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Abstract. In this article we present a robustness analysis of the extraction of optimizers in
polynomial optimization. Optimizers can be extracted by solving moment problems using flat-
ness and the Gelfand-Naimark-Segal (GNS) construction. Here a modification of the GNS
construction is presented that applies even to non-flat data, and then its sensitivity under per-
turbations is studied. The focus is on eigenvalue optimization for noncommutative polynomials,
but it is also explained how the main results pertain to commutative and tracial optimization.

1. Introduction

Polynomial optimization (POP) studies optimization problems in which the objective and
constraint functions are polynomials [Las09, BPT13]. It has a wide range of applications, e.g. to
operations research, statistics, theoretical computer science and several branches of engineering
and the physical sciences. The development of POP has been particularly fruitful since Putinar’s
Positivstellensatz [Put93] gave rise to the Lasserre relaxation scheme [Las01] which reformulates
polynomial optimization problems as sequences of semidefinite programming (SDP) [WSV00,
deK02] problems. Consequently, the area is nowadays intertwined with real algebraic geometry;
see [Scw06, Lau09, Mar08, Par03, NDS06, HG05] for a small sample of the vast literature.

In parallel to these developments, the theory of noncommutative (nc) polynomial optimization
(NCPOP) is growing rapidly [BKP16]. The fundamental problem that we consider in this paper
is as follows. Given nc polynomials (see [BKP16] or Section 2 for definitions) f, s1, . . . , sh,
compute

(1.1) λmin(f) := inf
{
vTf(A)v : si(A) � 0 for all i, ‖v‖ = 1

}
.

Hence λmin(f) is the greatest lower bound on the eigenvalues of f(A) taken over all tuples
A of bounded self-adjoint operators on a separable infinite-dimensional Hilbert space which
satisfy si(A) � 0 for all i. Often it suffices to plug in tuples of matrices A only. Applications
of NCPOPs can be found in control theory [dOHMP08] (cf. the textbook classics in [SIG97]),
quantum theory [PNA10], and PDEs; [Cim10] uses NCPOPs to investigate PDEs and eigenvalues
of polynomial partial differential operators. In [DLTW08] the authors investigate the quantum
moment problem and entangled multi-prover games using NCPOPs.

A particularly interesting class of NCPOPs are tracial NCPOPs. Here one is interested in the
smallest trace a nc polynomial attains, i.e.,

(1.2) Trmin(f) := inf
{

Tr f(A) : si(A) � 0 for all i
}
.

A systematic study of these topics first arose out of an attempt to understand Connes’ embedding
conjecture in operator algebra [KS08], and later lead to the development of NCSOStools [CKP11,
CKP12], an open source Matlab toolbox for handling NCPOPs. Tracial NCPOPs are intimately
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connected to quantum theory. Recently quantum analogues of the classical independence and
chromatic graph parameters were studied using the cone of trace positive non-commutative
polynomials [LP15]. Laurent with collaborators also presented how the entanglement dimension
of a bipartite quantum correlations can be estimated using techniques from tracial polynomial
optimization [GLL].

The optimization problems (1.1) and (1.2) are difficult, and are nowadays solved with a
relaxation scheme based off noncommutative Positivstellensätze [HM04, KS08]; see [PNA10] for
the relaxation scheme in the free NCPOP and [KP16] for its tracial analog. For instance, instead
of (1.1) one solves

(1.3) f
(d)
sohs := sup

{
µ : f − µ = σ +

∑
i

σi(si)
}
,

where σ =
∑

j h
T
jhj is a sum of hermitian squares of degree ≤ 2d, and σi(si) =

∑
j h

T
ijsihij are

sums of weighted hermitian squares of degree ≤ 2d. The sequence f
(d)
sohs is increasing and under

mild conditions (archimedeanity of the constraint set) converges to λmin(f) [PNA10, BKP16].
Further, the Gram matrix method allows us to rewrite (1.3) as an SDP making (1.3) a practical
and effective approximation to (1.1).

The dual SDP problem to (1.3) can be presented as

(1.4) ϕ
(d)
sohs = inf

{
ϕ(f) : ϕ(gTg) ≥ 0, ϕ(hTsih) ≥ 0, ϕ(1) = 1

}
,

where ϕ is a linear functional defined on nc polynomials of degree ≤ 2d. Under mild assump-
tions (e.g. the constraint set has nonempty interior), there is no duality gap [BKP16, Chapter

4] and thus f
(d)
sohs = ϕ

(d)
sohs. Besides computational advantages, the dual SDP makes it possible to

establish tightness of a relaxation via flat extensions [CF96]. The first algorithm for extracting
optimizers in the presence of a flat extension (of a linear functional ϕ or the associated Hankel
matrix Hϕ corresponding to the induced quadratic form) was described in [HL05] (cf. [Lau09]).

Roughly speaking, if the optimal (Riesz) functional ϕ(d+δ) corresponding to ϕ
(d+δ)
sohs is flat over

ϕ(d) for some δ ≥ 1, meaning that the two matrices Hϕ(d+δ) and Hϕ(d) are of the same rank,

then there is a tuple of matrices A and a unit vector v with

(1.5) λmin(f) = vTf(A)v = f
(d)
sohs = ϕ

(d)
sohs = ϕ(d+δ)(f) = ϕ(d)(f).

To each linear functional ϕ on nc polynomials of degree ≤ 2d as above one associates a
symmetric Hankel matrix H = Hϕ carrying the same information as ϕ. The matrix H is
indexed by words of degree ≤ d, and the (u, v) entry of H equals ϕ(uTv). Hence extensions of
linear functionals correspond to extensions of Hankel matrices.

One algorithm for extracting the tuple A and the vector v as in (1.5) is inspired by the
Gelfand-Naimark-Segal (GNS) construction in functional analysis. It is particularly well suited
for the robustness analysis undertaken in this article. A (truncated) GNS construction starts
with a Hankel extension K of a positive semidefinite Hankel matrix H and produces a tuple of
operators XK on the finite-dimensional Hilbert space determined by H that serves as a candidate
for an optimizer of NCPOP, see Section 2 for details. With straightforward modifications all of
this also applies to commutative POP, and tracial NCPOP. Since the GNS construction in these
two settings is also noncommutative in nature, the paper focuses mainly on NCPOP. Further,
the noncommutative viewpoint makes it possible to give a mostly unified treatment of all three
cases; the additional properties (commutativity or being tracial) are only used in the final part
of the algorithm.

1.1. Contributions. The main goal of this paper is to present a robustness analysis of the ex-
traction of optimizers via the so–called GNS construction in POP. This method can be modified
to apply even for non-flat data, and we study how sensitive it is under perturbations. Our main
focus is on the eigenvalue optimization in NCPOP, but we also address tracial NCPOP and
commutative POP.

The main contributions of this paper are:
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(i) In Section 3 we analyze robustness of optimizer extraction by GNS for global (i.e.,
constraint-free) NCPOP. The key result is Theorem 3.2, which for Hankel matrices K
and K ′ extending a fixed Hankel matrix H gives explicit lower and upper bounds on
the norm of XK − XK′ in terms of ‖K − K ′‖. This in turn allows us to estimate

f(XK)− f(XK′) for a polynomial f ; see Corollaries 3.5 and 3.6.
(ii) In Section 4 we apply the preceding results to NCPOP with constraints. If a Hankel

extension K of H associated to a positive functional is not flat, meaning that the rank
of K is larger than the rank of H, then the obtained matrix tuple XK might not satisfy
the given constraints. However, the error is small if K is close to being flat. We show
in Theorem 4.1 that if K ′ is a flat Hankel extension of H, then we can quantify the
violation of constraints in terms of ‖K −K ′‖.

(iii) In Section 4 we also show that to every K as above we can effectively assign a matrix

K[ (see Subsection 4.2 for the definition) such that K is flat if and only if K = K[. If

‖K−K[‖ is small we say thatK is almost flat. We establish in Theorem 4.6 the bounds on

the violation of constraints in terms of ‖K−K[‖. We emphasize thatK[ is not necessarily
Hankel, i.e. it does not need to correspond to a linear functional on polynomials.

(iv) In Section 5 we explain how our results pertain to the classical, commutative POP, and
the tracial NCPOP.

(v) We provide extensive numerical examples that support the theory and illustrate the
strength of our statements.

Our results imply that for the success of the Lasserre relaxation scheme for polynomial opti-
mization one does not need to require flatness, which is evasive from a numerical point of view,
but merely approximate flatness, which is much easier to establish when solving optimization
problems numerically.

Acknowledgments. The authors thank the two anonymous referees for their insightful sug-
gestions.

2. Preliminaries

This section presents background material on noncommutative Hankel matrices and the
Gelfand-Naimark-Segal (GNS) construction used throughout the paper.

We would like to stress out that the GNS construction is neither the only nor the first method
for extracting optimizers in POP. The original idea for applying results on flat Hankel extensions
[CF96] in an extraction algorithm was first described by Henrion and Lasserre in [HL05, Section
2.2] using only the language of linear algebra; see also [Lau09, Section 6.7] for a slight variation.
An application of the GNS construction in this context then appeared in [PNA10, Section 3.2]
(but see also [HM04, MP05]) and its role was later highlighted in [BKP16, Sections 1.5 and
1.12]. The presentation of Hankel extensions and the GNS construction in this section serves as
a preparation for the robustness analysis in the next section.

