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Abstract. A set of polynomials in noncommuting variables is called locally

linearly dependent if their evaluations at tuples of matrices are always linearly

dependent. By a theorem of Camino, Helton, Skelton and Ye, a finite locally

linearly dependent set of polynomials is linearly dependent. In this short note

an alternative proof based on the theory of polynomial identities is given. The

method of the proof yields generalizations to directional local linear dependence

and evaluations in general algebras over fields of arbitrary characteristic. A

main feature of the proof is that it makes it possible to deduce bounds on the

size of the matrices where the (directional) local linear dependence needs to be

tested in order to establish linear dependence.

1. Introduction

As part of the studies in free analysis motivated from systems engineering,

Camino, Helton, Skelton and Ye [CHSY] consider local linear dependence of func-

tions in noncommuting (nc) variables, e.g. polynomials and rational functions. One

of the core results of [CHSY] is that locally linearly dependent nc polynomials are

(globally) linearly dependent. This result is what we call the local-global principle for

linear dependence (of polynomials). It has been exploited repeatedly since; often in

connection with noncommutative convexity and geometry, cf. [HHLM, DHM, GHV].

We also refer to the tutorial [HKM] for a more streamlined presentation of the proof

and its applications.

Our aim is to give an algebraists’ response to [CHSY]. That is, we give a proof of

this local-global principle that is motivated by the theory of polynomial identities.

As such it applies not only to matrix algebras but to evaluations in general algebras

over fields of arbitrary characteristic. However, even in the case of matrix algebras

it allows us to extract additional information, e.g. the size of the matrices where the

local linear dependence needs to be checked in order to establish linear dependence.

Also, we establish bounds in the case of directional dependence (see below for

definitions and precise statements), something the original proofs do not allow.

This note is organized as follows. After a preliminary Section 2 introducing all

the notions needed, we give our main results in Section 3. As this is an algebraic

paper addressed also to analysts, we will give a somewhat detailed treatment of the

algebraic tools that will be used in our proofs.
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2. Preliminaries

2.1. Notation and set-up. In this section we fix the basic notation and terminol-

ogy we shall use throughout the paper. Let F be a field.

2.1.1. Free algebra. By F〈X〉 we denote the free associative algebra generated by

X = {X1, X2, . . .}, i.e., the algebra of all polynomials in noncommuting variables

Xi. We write 〈X〉 for the monoid freely generated by X, i.e., 〈X〉 consists of words

in the letters X1, X2, . . . (including the empty word denoted by 1). Write F〈X〉k for

the vector space consisting of the polynomials of degree at most k. Sometimes, for

notational convenience, we shall also use Yj , Zj to denote noncommuting variables.

2.1.2. Evaluations and representations. If p ∈ F〈X1, . . . , Xn〉, A is an F-algebra,

and a ∈ An, then p(a) ∈ A is the evaluation of p at a. This gives rise to a

representation eva : F〈X1, . . . , Xn〉 → A.

2.1.3. Directional evaluations. Suppose A is a subalgebra of an endomorphism al-

gebra End(V ) for an F-vector space V . Given a polynomial p ∈ F〈X1, . . . , Xn〉, an

n-tuple a ∈ An and v ∈ V , the expression p(a)v is called the directional evaluation

of p in the direction (a, v).

2.2. Polynomial identities. We say that p ∈ F〈X1, . . . , Xn〉 is an identity of an

F-algebra A if p(a) = 0 for all a ∈ An. If p 6= 0, then p is called a polynomial

identity of A. For example, A is commutative if and only if St2 := X1X2−X2X1 is

its polynomial identity. We say that A is a PI-algebra if there exists a polynomial

identity of A. Obviously, subalgebras and homomorphic images of PI-algebras are

again PI-algebras. Besides commutative algebras, the simplest examples of PI-

algebras are finite dimensional ones. To see this, we introduce, for every n ∈ N, the

so-called standard polynomial Stn = Stn(X1, . . . , Xn) by

Stn :=
∑
π∈Sn

sign(π)Xπ(1) . . . Xπ(n)

where Sn is the symmetric group of degree n. It is easy to see that

Stn(X1, . . . , Xi, . . . , Xi, . . . , Xn) = 0,

i.e., Stn vanishes if two variables are the same. Accordingly, Stn(a1, . . . , an) = 0

whenever a1, . . . , an are linearly dependent elements from an algebra A. This in

particular shows that Stn is a polynomial identity of every algebra A with dimFA <

n. Thus, Std2+1 is a polynomial identity of the matrix algebra Md(F). There is,

however, a much better result, the Amitsur-Levitzki theorem, saying that St2d is a

polynomial identity of Md(F); moreover, it is a polynomial identity of Md(C) where

