalent to an LMI feasibility problem. As such it can be decided by solving
the SDP

minimize tr(G) subject to v̄∗Gv̄ = f , G positive semidefinite.

Note that v̄∗Gv̄ = f are just linear constraints on the entries of G as one sees by
comparing coefficients. The objective function G 7→ tr(G) is often a good choice for
finding nice low rank matrices G but can be replaced by any other function linear
in the entries of G. If the polynomial is dense (no sparsity), the dimension of the
LMI is equal to (2d+1 − 1) × (2d+1 − 1). For more on SDP, we refer the reader to
the survey [Tod].

Likewise, checking whether f ∈ Θ2 can be done by solving the SDP

minimize tr(G) subject to v̄∗Gv̄
cyc∼ f , G positive semidefinite.

By Proposition 2.3(b), v̄∗Gv̄
cyc∼ f are again linear constraints on the entries of G.

For the sake of convenience, from now on a real symmetric matrix G will be
called a Gram matrix for f ∈ R〈X, Y 〉 (with respect to a vector of words v̄) if
f

cyc∼ v̄∗Gv̄.
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Example 3.1 continued. Every Gram matrix (in the new sense) for h has the
form

1 0 1 1− 1
2a1 −a2 − a3 a2

1
2 −

1
2a4

0 a1 a3 0 −a6 − a7 + 1 a6 −a8 − a9

1 a3 a4 a7 a8 a9 0
1− 1

2a1 0 a7 1 −a10 a10 − 1
2a11 − 1

2a12

−a2 − a3 −a6 − a7 + 1 a8 −a10 a11 0 −a5

a2 a6 a9 a10 0 a12 a5
1
2 −

1
2a4 −a8 − a9 0 − 1

2a11 − 1
2a12 −a5 a5 0


.

Setting a4 = a7 = 1 and all other ai to zero, we get the positive semidefinite
matrix G =

[
1 0 1 1 0 0 0

]∗ [
1 0 1 1 0 0 0

]
with corresponding

representation h
cyc∼ (X2 + Y + 1)2 ∈ Σ2, i.e., h ∈ Θ2.

In the proof of our main result we will use the Gram matrix method to show
that certain Sm,k(X2, Y 2) ∈ Θ2. We start by dramatically reducing the sizes of
corresponding SDPs with a monomial reduction. For this, we need a technical
lemma.

Lemma 3.2. Let pi ∈ R〈X, Y 〉.
(a) If for A,B ∈ Sym Rn×n, tr (

∑
i(p

∗
i pi)(A,B)) = 0, then pi(A,B) = 0 for all i.

(b) If
∑

i p∗i pi
cyc∼ 0, then pi = 0 for all i.

Proof. (a) Denote by ej the canonical basis vectors of Rn. Then

0 = tr(
∑

i

(p∗i pi)(A,B)) =
∑
i,j

〈(p∗i pi)(A,B)ej , ej〉 =
∑
i,j

〈pi(A,B)ej , pi(A,B)ej〉.

Hence pi(A,B)ej = 0 for all i, j and thus pi(A,B) = 0 for all i.
(b) If

∑
i p∗i pi

cyc∼ 0, then tr(
∑

i pi(A,B)∗pi(A,B)) = 0, and by the above, pi(A,B) =
0 for all symmetric A and B of all sizes n. This implies pi = 0 for all i (see e.g. [KS1,
Proposition 2.3]). �

Not only do we drastically reduce the number of words needed in the Gram
method for Sm,k(X2, Y 2) but we also impose a block structure on the Gram matrix
G with blocks Gi. This is done in the following proposition. We use self-explanatory
notation like {X2, Y 2}` for the set of all words that are concatenations of ` copies
of X2 and Y 2.

Proposition 3.3. Fix m, k ∈ N.
(a) If m and k are even, set

V1 :=
{
v ∈ {X2, Y 2}m

2 | degX v = m− k, degY v = k
}

,

V2 :=
{
v ∈ X{X2, Y 2}m

2 −1X | degX v = m− k, degY v = k
}

,

V3 :=
{
v ∈ Y {X2, Y 2}m

2 −1Y | degX v = m− k, degY v = k
}

.

(b) If m is odd and k is even, set

V1 :=
{

v ∈ X{X2, Y 2}
m−1

2 | degX v = m− k, degY v = k
}

,

V2 :=
{

v ∈ {X2, Y 2}
m−1

2 X | degX v = m− k, degY v = k
}

.
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(c) If m and k are odd, set

V1 :=
{

v ∈ Y {X2, Y 2}
m−1

2 | degX v = m− k, degY v = k
}

,

V2 :=
{

v ∈ {X2, Y 2}
m−1

2 Y | degX v = m− k, degY v = k
}

.