2.1. Hankel matrices. Let x = (x1, . . . , xg) be a tuple of freely noncommuting variables and
fix the graded lexicographic ordering of the free monoid <x> of words in x. That is, given
w1, w2 ∈ <x> we have w1 < w2 if and only if |w1| < |w2| or |w1| = |w2|, w1 = uxiv1,
w2 = uxjv2 and i < j. On the free algebra of noncommutative polynomials R<x> we define
the scalar product 〈·, ·〉2 by declaring that words form an orthonormal basis. To be more clear

we identify polynomials f =
∑

w∈<x> αww with vectors
#–

f = (αw)w∈<x> when considered with
respect to this scalar product. Note that

〈 #   –

wf,
#   –

wf〉2 = 〈 #–

f ,
#–

f 〉2

for f ∈ R<x> and w ∈ <x>. The corresponding norm on R<x> is denoted ‖ ·‖2. The induced
operator norm of linear maps acting on subspaces of R<x> is also denoted ‖ · ‖2. To every
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f =
∑

w αww ∈ R<x> we assign the univariate polynomial

errf (t) =
∑

w∈<x>

|αw| |w| t|w|−1 ∈ R[t].

For example, if f = 1 + x1x2 − x2x1 + x3
2, then errf (t) = 4t+ 3t2.

Next we endow R<x> with the unique involution satisfying xT
j = xj . In particular, if w =

xj1xj2 · · ·xj` , then wT = xj` · · ·xj2xj1 . For d ∈ N let <x>d ⊂ <x> be the set of words of length
at most d and R<x>d ⊂ R<x> the subspace spanned by <x>d. A Hankel matrix of order
d is a symmetric matrix H whose rows and columns are indexed by words in x of length at most
d in the chosen graded lexicographic ordering that satisfies

(2.1) Hu1,v1 = Hu2,v2

for all ui, vi ∈ <x>d such that uT
1v1 = uT

2v2.

Notation 2.1. For a matrix H let σmin(H) denotes its least nonzero singular value (in numerical
experiments we take for σmin(H) the least eigenvalue larger than 10−5). In particular, if H is a
positive semidefinite (psd) matrix, then σmin(H) is its least positive eigenvalue.

Example 2.2. Let g = 2. Then



1 x1 x2 x21 x1x2 x2x1 x22

1 1 0 0 1 0 0 1
x1 0 1 0 0 1 1

2 −1
x2 0 0 1 1 1 −1 0
x21 1 0 1 3 1 −1 1
x1x2 0 1 1 1 2 −1

2 −1
x2x1 0 1

2 −1 −1 −1
2

3
2 −1

2
x22 1 −1 0 1 −1 −1

2 2


is a psd Hankel matrix of order 2 with respect to the graded lexicographic monomial ordering
on <x>2 induced by x1 < x2.

Let H be a psd Hankel matrix of order d and for p ∈ R<x>d let [p] ∈ R<x>d/ kerH denote
its equivalence class.

Lemma 2.3. On the vector space H = R<x>d/ kerH there is a scalar product defined by
〈[p], [q]〉H = 〈H #–p , #–q 〉2. If p, q, r ∈ R<x>d satisfy deg p+ deg r, deg q + deg r ≤ d, then

(2.2) 〈[rp], [q]〉H = 〈[p], [rTq]〉H .

Furthermore, for

p = p0 + p1 ∈ kerH ⊕ (kerH)⊥ = R<x>d
we have [p] = [p1] and

(2.3)
√
σmin(H)‖ #–p1‖2 ≤ ‖[p1]‖H ≤

√
‖H‖2‖ #–p1‖2.

Proof. The bilinear map 〈·, ·〉H is well-defined because H is symmetric, and it is a scalar product
since H is psd. Equation (2.2) follows by the Hankel property of H and linearity. Finally, (2.3)
is a direct consequence of the definition of 〈·, ·〉H . �

If

(2.4) K =

(
H B
BT C

)
,

then we say that K is an extension of H. Let H be a psd Hankel matrix of order d, and let
K be a Hankel extension of H of order d+ δ for some δ ≥ 1. For 1 ≤ j ≤ g let

K(j) =
(
Ku,xjv

)
u,v∈<x>d

be a submatrix of K, the so-called localizing matrix associated to xj .
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Lemma 2.4. The matrix K(j) is symmetric. If K is psd, then there exists a matrix Wj such

that K(j) = HWj.

Proof. For the first part observe that

K(j)
u,v = Ku,xjv = Kxjv,u = Kv,xju = K(j)

v,u

for u, v ∈ <x>d since K is Hankel and symmetric.
The second part is equivalent to imK(j) ⊆ imH, which is furthermore equivalent to kerH ⊆

kerK(j). Let f ∈ R<x>d be such that
#–

f ∈ kerH. Hence 〈K #–

f ,
#–

f 〉2 = 0 and so K
#–

f = 0

since K is psd. Therefore
(
H
BT

) #–

f = 0, but since K(j) is a submatrix of
(
H
BT

)
, we see that

#–

f ∈ kerK(j). �

2.2. Gelfand-Naimark-Segal (GNS) construction. Let H be a psd Hankel matrix of order
d and let K be a psd Hankel extension of H of order d + δ. As in the proof of Lemma 2.4 we
see that kerH = kerK ∩ R<x>d, so we have the inclusion of Hilbert spaces

H = R<x>d/ kerH ⊆ R<x>d+δ/ kerK = K.

If πK : K → H is the orthogonal projection, then define linear operators

XKj : H → H, [p] 7→ πK([xjp]).

Lemma 2.5. Operators XKj are well-defined and symmetric with respect to 〈·, ·〉H .

Proof. If #–p ∈ kerH, then

〈 #   –xjp,H
#–q 〉2 = 〈K #   –xjp,

#–q 〉2 = 〈H #–p , #   –xjq〉2 = 0

for every q ∈ R<x>d because K is a Hankel matrix. Therefore XKj is well defined. Furthermore,

〈XKj [p], [q]〉H = 〈K #   –xjp,
#–q 〉2 = 〈K #–p , #   –xjq〉2 = 〈 #–p ,K #   –xjq〉2 = 〈[p],XKj [q]〉H

holds for every p, q ∈ R<x>d since K is Hankel, so XKj is symmetric. �

Let XK = (XK1 , . . . ,XKg ). We have

f(XK)[p] = [fp]

for all f, p ∈ R<x> satisfying deg f + deg p ≤ d and consequently

〈f(XK)[1], [1]〉H = 〈H #–

f ,
#–
1 〉2

for all f ∈ R<x>d.

2.2.1. Explicit matrix computation. Let

(2.5) H = USUT

be a singular value decomposition of H, i.e., S is a positive definite (pd) diagonal matrix whose

size is the rank of H (rkH) and UTU = I. Then the equivalence classes of columns of U
√
S
−1

form an orthogonal basis B of the Hilbert space H. Consequently, if p ∈ R<x>d, then the
expansion of [p] with respect to B is given by

√
SUT #–p and hence

‖[p]‖H = ‖
√
SUT #–p ‖2.

Remark 2.6. Concretely, for w ∈ <x> we have

‖[w]‖H = ‖
√
SUT #–w‖2 =

√
〈
√
SUT #–w,

√
SUT #–w〉2 =

√
Hw,w.

Also, the vector [1] ∈ H is with respect to B given as the first column of the matrix
√
SUT.
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Since the operator XKj is determined by

〈XKj [p], [q]〉H = 〈K #   –xjp,
#–q 〉2 = 〈K(j) #–p , #–q 〉2

for p, q ∈ R<x>d, the matrix representing XKj with respect to B equals

(2.6)
√
S
−1
UTK(j)U

√
S
−1
.

Example 2.7. Let g = 2. Then

K =



1.0000 0.5000 0.5001 1.0483 −0.5483 −0.5483 1.0484
0.5000 1.0483 −0.5483 1.0627 −0.0144 −0.6090 0.0606
0.5001 −0.5483 1.0484 −0.0144 −0.5340 0.0606 0.9878
1.0483 1.0627 −0.0144 1.4622 −0.3995 −0.8006 0.7863
−0.5483 −0.0144 −0.5340 −0.3995 0.3852 0.1917 −0.7256
−0.5483 −0.6090 0.0606 −0.8006 0.1917 0.4411 −0.3804

1.0484 0.0606 0.9878 0.7863 −0.7256 −0.3804 1.3682


is a psd Hankel extension of order 2 of the upper-left 3 × 3 submatrix H of K. Both matrices
have rank 2 (only two eigenvalues of each matrix are larger than 10−8).