C is an arbitrary commutative algebra. The number 2d cannot be lowered: a bit

tricky, but elementary argument shows that a polynomial of degree < 2d is never

a polynomial identity of Md(F). Therefore a polynomial that was a polynomial

identity of Md(F) for every d does not exist. This implies that the algebra of all

linear operators on an infinite dimensional vector space (which contains isomorphic

copies of all Md(F) as its subalgebras) is not a PI-algebra. In fact, under mild

assumptions a PI-algebra is quite close to a matrix algebra. For instance, it turns

out that every prime PI-algebra can be embedded into Md(K) for some d ≥ 1, where

K is a field extension of the base field F. Recall that an algebra A is said to be

prime if the product of any of its two nonzero ideals is nonzero.

Let us also mention a notion related to a polynomial identity: we say that

p ∈ F〈X1, . . . , Xn〉 is a central polynomial on Md(F) if p 6= 0, p is not a polynomial
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identity, and p(A) is a scalar multiple of the identity matrix for every A ∈Md(F)n.

For instance, (X1X2 − X2X1)2 is a central polynomial of M2(F), as one can eas-

ily check. It is much harder to find central polynomials on Md(F) for larger d’s.

Anyhow, it is a fact that they do exist for every d.

For full accounts on polynomial identities we refer the reader to [Pro] and [Row].

2.3. Capelli polynomials and a theorem of Razmyslov. For n ∈ N we define

the Capelli polynomial C2n−1 = C2n−1(X1, . . . , X2n−1) as follows:

C2n−1 :=
∑
π∈Sn

sign(π)Xπ(1)Xn+1Xπ(2)Xn+2 · · ·Xπ(n−1)X2n−1Xπ(n).

For example, C3 = X1X3X2 − X2X3X1. Note that by formally replacing all Xj ,

j > n, by 1, C2n−1 reduces to Stn. Just as for the standard polynomials, one can

check that

C2n−1(X1, . . . , Xi, . . . , Xi, . . . , Xn, Xn+1, . . . , X2n−1) = 0,

implying that for elements ai, bi from an algebra A we have

C2n−1(a1, . . . , an, b1, . . . , bn−1) = 0

whenever a1, . . . , an are linearly dependent. An important theorem of Razmyslov

(cf. [BMM, Theorem 2.3.7] or [Row, Theorem 7.6.16]) states that the converse of

this observation holds in a rather large class of algebras:

Theorem 2.1. Let A be a centrally closed prime algebra. Then a1, . . . , an ∈ A are

linearly dependent if and only if C2n−1(a1, . . . , an, b1, . . . , bn−1) = 0 for all bj ∈ A.

The definition of a centrally closed prime algebra is too technical to be included

here. The reader is referred to [BMM] for a detailed, or to [BCM] for an informal

survey on this notion. Let us just mention what is relevant for our applications of

Theorem 2.1: the free algebra F〈X〉 is a centrally closed prime algebra (cf. [BMM,

Theorem 2.4.4]).

Let us conclude this section by mentioning that we have used Razmyslov’s The-

orem 2.1 before – in [BK, Section 5.5] to prove a tracial multilinear Nullstellensatz.

2.4. Locally linearly dependent operators. Let U and V be vector spaces over

F. We say that linear operators T1, . . . , Tm : U → V are locally linearly dependent

if T1u, . . . , Tmu are linearly dependent vectors in V for every u ∈ U . This does

not necessarily mean that T1, . . . , Tm are linearly dependent operators. Say, if T1

and T2 are rank one operators with the same range, then they are obviously locally

linearly dependent, but not necessarily linearly dependent. Another example: if

dimF V < m, then any linear operators T1, . . . , Tm : U → V are locally linearly

dependent, but there is no reason to believe that they are linearly dependent.

