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Abstract. This paper concerns analytic free maps. These maps are free analogs

of classical analytic functions in several complex variables, and are defined in terms of

non-commuting variables amongst which there are no relations - they are free variables.

Analytic free maps include vector-valued polynomials in free (non-commuting) variables

and form a canonical class of mappings from one non-commutative domain D in say g

variables to another non-commutative domain D̃ in g̃ variables.

As a natural extension of the usual notion, an analytic free map is proper if it maps

the boundary of D into the boundary of D̃. Assuming that both domains contain 0,

we show that if f : D → D̃ is a proper analytic free map, and f(0) = 0, then f is

one-to-one. Moreover, if also g = g̃, then f is invertible and f−1 is also an analytic free

map. These conclusions on the map f are the strongest possible without additional

assumptions on the domains D and D̃.

1. Introduction

The notion of an analytic, free or non-commutative, map arises naturally in free

probability, the study of non-commutative (free) rational functions [BGM, Vo1, Vo2,

SV, KVV], and systems theory [HBJP].

In this note rigidity results for such functions paralleling those for their classical com-

mutative counterparts are established. The free setting leads to substantially stronger

results. Namely, if f is a proper analytic free map from a non-commutative domain

in g variables to another in g̃ variables, then f is injective and g̃ ≥ g. If in addition

g̃ = g, then f is onto and has an inverse which is itself a (proper) analytic free map.

This injectivity conclusion contrasts markedly to the classical case where a (commuta-

tive) proper analytic function f from one domain in Cg to another in Cg, need not be
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injective, although it must be onto. For classical theory of some commutative proper

analytic maps see [DAn].

The definitions as used in this paper are given in the following section. The main

result of the paper is in Section 3. Analytic free analogs of classical (commutative)

rigidity theorems is the theme of Section 4. The article concludes with examples in

Section 5, all of which involve linear matrix inequalities (LMIs).

2. Free Maps

This section contains the background on non-commutative sets and on free maps at

the level of generality needed for this paper. As we shall see, free maps which are contin-

uous are also analytic in several senses, a fact which (mostly) justifies the terminology

analytic free map in the introduction. Indeed one typically thinks of free maps as being

analytic, but in a weak sense.

The discussion borrows heavily from the recent basic work of Voiculescu [Vo1, Vo2]

and of Kalyuzhnyi-Verbovetskĭı and Vinnikov [KVV], see also the references therein.

These papers contain a power series approach to free maps and for more on this one can

see Popescu [Po1, Po2], or also [HKMS, HKM1].

2.1. Non-commutative Sets and Domains. Fix a positive integer g. Given a pos-

itive integer n, let Mn(C)g denote g-tuples of n × n matrices. Of course, Mn(C)g is

naturally identified with Mn(C)⊗ Cg.

A sequence U = (U(n))n∈N, where U(n) ⊆ Mn(C)g, is a non-commutative set if

it is closed with respect to simultaneous unitary similarity; i.e., if X ∈ U(n) and

U is an n× n unitary matrix, then

U∗XU = (U∗X1U, . . . , U
∗XgU) ∈ U(n);

and if it is closed with respect to direct sums; i.e., if X ∈ U(n) and Y ∈ U(m)

implies

X ⊕ Y =

(
X 0

0 Y

)
∈ U(n+m).

Non-commutative sets differ from the fully matricial Cg-sets of Voiculescu [Vo1,

Section 6] in that the latter are closed with respect to simultaneous similarity, not just

simultaneous unitary similarity. Remark 2.3 below briefly discusses the significance of

this distinction for the results on proper analytic free maps in this paper.

The non-commutative set U is a non-commutative domain if each U(n) is open

and connected. Of course the sequence M(C)g = (Mn(C)g) is itself a non-commutative
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domain. Given ε > 0, the set Nε = (Nε(n)) given by

(2.1) Nε(n) =
{
X ∈Mn(C)g :

∑
XjX

∗
j < ε2

}
is a non-commutative domain which we call the non-commutative ε-neighborhood

of 0 in Cg. The non-commutative set U is bounded if there is a C ∈ R such that

(2.2) C2 −
∑

XjX
∗
j � 0

for every n and X ∈ U(n). Equivalently, for some λ ∈ R, we have U ⊆ Nλ. Note that

this condition is stronger than asking that each U(n) is bounded.