We can decompose H = USUT where

U =

−0.8165 −0.0009
−0.4090 0.7067
−0.4075 −0.7075

 , S =

(
1.5000 0.0000
0.0000 1.5966

)
and extract

K(1) =

 0.5000 1.0483 −0.5483
1.0483 1.0627 −0.0144
−0.5483 −0.0144 −0.5340

 , K(2) =

 0.5001 −0.5483 1.0484
−0.5483 −0.6090 0.0606
1.0484 0.0606 0.9878

 .

Note that kerH is spanned by (1,−1,−1)T .
The orthonormal basis B of H is therefore given by equivalence classes of columns

V =

−0.6667 −0.0007
−0.3339 0.5593
−0.3327 −0.5599

 .

Operators XK1 ,XK2 are in this basis represented by matrices

K̂(1) =

(
0.5019 −0.8931
−0.8931 0.1727

)
, K̂(2) =

(
0.4981 0.8939
0.8939 0.0825

)
.

2.2.2. Flat extensions. If K is an extension of H and rkK = rkH, then we say that K is a flat
extension of H. Now let H be a psd Hankel matrix of order d and K a flat psd Hankel extension
of H of order d+ δ. In this case H = K and the Hankel property of K implies that

f(XK)[p] = [fp] ∈ K

for every f, p ∈ R<x> satisfying deg f ≤ d and deg f + deg p ≤ d+ δ. Consequently

(2.7) 〈f1(XK)[p1], f2(XK)[p2]〉H = 〈K #      –

f1p1,
#      –

f2p2〉2
for all pi ∈ R<x>d and fi ∈ R<x>δ.

2.2.3. Putting it all together. To motivate the concepts introduced in this section let us demon-
strate how a relaxation hierarchy, flat extensions and the truncated GNS construction are used
to extract global minimizer for a nc polynomial f ∈ R<x>2d. That is, if Sn denotes the space of
symmetric n× n matrices, then we are interested in finding a tuple X0 ∈ Sgn0 and a unit vector
v0 ∈ Rn0 for some n0 ∈ N such that

(2.8) vT
0f(X0)v0 = f∗ := inf

{
vTf(X)v : n ∈ N, X ∈ Sgn, ‖v‖ = 1

}
.
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For the proofs of the following statements we refer to [BKP16, Section 4.2]. Consider

ϕ(d+1) = inf
{
ϕ(f) : ϕ a linear functional on R<x>2(d+1), ϕ(gTg) ≥ 0, ϕ(1) = 1

}
.

A minimizer ϕ0 for ϕ(d+1) can be found using SDP and can be given by a psd Hankel matrix K
of order d+ 1, i.e.,

ϕ0(u∗v) = 〈K #–u , #–v 〉2
for every u, v ∈ R<x>d+1. Let H be the Hankel submatrix of order d of K (that is, H is the
submatrix in the top-left corner of K of appropriate size). If K is a flat extension of H, then

f∗ = ϕ(d+1) = ϕ0(f). Write f =
∑

i p
∗
i qi for some pi, qi ∈ R<x>d. Then

ϕ0(f) =
∑
i

ϕ0(p∗i qi) =
∑
i

〈K #–pi,
#–qi〉2 =

∑
i

〈pi(XK)[1], qi(XK)[1]〉H = 〈f(XK)[1], [1]〉H

by (2.7), so f∗ is attained at the tuple XK of operators on H and the unit vector [1] ∈ H.

3. Robustness of the GNS construction

This section contains our first main results. As explained in Subsection 2.2, to each non-
commutative Hankel extension K of H we can associate a tuple of matrices XK approximating
freely noncommutative variables with respect to the scalar product induced by H. We explicitly
quantify robustness of this process. That is, given Hankel matrices K,L both extending H, we
give lower and upper bounds on ‖XK − XL‖H ; see Theorem 3.2. (Here ‖XK − XL‖H denotes
the operator norm of XK−XL on the Hilbert space H induced by H as in Subsection 2.2.) How
this pertains to optimizer extraction in noncommutative polynomial optimization is explained
in Corollaries 3.5 and 3.6.

Let H be a psd Hankel matrix of order d. Let HExtH,δ ⊆ EndRR<x>d+δ be the set of
all psd Hankel extensions of H of order d + δ with the induced subspace topology. The GNS
construction can be viewed as a map

HExtH,δ → (EndRH)g , K 7→ XK =
(
XK1 , . . . ,XKg

)
.

By (2.6) this is a restriction of an affine linear map. In this section we quantify its boundedness
and Lipschitz continuity, and test our estimates with several examples. Recall from Notation
2.1 that σmin(H) denotes the least nonzero singular value of H.

Proposition 3.1. If K is a psd Hankel extension of H, then

‖K(j)‖2
‖H‖2

≤ ‖XKj ‖H ≤
‖K(j)‖2
σmin(H)

for every 1 ≤ j ≤ g.

Proof. By (2.6) we have

‖XKj ‖H =
∥∥∥√S−1

UTK(j)U
√
S
−1
∥∥∥

2
.

Note that the columns of U span imH, so ‖UTK(j)U‖2 = ‖K(j)‖2 by Lemma 2.4. The rest
follows by

‖UTK(j)U‖2
‖H‖2

≤
∥∥∥√S−1

UTK(j)U
√
S
−1
∥∥∥

2
≤ ‖S−1‖2‖UTK(j)U‖2

and ‖S−1‖2 = σmin(H)−1. �

Theorem 3.2. Let K and L be psd Hankel extensions of H. Then for every 1 ≤ j ≤ g,

‖K(j) − L(j)‖2
‖H‖2

≤ ‖XKj −XLj ‖H ≤
‖K(j) − L(j)‖2

σmin(H)
.
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Proof. Let H = USUT be as in (2.5). By (2.6) we have

‖XKj −XLj ‖H = ‖
√
S
−1
UT(K(j) − L(j))U

√
S
−1
‖2.

Since imK(j), imL(j) ⊆ imH, Lemma 2.4 implies

‖UT(K(j) − L(j))U‖2 = ‖K(j) − L(j)‖2

and the rest follows as in the proof of Proposition 3.1. �

Remark 3.3. All the inequalities in Proposition 3.1 and Theorem 3.2 are equalities if and only
if σmin(H) = ‖H‖2, i.e., H is a scalar multiple of an orthogonal projection. If H is nonsingular,
then H = αI for some α > 0. If d > 1, then 0 = Hx21,1

= Hx1,x1 = α, a contradiction. On the

other hand, if d = 1, then the (g + 1)× (g + 1) matrix H = αI is indeed a pd Hankel matrix of
order 1. If H is singular, then one can obtain arbitrary orders, for example by taking H = (1)u,v.

Example 3.4. If H is nonsingular, then the ratio between lower and upper bound in Proposition
3.1 and Theorem 3.2 equals the condition number cond(H). Unfortunately it is known (see e.g.
[Tyr94]) that for positive definite Hankel matrices, cond(H) grows exponentially with the order
of H. However, while running some simulations for the case g = 2 we observed the following.

(1) We tested Proposition 3.1. For a random psd Hankel extension K of H we find t ∈ [0, 1]
such that

‖XK1 ‖H = (1− t)‖K
(1)‖2
‖H‖2

+ t
‖K(1)‖2
σmin(H)

.

If H is invertible, then t will likely be close to 0. On the other hand, if the rank of H is
small, then t can get close to 1.

Concretely, we computed the value t (rounded to two decimal places) for 100000
random psd Hankel matrices H of order 3, whose most frequent rank was 3, and their psd
Hankel extensions K of order 4. The distribution of the values t is presented in Figure 1.
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Figure 1. Distribution of values t for
Proposition 3.1. We can see that out
of 100000 random Hankel extensions more
than 80 % have value t at most 0.05, which
suggests that the inequality from Proposi-
tion 3.1 is left tight.

Figure 2. Mean values (red circles) and
standard deviations (upper and lower black
plots) for tn from Example 3.4, part (2), i.e.,
each red circle represents the mean value of
2000 values of tn (100 random extensions
and 20 values of n ∈ {10, 20, . . . , 190, 200}+
200k, k = 0, 1, 2, . . . , 49).
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(2) In a similar way we tested Theorem 3.2. After choosing a random psd Hankel extension
K of H and a small ε = 0.001, we generated random Hankel extensions Kn (n ∈ N) of
H satisfying ‖K −Kn‖ ≤ ε

n . Then we determined tn ∈ [0, 1] such that

‖XK1 −X
Kn
1 ‖H = (1− tn)

‖K(1) −K(1)
n ‖2

‖H‖2
+ tn
‖K(1) −K(1)

n ‖2
σmin(H)

.

We repeat this for 100 random Hankel matrices H and for n = 10, 20, ..., 10000. We
have observed that the minimum value of tn was 0.12562 and the maximum value of tn
was 0.85242. We have computed for each k = 0, 1, 2 . . . , 49 the mean value and standard
deviation of all values of tn for n ∈ {10, 20, . . . , 190, 200} + 200k, for all 100 random
extensions. These 50 mean values and standard deviations are plotted in Figure 2.

In summary, the inequality of Proposition 3.1 is generically left tight (with sporadic values
close to the upper bound), while the inequality of Theorem 3.2 is more balanced.

