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Abstract. The algebraic reformulation of the BMV conjecture is equivalent to a fam-
ily of dimension-free tracial inequalities involving positive semidefinite matrices. Sufficient
conditions for these to hold in the form of algebraic identities involving polynomials in non-
commuting variables have been given by Markus Schweighofer and the second author. Later
the existence of these certificates has been settled for all but one case, which is resolved in
this note.

1. Introduction

In an attempt to simplify the calculation of partition functions of quantum mechanical
systems Bessis, Moussa and Villani [BMV75] conjectured in 1975 that for any two symmetric
matrices A,B, where B is positive semidefinite, the function t 7→ tr(eA−tB) is the Laplace
transform of a positive Borel measure with real support. This would permit the calculation
of explicit upper and lower bounds of energy levels in multiple particle systems. For an
overview of mostly analytical approaches before 1998 we refer the reader to Moussa’s survey
[Mou00].

In 2004, Lieb and Seiringer [LS04] restated the conjecture in the following purely alge-
braic form: all the coefficients of the polynomial

pm = tr((A+ tB)m) ∈ R[t]

are nonnegative whenever m ∈ N and A and B are positive semidefinite matrices of the same
size. The coefficient of tk in pm is the trace of Sm,k(A,B) := the sum of all words of length
m in A and B in which B appears exactly k times (and therefore A exactly m− k times).

In his ingenious 2007 paper [Häg07], Hägele found a dimension-free algebraic certificate
proving tr(S7,3(A,B)) ≥ 0 for all positive semidefinite A,B, and then used Hillar’s important
descent theorem [Hil07] to deduce the same property for S6,3(A,B). Motivated by this,
Schweighofer and the second author [KS08b] established an approach to the BMV conjecture
using sums of hermitian squares of polynomials in noncommuting variables combined with
Hillar’s descent theorem and proved the conjecture for m ≤ 13. To describe the method in
detail we introduce some notation.
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1.1. Notation. The main feature of this method is to model the matrices as noncommuting
variables in a noncommutative polynomial ring. Let 〈X, Y 〉 be the monoid freely generated
by {X, Y }, i.e., 〈X, Y 〉 consists of words in the two noncommuting letters X, Y (including
the empty word denoted by 1). We consider the free algebra R〈X, Y 〉 on 〈X, Y 〉, i.e., the ring
of polynomials in the noncommuting variables X, Y with coefficients from R. The elements
of R〈X, Y 〉 are linear combinations of words from 〈X, Y 〉 and are called NC polynomials.
The length of the longest word in an NC polynomial f ∈ R〈X, Y 〉 is the degree of f and is
denoted by deg f . Likewise we consider the X-degree degX f and the Y -degree degY f .

Definition 1.1. Two polynomials f, g ∈ R〈X, Y 〉 are called cyclically equivalent (f
cyc∼ g)

if f − g is a sum of commutators in R〈X, Y 〉, i.e., there are pi, qi ∈ R〈X, Y 〉 with f − g =∑
(piqi − qipi) =

∑
[pi, qi].

This definition reflects the fact that tr(AB) = tr(BA) for square matrices A and B of
the same size. Cyclic equivalence can easily be checked. One readily verifies that words
v, w ∈ 〈X, Y 〉 are cyclically equivalent if and only if there are v1, v2 ∈ 〈X, Y 〉 such that
v = v1v2 and w = v2v1. Two polynomials f =

∑
w∈〈X,Y 〉 aww and g =

∑
w∈〈X,Y 〉 bww from

R〈X, Y 〉 (here, only finitely many of the aw, bw ∈ R are nonzero) are cyclically equivalent if
and only if for each v ∈ 〈X, Y 〉, ∑

w∈〈X,Y 〉
w
cyc
∼ v

aw =
∑

w∈〈X,Y 〉
w
cyc
∼ v

bw.

We equip R〈X, Y 〉 with the involution ∗ that fixes R ∪ {X, Y } pointwise and thus
reverses words, e.g., if p = (X2 −XY 3), then

p∗ = (X2 −XY 3)∗ = X2 − Y 3X.

So R〈X, Y 〉 is the ∗-algebra freely generated by two symmetric letters. Let SymR〈X, Y 〉 =
{f ∈ R〈X, Y 〉 | f ∗ = f} denote the set of all symmetric elements . The involution
∗ extends naturally to matrices (in particular, to vectors) over R〈X, Y 〉. For instance, if
V = (vi) is a (column) vector of NC polynomials vi ∈ R〈X, Y 〉, then V ∗ is the row vector
with components v∗i . We shall also use V t to denote the row vector with components vi.