Let C〈x1, . . . , xg〉 denote the C-algebra freely generated by g non-commuting letters

x = (x1, . . . , xg). Its elements are linear combinations of words in x and are called

polynomials. Given an r × r matrix-valued polynomial p ∈ Mr(C) ⊗ C〈x1, . . . , xg〉
with p(0) = 0, let D(n) denote the connected component of

{X ∈Mn(C)g : I + p(X) + p(X)∗ � 0}

containing the origin. The sequence D = (D(n)) is a non-commutative domain which is

semi-algebraic in nature. Note that D contains an ε > 0 neighborhood of 0, and that

the choice

p =
1

ε

 0g×g

x1
...

xg
01×g 01×1


gives D = Nε. Further examples of natural non-commutative domains can be generated

by considering non-commutative polynomials in both the variables x = (x1, . . . , xg) and

their formal adjoints, x∗ = (x∗1, . . . , x
∗
g). The case of domains determined by linear

matrix inequalities appears in Section 5.

2.2. Free Mappings. Let U denote a non-commutative subset of M(C)g and let g̃ be

a positive integer. A free map f from U into M(C)g̃ is a sequence of functions f [n] :

U(n) → Mn(C)g̃ which respects intertwining maps; i.e., if X ∈ U(n), Y ∈ U(m),

Γ : Cm → Cn, and

XΓ = (X1Γ, . . . , XgΓ) = (ΓY1, . . . ,ΓYg) = ΓY,

then f [n](X)(I ⊗ Γ) = (I ⊗ Γ)f [m](Y ). Note if X ∈ U(n) it is natural to write simply

f(X) instead of the more cumbersome f [n](X) and likewise f : U → M(C)g̃. In a

similar fashion, we will often write f(X)Γ = Γf(Y ), instead of f [n](X)(In ⊗ Γ) =

(Im ⊗ Γ)f [m](Y ).
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Remark 2.1. Each f [n] can be represented as

f [n] =

f [n]1
...

f [n]g̃


where f [n]j : U(n) → Mn(C). Of course, for each j, the sequence (f [n]j) is a free map

fj : U → M(C) with fj[n] = f [n]j. In particular, if f : U → M(C)g̃, X ∈ U(n), and

v =
∑
ej ⊗ vj, then

f(X)∗v =
∑

fj(X)∗vj.

Let U be a given non-commutative subset of M(C)g and suppose f = (f [n]) is a

sequence of functions f [n] : U(n) → Mn(C)g̃. The sequence f respects direct sums

if, for each n,m and X ∈ U(n) and Y ∈ U(m),

f(X ⊕ Y ) = f(X)⊕ f(Y ).

Similarly, f respects similarity if for each n and X, Y ∈ U(n) and invertible n × n
matrix S such that XS = SY ,

f(X)S = Sf(Y ).

The following proposition gives an alternate characterization of free maps.

Proposition 2.2. Suppose U is a non-commutative subset of M(C)g. A sequence f =

(f [n]) of functions f [n] : U(n) → Mn(C)g̃ is a free map if and only if it respects direct

sums and similarity.

Proof. Observe f(X)Γ = Γf(Y ) if and only if(
f(X) 0

0 f(Y )

)(
I Γ

0 I

)
=

(
I Γ

0 I

)(
f(X) 0

0 f(Y )

)
.

Thus if f respects direct sums and similarity, then f respects intertwining.

On the other hand, if f respects intertwining then, by choosing Γ to be an appro-

priate projection, it is easily seen that f respects direct sums too.

Remark 2.3. Let U be a non-commutative domain in M(C)g and suppose f : U →
M(C)g̃ is a free map. If X ∈ U is similar to Y with Y = S−1XS, then we can define

f(Y ) = S−1f(X)S. In this way f naturally extends to a free map on H(U) ⊆ M(C)g

defined by

H(U)(n) = {Y ∈Mn(C)g : there is an X ∈ U(n) such that Y is similar to X}.