(d) If m is even and k is odd, set

V1 :=
{
v ∈ X{X2, Y 2}m

2 −1Y | degX v = m− k, degY v = k
}

,

V2 :=
{
v ∈ Y {X2, Y 2}m

2 −1X | degX v = m− k, degY v = k
}

.

Let v̄i denote the vector [v]v∈Vi . Then Sm,k(X2, Y 2) ∈ Θ2 if and only if there exist
positive semidefinite matrices Gi ∈ Sym RVi×Vi such that

(1) Sm,k(X2, Y 2)
cyc∼
∑

i

v̄∗i Giv̄i.

If Gi = C∗
i Ci and Ci ∈ RJi×Vi (Ji some index set), then with [pi,j ]j∈Ji := Civ̄i we

have

(2) Sm,k(X2, Y 2)
cyc∼
∑
i,j

p∗i,jpi,j .

Proof. The second statement is clear since∑
i

v̄∗i Giv̄i =
∑

i

v̄∗i C∗
i Civ̄i =

∑
i

(Civ̄i)∗Civ̄i =
∑
i,j

p∗i,jpi,j .

We assume without loss of generality that 1 ≤ k ≤ m − 1. Suppose that
Sm,k(X2, Y 2) ∈ Θ2, i.e.,

(3) Sm,k(X2, Y 2)
cyc∼
∑

j

p∗jpj

for finitely many 0 6= pj ∈ R〈X, Y 〉. Set d := maxj degY pj and let Pj be the sum
of all monomials of degree d with respect to Y appearing in pj .

Fix real symmetric matrices A and B of the same size. For any real λ, we
have λ2k tr(Sm,k(A2, B2)) = tr(

∑
j pj(A, λB)∗pj(A, λB)). We consider this as an

equality of real polynomials in λ.
If we assume d > k, then tr(

∑
j Pj(A,B)∗Pj(A,B)) = 0 since the degree of

the right hand side polynomial cannot exceed the degree of the left hand side
polynomial. By (a) of Lemma 3.2, we get Pj(A,B) = 0 for all j. Since A and
B were arbitrary, this implies Pj = 0 by Lemma 3.2(b), contradicting the choice
of d. Therefore all monomials appearing in pj have degree ≤ k in Y . By similar
arguments, one shows that all pj are actually homogeneous of degree m−k in X and
homogeneous of degree k in Y , i.e., pj ∈ spanR W where W is the set of all words
of length m with the letter X appearing m− k times and the letter Y appearing k
times.

Claim. Suppose we are in one of the cases (a)–(d) and vi ∈ Vi for each i. Then
v∗i vj

cyc∼ u for some u ∈ {X2, Y 2}m if and only if i = j.
Proof of claim. The“if”part is immediate. To show the“only if”part, we assume

that i 6= j and show that v∗i vj contains Y X`Y or XY `X as a subword for some
odd `. Then the claim follows by Proposition 2.3(a).

The existence of such a subword must be checked case by case. As an example,
consider (a). By symmetry arguments, it suffices to look at v∗1v2 and v∗2v3. In the
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former case, the letter at position m + 1 in v∗1v2 is an X which is followed to the
left and right hand side by finitely many X2. This block of X’s has odd length and
is embraced at both ends by a Y since we have assumed k ≥ 1. In the latter case,
there is an X at the m-th and a Y at the (m + 1)-st position in v∗2v3. This Y is
followed to the right hand side by finitely many Y 2 giving a block of Y ’s of odd
length surrounded by X’s.

The other cases (b)–(d) are essentially the same, proving the claim.
Write each pj as pj =

∑
i pi,j + qj where pi,j ∈ spanR Vi and qj ∈ spanR U with

U := W \
⋃

i Vi. By the claim, p∗jpj =
∑

i p∗i,jpi,j + rj where
∑

i p∗i,jpi,j is a linear
combination of words that are cyclically equivalent to a word in {X2, Y 2}m and rj

is in the linear span of words not cyclically equivalent to a word in {X2, Y 2}m. By
part (b) of Proposition 2.3, it follows that (3) can be split into

Sm,k(X2, Y 2)
cyc∼
∑
i,j

p∗i,jpi,j and 0
cyc∼
∑

j

rj .

Now let J be the index set consisting of all j and define matrices Ci ∈ RJ×Vi

by [pi,j ]j∈J = Civ̄i. Then the matrices Gi := C∗
i Ci are positive semidefinite and

satisfy (1). �

We illustrate the proposition by two examples.