Given an NC polynomial f ∈ R〈X, Y 〉 it is natural to substitute symmetric matrices A,B
of the same size for the variables X and Y yielding a matrix f(A,B) of the same size. The
involution ∗ is compatible with matrix transposition in the sense that f(A,B)t = f ∗(A,B).
For instance, for the polynomial p defined above, we have

p(A,B) = A2 − AB3.

A special case of [KS08a, Theorem 2.1] (the main motivation for the definition of cyclic

equivalence) says that a symmetric f ∈ R〈X, Y 〉 is a sum of commutators (i.e., f
cyc∼ 0) if

and only if tr(f(A,B)) = 0 for all real symmetric matrices A and B of the same size.

We now turn to notions related to positivity. Recall that the Löwner ordering � on
symmetric matrices is defined as A � B if and only if A−B is positive semidefinite.

Definition 1.2. We denote by

(1) Σ2 = {
m∑
i=1

g∗i gi | m ∈ N, gi ∈ R〈X, Y 〉} ⊆ SymR〈X, Y 〉
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the convex cone of all sums of hermitian squares and by

(2) Θ2 = {f ∈ R〈X, Y 〉 | ∃g ∈ Σ2 : f
cyc∼ g} ⊆ R〈X, Y 〉

the convex cone of all polynomials that are cyclically equivalent to a sum of hermitian
squares. That is, Θ2 consists of all polynomials that can be written as a sum of hermitian
squares and commutators.

The importance of these sets for us is given by the following elementary observations:

Proposition 1.3. Let f ∈ R〈X, Y 〉.

(1) If f ∈ Σ2, then f(A,B) � 0 for all symmetric matrices A and B of the same size.
(2) If f ∈ Θ2, then tr(f(A,B)) ≥ 0 for all symmetric matrices A and B of the same size.

By Helton’s theorem [Hel02], the converse of (1) holds: if for f ∈ R〈X, Y 〉, f(A,B) is
positive semidefinite for all symmetric matrices A and B of the same size, then f ∈ Σ2.
On the other hand, the converse of (2) fails in general, that is, there are examples of NC
polynomials f satisfying the trace positivity condition of part (2) of Proposition 1.3 yet
f 6∈ Θ2, cf. [KS08a, Example 4.4] or [KS08b, Example 3.5]. Nevertheless, this part of
Proposition 1.3 yields a useful sufficient condition for tracial positivity and was exploited by
Schweighofer and the second author [KS08b] to prove the BMV conjecture for m ≤ 13.

To model positive semidefiniteness with the aid of symmetric noncommuting variables,
we consider polynomials in X2, Y 2: if Sm,k(X2, Y 2) ∈ Θ2 for some m, k, then the tk coefficient
of pm is nonnegative for all positive semidefinite matrices A,B of all sizes.

1.2. An xmas tree. Much work has been done in determining whether Sm,k(X2, Y 2) ∈ Θ2

for a given pair (m, k). It is easy to see Sm,k(X2, Y 2) ∈ Θ2 for k ≤ 2 or m − k ≤ 2. In our
terminology, the first (nontrivial) certificate can be extracted from Hägele [Häg07] to show
S7,3(X

2, Y 2) ∈ Θ2. This was followed upon in [KS08b] where among the main results were
S6,3(X

2, Y 2) 6∈ Θ2, S14,4(X
2, Y 2) ∈ Θ2 and S14,6(X

2, Y 2) ∈ Θ2. The latter results combined
with Hillar’s descent theorem [Hil07] imply that the BMV conjecture holds for m ≤ 13.
Hillar’s theorem implies that the BMV conjecture holds if and only if it holds for an infinite
number of m’s. This is a crucial ingredient for the sum of squares approach to the conjecture
as it is clear that not all Sm,k(X2, Y 2) are members of Θ2.

Here is a brief overview of the latest developments. Landweber and Speer [LS09] proved
for example that Sm,4(X

2, Y 2) ∈ Θ2 for odd m and that S11,3(X
2, Y 2) ∈ Θ2. They also give

results on the negative side, implying that Sm,k(X2, Y 2) 6∈ Θ2 in the following cases:

(1) m is odd and 5 ≤ k ≤ m− 5; (2) m ≥ 13 is odd and k = 3;
(3) m is even, k is odd and 3 ≤ k ≤ m− 3; (4) (m, k) = (9, 3).