Thus if U is a domain of holomorphy, then H(U) = U .
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On the other hand, because our results on proper analytic free maps to come de-

pend strongly upon the non-commutative set U itself, the distinction between non-

commutative sets and fully matricial sets as in [Vo1] is important. See also [HM, HKM2].

We close this subsection with the following simple observation.

Proposition 2.4. If U is a non-commutative subset of M(C)g and f : U → M(C)g̃

is a free map, then the range of f , equal to the sequence f(U) =
(
f(U(n))

)
, is itself a

non-commutative subset of M(C)g̃.

2.3. A Continuous Free Map is Analytic. Let U ⊆ M(C)g be a non-commutative

set. A free map f : U → M(C)g̃ is continuous if each f [n] : U(n) → Mn(C)g̃ is

continuous. Likewise, if U is a non-commutative domain, then f is called analytic if

each f [n] is analytic. This implies the existence of directional derivatives for all directions

at each point in the domain, and this is the property we shall use later below.

Proposition 2.5. Suppose U is a non-commutative domain in M(C)g.

(1) A continuous free map f : U →M(C)g̃ is analytic.

(2) If X ∈ U(n), and H ∈Mn(C)g has sufficiently small norm, then

f

(
X H

0 X

)
=

(
f(X) f ′(X)[H]

0 f(X)

)
.

The proof invokes the following lemma which also plays an important role in the

next subsection.

Lemma 2.6. Suppose U ⊆ M(C)g is a non-commutative set and f : U → M(C)g̃ is a

free map. Suppose X ∈ U(n), Y ∈ U(m), and Γ is an n×m matrix. Let

(2.3) Cj = XjΓ− ΓYj, Zj =

(
Xj Cj
0 Yj

)
.

If Z = (Z1, . . . , Zg) ∈ U(n+m), then

(2.4) fj(Z) =

(
fj(X) fj(X)Γ− Γfj(Y )

0 fj(Y )

)

This formula generalizes to larger block matrices.

Proof. With

S =

(
I Γ

0 I

)
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we have

Z̃j =

(
Xj 0

0 Yj

)
= SZjS

−1.

Thus, writing f = (f1, . . . , fg̃)
T and using the fact that f respects intertwining maps,

for each j,

fj(Z) = Sfj(Z̃)S−1 =

(
fj(X) fj(X)Γ− Γfj(Y )

0 fj(Y )

)
.

Proof of Proposition 2.5. Fix n and X ∈ U(n). Because U(2n) is open and X ⊕ X ∈
U(2n), for every H ∈Mn(C)g of sufficiently small norm the tuple with j-th entry(

Xj Hj

0 Xj

)
is in U(2n). Hence, for z ∈ C of small modulus, the tuple Z(z) with j-th entry

Zj(z) =

(
Xj + zHj Hj

0 Xj

)
is in U(2n). Note that the choice (when z 6= 0) of Γ(z) = 1

z
, A = X + zH and B = X

in Lemma 2.6 gives this Z(z). Hence, by Lemma 2.6,

f(Z(z)) =

(
f(X + zH) f(X+zH)−f(X)

z

0 f(X)

)
.

Since Z(z) converges as z tends to 0 and f [2n] is assumed continuous, the limit

lim
z→0

f(X + zH)− f(X)

z

exists. This proves that f is analytic at X. It also establishes the moreover portion of

the proposition.

Remark 2.7. Kalyuzhnyi-Verbovetskĭı and Vinnikov [KVV] are developing general re-

sults based on very weak hypotheses with the conclusion that f is (in our language) an

analytic free map. Here we will assume continuity whenever expedient.