We next present the sensitivity of the values of a perturbed Riesz functional applied to a
polynomial. This is of particular importance for polynomial optimization. In fact, this enables
us to estimate how far from an optimum we are when applying the GNS construction to a Riesz
functional that is only approximately optimal.

Corollary 3.5. Let K and L be psd Hankel extensions of H and set c =
maxj{‖K(j)‖2,‖L(j)‖2}

σmin(H) .

For every f ∈ R<x> we have

(3.1) ‖f(XK)− f(XL)‖H ≤
errf (c)

σmin(H)
‖K − L‖2.

Proof. After reducing to the case f = w ∈ <x> we prove (3.1) by induction on |w| using
Theorem 3.2 and Proposition 3.1. �

Corollary 3.6. Let K and L be psd Hankel extensions of H and set c =
maxj{‖K(j)‖2,‖L(j)‖2}

σmin(H) .

If f ∈ R<x> is written in the form

f = f0 +
∑
|w|>0

pwwqw, deg f0 ≤ 2d, deg pw = deg qw = d,

then

(3.2)
∣∣〈f(XK)[1], [1]〉H − 〈f(XL)[1], [1]〉H

∣∣ ≤ ∑w |w|c|w|−1‖[pw]‖H‖[qw]‖H
σmin(H)

‖K − L‖2.

Proof. If f0 =
∑

i hiki and deg hi, ki ≤ d, then

〈f0(XK)[1], [1]〉H =
∑
i

〈[ki], [hT
i ]〉 = 〈f0(XL)[1], [1]〉H .

The rest now follows from the Cauchy-Schwarz inequality and Corollary 3.5. �

Example 3.7. In this example we illustrate the tightness of the inequality (3.2) of Corollary 3.6.
We generated 100 random polynomials that were sums of hermitian squares of degree 2d0. For
each polynomial we computed the psd Hankel matrix H of order d0 = 1, which is an optimum
of the dual problem (1.4) (or see (Eigd0DSDP) in [BKP16, p. 65]). For each H we computed 10
psd Hankel extensions of order d1, which was either d0 + 1 = 2 or d0 + 2 = 3, by solving a

randomized SDP (inspired by Nie’s method [Nie14]) (Constr-Eig
(d1)
RAND) from [BKP16, p. 72];

in this SDP we took the set of empty constraints, which means that we computed (Eigd0DSDP)
with a random positive definite objective function while forcing the submatrix corresponding to
words of length ≤ d0 to be equal to H. Then we computed for each pair K,L of psd Hankel
extensions and for each word f = uwv ∈ R<x>2d1\R<x>2d0 (note that |u| = |v| = d0) several
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d0 = 1, d1 = 2, n = 108,000

LHS RHS errF ‖K − L‖2 |RHS− LHS| errF−Quot

median 2.5351e-11 9.6568e-10 5.9642e-02 1.6718e-08 7.0712e-10 9.953

Q1 9.0183e-13 8.9515e-11 1.2765e-02 5.6846e-09 6.2850e-11 2.898

Q3 1.8407e-09 1.8909e-08 2.3409e-01 8.5911e-08 1.0987e-08 15.460

average 2.0521e-05 4.0828e-04 4.9723e-01 9.1715e-05 3.8775e-04 10.420

∆ 5.0823e-02 3.3379e-01 2.3638e+01 1.4121e-02 3.3390e-01 23.560

st. dev. 5.1253e-04 7.7914e-03 1.7760e+00 8.1159e-04 7.5582e-03 7.97

d0 = 1, d1 = 3, n = 540,000

LHS RHS errF ‖K − L‖2 |RHS− LHS| errF−Quot

median 2.9215e-12 6.1935e-10 4.7106e-02 1.4594e-08 6.0173e-10 13.32

Q1 3.0391e-14 2.1174e-11 3.3607e-03 5.5781e-09 2.0627e-11 1.84

Q3 9.4635e-10 1.0773e-07 4.9995e-01 2.4627e-07 1.0162e-07 78.62

eaverage 7.9328e-04 3.9437e+01 3.0811e+01 3.9607e-02 3.9436e+01 215.30

∆ 9.7981e+00 6.6693e+04 6.7564e+03 9.8712e+00 6.6693e+04 6756.00

st. dev. 4.2421e-02 1.1710e+03 2.8765e+02 4.7148e-01 1.1710e+03 740.68

Table 1. Numerical results for LHS, RHS, errF, ‖K − L‖2, |RHS − LHS| and errF − Quot,
obtained by computing 100 psd Hankel matrices of order d0 = 1 which were related to random
polynomials of degree 2. For each Hankel matrix we computed 10 psd Hankel extensions of
order 2 (the upper half of the table) and 10 psd Hankel extensions of order 3 (the lower part of
the table). We evaluated (3.2) for each Hankel matrix, for each pair of extensions and for each
monomial f of length 3,4 (the upper part of the table) and of lengths 3, . . . , 6 (the lower part
of the table). For each of the quantities presented in this table we computed the median, the
first and the third quartile, the average, the maximum difference in the data and the standard
deviation. We can see in both parts of the table that the inequality (3.2) is in most cases very
tight; the last two columns contain statistics about the difference |RHS − LHS| (we take the
absolute value since in some cases this difference is slightly negative for numerical reasons, for
example the minimum of RHS− LHS is −2.671 · 10−6) and errF−Quot. The third quartile of
|RHS − LHS| for the lower part of the table is 1.0162 · 10−7, which means that 75 % of these
differences are below this value. The last column and the errF column can not be compared
since the last column was computed over a much smaller set, as described in the main text.

parts of (3.2):

LHS =
∣∣〈f(XK)[1], [1]〉H − 〈f(XL)[1], [1]〉H

∣∣(3.3)

RHS =
|w|c|w|−1

√
Hu,u

√
Hv,v

σmin(H)
‖K − L‖2(3.4)

errF =
|w|c|w|−1

√
Hu,u

√
Hv,v

σmin(H)
(3.5)

Quot =

∣∣〈f(XK)[1], [1]〉H − 〈f(XL)[1], [1]〉H
∣∣

‖K − L‖2
(3.6)

Here we used the fact that ‖w‖H =
√
Hw,w for every w ∈ <x>d0 . Note that RHS = errF ·

‖K − L‖2 and Quot = LHS/‖K − L‖2 ≤ errF. We point out that comparing Quot to errF
needs special attention since there are many quadruples (f,H,K,L) such that RHS − LHS is
very small (less than 10−10), in some cases even slightly negative (e.g. around −10−15) due to
numerical errors. In these situations also the value ‖K − L‖2 is very small, even smaller than
RHS − LHS. When we divide these two values the result might get big, even very negative.
Therefore we evaluated Quot and compared it with errF only for quadruples (f,H,K,L) where
RHS− LHS > 0 and ‖K − L‖2 > 10−5, since the threshold for selecting σmin(H) was 10−5.

We report results in Table 1 and depict them in Figures 3–4.
We additionally evaluated the inequality (3.2) for all generated psd Hankel matrices of order

d0 = 1 and their extensions of order d1 = 2, d1 = 3, respectively, as described above, with
monomials f of degree 2d1 + 1, 2d1 + 2, to see if the distribution of the difference |RHS− LHS|
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Figure 3. Line plots for |RHS − LHS| demonstrate that the inequality (3.2) is in most cases
very tight; in 75 % of random examples it is below 1.0162e − 07. The left plot shows the
differences |RHS − LHS| separately for monomials f of length 3 and 4, while the right plot
shows the differences for monomials f of length 3,4 and 5,6.
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d1 = 2 with monomials f of degree 3, 4 (red plot) and for d1 = 3 with monomials f of degree
3, . . . , 6 (blue plot). We removed all values where RHS–LHS was negative or where ‖K − L‖ <
10−5.

changes. In Figure 5 we show that the distribution of the differences does not change signifi-
cantly, i.e., for a very large proportion of the cases the difference |RHS−LHS| is very small and
for a very small proportion it exceeds the value 100.

4. Robustness of the GNS construction with constraints

This section gives a robustness analysis of the GNS construction with constraints. Our main
result, Theorem 4.1, quantifies how much constraints can be violated when performing a GNS
construction on non-flat data. That is, given psd Hankel extensions K and L of H with L being
flat, we bound the constraints violation when applying a GNS construction on K in terms of
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Figure 5. Line plots for |RHS−LHS| demonstrate that the inequality (3.2) remains very tight
even if we consider f with degree larger than the order of the extension.

the norm of K − L. As a consequence we obtain a sufficient local condition for nonexistence
of flat extensions in Corollary 4.2. In Subsection 4.2 we strengthen our robustness analysis of
the GNS construction with constraints for almost flat matrices. Here a Hankel extension K of
H is almost flat if K is close to K[, the canonical flat (possibly non-Hankel) extension of H

determined by K; see Subsection 4.2 for the definition of K[. The advantage of this approach
is that the error estimates are derived solely from K without assuming that there is an actual
flat Hankel matrix near K. Finally, in Subsection 4.4 we interpret our results for NCPOP.