The following result shows that the local linear dependence is intimately con-

nected with the finite rank condition.

Theorem 2.2. If T1, . . . , Tm : U → V are locally linearly dependent operators, then

then there exist α1, . . . , αm ∈ F, not all zero, such that S = α1T1 + · · · + αmTm
satisfies rankS ≤ m− 1. This inequality is sharp.

It seems that the first result of this kind was obtained by Amitsur [Ami], however,

with a conclusion that rankS ≤
(
m+1

2

)
− 1. For F = C Theorem 2.2 was proved

by Aupetit [Aup], for F an infinite field by Brešar and Šemrl [BŠ], and finally for

F a finite field by Meshulam and Šemrl [MŠ]. The form in which we shall apply

Theorem 2.2 is as follows:
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Lemma 2.3. Keep the assumptions of Theorem 2.2 and assume U = V . Then the

rank of C2m−1(T1, . . . , Tm, D1, . . . , Dm−1) cannot exceed (m − 1)m! for any linear

Dj : U → U .

Proof. By Theorem 2.2 we may without loss of generality assume Tm is a linear

combination of T1, . . . , Tm−1 plus an operator E of rank ≤ m− 1, e.g.,

Tm = E +

m−1∑
j=1

αjTj

for some scalars αj . Then

C2m−1(T1, . . . , Tm−1, Tm, D1, . . . , Dm−1)

= C2m−1

(
T1, . . . , Tm−1, E +

m−1∑
j=1

αjTj , D1, . . . , Dm−1

)
.

Since C2m−1 is linear in each variable, it follows that

(2.1)

C2m−1(T1, . . . , Tm−1, Tm, D1, . . . , Dm−1) = C2m−1(T1, . . . , Tm−1, E,D1, . . . , Dm−1).

The right-hand side of (2.1) is equal to a sum of m! operators, each of which has

rank ≤ m− 1. This yields the desired bound.

Remark 2.4. Let us add that if A : U → U is a linear operator of rank r, then

A,A, . . . , Ar+1 are linearly dependent. This is well-known, but let us give a short

proof for the sake of completeness. Consider the induced mapping

Ǎ : U/ ker(A)→ ran(A).

Since dim
(
U/ ker(A)

)
= dim(ran(A)) = r, the characteristic polynomial

(2.2) charPolyǍ = a0 + a1λ+ · · ·+ (−1)rλr ∈ F[λ]

is of degree r and kills Ǎ by the Cayley-Hamilton theorem. Thus

(2.3) a0A+ a1A
2 + · · ·+ (−1)rAr+1 = 0.

2.5. Local (directional) linear dependence of polynomials. Let A be an F-

algebra and let S ⊆ F〈X〉.
(1) We say that S is A−locally linearly dependent if the elements

{p(A) | p ∈ S} ⊆ A

are linearly dependent for every A ∈ AN.

(2) Now suppose A is a subalgebra of End(V ) for an F-vector space V . We say

that S is A-locally directionally linearly dependent if the vectors

{p(A)v | p ∈ S} ⊆ V

are linearly dependent for every A ∈ AN and v ∈ V .

(3) S is (globally) linearly dependent if it is linearly dependent in F〈X〉, i.e., there

are αs ∈ F (s ∈ S), of which finitely many are nonzero but not all are zero,

such that

0 =
∑
s∈S

αss.
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Our core example isA = Md(F), but our methods allow us to consider evaluations

in general algebras. For instance, in Section 3.1 we establish that a finite set S of

polynomials isA−locally linearly dependent for a non-PI algebraA if and only if S is

linearly dependent. In fact, the same conclusion holds whenever S is Md(F)−locally

(directionally) linearly dependent for some d large enough. As a side product of our

proofs we establish bounds on d.

Remark 2.5. The notion of local (directional) linear dependence in free algebras

is nontrivial. For example, if A is an n-dimensional algebra and S ⊆ F〈X〉 is any

set with |S| > n, then S is A−locally linearly dependent. Another example: any

two central polynomials for d × d matrices are Md(F)−locally linearly dependent,

although they need not be linearly dependent in the free algebra.