For perspective we mention power series. It is shown in [Vo2, Section 13] that an

analytic free map f has a formal power series expansion in the non-commuting variables,

which indeed is a powerful way to think of analytic free maps. Voiculescu also gives

elegant formulas for the coefficients of the power series expansion of f in terms of clever

evaluations of f . Convergence properties for bounded analytic free maps are studied in

[Vo2, Sections 14-16]; see also [Vo2, Section 17] for a bad unbounded example. We do

not dwell on this since power series are not essential to this paper.
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3. A Proper Free Map is Bianalytic Free

Given non-commutative domains U and V in M(C)g and M(C)g̃ respectively, a free

map f : U → V is proper if each f [n] : U(n) → V(n) is proper in the sense that if

K ⊆ V(n) is compact, then f−1(K) is compact. In other words: for all n, if (zj) is a

sequence in U(n) and zj → ∂U(n), then f(zj) → ∂V(n). In the case g = g̃ and both

f and f−1 are (proper) analytic free maps we say f is a bianalytic free map. The

following theorem is a central result of this paper.

Theorem 3.1. Let U and V be bounded non-commutative domains containing 0 in

M(C)g and M(C)g̃, respectively and suppose f : U → V is a free map.

(1) If f is proper, then it is one-to-one, and f−1 : f(U)→ U is a free map.

(2) If, for each n and Z ∈Mn(C)g̃, the set f [n]−1({Z}) has compact closure in U , then

f is one-to-one and moreover, f−1 : f(U)→ U is a free map.

(3) If g = g̃ and f : U → V is proper and continuous, then f is bianalytic.

Corollary 3.2. Suppose U and V are non-commutative domains in M(C)g. If f : U → V
is a free map and if each f [n] is bianalytic, then f is a bianalytic free map.

Proof. Since each f [n] is bianalytic, each f [n] is proper. Thus f is proper. Since also f

is a free map, by Theorem 3.1(3) f is a bianalytic free map.

Before proving Theorem 3.1 we establish the following preliminary result which is

of independent interest and whose proof uses the full strength of Lemma 2.6.

Proposition 3.3. Let U ⊆M(C)g be a non-commutative domain and suppose f : U →
M(C)g̃ is a free map. Suppose further that X ∈ U(n), Y ∈ U(m), Γ is an n×m matrix,

and

f(X)Γ = Γf(Y ).

If f−1
(
{f(X)⊕ f(Y )}

)
has compact closure in U , then XΓ = ΓY.

Proof. As in Lemma 2.6, let Cj = XjΓ − ΓYj. For 0 < t sufficiently small, Z(t) ∈
U(n+m), where

(3.1) Zj(t) =

(
Xj tCj

0 Yj

)
.

If f(X)Γ = Γf(Y ), then, by Lemma 2.6,

fj(Z(t)) =

(
fj(X) t

(
fj(X)Γ− Γfj(Y )

)
0 fj(Y )

)
=

(
fj(X) 0

0 fj(Y )

)
.
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Thus, fj(Z(t)) = fj(Z(0)). In particular,

f−1
(
{f(Z(0))}

)
⊇ {Z(t) : t ∈ C} ∩ U .

Since this set has, by assumption, compact closure in U , it follows that C = 0; i.e.,

XΓ = ΓY .

We are now ready to prove that a proper free map is one-to-one and even a bianalytic

free map if continuous and mapping between domains of the same dimension.

Proof of Theorem 3.1. If f is proper, then f−1({Z}) has compact closure in U for every

Z ∈M(C)g̃. Hence (1) is a consequence of (2).

For (2), invoke Proposition 3.3 with Γ = γI to conclude that f is injective. Thus f :

U → f(U) is a bijection from one non-commutative set to another. Given W,Z ∈ f(U)

there exists X, Y ∈ U such that f(X) = W and f(Y ) = Z. If moreover, WΓ = ΓZ,

then f(X)Γ = Γf(Y ) and Proposition 3.3 implies XΓ = ΓY ; i.e., f−1(W )Γ = Γf−1(Z).

Hence f−1 is itself a free map.

Let us now consider (3). Using the continuity hypothesis and Proposition 2.5, for

each n, the map f [n] : U(n)→ V(n) is analytic. By hypothesis each f [n] is also proper

and hence its range is V(n) by [Rud, Theorem 15.1.5].

Now f [n] : U(n)→ V(n) is one-to-one, onto and analytic, so its inverse is analytic.

Further, by the already proved part of the theorem, f−1 is an analytic free map.

For both completeness and later use we record the following companion to Lemma

2.6.