4.1. Near flat extensions. Let H be a psd Hankel matrix of order d, s ∈ R<x>2δ a symmetric
nc polynomial and let K be a psd Hankel extension of H of order d+ δ. Write

(4.1) s =
∑
|u|,|v|≤δ

αu,vuv

and define the localizing matrix

(4.2) K⇑s =

 ∑
|u|,|v|≤δ

αu,vKuTu′,vv′


u′,v′

indexed by u′, v′ ∈ R<x>d. Observe that K⇑s depends only on s and not on the decomposition

(4.1) by the Hankel property of K. Also, K⇑s is symmetric because s is symmetric. Note that

K⇑s is psd if and only if

(4.3)
∑
|u|,|v|≤δ

αu,v〈K # –vp,
#    –

uTp〉2 ≥ 0

holds for all p ∈ R<x>d. If K is a flat Hankel extension of H, then K⇑s is psd if and only if
s(XK) is psd; see e.g. [BKP16, Theorem 1.69].

For a symmetric matrix S let λmin(S) be its smallest eigenvalue.

Theorem 4.1. Let s ∈ R<x>2δ be a symmetric polynomial and let c1 be the sum of absolute
values of non-constant coefficients in s. Let K be a psd Hankel extension of H of order d + δ

such that K⇑s is psd. Furthermore suppose that L is a flat psd Hankel extension of H of order
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d+ δ. If c =
maxj{‖K(j)‖2,‖L(j)‖2}

σmin(H) , then

λmin

(
s(XK)

)
≥
λmin

(
K⇑s
)

‖H‖2
− ‖K − L‖2

c1 + errs(c)

σmin(H)
.

Proof. Let p ∈ (kerH)⊥. By Corollary 3.5 we have∣∣ 〈(s(XK)− s(XL))[p], [p]
〉
H

∣∣ ≤ errs(c)

σmin(H)
‖K − L‖2〈[p], [p]〉H .

By the flatness of L, (4.3) and (2.3) we have

〈s(XL)[p], [p]〉H =
∑
|u|,|v|≤δ

αu,v〈v(XL)[p], uT(XL)[p]〉H

=
∑
|u|,|v|≤δ

αu,v〈L # –vp,
#    –

uTp〉2

= 〈K⇑s #–p , #–p 〉2 +
∑

|u|,|v|≤δ, uv 6=1

αu,v〈(L−K) # –vp,
#    –

uTp〉2

≥ λmin

(
K⇑s

)
‖ #–p ‖22 − ‖K − L‖2c1‖ #–p ‖22

≥

λmin

(
K⇑s
)

‖H‖2
− c1

σmin(H)
‖K − L‖2

 〈[p], [p]〉H .
Hence

〈s(XK)[p], [p]〉H = 〈s(XL)[p], [p]〉H + 〈(s(XK)− s(XL))[p], [p]〉H

≥

λmin

(
K⇑s
)

‖H‖2
− c1 + errs(c)

σmin(H)
‖K − L‖2

 〈[p], [p]〉H . �

Corollary 4.2. Let K be a psd Hankel extension of H of order d + δ and s a symmetric

polynomial of degree at most 2δ. If K⇑s is psd and

λmin

(
K⇑s
)

‖H‖2
> λmin

(
s(XK)

)
,

then there exists a neighborhood of K not containing any flat psd Hankel extension of H.

Proof. Immediate consequence of Theorem 4.1. �

4.2. Almost flat extensions. Let H be a psd Hankel matrix of order d and let

K =

(
H B
BT C

)
be a Hankel extension of H of order d + δ. As in Lemma 2.4 we see that kerH ⊆ kerBT, so
there exists a matrix W such that B = HW . Let

K[ =

(
H B
BT W THW

)
.

Note that K[ is psd and rkK[ = rkH by

K[ =

(
I 0
0 W T

)((
1 1
1 1

)
⊗H

)(
I 0
0 W

)
.

In general, K[ does not satisfy the Hankel property (2.1). However, in this subsection we

show that ‖K −K[‖2 can be used to estimate violation of constraints when performing a GNS
construction with non-flat Hankel extensions.
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Throughout the rest of the subsection we assume that H is invertible, i.e., H = R<x>d.
Then σmin(H) = λmin(H) = ‖H−1‖−1

2 . From (2.6) we see that the matrix representing XKj with

respect to the standard word basis of H equals H−1K(j).
Fix j ∈ {1, . . . , g}. For p ∈ R<x>d let p• ∈ R<x>d be such that [p•] = XKj [p]; hence

(4.4) #–p• = H−1K(j) #–p .

Lemma 4.3. Let K be a psd Hankel extension of H of order d+ δ. Denote c =
maxj{‖K(j)‖2}

σmin(H) .

If p, q ∈ R<x>d and w ∈ <x>δ, then

(1) ‖ #–p•‖2 ≤ ‖K(j)‖2
σmin(H)‖

#–p ‖2;

(2) K[ #   –xjp = K #–p• and ‖K( #–p• − #   –xjp)‖ ≤ ‖K −K[‖2‖ #–p ‖2;

(3) |〈w(XK)[p], [q]〉H − 〈K #  –wp, #–q 〉2| ≤ ‖K −K[‖2‖ #–p ‖2‖ #–q ‖2
∑|w|−1

i=0 ci.

Proof. (1) is clear by (4.4).
(2) If deg p < d, then p• = xjp, so we can assume deg p = d. If

K =

(
H B
BT C

)
with B = HW , then

H #–p• = H(H−1K(j) #–p ) = K(j) #–p = B #   –xjp,

BT #–p• = W TH #–p• = W TB #   –xjp = (W THW ) #   –xjp

and therefore

K[ #   –xjp−K #–p• =

(
B #   –xjp

W THW #   –xjp

)
−
(
H #–p•
BT #–p•

)
= 0

and

K( #   –xjp− #–p•) =

(
B #   –xjp
C #   –xjp

)
−
(
H #–p•
BT #–p•

)
=

(
0

C −W THW

)
#   –xjp.

(3) We prove this claim by induction on |w|, with the basis case w = 1 being obvious. For
1 ≤ |w| < δ let r ∈ R<x>d be such that [r] = w(XK)[p]. Then

〈XKj w(XK)[p], [q]〉H − 〈K #        –xjwp,
#–q 〉2 = 〈K #   –xjr,

#–q 〉2 − 〈K #        –xjwp,
#–q 〉2

= 〈 #–r − #  –wp,K #   –xjq〉2
= 〈 #–r − #  –wp,K[ #   –xjq〉2 + 〈 #–r − #  –wp, (K −K[) #   –xjq〉2.

(4.5)

Firstly,

(4.6) |〈 #–r − #  –wp, (K −K[) #   –xjq〉2| = |〈 #  –wp, (K −K[) #   –xjq〉2| ≤ ‖K −K[‖2‖ #–p ‖2‖ #–q ‖2
by (2). Secondly,

〈 #–r − #  –wp,K[ #   –xjq〉2 = 〈 #–r − #  –wp,K #–q•〉2
= 〈K #–r , #–q•〉2 − 〈K #  –wp, #–q•〉2
= 〈w(XK)[p], [q•]〉H − 〈K #  –wp, #–q•〉2

and hence

|〈 #–r − #  –wp,K[ #   –xjq〉2| ≤ ‖K −K[‖2‖ #–p ‖2‖ #–q•‖2
|w|−1∑
i=0

ci

≤ ‖K −K[‖2‖ #–p ‖2‖ #–q ‖2
|w|∑
i=1

ci

(4.7)

by the induction hypothesis and (1). Therefore (3) follows by (4.5), (4.6) and (4.7). �
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Lemma 4.4. Let K be a psd Hankel extension of H of order d + δ. Denote c =
maxj{‖K(j)‖2}

σmin(H)

and suppose c ≥ 1. Let w ∈ <x>δ \ {1}, p, r ∈ R<x>d be such that [r] = w(XK)[p]. Then

‖K( #–r − #  –wp)‖2 ≤ (3 + (|w| − 1)c|w|−1)‖K −K[‖2‖ #–p ‖2.

Proof. Since K[ is flat we have

max
q∈R<x>d+δ, ‖ #–q ‖2=1

〈K[( #–r − #  –wp), #–q 〉2 = max
q∈R<x>d, ‖ #–q ‖2=1

〈K[( #–r − #  –wp), #–q 〉2.

Hence there exists q0 ∈ R<x>d such that ‖ #–q0‖2 = 1 and

〈K[( #–r − #  –wp), #–q0〉2 = ‖K[( #–r − #  –wp)‖2.