Example 3.4. We have S8,4(X2, Y 2) ∈ Θ2. For instance, with

v̄1 = [Y 2X2Y 2X2, Y 4X4, X2Y 4X2, Y 2X4Y 2, X4Y 4, X2Y 2X2Y 2]t,

v̄2 = [XY 4X3, XY 2X2Y 2X, X3Y 4X]t,

v̄3 = [Y 3X4Y, Y X2Y 2X2Y, Y X4Y 3]t

and

G1 =



4 4 0 3 1 1
4 4 0 3 1 1
0 0 3 0 3 3
3 3 0 3 0 0
1 1 3 0 4 4
1 1 3 0 4 4


, G2 = G3 =

 1 0 −1
0 0 0
−1 0 1

 ,

S8,4(X2, Y 2)
cyc∼

∑3
i=1 v̄∗i Giv̄i. The matrices Gi which we found using SDP are

positive semidefinite as can be seen from their characteristic polynomials

pG1 = −108t3 + 129t4 − 22t5 + t6 ∈ R[t],

pG2 = pG3 = 2t2 − t3 ∈ R[t].

Alternatively, we can use the Cholesky decompositions Gi = C∗
i Ci for

C1 =
1
2

4 4 0 3 1 1
0 0 2

√
3 0 2

√
3 2

√
3

0 0 0
√

3 −
√

3 −
√

3

 , C2 = C3 =
[
1 0 −1

]
.

A first nontrivial nonnegativity certificate of this type was found in an ad hoc
fashion by Hägele [Häg], namely

S7,3(X2, Y 2)
cyc∼ 7(Y 2X4Y )∗(Y 2X4Y )+

7(X2Y 2X2Y + X4Y 3)∗(X2Y 2X2Y + X4Y 3) ∈ Σ2.
(4)
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This proves Conjecture 1.1 for m = 7 (since the cases k ≤ 2 and m − k ≤ 2 are
trivial and S7,4(X2, Y 2) = S7,3(Y 2, X2) ∈ Θ2). Note that the representation (4)
uses only words from V1 of Proposition 3.3(c). Hägele also showed that there is
no such representation for S6,3(X2, Y 2) using only words from V1 of Proposition
3.3(d). However, he speculated that admitting more words might lead to such a
representation meaning in our setup that S6,3(X2, Y 2) ∈ Θ2. Our next example
proves that this is not the case.

Example 3.5. We show that S6,3(X2, Y 2) 6∈ Θ2. Suppose, by way of contradiction,
that S6,3(X2, Y 2) ∈ Θ2. Then by Proposition 3.3(d), with the basis

V = {Y 3X3, Y X2Y 2X, XY 2X2Y, X3Y 3}
we can find a positive semidefinite Gram matrix for S6,3(X2, Y 2) that is block
diagonal of the form

G6,3 =


a11 a12 0 0
a12 a22 0 0
0 0 b11 b12

0 0 b12 b22

 ∈ R4×4.

With v̄ = [v]v∈V , it follows from S6,3(X2, Y 2)
cyc∼ v̄∗G6,3v̄ that

G6,3 =


a11 a12 0 0
a12 a22 0 0
0 0 2− a22 6− a12

0 0 6− a12 6− a11

 .

For a positive semidefinite matrix of this form, 0 ≤ a11 ≤ 6, 0 ≤ a22 ≤ 2,

a2
12 ≤ a11a22,(5)

(6− a12)2 ≤ (6− a11)(2− a22).(6)

By adding (5) and (6), we obtain

36− 12a12 + 2a2
12 ≤ 12− 2a11 − 6a22 + 2a11a22.

As −2a11 − 6a22 + 2a11a22 = a22(a11 − 6) + a11(a22 − 2) ≤ 0, this implies

0 ≥ a2
12 − 6a12 + 12 = (a12 − 3)2 + 3,

a contradiction. Hence S6,3(X2, Y 2) 6∈ Θ2.

4. Strategy of the proof

An important ingredient in the proof of Theorem 1.2 will be the following descent
result of Hillar [Hi1, Theorem 1.7]:

Theorem 4.1 (Hillar). The failure of Conjecture 1.1 for a certain (m, k) implies
failure for all (m′, k′) with m′ − k′ ≥ m− k and k′ ≥ k.

In view of this theorem it suffices to prove Conjecture 1.1 for (m, k) = (14, 4)
and (m, k) = (14, 6). To do this we apply our Gram matrix method to prove that
S14,4(X2, Y 2) ∈ Θ2 and S14,6(X2, Y 2) ∈ Θ2.