Independently of the work of Landweber and Speer, Burgdorf [Bur] found a combinatorial
proof of Sm,4(X

2, Y 2) ∈ Θ2 for all m. Together with Hillar’s descent theorem this implies that
the BMV conjecture holds for all pairs (m, k) with k ≤ 4 or m−k ≤ 4. The last contribution
of negative results is given by Collins, Dykema and Torres-Ayala [CDTA]: S12,6(X

2, Y 2) 6∈ Θ2

and for even m, k with 6 ≤ k ≤ m− 10, Sm,k(X2, Y 2) 6∈ Θ2.

We present the state-of-the-art knowledge conveniently in the form of a table:
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k
=
m
−

1

k
=
m

k
=
m

k
=

0
k

=
1

k
=

2

m
0 +
1 + +
2 + + +
3 + + + +
4 + + + + +
5 + + + + + +
6 + + + 	̇̇	̇	 + + +
7 + + + ⊕̃ ⊕̃ + + +
8 + + + 			 ⊕̇̇⊕̇⊕ 			 + + +
9 + + + 			 ⊕̇̇⊕̇⊕ ⊕̇̇⊕̇⊕ 			 + + +

10 + + + 			 ⊕̇̇⊕̇⊕ 			 ⊕̇̇⊕̇⊕ 			 + + +
11 + + + ⊕⊕⊕ ⊕̂ 			 			 ⊕̂ ⊕⊕⊕ + + +
12 + + + 			 ⊕ 			 			 			 ⊕ 			 + + +
13 + + + 			 ⊕̂ 			 			 			 			 ⊕̂ 			 + + +
14 + + + 			 ⊕̇̇⊕̇⊕ 			 ⊕̇̇⊕̇⊕ 			 ⊕̇̇⊕̇⊕ 			 ⊕̇̇⊕̇⊕ 			 + + +
15 + + + 			 ⊕̂ 			 			 			 			 			 			 ⊕̂ 			 + + +
16 + + + 			 ⊕ 			 			 			 ? 			 			 			 ⊕ 			 + + +
17 + + + 			 ⊕̂ 			 			 			 			 			 			 			 			 ⊕̂ 			 + + +
18 + + + 			 ⊕ 			 			 			 			 			 			 			 			 			 ⊕ 			 + + +
19 + + + 			 ⊕̂ 			 			 			 			 			 			 			 			 			 			 ⊕̂ 			 + + +
20 + + + 			 ⊕ 			 			 			 			 			 			 			 			 			 			 			 ⊕ 			 + + +
21 + + + 			 ⊕̂ 			 			 			 			 			 			 			 			 			 			 			 			 ⊕̂ 			 + + +
22 + + + 			 ⊕ 			 			 			 			 			 			 			 			 			 			 			 			 			 ⊕ 			 + + +

Is Sm,k(X2, Y 2) ∈ Θ2?

(The tree continues following the pattern in rows 20, 21 and 22.)

authors color

Hägele [Häg07] ⊕̃
Klep and Schweighofer [KS08b] ⊕̇ 	̇⊕̇ 	̇⊕̇ 	̇

Burgdorf [Bur], Landweber and Speer [LS09] ⊕̂
Burgdorf [Bur] ⊕

Landweber and Speer [LS09] ⊕ 	⊕ 	⊕ 	
Collins, Dykema and Torres-Ayala [CDTA] 			

symbol meaning

+ Sm,k is in Θ2 for trivial reasons
⊕ Sm,k is in Θ2 (with proof)
	 Sm,k is not in Θ2 (with proof)

Legend
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The aim of this article is to settle the remaining case, i.e., we prove (what was conjectured
in [KS08b, pg. 754] based on numerical evidence) S16,8(X

2, Y 2) 6∈ Θ2.

2. Gram matrix method and semidefinite programming

In this section we explain how a desired nonmembership certificate can be obtained.
The main idea is to construct a linear map L : R〈X, Y 〉 → R satisfying

(3) L(Θ2P) ⊆ R≥0 L(S16,8(X
2, Y 2)) < 0.