Proposition 3.4. Let U ⊆M(C)g and V ⊆M(C)g̃ be non-commutative domains. If f :

U → V is a proper analytic free map and if X ∈ U(n), then f ′(X) : Mn(C)g →Mn(C)g̃

is one-to-one. In particular, if g = g̃, then f ′(X) is a vector space isomorphism.

Proof. Suppose f ′(X)[H] = 0. We scale H so that

(
X H

0 X

)
∈ U . From Proposition

2.5

f

(
X H

0 X

)
=

(
f(X) f ′(X)[H]

0 f(X)

)
=

(
f(X) 0

0 f(X)

)
= f

(
X 0

0 X

)
.

By the injectivity of f established in Theorem 3.1, H = 0.
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3.1. The Main Result is Sharp. Key to the proof of Theorem 3.1 is testing f on

the special class of matrices of the form (3.1). One naturally asks if the hypotheses of

the theorem in fact yield stronger conclusions, say by plugging in richer classes of test

matrices. The answer to this question is no: suppose f is any analytic free map from g

to g variables defined on a neighborhood Nε of 0 with f(0) = 0 and f [1]′(0) invertible.

Under mild additional assumptions (e.g. the lowest eigenvalue of f ′(X) or the norm

‖f ′(X)‖ is bounded away from 0 for X ∈ Nε(n) independently of the size n) then there

are non-commutative domains U and V with f : U → V meeting the hypotheses of the

theorem.

Indeed, consider (for fixed n) the analytic function f [n] on Nε(n). Its derivative at

0 is invertible; in fact, f [n]′(0) is unitarily equivalent to In ⊗ f [1]′(0), cf. Lemma 4.2

below. By the implicit function theorem, there is a small δ-neighborhood of 0 on which

f [n]−1 is defined and analytic. By our assumptions and the bounds on the size of this

neighborhood given in [Wan], δ > 0 may be chosen to be independent of n. This gives

rise to a non-commutative domain V and the analytic free map f−1 : V → U , where

U = f−1(V). Note U is open (and hence a non-commutative domain) since f−1(n) is

analytic and one-to-one. It is now clear that f : U → V satisfies the hypotheses of

Theorem 3.1.

We just saw that absent more conditions on the non-commutative domains D and

D̃, nothing beyond bianalytic free can be concluded about f . The authors, for reasons

not gone into here, are particularly interested in convex domains, the paradigm being

those given by what are called LMIs. These will be discussed in Section 5. Whether

or not convexity of the domain or range of an analytic free f has a highly restrictive

impact on f is a serious open question.

4. Several Analogs to Classical Theorems

The conclusion of Theorem 3.1 is sufficiently strong that most would say that it

does not have a classical analog. In this section analytic free map analogs of classical

several complex variable theorems are obtained by combining the corresponding classical

theorem and Theorem 3.1. Indeed, hypotheses for these analytic free map results are

weaker than their classical analogs would suggest.

4.1. A Free Caratheodory-Cartan-Kaup-Wu (CCKW) Theorem. The commu-

tative Caratheodory-Cartan-Kaup-Wu (CCKW) Theorem [Kr, Theorem 11.3.1] says

that if f is an analytic self-map of a bounded domain in Cg which fixes a point P ,

then the eigenvalues of f ′(P ) have modulus at most one. Conversely, if the eigenvalues
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all have modulus one, then f is in fact an automorphism; and further if f ′(P ) = I, then

f is the identity. The CCKW Theorem together with Corollary 3.2 yields Corollary 4.1

below. We note that Theorem 3.1 can also be thought of as a non-commutative CCKW

theorem in that it concludes, like the CCKW Theorem does, that a map f is bianalytic,

but under the (rather different) assumption that f is proper.

Corollary 4.1. Let D be a given bounded non-commutative domain which contains 0.

Suppose f : D → D is an analytic free map. Let φ denote the mapping f [1] : D(1) →
D(1) and assume φ(0) = 0.

(1) If all the eigenvalues of φ′(0) have modulus one, then f is a bianalytic free map; and

(2) if φ′(0) = I, then f is the identity.