Since the search for positive semidefinite Gram matrices is done by SDP, the
entries of the found matrices are only floating point numbers and do not provide
a sound proof for the existence of a certificate of nonnegativity. However, in our
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case, there happen to exist such Gram matrices with rational entries and we have
employed several strategies and heuristics to find them.

First, we have detected symmetries and patterns in the numerical solutions and
imposed them as additional constraints in subsequent SDPs. Second, we have
worked with different objective functions in order to find solutions with some“nice”
rational entries that could be fixed. Finally, we have employed rounding techniques
involving heuristics to guess the prime factors appearing in the denominators of the
presumably rational entries. All too often, we have however lost numerical stability
and had to backtrack in this manually guided refinement process.

For a systematic treatment of finding exact rational sum of squares certificates
for polynomials in commuting variables we refer the reader to [PP], see also [Hi2]
and the references therein.

5. Proof of Theorem 1.2

As mentioned above, it suffices to show that S14,4(X2, Y 2), S14,6(X2, Y 2) ∈ Θ2

(cf. the table on page 15 below). Let

v̄14,4 =[Y 2X10Y 2, X4Y 2X2Y 2X4, X6Y 4X4, X2Y 2X6Y 2X2, X4Y 2X4Y 2X2,

X8Y 4X2 + X6Y 2X2Y 2X2, X4Y 4X6Y 2 + X2Y 2X8Y 2,

X10Y 4 + X8Y 2X2Y 2 + X6Y 2X4Y 2]t

and

G14,4 =



7 0 0 0 0 0 7 7
0 7 7 0 7 7 0 0
0 7 14 0 7 7 0 0
0 0 0 7 7 7 7 7
0 7 7 7 14 14 7 7
0 7 7 7 14 14 7 7
7 0 0 7 7 7 14 14
7 0 0 7 7 7 14 14


.

Then S14,4(X2, Y 2)
cyc∼ v̄∗14,4G14,4v̄14,4. The matrix G14,4 is positive semidefinite

with Cholesky decomposition G14,4 = L∗14,4L14,4, where

L14,4 =
√

7


1 0 0 0 0 0 1 1
0 1 1 0 1 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 1 1 1 1

 .

We now consider S14,6(X2, Y 2). Let A14,6 be the symmetric 15×15 matrix from
page 12 and

ū14,6 =[Y 3X6Y 2X2Y, Y X2Y 2X2Y 2X4Y, Y 3X4Y 2X4Y, Y X2Y 4X6Y,

Y 3X2Y 2X6Y, Y 5X8Y, Y X4Y 4X4Y, Y X2Y 2X4Y 2X2Y, Y 3X8Y 3,

Y X8Y 5, Y X6Y 2X2Y 3, Y X6Y 4X2Y, Y X4Y 2X4Y 3,

Y X4Y 2X2Y 2X2Y, Y X2Y 2X6Y 3]t.

From the matrices on pages 13 and 14 we form a symmetric 35×35 matrix B14,6 as
follows: The top left 18 × 19 block is given by the matrix on page 13, the bottom
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left 17× 19 block is given on page 14 and the other entries are obtained from

[B14,6]i,j = [B14,6]36−j,36−i for i, j > 19.

Let

w̄14,6 =[Y 2X2Y 2X6Y 2, Y 4X8Y 2, Y 2X6Y 4X2, Y 2X4Y 2X2Y 2X2, X2Y 4X4Y 2X2,

Y 2X2Y 2X4Y 2X2, Y 4X6Y 2X2, X2Y 2X2Y 4X4, Y 2X4Y 4X4,

X2Y 4X2Y 2X4, Y 2X2Y 2X2Y 2X4, Y 4X4Y 2X4, X2Y 6X6, Y 2X2Y 4X6,

Y 4X2Y 2X6, Y 6X8, X4Y 6X4, X2Y 2X2Y 2X2Y 2X2, Y 2X4Y 2X4Y 2,

X8Y 6, X6Y 2X2Y 4, X6Y 4X2Y 2, X6Y 6X2, X4Y 2X4Y 4,

X4Y 2X2Y 2X2Y 2, X4Y 2X2Y 4X2, X4Y 4X4Y 2, X4Y 4X2Y 2X2,

X2Y 2X6Y 4, X2Y 2X4Y 2X2Y 2, X2Y 2X4Y 4X2, X2Y 2X2Y 2X4Y 2,

X2Y 4X6Y 2, Y 2X8Y 4, Y 2X6Y 2X2Y 2]t

Then

(7) S14,6(X2, Y 2)
cyc∼ ū∗14,6A14,6ū14,6 + w̄∗

14,6B14,6w̄14,6.