2.1. Gram matrix method. Checking whether a polynomial in noncommuting variables
is an element of Σ2 and Θ2, respectively, is most efficiently done via the so-called Gram
matrix method [KS08b, KP10], well-known in the commutative setting [CLR95, PS03].

Theorem 2.1 (Klep, Schweighofer [KS08b, Proposition 3.3]). Suppose m, k are even and
set

V1 :=
{
v ∈ {X2, Y 2}

m
2 | degX v = m− k, degY v = k

}
,

V2 :=
{
v ∈ X{X2, Y 2}

m
2
−1X | degX v = m− k, degY v = k

}
,

V3 :=
{
v ∈ Y {X2, Y 2}

m
2
−1Y | degX v = m− k, degY v = k

}
.

(4)

Let v̄i denote the vector [v]v∈Vi
. Then Sm,k(X2, Y 2) ∈ Θ2 if and only if there exist positive

semidefinite matrices Gi ∈ SymRVi×Vi such that

(5) Sm,k(X2, Y 2)
cyc∼
∑
i

v̄∗iGiv̄i.

If Gi = H∗iHi and Hi ∈ RJi×Vi (Ji some index set), then with [pi,j]j∈Ji := Hiv̄i we have

(6) Sm,k(X2, Y 2)
cyc∼
∑
i,j

p∗i,jpi,j.

Any symmetric block matrix G =
[
G1

G2
G3

]
satisfying f

cyc∼
∑

i v̄
∗
iGiv̄i for some f ∈

R〈X, Y 〉, is called a Gram matrix for f . If f =
∑

i v̄
∗
iGiv̄i, then we call G an exact Gram

matrix. (We emphasize this is not the standard definition.)

2.2. The certificate. Let us now return to the question whether S16,8(X
2, Y 2) ∈ Θ2. Fol-

lowing Theorem 2.1 we must determine whether there exists a positive semidefinite matrix G

such that S16,8(X
2, Y 2)

cyc∼ W ∗GW , where W is the vector
[
v̄t1 v̄t2 v̄t3

]t
obtained in Theorem

2.1. Here, v̄1 has length 70, while v̄2 and v̄3 have length 35.

Therefore we obtain a semidefinite feasibility problem [WSV00] in the matrix variable
G of order 140, where the linear constraints on G express that for each product of words
w ∈ {p∗q | p, q ∈ W} we have

(7)
∑

p,q∈W
p∗q

cyc∼ w

Gp,q =
∑
u
cyc∼ w

au,

where au is the coefficient of u in S16,8(X
2, Y 2). There are 4485 equivalence classes (with

respect to cyclic equivalence) of words in {p∗q | p, q ∈ W}, yielding 4485 linear constraints
in the semidefinite program.
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By Theorem 2.1, we may restrict ourselves to words w = p∗q with p, q ∈ Vi. Moreover,
since S16,8(X

2, Y 2) is symmetric we can merge for each pair w and w∗, where w ∈ {p∗q |
p, q ∈ Vi for some i = 1, 2, 3}, the constraints (7) into a single constraint

(8)
∑

p,q∈W
p∗q

cyc∼ w ∨ p∗q
cyc∼ w∗

Gp,q =
∑

u
cyc∼ w ∨ u

cyc∼ w∗

au.

Thus we obtain a semidefinite program in a block diagonal matrix variable with blocks of
orders 70, 35 and 35, with 440 linearly independent linear constraints instead of the initial
4485 constraints. Hence we reduced the number of constraints by about 90 %.

To prove this problem is infeasible, we find a separating hyperplane with the help of
semidefinite programming. Fix m = 16, k = 8 and let V denote the vector space of all
block diagonal symmetric matrices as in Theorem 2.1. To each 0 6= G ∈ V we can associate
the NC polynomial W ∗GW ∈ R〈X, Y 〉 of degree 32. Let P denote the vector space of all
such polynomials. Each f ∈ P has an exact Gram matrix. It is even unique since f is
homogeneous [KP10, Proposition 2.3]. Let Θ2P denote the set of NC polynomials in P with
a positive semidefinite Gram matrix.

Lemma 2.2. Θ2P = Θ2 ∩ P.

Proof. This is a straightforward extension of the proof of [KS08b, Proposition 3.3].