The proof uses the following lemma, whose proof is trivial if it is assumed that f

is continuous (and hence analytic) and then one works with the formal power series

representation for a free analytic function.

Lemma 4.2. Keep the notation and hypothesis of Corollary 4.1. If n is a positive integer

and Φ denotes the mapping f [n] : D(n) → D(n), then Φ′(0) is unitarily equivalent to

In ⊗ φ′(0).

Proof. Let Ei,j denote the matrix units for Mn(C). Fix h ∈ Cg. Arguing as in the proof

of Proposition 3.4 gives, for k 6= ` and z ∈ C of small modulus,

Φ((Ek,k + Ek,`)⊗ zh) = (Ek,k + Ek,`)⊗ φ(zh).

It follows that

Φ′(0)[(Ek,k + Ek,`)⊗ h] = (Ek,k + Ek,`)φ
′(0)[h].

On the other hand,

Φ′(0)[Ek,k ⊗ h] = Ek,k ⊗ φ′(0)[h].

By linearity of Φ′(0), it follows that

Φ′(0)[Ek,` ⊗ h] = Ek,` ⊗ φ′(0)[h].

Thus, Φ′(0) is unitarily equivalent to In ⊗ φ′(0).

Proof of Corollary 4.1. The hypothesis that φ′(0) has eigenvalues of modulus one, im-

plies, by Lemma 4.2, that, for each n, the eigenvalues of f [n]′(0) all have modulus one.

Thus, by the CCKW Theorem, each f [n] is an automorphism. Now Corollary 3.2 implies

f is a bianalytic free map.

Similarly, if φ′(0) = Ig, then f [n]′(0) = Ing for each n. Hence, by the CCKW

Theorem, f [n] is the identity for every n and therefore f is itself the identity.
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Note a classical bianalytic function f is completely determined by its value and

differential at a point (cf. a remark after Theorem 11.3.1 in [Kr]). Much the same is true

for analytic free maps and for the same reason.

Proposition 4.3. Suppose U ,V ⊆M(C)g are non-commutative domains, U is bounded,

both contain 0, and f, g : U → V are proper analytic free maps. If f(0) = g(0) and

f ′(0) = g′(0), then f = g.

Proof. By Theorem 3.1 both f and g are bianalytic free maps. Thus h = f ◦g−1 : U → U
is a bianalytic free map fixing 0 with h[1]′(0) = I. Thus, by Corollary 4.1, h is the

identity. Consequently f = g.

4.2. Circular Domains. A subset S of a complex vector space is circular if exp(it)s ∈
S whenever s ∈ S and t ∈ R. A non-commutative domain U is circular if each U(n) is

circular.

Compare the following theorem to its commutative counterpart [Kr, Theorem 11.1.2]

where the domains U and V are the same.

Theorem 4.4. Let U and V be bounded non-commutative domains in M(C)g and

M(C)g̃, respectively, both of which contain 0. Suppose f : U → V is a proper ana-

lytic free map with f(0) = 0. If U and the range R := f(U) of f are circular, then f is

linear.

The domain U = (U(n)) is convex if each U(n) is a convex set.

Corollary 4.5. Let U and V be bounded non-commutative domains in M(C)g both of

which contain 0. Suppose f : U → V is a proper analytic free map with f(0) = 0. If

both U and V are circular and if one is convex, then so is the other.

This corollary is an immediate consequence of Theorem 4.4 and the fact (see Theo-

rem 3.1(3)) that f is onto V .

We admit the hypothesis that the range R = f(U) of f in Theorem 4.4 is circular

seems pretty contrived when the domains U and V have a different number of variables.

On the other hand if they have the same number of variables it is the same as V being

circular since by Theorem 3.1, f is onto.

Proof of Theorem 4.4. Because f is a proper free map it is injective and its inverse

(defined on R) is a free map by Theorem 3.1. Moreover, using the analyticity of f , its

derivative is pointwise injective by Proposition 3.4. It follows that each f [n] : U(n) →
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Mn(C)g̃ is an embedding [GP, p. 17]. Thus, each f [n] is a homeomorphism onto its

range and its inverse f [n]−1 = f−1[n] is continuous.