Both matrices A14,6 and B14,6 are positive semidefinite as is easily checked by look-
ing at the corresponding characteristic polynomials using symbolic computation.
Hence S14,6(X2, Y 2) ∈ Θ2. By Theorem 4.1, this proves the BMV conjecture for
m ≤ 13.

Remark 5.1. The word vectors ū14,6 and w̄14,6 as well as the matrices on pages
12, 13 and 14 can be found in the Mathematica notebook that is available with the
electronic version of the source of this article:

http://arxiv.org/abs/0710.1074

In the same file we also provide code that verifies the nonnegativity certificate (7)
when executed.

http://arxiv.org/abs/0710.1074
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6. Concluding remarks

6.1. Current state of the BMV conjecture. The following table shows the
examples we have computed on an ordinary PC running Mathematica with the
NCAlgebra package [HMS], Yalmip [Löf] and the SDP solver SeDuMi [Stu]. Most
of the computations took a few seconds, some of them a few minutes.

k
=

m
−

1

k
=

m
k

=

m k
=

0
k

=
1

k
=

2

m

0 +
1 + +
2 + + +
3 + + + +
4 + + + + +
5 + + + + + +
6 + + + 	 + + +
7 + + + ⊕ ⊕ + + +
8 + + + − ⊕ − + + +
9 + + + − ⊕ ⊕ − + + +

10 + + + − ⊕ − ⊕ − + + +
11 + + + + + − − + + + + +
12 + + + − + − − − + − + + +
13 + + + − + − − − − + − + + +
14 + + + − ⊕ − ⊕ − ⊕ − ⊕ − + + +
15 + + + − + − − − − − − + − + + +
16 + + + − + − − − − − − − + − + + +
17 + + + − + − − − − − − − − + − + + +
18 + + + − + − − − ? ? ? − − − + − + + +
19 + + + − + − − − ? ? ? ? − − − + − + + +

Is Sm,k(X2, Y 2) ∈ Θ2?

symbol meaning
+ Sm,k is in Θ2 for trivial reasons
⊕ Sm,k is in Θ2 (with proof)
+ Sm,k is in Θ2 (numerical evidence)
	 Sm,k is not in Θ2 (with proof)
− Sm,k is not in Θ2 (numerical evidence)

Legend

While finishing our paper, Landweber and Speer sent us a closely related preprint
[LaSp] where they prove for example that Sm,4(X2, Y 2) ∈ Θ2 for odd m and that
S11,3(X2, Y 2) ∈ Θ2. Their certificates only use words from V1 of Proposition 3.3.
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They also give results on the negative side, which imply by Proposition 6.1 below
that Sm,k(X2, Y 2) 6∈ Θ2 in the following cases:

(1) m is odd and 5 ≤ k ≤ m− 5;
(2) m ≥ 13 is odd and k = 3;
(3) m is even, k is odd and 3 ≤ k ≤ m− 3;
(4) (m, k) = (9, 3).

The compatibility between our setup and the setup of Landweber and Speer [LaSp]
is provided by the following proposition communicated to us by Eugene Speer. We
thank him for letting us include this result.

Proposition 6.1. Retain the notation from Proposition 3.3 and assume that m or
k is odd. Then Sm,k(X2, Y 2) ∈ Θ2 if and only if Sm,k(X2, Y 2)

cyc∼ v̄∗1G1v̄1 for some
positive semidefinite G1 (or equivalently, if and only if Sm,k(X2, Y 2)

cyc∼ v̄∗2G2v̄2 for
some positive semidefinite G2).

Proof. One direction is trivial and for the converse suppose that Sm,k(X2, Y 2) ∈
Θ2. Then by Proposition 3.3, Sm,k(X2, Y 2)

cyc∼
∑2

i=1 v̄∗i Giv̄i for some positive
semidefinite G1, G2. Note that w ∈ V1 if and only if w∗ ∈ V2. Hence,

v̄∗1G1v̄1 =
∑

v,u∈V1

v∗(G1)vuu =
∑

w,z∈V2

w(G′
1)wzz

∗ cyc∼
∑

w,z∈V2

z∗(G′
1)wzw = v̄∗2G′

1v̄2,

where G′
1 is a positive semidefinite matrix obtained from G1 by a relabelling of rows

and columns. Thus

Sm,k(X2, Y 2)
cyc∼

2∑
i=1

v̄∗i Giv̄i
cyc∼ v̄∗2(G′

1 + G2)v̄2

and similarly Sm,k(X2, Y 2)
cyc∼ v̄∗1(G1 + G′

2)v̄1. �

Independently of the work of Landweber and Speer, the doctoral student Burgdorf
[Bur], initially guided by further numerical experiments, found a combinatorial
proof of Sm,4(X2, Y 2) ∈ Θ2 for all m.