Therefore

‖K( #–r − #  –wp)‖2 ≤ ‖(K −K[)( #–r − #  –wp)‖2 + ‖K[( #–r − #  –wp)‖2
= ‖(K −K[) #  –wp‖2 + 〈K[( #–r − #  –wp), #–q0〉2
= ‖(K −K[) #  –wp‖2 + 〈(K[ −K)( #–r − #  –wp), #–q0〉2 + 〈K( #–r − #  –wp), #–q0〉2
= ‖(K −K[) #  –wp‖2 − 〈(K[ −K) #  –wp, #–q0〉2 + 〈[r], [q0]〉H − 〈K #  –wp, #–q0〉2

≤ 2‖K −K[‖2‖ #–p ‖2 + ‖K −K[‖2‖ #–p ‖2
|w|−1∑
i=0

ci

≤ ‖K −K[‖2‖ #–p ‖2(3 + (|w| − 1)c|w|−1)

by Lemma 4.3. �

Lemma 4.5. Let K be a psd Hankel extension of H of order d + δ. Denote c =
maxj{‖K(j)‖2}

σmin(H)

and suppose c ≥ 1. If w1, w2 ∈ <x>δ and p ∈ R<x>d, then

|〈w1(XK)[p], w2(XK)[p]〉H − 〈K #    –w1p,
#    –w2p〉2| ≤M‖K −K[‖2‖ #–p ‖22,

where

M = 3(c|w1| + c|w2|) + (|w1|+ |w2| − 2)c|w1|+|w2|−1.

Proof. Let ri ∈ R<x>d be such that [ri] = wi(XK)[p]. Then

|〈K #–r1,
#–r2〉2 − 〈K #    –w1p,

#    –w2p〉2|
≤|〈K #–r1,

#–r2 − #    –w2p〉2 + |〈K( #–r1 − #    –w1p),
#    –w2p〉2|

≤(3 + (|w2| − 1)c|w2|−1)‖K −K[‖2‖ #–r1‖2‖ #–p ‖2
+ (3 + (|w1| − 1)c|w1|−1)‖K −K[‖2‖ #–r2‖2‖ #–p ‖2
≤((3 + (|w2| − 1)c|w2|−1)c|w1| + (3 + (|w1| − 1)c|w1|−1)c|w2|)‖K −K[‖2‖ #–p ‖22. �

Let s ∈ R<x>2δ. With respect to the decomposition

s = `+
∑

1≤|u|,|v|≤δ

αu,vuv,

where ` is an affine linear polynomial, let

M(c) =
∑

1≤|u|,|v|≤δ

|αu,v|(3(c|u| + c|v|) + (|u|+ |v| − 2)c|u|+|v|−1).

Theorem 4.6. Let H be invertible and let K be a psd Hankel extension of H of order d + δ

such that K⇑s is psd. Denote c =
maxj{‖K(j)‖2}

σmin(H) and suppose c ≥ 1. Then

(4.8) λmin

(
s(XK)

)
≥
λmin

(
K⇑s
)

‖H‖2
− M(c)

σmin(H)
‖K −K[‖2.
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Proof. Similarly as in the proof of Theorems 4.1 and 4.9 we see that Lemma 4.5 implies

〈s(XK)[p], [p]〉H ≥ 〈K⇑s #–p , #–p 〉2 −M(c)‖K −K[‖2〈 #–p , #–p 〉2. �

Example 4.7 (TV screen). Let us consider d = 1, δ = 2 and s = 1 − x4
1 − x4

2. Note that we
have M(c) = 12c2 + 4c3. Let

H =

1.00 0.00 0.00
0.00 0.75 0.20
0.00 0.20 0.50


be a pd Hankel matrix. We have generated 100 psd Hankel extensions K using the randomized
Algorithm 1 from [KP16] (actually, we repeated Step 3 of this algorithm 100 times without check-
ing the stopping criterion and each solution from Step 3 gave us one K). For each extension K
we computed the left-hand side of (4.8), LHS = λmin

(
s(XK)

)
, the positive part of the right-hand

side of (4.8), RHS1 =
λmin

(
K⇑s

)
‖H‖2 , and the right-hand side of (4.8), RHS =

λmin

(
K⇑s

)
‖H‖2 − M(c)

σmin(H)‖K−
K[‖2. In Table 2 we report the median, the first and the third quartiles, average, ∆ = max−min
and the standard deviation for LHS,RHS1,RHS and for the difference LHS− RHS.

LHS RHS1 RHS LHS− RHS

median 9.4616e-03 2.2707e-09 -2.1419e-06 2.9185e-03
Q1 1.9484e-09 2.3961e-10 -2.3735e+01 1.5954e-06
Q3 7.6957e-02 1.8933e-02 -5.4137e-07 2.3762e+01

average 3.8260e-02 2.1053e-02 -1.1973e+01 1.2011e+01
∆ 1.8648e-01 1.7902e-01 8.3478e+01 8.3390e+01

st. deviation 4.9192e-02 4.2062e-02 2.0090e+01 2.0107e+01

Table 2. Statistical parameters for (4.8): LHS = λmin

(
s(XK)

)
, RHS1 =

λmin(K⇑
s )

‖H‖2
, RHS =

λmin(K⇑
s )

‖H‖2
− M(c)

σmin(H)
‖K−K[‖2 and the difference between the left hand side and the right hand

side of (4.8): LHS−RHS. These numbers were computed on 100 random psd Hankel extensions
K of order 3. We can see from the LHS column that the matrices XK are almost always feasible,
i.e., they satisfy s(XK) � 0 in at least 75 % (actually in 84 %) of the cases. On the other hand,
RHS column reveals that in at least 75 % (actually in 80 %) the right hand side of (4.8) is neg-
ative, but the column LHS−RHS additionally shows that inequality (4.8) is in our opinion still
interesting, since in more than 50 % of the cases the difference LHS−RHS is smaller than 3·10−3.

We decided to plot the differences LHS−RHS on a logarithmic scale in Figure 6a. We provide
two line plots: the red plot represents all 100 random extensions while the blue one corresponds
only to those extensions that are very close to flatness, i.e., have exactly 3 eigenvalues larger
10−5. There were 64 % of such instances.

We can see that the inequality (4.8) is much tighter for the almost flat extensions. Indeed,
some extensions have even 6 eigenvalues larger than 10−5 and therefore deviate a lot from
flatness, leading to a large ‖K −K[‖2 and therefore large difference LHS− RHS.

Example 4.8 (Bent TV screen). Let s = 1 − x2
1 − x4

2, d = 1 and δ = 2. We have M(c) =
6c+ 6c2 + 2c3. As in Example 4.7 we computed 100 psd Hankel extensions of the following pd
Hankel matrix

H =

1.00 0.00 0.00
0.00 0.80 0.20
0.00 0.20 0.30

 .

Results, similar to those from Example 4.7 are reported in Table 3.

4.3. Simple extensions. Let H be a psd Hankel matrix of order d and K its psd Hankel
extension of order d + δ. As already stated, K[ does not satisfy the Hankel property (2.1) in

general. However, if δ = 1, then K[ is Hankel since K is Hankel and the bottom-right block of
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Figure 6. Line plots for differences LHS−RHS related to the inequality (4.8), for Examples 4.7
and 4.8, respectively, in logarithmic scale. The red curve corresponds to all 100 extensions while
the blue curve represents these differences only for the extensions K which have rank equal to
rank H, i.e., have 3 eigenvalues larger than 10−5. We consider these extensions as almost flat.
Both plots depicts that for the almost flat extensions the inequality (4.8) is very tight while the
extensions which deviate significantly from the flatness (some of them have 6 eigenvalues larger
than 10−5) yield also large differences LHS− RHS.

LHS RHS1 RHS LHS− RHS

median 9.5393e-02 7.1877e-10 -4.3748e-06 1.1656e-01
Q1 5.2930e-02 8.3273e-11 -2.7178e+01 5.9633e-02
Q3 1.5633e-01 1.2530e-03 -1.4011e-06 2.7206e+01

average 1.0665e-01 1.0567e-02 -2.4009e+01 2.4115e+01
∆ 2.4746e-01 1.0026e-01 1.9655e+02 1.9666e+02

st. deviation 6.2750e-02 2.2835e-02 4.6298e+01 4.6317e+01
Table 3. Statistical parameters for (4.8): LHS, RHS1, RHS and LHS−RHS, computed on 100
random psd Hankel extensions K of order 3. LHS column shows that the resulting tuples XK
are positive semidefinite in at least 75 % of cases (actually in all 100 cases), while RHS column
is in more than 75 % of the cases negative. The inequality LHS ≥ RHS is rather loose, but in
half of the extensions this difference is smaller than 0.1166. These small values are achieved
only by the extensions that are very close to flatness, i.e., have only 3 eigenvalues larger than
10−5.

K[ corresponds to pairs of words of length d+1. Hence in this case K[ is a flat Hankel extension

of H of order d+ 1. Moreover, we have XKj = XK[

j . Indeed, for every p, q ∈ R<x>d we have

〈XKj [p], [q]〉H = 〈K #   –xjp,
#–q 〉2 = 〈K[ #   –xjp,

#–q 〉2 = 〈XK[

j [p], [q]〉H .

4.3.1. Quadratic polynomial constraints. Let s ∈ R<x>2 and write

s = `+
1

2

∑
j≤j′

αjj′(xjxj′ + xj′xj), c̃1 =
∑
j≤j′
|αjj′ |,

where ` is an affine linear polynomial.