Define F : U → U by

(4.1) F (x) := f−1
(
e−iθf(eiθx)

)
This function respects direct sums and similarities, since it is the composition of maps

which do. Moreover, it is continuous by the discussion above. Thus F is an analytic

free map.

Using the relation eiθf(F (x)) = f(eiθ) we find eiθf ′(F (0))F ′(0) = f ′(0). Since f ′(0)

is injective, eiθF ′(0) = I. It follows from Corollary 4.1(2) that F (x) = eiθx and thus, by

(4.1), f(eiθx) = eiθf(x). Since this holds for every θ, it follows that f is linear.

If f is not assumed to map 0 to 0 (but instead fixes some other point), then a proper

self-map need not be linear. This follows from the example we discuss in Section 5.2.

Remark 4.6. A consequence of the Kaup-Upmeier series of papers [BKU, KU] shows

that given two bianalytically equivalent bounded circular domains in Cg, there is a

linear bianalytic map between them. We believe this result extends to the present

non-commutative setting.

5. Maps in One Variable, Examples

This section contains two examples. The first shows that the circled hypothesis is

needed in Theorem 4.4. Our second example concerns D, a non-commutative domain

in one variable containing the origin, and b : D → D a proper analytic free map with

b(0) = 0. It follows that b is bianalytic and hence b[1]′(0) has modulus one. Our

second example shows that this setting can force further restrictions on b[1]′(0). The

non-commutative domains of both examples are LMI domains; i.e., they are the non-

commutative solution set of a linear matrix inequality (LMI). Such domains are convex,

and play a major role in the important area of semidefinite programming; see [WSV] or

the excellent survey [Nem].

5.1. LMI Domains. A special case of the non-commutative domains are those de-

scribed by a linear matrix inequality. Given a positive integer d and A1, . . . , Ag ∈Md(C),

the linear matrix-valued polynomial

L(x) =
∑

Ajxj ∈Md(C)⊗ C〈x1, . . . , xg〉
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is a truly linear pencil. Its adjoint is, by definition, L(x)∗ =
∑
A∗jx

∗
j . Let

L(x) = Id + L(x) + L(x)∗.

If X ∈Mn(C)g, then L(X) is defined by the canonical substitution,

L(X) = Id ⊗ In +
∑

Aj ⊗Xj +
∑

A∗j ⊗X∗j ,

and yields a symmetric dn×dn matrix. The inequality L(X) � 0 for tuples X ∈M(C)g

is a linear matrix inequality (LMI). The sequence of solution sets DL defined by

DL(n) = {X ∈Mn(C)g : L(X) � 0}

is a non-commutative domain which contains a neighborhood of 0. It is called a non-

commutative (NC) LMI domain.

5.2. A Concrete Example of a Nonlinear Bianalytic Self-map on an NC LMI

Domain. It is surprisingly difficulty to find proper self-maps on LMI domains which

are not linear. This section contains the only such example, up to trivial modification,

of which we are aware. Of course, by Theorem 4.4 the underlying domain can not be

circular.

In this example the domain is a one-variable LMI domain. Let

A =

(
1 1

0 0

)
and let L denote the univariate 2× 2 linear pencil,

L(x) := I + Ax+ A∗x∗ =

(
1 + x+ x∗ x

x∗ 1

)
.

Then

DL = {X | ‖X − 1‖ <
√

2}.

To see this note L(X) � 0 if and only if 1 + X + X∗ − XX∗ � 0, which is in turn

equivalent to (1−X)(1−X)∗ ≺ 2.

Proposition 5.1. For real θ, consider

fθ(x) :=
eiθx

1 + x− eiθx
.

(1) fθ : DL → DL is a proper analytic free map, fθ(0) = 0, and f ′θ(0) = exp(iθ).