To summarize, the table on page 15 can be updated as follows:
8 + + + 	 ⊕ 	 + + +
9 + + + 	 ⊕ ⊕ 	 + + +

10 + + + 	 ⊕ 	 ⊕ 	 + + +
11 + + + ⊕ ⊕ 	 	 ⊕ ⊕ + + +
12 + + + 	 ⊕ 	 − 	 ⊕ 	 + + +
13 + + + 	 ⊕ 	 	 	 	 ⊕ 	 + + +
14 + + + 	 ⊕ 	 ⊕ 	 ⊕ 	 ⊕ 	 + + +
15 + + + 	 ⊕ 	 	 	 	 	 	 ⊕ 	 + + +
16 + + + 	 ⊕ 	 − 	 − 	 − 	 ⊕ 	 + + +
17 + + + 	 ⊕ 	 	 	 	 	 	 	 	 ⊕ 	 + + +
18 + + + 	 ⊕ 	 − 	 ? 	 ? 	 − 	 ⊕ 	 + + +
19 + + + 	 ⊕ 	 	 	 	 	 	 	 	 	 	 ⊕ 	 + + +
20 + + + 	 ⊕ 	 ? 	 ? 	 ? 	 ? 	 ? 	 ⊕ 	 + + +
21 + + + 	 ⊕ 	 	 	 	 	 	 	 	 	 	 	 	 	 ⊕ 	 + + +
22 + + + 	 ⊕ 	 ? 	 ? 	 ? 	 ? 	 ? 	 ? 	 ⊕ 	 + + +
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Moreover, the table continues like one would expect from looking at the lines m =
19, 20, 21, 22. Hillar’s descent Theorem 4.1 together with positive results for k = 4
(by Landweber and Speer and, independently, by Burgdorf) establishes Conjecture
1.1 for k ≤ 4 and m− k ≤ 4. Also, there is still the possibility of proving the BMV
conjecture in the same manner by replacing a suitable sequence of ?, which only
occur for even m and k, by ⊕.

Very recently, using analytical methods, Fleischhack [Fle] and, independently,
Friedland [Fri] have shown the following: For fixed positive semidefinite A,B and
k ∈ N there is an m′ ≥ k, such that tr Sm,k(A,B) ≥ 0 for all m ≥ m′. If m′ could be
chosen independently of A,B, then Conjecture 1.1 would follow by Hillar’s descent
theorem.

6.2. Relation to Connes’ embedding conjecture. In [KS2] we studied the
following conditions for real symmetric polynomials f in noncommuting variables
X̄ := (X1, . . . , Xr):

(i) tr(f(A1, . . . , Ar)) ≥ 0 for all n ∈ N and all Ai ∈ Sym Rn×n with ‖Ai‖ ≤ 1;
(ii) τ(f(a1, . . . , ar)) ≥ 0 for all II1-factors F and all ai ∈ SymF with ‖ai‖ ≤ 1;
(iii) ∀ ε ∈ R>0 ∃ g ∈ R〈X̄〉:

f + ε
cyc∼ g ∈ M := {

∑
i

g∗i gi +
∑
i,j

h∗ij(1−X2
i )hij | gi, hi,j ∈ R〈X̄〉}.

We proved that (ii) and (iii) are equivalent and imply (i). Moreover, we showed
that the converse implication (i) ⇒ (ii) is equivalent to an old conjecture of Connes
about type II1-factors.

In Example 3.5 we have seen that S6,3(X2, Y 2) 6∈ Θ2, hence the tracial version
of Helton’s sum of hermitian squares theorem [Hel] fails (cf. also Remark 2.6). By
homogeneity, even S6,3(X2, Y 2) + ε 6∈ Θ2 for all ε ∈ R. Similarly, there is no
g ∈ M with S6,3(X2, Y 2)

cyc∼ g although S6,3(X2, Y 2) satisfies (i). However, it is
unknown whether S6,3(X2, Y 2) satisfies (ii) (or equivalently, (iii)). If it does not,
then Connes’ embedding conjecture fails.
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Appendix A. Euler-Lagrange equations

Hillar’s proof of the descent Theorem 4.1 relies on [Hi1, Corollary 3.6]. In this
section we prove a similar statement, Lemma A.1, which can alternatively be used
to prove the descent theorem by a simple inspection of Hillar’s proof.
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Our proof of Lemma A.1 uses only Lagrange multipliers and is shorter and
simpler than Hillar’s variational proof of [Hi1, Corollary 3.6]. However, the two
results are not entirely reconcilable.