Every linear map L : P → R can be presented as

(9) f 7→ 〈B1, G1〉+ 〈B2, G2〉+ 〈B3, G3〉 = tr(B1G1) + tr(B2G2) + tr(B3G3)

for some (symmetric) block matrix BL =
[
B1

B2
B3

]
, where

[
G1

G2
G3

]
is an exact Gram

matrix for f . Conversely, equation (9) can be used to define L : P → R due to the uniqueness
of the exact Gram matrix for polynomials in P .

Let {Cj | j ∈ J} denote a basis of {Ap∗q | i ∈ {1, 2, 3}, (p, q) ∈ Vi× Vi}⊥ ⊆ V , where Aw

are the constraint matrices from our original feasibility SDP (8).

We are now in a position to present the desired SDP constructing a separating hyper-
plane.

Proposition 2.3. Let G0 denote any Gram matrix for S16,8(X
2, Y 2). Consider the semidef-

inite feasibility problem

B =
[
B1

B2
B3

]
� 0,

〈B,G0〉 = −100,

〈B,Cj〉 = 0 for all j ∈ J.

(10)

Then (10) is feasible if and only if S16,8(X
2, Y 2) 6∈ Θ2.

Proof. Suppose first L : P → R is linear. By the self-duality of the cone of positive semidef-
inite matrices, L(Θ2P) ⊆ R≥0 if and only BL � 0. If this holds, then L(f) = 0 for all f ∈ P
with f

cyc∼ 0 by Lemma 2.2. Hence

(11) 〈BL, H〉 = 0
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for all H ∈ V satisfying W ∗HW
cyc∼ 0. The later condition can be rephrased as 〈Aw, H〉 = 0

for all Aw. So H is in the span of the Cj. In particular, (11) can be equivalently written as

(12) 〈BL, Cj〉 = 0 for all j ∈ J .

The above shows that every B feasible for (10) gives rise to a linear functional L : P → R
as in (9) with the following properties:

L(Θ2P) ⊆ R≥0 and L(S16,8(X
2, Y 2)) = −100.

Hence S16,8(X
2, Y 2) 6∈ Θ2 by Theorem 2.1.

Conversely, assume S16,8(X
2, Y 2) 6∈ Θ2. As the convex cone Θ2 is closed (cf. [BK, Lemma

4.5]), there exists a separating linear functional L : R〈X, Y 〉 → R satisfying L(Θ2) ⊆ R≥0
and L(S16,8(X

2, Y 2)) < 0. The restriction of L to P is of the form (9) and hence (after
scaling) yields a feasible point B for (10).

Remark 2.4. We chose −100 in (10) for numerical reasons, since the trace in 〈B,G0〉 =
tr(BG0) is not normalized. This results in a larger smallest eigenvalue of B, making it easier
to round and eventually prove its positive semidefiniteness.

Theorem 2.5. (10) is feasible.

2.3. Proof of Theorem 2.5. We explain how this was verified using a computer.

A general SDP solver (such as SDPT3, SDPA or SeDuMi; see Mittelman’s website [Mit]
for a benchmark of state-of-the-art solvers) will produce a floating point feasible solution for
(10). However, finding a symbolic (e.g. rational) feasible point requires additional work. We
proceed as follows: run (10) as an SDP with trivial objective function, since under a strict
feasibility assumption the interior point methods yield solutions in the relative interior of
the optimal face, which in our case is the whole feasibility set. If strict complementarity is
additionally provided, the interior point methods lead to the analytic center of the feasibility
set [GS98, HdKR02].

In our example this produces a nonsingular matrix B′ with smallest eigenvalue approx-
imately ε = 0.41 and distance to the affine subspace generated by the linear constraints of
(10) being approximately δ = 7.1 ·10−8. Taking a very close rational approximation B′′ of B′

(e.g. τ = ‖B′′ − B′‖ satisfies τ 2 + δ2 < ε2) and then projecting B′′ onto the affine subspace
yields a rational matrix B feasible for (10); see [PP08, Proposition 8 and Fig. 1 on pg. 276]
for details and proof of correctness.

We also explicitly computed a rational (even integer) feasible point for a small modifi-
cation of (10), where 〈B,G0〉 is negative but not necessarily −100. All the data needed to
verify the correctness is available from our NCSOStools [CKP] website

http://ncsostools.fis.unm.si/

See also the Appendix for a fuller explanation.

Corollary 2.6. S16,8(X
2, Y 2) 6∈ Θ2.