(2) Every proper analytic free map f : DL → DL fixing the origin equals one of the fθ.
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Proof. Item (1) follows from a straightforward computation:

(1− fθ(X))(1− fθ(X))∗ ≺ 2 ⇐⇒
(

1− eiθX

1 +X − eiθX

)(
1− eiθX

1 +X − eiθX

)∗
≺ 2

⇐⇒
(

1 +X − 2eiθX

1 +X − eiθX

)(
1 +X − 2eiθX

1 +X − eiθX

)∗
≺ 2

⇐⇒
(
1 +X − 2eiθX

) (
1 +X − 2eiθX

)∗ ≺ 2
(
1 +X − eiθX

) (
1 +X − eiθX

)∗
⇐⇒ 1 +X +X∗ −XX∗ � 0 ⇐⇒ (1−X)(1−X)∗ ≺ 2.

Statement (2) follows from the uniqueness of a bianalytic map carrying 0 to 0 with

a prescribed derivative.

5.3. Example of Nonexistence of a Bianalytic Self-map on an NC LMI Do-

main. Recall that a bianalytic f with f(0) = 0 is completely determined by its dif-

ferential at a point. Clearly, when f ′(0) = 1, then f(x) = x. Does a proper analytic

free self-map exist for each f ′(0) of modulus one? In the previous example this was the

case. For the domain in the example in this subsection, again in one variable, there is

no proper analytic free self-map whose derivative at the origin is i.

The domain will be a “non-commutative ellipse” described as DL with L(x) :=

I + Ax+ A∗x∗ for A of the form

A :=

(
C1 C2

0 −C1

)
,

where C1, C2 ∈ R. There is a choice of parameters in L such that there is no proper

analytic free self-map b on DL with b(0) = 0, and b′(0) = i.

Suppose b : DL → DL is a proper analytic free self-map with b(0) = 0, and b′(0) = i.

By Theorem 3.1, b is bianalytic. In particular, b[1] : DL(1) → DL(1) is bianalytic. By

the Riemann mapping theorem there is a conformal map f of the unit disk onto DL(1)

satisfying f(0) = 0. Then

(5.1) b[1](z) = f
(
if−1(z)

)
.

(Note that b[1] ◦ b[1] ◦ b[1] ◦ b[1] is the identity.)

To give an explicit example, we recall some special functions involving elliptic in-

tegrals. Let K(z, t) and K(t) be the normal and complete elliptic integrals of the first

kind, respectively, that is,

K(z, t) =

∫ z

0

dx√
(1− x2)(1− t2x2)

, K(t) = K(1, t).
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Furthermore, let

µ(t) =
π

2

K(
√

1− t2)
K(t)

.

Choose the axis for the non-commutative ellipse as follows:

a = cosh

(
1

2
µ
(2

3

))
, b = sinh

(
1

2
µ
(2

3

))
.

Then

C1 =
1

2

√
1

a2
− 1

b2
, C2 =

1

b
.

The desired conformal mapping is [Scw, Sze]

f(z) = sin

 π

2K(2
3
)
K
( z√

2
3

,
2

3

) .

Hence b[1] in (5.1) can be explicitly computed (for details see the Mathematica notebook

Example53.nb available under Preprints on http://srag.fmf.uni-lj.si). It has a

power series expansion

b[1](z) = iz − 1

27
i

(
9−

52K
(
4
9

)2
π2

)
z3 + i

(
9π2 − 52K

(
4
9

)2)2
486π4

z5 +O(z7)

≈ i (1 + 0.30572z3 + 0.140197z5).

(5.2)

This power series expansion has a radius of convergence ≥ ε > 0 and thus induces

an analytic free mapping Nε →M(C). By analytic continuation, this function coincides

with b. This enables us to evaluate b(zN) for a nilpotent N .

Let N be an order 3 nilpotent,

N =


0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

 .

Then r ∈ R satisfies rN ∈ DL if and only if −1.00033 ≤ r ≤ 1.00033 =: r0. (This has

been computed symbolically in the exact arithmetic using Mathematica, and the bounds

given here are just approximations.) However, b(r0N) ∈ DL r ∂DL contradicting the

properness. (This was established by computing the 8×8 matrix L
(
b(r0N)

)
symbolically

thus ensuring it is exact. Then we apply a numerical eigenvalue solver to see that it is

positive definite with smallest eigenvalue 0.0114903 . . ..) We conclude that the proper

analytic free self-map b does not exist.

http://srag.fmf.uni-lj.si
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