For a variational approach to the original form of the BMV conjecture, we refer
the reader to [LeC], see also [Mou].

Lemma A.1. Given n ∈ N, suppose that (A,B) minimizes tr(Sm,k(A2, B2)) among
all symmetric A,B ∈ Rn×n of Hilbert-Schmidt norm 1. Suppose further that A and
B are positive semidefinite. Then

ASm−1,k(A2, B2) =
m− k

m
tr(Sm,k(A2, B2))A and(8)

BSm−1,k−1(A2, B2) =
k

m
tr(Sm,k(A2, B2))B.(9)

Proof. We actually prove more. We fix an arbitrary B ∈ Sym Rn×n and show that
(8) holds when a positive semidefinite matrix A minimizes tr(Sm,k(A2, B2)) among
all A ∈ Sym Rn×n with ‖A‖HS = 1. Then a corresponding statement will hold for
(9) by symmetry. Recall that the Hilbert-Schmidt norm on Sym Rn×n is induced
by the scalar product given by 〈A,B〉HS := tr(AB) =

∑
i,j Ai,jBi,j . We use the

method of Lagrange multipliers and therefore compute the first derivatives of the
functions f, g : Sym Rn×n → R given by

f : A 7→ tr(Sm,k(A2, B2)) and g : A 7→ tr(A2) = ‖A‖2
HS.

The derivatives Df(A)[H] and Dg(A)[H] at A ∈ Sym Rn×n along the direction
H ∈ Sym Rn×n are the coefficients of the linear terms of f(A+λH) and g(A+λH)
considered as polynomials in λ, respectively. Since

g(A + λH) = tr((A + λH)(A + λH)) = tr(A2) + λ(tr(AH) + tr(HA)) + λ2 tr(H2),

we get Dg(A)[H] = tr(AH) + tr(HA) = tr(2AH) = 〈2A,H〉, i.e., the gradient of g
in A is ∇g(A) = 2A.

The calculation of Df(A)[H] is more complicated, but follows the same scheme,
namely that one occurrence of A2 at a time can be replaced by AH or HA. The
idea is the same as in the proof of [Hi1, Lemma 2.1]. We have

0 = tr

(
m∑

i=1

(A2 + tB2)i−1((AH + HA)− (AH + HA))(A2 + tB2)m−i

)
= tr

(
m(AH + HA)(A2 + tB2)m−1

)
−

tr

(
m∑

i=1

(A2 + tB2)i−1(AH + HA)(A2 + tB2)m−i

)
and the coefficient of tk in the last expression is

tr(m(AH + HA)Sm−1,k(A2, B2))−Df(A)[H].

This implies

Df(A)[H] = 〈m(ASm−1,k(A2, B2) + Sm−1,k(A2, B2)A),H〉
and therefore ∇f(A) = m(ASm−1,k(A2, B2) + Sm−1,k(A2, B2)A).

If A is now a minimizer as stated, then we obtain a Lagrange multiplier µ ∈ R
such that ∇f(A) = µ∇g(A) (since ∇g(A) = 2A 6= 0), i.e.,

(10) ASm−1,k(A2, B2) + Sm−1,k(A2, B2)A = µA.
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We now subtract the two equations that can be obtained from (10) by multiplica-
tion with A from the left and right, respectively, and see that A2 commutes with
Sm−1,k(A2, B2). If A is in addition positive semidefinite, then also A commutes
with Sm−1,k(A2, B2). Therefore (10) becomes ASm−1,k(A2, B2) = µ

2 A. Moreover,

µ

2
= tr(

µ

2
A2) = tr(A2Sm−1,k(A2, B2)) =

m− k

m
tr(Sm,k(A2, B2))

by [Hi1, Lemma 2.1]. �

Appendix B. Self-contained proof of Conjecture 1.1 for m = 13

Instead of Hillar’s descent Theorem 4.1 one can use special features of the found
nonnegativity certificates for S14,4(X2, Y 2) and S14,6(X2, Y 2) to deduce Conjecture
1.1 for m equal to 13. We include this since the ideas might be helpful in future
algebraic approaches to the BMV conjecture.