3. Results

3.1. Local linear dependence. We begin with one of the two of our main results.

Theorem 3.1. Let A be an F−algebra and let f1, . . . , fm ∈ F〈X1, . . . , Xn〉 be

A−locally linearly dependent. If A does not satisfy a polynomial identity of de-

gree

(3.1) β :=
∑
j

deg(fj) +m− 1,

then f1, . . . , fm are linearly dependent.

Proof. For all a ∈ An, the elements f1(a), . . . , fm(a) are linearly dependent. Hence

C2m−1(f1(a), . . . , fm(a), b1, . . . , bm−1) = 0

for all bj ∈ A. That is, C2m−1(f1, . . . , fm, Y1, . . . , Ym−1) is an identity of A.

Since the degree of this polynomial is
∑
j deg(fj) + m − 1, it follows from our

assumption that C2m−1(f1, . . . , fm, Y1, . . . , Ym−1) = 0. As the fi’s do not depend

on Y1, . . . , Ym−1, this trivially yields an apparently stronger conclusion

C2m−1(f1, . . . , fm, h1, . . . , hm−1) = 0

for all h1, . . . , hm−1 ∈ F〈X〉. Hence by Theorem 2.1, applied to the algebra F〈X〉,
f1, . . . , fm are linearly dependent.

The bound β may be sometimes too big, but in general it cannot be improved.

Example 3.2. Let f1 be a polynomial identity of A of minimal degree. The set

{f1} is then linearly independent and A−locally linearly dependent. In this case

β = deg f1, so that A satisfies a polynomial identity of degree β, and does not

satisfy a polynomial identity of degree < β.

Example 3.3. Let A = F. Let f1 = X1 and f2 = 1. Obviously, the set {f1, f2}
is linearly independent and A−locally linearly dependent, β = 2, A satisfies a

polynomial identity of degree 2, and does not satisfy a polynomial identity of degree

< 2.

Corollary 3.4. Let A be a non-PI algebra and let S ⊆ F〈X〉 be an A−locally

linearly dependent finite set of polynomials. Then S is linearly dependent.

Since Ms(F) does not satisfy a polynomial identity of degree < 2s, we also have

the following corollary.
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Corollary 3.5. Let f1, . . . , fm ∈ F〈X1, . . . , Xn〉 be Ms(F)−locally linearly depen-

dent for some

(3.2) s >
1

2

(∑
j

deg(fj) +m− 1
)
.

Then f1, . . . , fm are linearly dependent.

Example 3.6. Infinitary versions of Corollary 3.5 fail.

(1) Since St2n is a polynomial identity for Mn(F), the set

(3.3) S = {St2n | n ∈ N}

is Ms(F)−locally linearly dependent (for every s ∈ N), but is obviously not

linearly dependent in F〈X〉.
(2) To obtain an infinite set of polynomials in a bounded number of variables that is

locally but not globally linearly dependent one just uses the set (3.3) together

with the fact that the free algebra F〈X〉 embeds into the free algebra F〈X,Y 〉
on two variables [Coh, Section 2.5, Exercise 18] via

ι(X1) = X, ι(X2) = [X,Y ], . . . , ι(Xn) =
[
ι(Xn−1), Y

]
, . . . .

3.2. Local directional linear dependence. We now turn to (local) directional

linear dependence. The conclusion here is again that a finite set of locally direc-

tionally linearly dependent polynomials is indeed linearly dependent. However, the

proof is somewhat more involved and the bounds obtained are worse.

Theorem 3.7. Let A be an algebra of linear operators. If f1, . . . , fm ∈ F〈X1, . . . , Xn〉
are A−locally directionally linearly dependent and A does not satisfy a polynomial

identity of degree

(3.4) γ :=
(d+ 1)(d+ 2)

2

(
m− 1 +

∑
j

deg(fj)
)

+ d, where d = (m− 1)m!,

then f1, . . . , fm are linearly dependent.