Theorem 4.9. Let K be a psd Hankel extension of H of order d+ 1 such that K⇑s is psd. Then

λmin

(
s(XK)

)
≥
λmin

(
K⇑s
)

‖H‖2
− ‖K −K[‖2

c̃1

σmin(H)
.
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Proof. Let p ∈ (kerH)⊥. Then (4.3) and the flatness of K[ imply

〈s(XK)[p], [p]〉H = 〈`(XK)[p], [p]〉H +
∑
j≤j′

αjj′〈XKj [p],XKj′ [p]〉H

= 〈`(XK)[p], [p]〉H +
∑
j≤j′

αjj′〈XK
[

j [p],XK[

j′ [p]〉H

= 〈K #–

`p, #–p 〉2 +
∑
j≤j′

αjj′〈K[ #   –xjp,
#     –xj′p〉2

= 〈K⇑s #–p , #–p 〉2 +
∑
j≤j′

αjj′〈(K[ −K) #   –xjp,
#     –xj′p〉2

≥ λmin

(
K⇑s

)
‖ #–p ‖22 −

∑
j≤j′
|αjj′ |‖K[ −K‖2‖ #–p ‖22

≥

λmin

(
K⇑s
)

‖H‖2
− c̃1

σmin(H)
‖K −K[‖2

 〈[p], [p]〉H . �

Proposition 4.10 (cf. [HKM12, Proposition 2.5]). Let s = `0−
∑

k≥1 `
T
k`k, where `k are affine

linear polynomials. If K is a psd Hankel extension of H of order d + 1 such that K⇑s is psd,

then (K[)⇑s is psd.

Proof. Since K −K[ is psd, we have

〈(K[)⇑s
#–p , #–p 〉2 = 〈K[ #   –

`0p,
#–p 〉2 −

∑
k≥1

〈K[ #   –

`kp,
#   –

`kp〉2

= 〈K⇑s #–p , #–p 〉2 +
∑
k≥1

〈(K −K[)
#   –

`kp,
#   –

`kp〉2

≥ 0 + 0. �

Remark 4.11. By [HM04’, Theorem 3.1], polynomials s as in Proposition 4.10 are precisely
concave polynomials. Two special cases of Proposition 4.10 (nc ball and nc polydisk) have
already been established in [KP16, Theorem 3.1].

4.4. Noncommutative polynomial optimization. Let Sn denote the space of symmetric
n × n matrices. Let s1, . . . , sh ∈ R<x>2δ be symmetric nc polynomials that generate an
Archimedean quadratic module [BKP16] and consider the corresponding bounded free semi-
algebraic set

S =
⋃
n∈N
{X ∈ Sgn : s1(X) � 0, . . . , sh(X) � 0} .

Let f ∈ R<x> be a symmetric polynomial and suppose we are interested in X0 ∈ S such that

(4.9) f(X0) = f∗ := inf
X∈S

λmin(f(X)).

For every d ≥ deg f let K(d) be a psd Hankel matrix of order d+ δ that is an optimal solution
of the SDP relaxation (1.3) of (4.9) of order d+ δ; see e.g. [PNA10, Subsection 3.2] or [BKP16,
Section 4.3] for terminology and further details. Write

f (d) = 〈K(d)
#–

f ,
#–
1 〉2.

Then there is d0 ∈ N, which can be deduced from si and f , such that the sequence {f (d)}d≥d0
is monotonically increasing [PNA10, Lemma 4]. Moreover, limd f

(d) = f∗ [PNA10, Theorem 1].

Since K(d) is the solution of the SDP relaxation of (4.9), K(d)⇑si is psd for every 1 ≤ i ≤ h.
Now view K(d) as the Hankel extension of H(d), which is its top-left Hankel submatrix of order

d. Assume that d ≥ d0 is such that K(d)⇑si is pd for 1 ≤ i ≤ h and K(d) is close to being flat
in the sense that there is ε� 1 such that there exists a flat psd Hankel extension L of H(d) of

order d + δ with ‖K(d) − L‖2 ≤ ε, or that H(d) is invertible and ‖K(d) − K(d)[‖2 ≤ ε. If ε
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is small enough, then si(XK(d)) is psd by Theorem 4.9 or Theorem 4.6, and hence XK(d) ∈ S.
Therefore

f (d) = 〈K(d)
#–

f ,
#–
1 〉2 =

〈
f(XK(d))[1], [1]

〉
H(d)

≥ f∗

by the definition of f∗. On the other hand we have f (d) ≤ f∗, so f∗ = f (d) and we conclude
that f∗ is attained at XK(d) with eigenvector [1].

5. Commutative and tracial modifications of the theory

In this section we switch gears and explain how our results on Hankel matrices and polynomial
optimization in the free noncommutative context pertain to the tracial noncommutative setting
and the classical, commutative one.

5.1. Tracial setting. A Hankel matrix H is tracial if

Hu1,v1 = Hu2,v2 ∀uT
1v1

cyc∼ uT
2v2,

where
cyc∼ denotes cyclic equivalence relation [KS08] on <x>. Thus w1

cyc∼ w2 if and only if
w1 = uv and w2 = vu for some u, v ∈ <x>. Equivalently, the word w1 is a cyclic permutation
of w2.

Let H be a psd tracial Hankel matrix of order d and let K be a psd flat tracial Hankel
extension of H of order d + δ. Let A ⊆ EndRH be the R-subalgebra generated by XKj . Since

XKj are symmetric, A inherits the involution from EndRH. Let δ′ ∈ N be such that A is spanned

by w(XK) for w ∈ <x>d+δ′ . If δ′ > δ, then by [BK12, Theorem 3.18] there exists a unique

psd flat tracial Hankel extension K ′ of K of order d+ δ′. Since XK′ = XK by flatness, we can
without loss of generality assume δ′ = δ. Because H = K, we can define a R-linear functional

ϕK : A → R, f(XK) 7→ 〈f(XK)[1], [1]〉H .

By flatness and the tracial property we have

〈(f1f2)(XK)[1], [1]〉H = 〈f2(XK)[1], fT
1 (XK)[1]〉H

= 〈[f2], [fT
1 ]〉H

= 〈[f1], [fT
2 ]〉H

= 〈f1(XK)[1], fT
2 (XK)[1]〉H

= 〈(f2f1)(XK)[1], [1]〉H
for all f1, f2 ∈ R<x>d+δ. Consequently ϕK is a tracial state on A [BK12, Definition 3.9].
That is, ϕK is R-linear functional with ϕK(1) = 1 and

ϕK(aT) = ϕK(a), ϕK(ab) = ϕK(ba)

for all a, b ∈ A. If A = EndRH, then ϕK = Tr by [BK12, Lemma 3.11], where Tr is the
normalized trace on EndRH ∼= MdimH(R). In general, ϕK is a convex combination of trace
evaluations [BK12, Theorem 3.14].

Proposition 5.1. Let L be a psd flat tracial Hankel extension of H of order d+ δ such that XLj
generate EndRH. If K is a psd Hankel extension of H of order d + δ such that XKj generate
EndRH, then ∣∣〈K #–

f ,
#–
1 〉2 − Tr f(XK)

∣∣ ≤ 2
errf (c)

σmin(H)
‖K − L‖2

for all f ∈ R<x>d+δ.

Proof. Since L is flat we have 〈f(XL)[1], [1]〉H = Tr f(XL) for all f ∈ R<x>. For every n × n
matrix A we have |TrA| ≤ ‖A‖2. Since∣∣〈K #–

f ,
#–
1 〉2 − Tr f(XK)

∣∣ ≤ ∣∣〈f(XK)[1], [1]〉H − 〈f(XL)[1], [1]〉H
∣∣+
∣∣Tr f(XK)− Tr f(XL)

∣∣
for all f ∈ R<x>d+δ, the statement follows by Corollary 3.5. �
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Remark 5.2. It is not hard to see that the set of all psd Hankel extensions of H, which yield
operators that generate EndRH, is Zariski open in HExtH,δ viewed as an affine space, therefore
open and dense with respect to the Euclidean topology. Consequently, if K is a psd Hankel
extension of H such that XKj generate EndRH and ‖K − L‖2 is small enough for some psd

Hankel extension L of H, then XLj also generate EndRH.

5.1.1. Trace polynomial optimization. Let us adopt the discussion of Subsection 4.4 to trace op-
timization [BKP16, Chapter 5]. For symmetric s1, . . . , sh ∈ R<x>2δ generating an Archimedean
quadratic module let

S =
⋃
n∈N
{X ∈ Sgn : s1(X) � 0, . . . , sh(X) � 0} .

Given a symmetric polynomial f ∈ R<x> we are interested in X0 ∈ S such that

(5.1) Tr f(X0) = Trmin f := inf
X∈S

Tr f(X).

For d ≥ deg f let K(d) be a psd tracial Hankel matrix of order d+δ that is an optimal solution
of the SDP relaxation [KP16] of (5.1) of order d+ δ, and write

f (d) = 〈K(d)
#–

f ,
#–
1 〉2.