Retain the notation from Section 5. From the Cholesky decomposition of G14,4

we deduce that

S14,4(X2, Y 2)
cyc∼

4∑
i=1

g∗i gi

for

g1 =
√

7(Y 2X10Y 2 + X4Y 4X6Y 2 + X2Y 2X8Y 2 + X10Y 4 + X8Y 2X2Y 2+

X6Y 2X4Y 2),

g2 =
√

7(X4Y 2X2Y 2X4 + X6Y 4X4 + X4Y 2X4Y 2X2 + X8Y 4X2+

X6Y 2X2Y 2X2),

g3 =
√

7X6Y 4X4,

g4 =
√

7(X2Y 2X6Y 2X2 + X4Y 2X4Y 2X2 + X8Y 4X2 + X6Y 2X2Y 2X2+

X4Y 4X6Y 2 + X2Y 2X8Y 2 + X10Y 4 + X8Y 2X2Y 2 + X6Y 2X4Y 2).

We now turn to S14,6(X2, Y 2). Let [1]35×35 be the 35×35 matrix with all entries
equal to 1. Then B14,6 − λ[1]35×35 is positive semidefinite whenever

λ ≤ 5888894501020664034438572773247271387
6345100314096416989598091089889990510969779

≈ 9.281 · 10−7.

As w̄∗
14,6[1]35×35w̄14,6 = S7,3(X2, Y 2)2, this implies that for some hi ∈ R〈X̄〉,

(11) S14,6(X2, Y 2)
cyc∼ 10−7S7,3(X2, Y 2)2 +

∑
i

h∗i hi.

We are now ready to prove Conjecture 1.1 for m = 13. It is easy to see that
S13,k(X2, Y 2) ∈ Θ2 for k ∈ {0, 1, 2, 11, 12, 13}. Let us consider S13,3(A2, B2) for
positive semidefinite A,B ∈ Rn×n. Suppose there are such A,B with

(12) tr(S13,3(A2, B2)) < 0.

By Lemma A.1, we may without loss of generality assume that A and B satisfy
(8) and (9) (with m = 13 and k = 3). Then AS12,3(A2, B2) and BS12,2(A2, B2)
are negative semidefinite, A commutes with S12,3(A2, B2) and B commutes with
S12,2(A2, B2). Hence

S13,3(A2, B2) = A2S12,3(A2, B2) + B2S12,2(A2, B2)
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is negative semidefinite and so is BS13,3(A2, B2)B. By the above, S14,4(X2, Y 2) ∈
Θ2, so

0 ≤ tr(S14,4(A2, B2)) =
14
10

tr(B2S13,3(A2, B2)) =
14
10

tr(BS13,3(A2, B2)B) ≤ 0.

(For the first equality see e.g. [Hi1, Lemma 2.1].) As S14,4(X2, Y 2)
cyc∼
∑4

i=1 g∗i gi

with g3 =
√

7X6Y 4X4 and tr(S14,4(A2, B2)) = 0, A6B4A4 = 0 by Lemma 3.2. In
particular, tr((B2A5)∗(B2A5)) = 0, hence B2A5 = 0. Repeating this we obtain
BA5/2 = A5/2B = 0. But then S13,3(A2, B2) = 0, contradicting (12). This proves
the BMV conjecture for (m, k) ∈ {(13, 3), (13, 10)}. Similarly, the cases (m, k) =
(13, 4) and (m, k) = (13, 9) can be handled.

Let us now consider S13,5(A2, B2) for positive semidefinite A,B ∈ Rn×n. Sup-
pose there are such A,B with

(13) tr(S13,5(A2, B2)) < 0.

As before, we can deduce that tr(S14,6(A2, B2)) = 0. From (11) it follows that
S7,3(A2, B2) = 0. By (4), this implies B2A4B = 0, thus B3/2A2 = A2B3/2 = 0.
Therefore S13,5(A2, B2) = 0, contradicting (13). This settles Conjecture 1.1 for
(m, k) ∈ {(13, 5), (13, 8)}. To conclude the proof we note that the two remaining
cases (m, k) = (13, 6) and (m, k) = (13, 7) can be handled similarly.

References

[BMV] D. Bessis, P. Moussa, M. Villani: Monotonic converging variational approximations to
the functional integrals in quantum statistical mechanics, J. Math. Phys. 16, 2318–2325
(1975)

[Bur] S. Burgdorf: Sums of Hermitian Squares as an Approach to the BMV Conjecture, preprint
http://arxiv.org/abs/0802.1153

[CLR] M.D. Choi, T.Y. Lam, B. Reznick: Sums of squares of real polynomials, Proc. Sympos.
Pure Math., 58, Part 2, 103–126 (1995)

[Fle] C. Fleischhack: Asymptotic Positivity of Hurwitz Product Traces, preprint
http://arxiv.org/abs/0804.3665

[Fri] S. Friedland: Remarks on BMV conjecture, preprint
http://arxiv.org/abs/0804.3948
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