2.4. More on rational certificates for SDP. Consider a feasibility SDP in primal form

(FSDP)
X � 0

s. t. 〈Ai, X〉 = bi, i = 1, . . . ,m

http://ncsostools.fis.unm.si/


8 KRISTIJAN CAFUTA, IGOR KLEP, AND JANEZ POVH

and assume the input data Ai, b is rational. If the problem is feasible, does there exist a
rational solution? If so, can one use a combination of numerical and symbolic computation
to produce one?

Example 2.7. Some caution is necessary, as a feasible SDP of the form (FSDP) need not
admit a rational solution. For a concrete example, note that[

2 x
x 1

]
⊕

x 1 0
1 x 1
0 1 x

 � 0 ⇔ x =
√

2.

On the other hand, if (FSDP) does admit a feasible positive definite solution, then it
admits a (positive definite) rational solution [PP08]; this was exploited in the proof of our
main theorem above.

The existence of rational feasible points is thus an important issue in polynomial op-
timization as it provides exact sum of squares certificates for non-negativity or for lower
bounds of polynomials. Building upon the pioneering work of Peyrl and Parrilo, Kaltofen,
Li, Yang and Zhi [KLYZ08] provide an extension to sums of squares of rational functions that
also touches upon possible singularities in floating point feasible solutions. We also mention
[EDZ], where the authors propose an algorithm for detecting and returning a rational point
in a convex basic closed semialgebraic set defined by rational polynomials. As a special case,
they obtain a procedure deciding whether a multivariate polynomial f ∈ Q[X̄] (in commut-
ing variables X̄) is a sum of squares in Q[X̄]. The latter problem is closely related to an
open problem of Sturmfels which is at the same time a particular instance of the rationality
problem for (FSDP): if f ∈ Q[X̄] is a sum of squares in R[X̄], is f a sum of squares in Q[X̄]?

This problem is still open and the main contribution is given by Hillar in [Hil09]: if f is
assumed to be a sum of squares of polynomials with coefficients in a totally real field, then
the answer to Sturmfels’ question is affirmative.

In general, given an SDP with rational input, each coordinate of its optimal solution is
an algebraic number and the degrees of minimal polynomials of these algebraic numbers are
studied in [NRS10].

Acknowledgments. The authors thank Markus Schweighofer for insightful comments and dis-

cussions. We thank the referee for useful suggestions that helped improve the presentation of the

paper.

Appendix: The Matlab verification

The data package contains the following data:

- S168 ... the BMV polynomial S_{16,8}(X^2,Y^2)

- V ... the vector of all words of order 16, which can appear in an

SOHS polynomial cyclically equivalent to S168.

Note that V=[V1;V2;V3], where Vi is a vector as in Theorem 2.1

- G0 = a (block diagonal) Gram matrix for S168 - the one we used in (10).
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- A ... a matrix of order 19600 x 440 ... each column of A corresponds

to equations as in (7) or (8)

- C ... a matrix of order 19600 x 3305 ... columns of C are pairwise

orthogonal and also orthogonal to columns of A ... matrix reformulations

of columns of C are exactly matrices Ci from (10).

Note: we kept in A and C only columns which corresponds to the diagonal

blocks, as described in Lemma 2.3, hence we have in A and C altogether

70*71/2 + 2*35*36/2 = 3745 columns.

- B ... a solution of (10). Note that B = blockDiag(B1,B2,B3) - a PsD

matrix of order 140x140.

Instructions (some of this requires NCSOStools):

1. To reproduce the polynomial S_{16,8}(X^2,Y^2), run

S168=BMVq(16,8);

2. To check that G0 is a Gram matrix for S168 call

Snew=V’*G0*V; NCisCycEq(S168,Snew)

(Caution: the last command must give answer 1 and takes quite some time

to evaluate.)

3. To check that A contains the equations (7) compute

trace(reshape(A(:,i),140,140)*G0)

which must be the number of all words in S168, which are cyclically

equivalent to the words w or w^*, underlying the i-th equation

4. To check that B is feasible for the linear constraints in (10) run

norm(C’*B(:))==0, trace(B*G0)<0

Note that trace(B*G0)=-8 and not -100 as stated in (10) - the reason is

that B is integer matrix obtained by rounding and projecting and rescaling.

5. B is an integer matrix. To see that is it PsD, compute

min(eig(B))>0
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Alternatively, for a symbolic verification, please use our Mathematica

notebook

bmv_16_8-ldlt.nb

available from http://ncsostools.fis.unm.si where the LDU factorization

is given.
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