Proof. Let V be the space on which operators from A act. Choose Ai, Bj ∈ A,

1 ≤ i ≤ n, i ≤ j ≤ m− 1. Let us consider

H := C2m−1(f1(A), . . . , fm(A), B1, . . . , Bm−1) ∈ A.

By assumption, for each v ∈ V the vectors f1(A)v, . . . , fm(A)v are linearly de-

pendent. Hence by Lemma 2.3, the rank of H is at most (m − 1)m! =: d. So

H,H2, . . . ,Hd+1 are linearly dependent (cf. Remark 2.4). In particular,

(3.5) C2d+1(H,H2, . . . ,Hd+1, D1, . . . , Dd) = 0

for all Dj ∈Ms(F). This shows that the polynomial

(3.6) g = C2d+1(h, h2, . . . , hd+1, Z1, . . . , Zd),

where

(3.7) h = C2m−1(f1, . . . , fm, Y1, . . . , Ym−1)

and Yj , Zj are noncommuting indeterminates, is an identity of A. Its degree is

(3.8)
(d+ 1)(d+ 2)

2
deg(h) + d =

(d+ 1)(d+ 2)

2

(
m− 1 +

∑
j

deg(fj)
)

+ d.

According to our assumption this implies g = 0. Repeating the argument based on

Theorem 2.1 from the proof of Theorem 3.1 we see that h, h2, . . . , hd+1 are linearly
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dependent polynomials. By comparing degrees in the Yj , this is only possible if h =

0. Applying Theorem 2.1 again, we obtain that f1, . . . , fm are linearly dependent.

We explicitly state the matrix version of Theorem 3.7:

Corollary 3.8. Let f1, . . . , fm ∈ F〈X1, . . . , Xn〉 be Ms(F)−locally linearly depen-

dent for some

(3.9) s >
(d+ 1)(d+ 2)

4

(
m− 1 +

∑
j

deg(fj)
)

+
d

2
, where d = (m− 1)m!,

Then f1, . . . , fm are linearly dependent.

3.3. The Fock alternative. A representation theoretic proof (with some func-

tional analytic flavor) of the local-global principles (over matrix algebras) can be

given using the noncommutative Fock space. Note that the bounds obtained in this

way are different from those given above in that they do not depend on the num-

ber of polynomials under consideration, but do depend on the number of variables

appearing in our polynomials.

Proposition 3.9. Suppose f1, . . . , fm ∈ F〈X1, . . . , Xn〉 be Ms(F)−locally direction-

ally linearly dependent for

s ≥ dimR〈X1, . . . , Xn〉k =

k∑
i=0

ni =: σ,

where k := max{deg(fj) | j = 1, . . . ,m}. Then f1, . . . , fm are linearly dependent.

Proof. The proof is based on the noncommutative Fock space. Define linear oper-

ators Sj on R〈X1, . . . , Xn〉k by declaring, for a word v ∈ 〈X1, . . . , Xn〉k:

(3.10) Sjv =

{
Xjv deg(v) < k

0 otherwise.

By construction, if p ∈ R〈X〉k, then

(3.11) p(S)1 = p.

(Note: The evaluation evS yields a homomorphism R〈X1, . . . , Xn〉 →Mσ(F) which

is one-to-one when restricted to R〈X1, . . . , Xn〉k.)

Now if f1, . . . , fm are Ms(F)−locally (directionally) linearly dependent, then by

considering the directional evaluation at (S, 1), there exist scalars αm not all zero

satisfying

0 =

m∑
j=1

αmfm(S)1 =

m∑
j=1

αmfm.

Hence the fj are linearly dependent.

3.4. Free algebras with involution. Often one is interested in evaluating poly-

nomials at tuples of symmetric matrices, or is considering polynomials in disjoint

tuples of variables X,X∗ with the obvious notion of evaluation. In these cases

one considers one of the two notions of free algebras with involution (symmetric

variables or free variables). All of the results given above have corresponding adap-

tations to free algebras with involution. The easy verifications are left as an exercise

for the reader; the only nontrivial modifications are the results needed in the proofs.

For instance, by [Sli], a polynomial of degree < 2d cannot vanish on all symmetric

d× d matrices.
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