As in Subsection 4.4 we have f (d) ≤ Trmin f for d ≥ d0.
Assume that for some d ≥ d0 we have

(1) K(d)⇑si is pd for all i;

(2) XK(d)
j generate EndRH(d);

(3) K(d) is close to being flat, i.e., there exists a flat psd tracial Hankel extension L of H(d)
of order d+ δ with ‖K(d)− L‖2 � 1.

If ‖K(d)−L‖2 is small enough, then si(XK(d)) is psd by Theorem 4.6 and hence XK(d) ∈ S. Thus

f (d) ≤ Trmin f ≤ Tr f(XK(d)).

Moreover, the assumptions of Proposition 5.1 are satisfied by Remark 5.2 if ‖K(d)−L‖2 is small

enough, so Tr f(XK(d))− f (d) grows (at most) as ‖K(d)− L‖2.
Note that this conclusion is weaker than the one of Subsection 4.4. While the Hankel prop-

erty of K ensures 〈K #–

f ,
#–
1 〉2 = 〈f(XK)[1], [1]〉H in the freely noncommutative context, the

tracial Hankel property of K and assuming XKj generate EndRH(d) do not suffice to conclude

〈K #–

f ,
#–
1 〉2 = Tr f(XK) in general.

5.2. Commutative setting. Now let y = (y1, . . . , yg) be a tuple of independent commuting
variables and [y] the free commutative monoid generated by them. A commutative Hankel
matrix of order d [Las01] is a symmetric matrix H indexed by elements in [y] of degree at
most d that satisfies

Hu1,v1 = Hu2,v2 ∀u1v1 = u2v2.

If H is psd, we obtain a scalar product on R[y]d/ kerH. Analogously as in the noncommutative
case let K be a psd commutative Hankel extension of H of order d+ δ and consider the finite-
dimensional Hilbert spaces

H = R[y]d/ kerH ⊆ R[y]d+δ/ kerK = K.

We define operators

YKj : H → H, [p] 7→ [πK(yjp)],

where πK : K → H is the orthogonal projection. Again, these are well-defined and symmetric,
can be constructed without any flatness assumption and can be easily determined from the sin-
gular value decomposition of H and the submatrices of K analogously as in Subsection 2.2.1 (see
Subsection 5.2.4 below for a worked example). However, the operators YKj do not necessarily
commute.
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If K is a flat extension of H, then H = K and the operators YKj do commute: indeed, for

every p, q ∈ R[y]d we have

〈YKi YKj [p], [q]〉H = 〈[yjp], [yiq]〉H = 〈K #  –yiq,
#   –yjp〉2

= 〈K #   –yjq,
#  –yip〉2 = 〈[yip], [yjq]〉H = 〈YKj YKi [p], [q]〉H .

Since the self-adjoint operators YKj on a finite-dimensional Hilbert space commute, they can be
simultaneously diagonalized and thus lead to tuples of points in Rg. In the non-flat case, where
these operators do not commute, finding these points is trickier. We present a remedy in the
near flat case in Subsection 5.2.3.

5.2.1. Noncommutative lift. Let π : R<x>→ R[y] be the canonical homomorphism defined by
π(xj) = yj , the so-called commutative collapse. If H is a commutative Hankel matrix of order
d, let Hnc be the (noncommutative) Hankel matrix of order d defined by

Hnc
u,v = Hπ(u),π(v).

Observe that

(5.2) 〈Hnc #–p , #–q 〉2 = 〈H
#      –

π(p),
#      –

π(q)〉2
for all p, q ∈ R<x>d, which implies the following.

Lemma 5.3. If H is a commutative Hankel matrix, then the eigenvalues of H and Hnc coincide.

In particular, H is psd if and only if Hnc is psd, and in this case π induces an isomorphism
of Hilbert spaces

(5.3) π̃ : R<x>d/ kerHnc → R[y]d/ kerH.

If K is a commutative Hankel extension of H of order d+ δ, then Knc is a Hankel extension of
Hnc of order d+ δ. Moreover, using (5.2) it is easy to derive the following.

Proposition 5.4. If the setup is as above, then π̃ ◦ XKnc

j = YKj ◦ π̃ holds for j = 1, . . . , g.

5.2.2. Approximately flat GNS. We can quantify how far the self-adjoint operators YKj are from
commuting by using a flat extension L of H.

Proposition 5.5. Let K be a psd commutative Hankel extension of H. If L is a psd flat
commutative Hankel extension of H, then

‖YKi YKj − YKj YKi ‖H ≤
2(‖K‖2 + ‖L‖2)

σmin(H)2
‖K − L‖2.

Proof. Since L is flat, we have YLi YLj = YLj YLi . On the other hand, the bounds of Proposition
3.1 and Theorem 3.2 also hold for commutative Hankel extensions by Proposition 5.4. The rest
now follows by

‖YKi YKj − YKj YKi ‖H =
∥∥(YLi + (YKi − YLi )

)
YKj − YKj

(
YLi + (YKi − YLi )

)∥∥
H

≤ ‖YLi YKj − YKj YLi ‖H + 2‖YKi − YLi ‖H‖YKj ‖H
=
∥∥YLi (YLj + (YKj − YLj )

)
−
(
YLj + (YKj − YLj )

)
YLi
∥∥
H

+ 2‖YKi − YLi ‖H‖YKj ‖H
≤ 2‖YKj − YLj ‖H‖YLi ‖H + 2‖YKi − YLi ‖H‖YKj ‖H . �

5.2.3. Near commuting matrices. If X1, . . . , Xg are hermitian matrices such that the commu-
tators XiXj −XjXi are small (with respect to some norm), then by [LT70, PS79, Lin97, Gle]
there exist commuting hermitian matrices Y1, . . . , Yg such that Xj − Yj are small. Quantitative
versions of these results are given in [Has09, Theorem 1] (g = 2) and [FK, Theorem 3] (g ≥ 3).
That is, their statements are of the following form. If Xj are hermitian and ‖XiXj−XjXi‖ ≤ δ,
then there exist commuting complex hermitian Yj such that ‖Xj − Yj‖ < ε(δ), where the func-
tion ε(t) also depends on the norm ‖ · ‖ we are considering, and the dimension of the space if
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g ≥ 3. However, by carefully reading the proofs of [Has09, Theorem 1] and [FK, Theorem 3] one
observes that their real versions also hold. Namely, if Xj are symmetric and ‖XiXj−XjXi‖ ≤ δ,
then there exists commuting symmetric Yj such that ‖Xj − Yj‖ < ε(δ). Indeed, in the case of
[FK, Theorem 3], their proof applies to real matrices without a change. On the other hand,
the proof of [Has09, Theorem 1] proceeds in several steps involving constructions by integration
and Lin’s theorem [Lin97]. However, it is easy to check that the outputs of integrals appearing
in the proof are real if the input information (matrices Xj) is real, and a real version of Lin’s
theorem holds by [LS16, Theorem 1].

If an extension K of a commutative Hankel matrix H is close to being flat, the norms of
commutators of operators YKj are small by Proposition 5.5. Therefore the previously men-
tioned results apply and there exist commuting symmetric matrices Y1, . . . , Yg that are close to
YK1 , . . . ,YKg . If g = 2, then there is a dimension-independent bound on the operator norm of

YKj − Yj [Lin97] and we obtain the following corollary.

Corollary 5.6. For g = 2 let K be a psd commutative Hankel extension of H and assume L is
a psd flat commutative Hankel extension of H. If

∆ =
2(‖K‖2 + ‖L‖2)

‖K‖22
‖K − L‖2,

then there exist commuting symmetric matrices Y1, Y2 on H such that

‖YKj − Yj‖H ≤
‖K‖

σmin(H)
∆1/5ε(∆),

where the function ε(t) grows slower than any power of t and is independent of dimH.

Proof. Using estimates ‖YKj ‖H ≤
‖K‖2

σmin(H) the statement follows by Proposition 5.5 and the real

version of [Has09, Theorem 1]. �

If g ≥ 3, the bounds cannot be chosen independently of dimension by [Voi83, Dav85]. However,
by considering the normalized Hilbert-Schmidt norm we obtain the following.

Corollary 5.7. For g ≥ 3 let K be a psd commutative Hankel extension of H and assume L is
a psd flat commutative Hankel extension of H. If

‖K − L‖2 ≤
1

162·4g−2

‖K‖22
2(‖K‖2 + ‖L‖2)

and

∆ =
2(‖K‖2 + ‖L‖2)

‖K‖22
‖K − L‖2,

then there exist commuting symmetric matrices Y1, . . . , Yg on H such that

‖YKj − Yj‖H ≤ 5
√

dimH ‖K‖2
σmin(H)

∆1/4g−1
.

Proof. We apply Proposition 5.5 and the real version of [FK, Theorem 3] together with the

estimates ‖YKj ‖H ≤
‖K‖2

σmin(H) . The factor
√

dimH appears because we replaced the Hilbert-

Schmidt norm with the operator norm ‖ · ‖H . �

5.2.4. Solving commutative moment problems with nc techniques. Let g = 2 and consider the fol-
lowing commutative Hankel matrix of order d = 2 that is a modification of [CF02, Example 1.13]:

H =


1 1 1 2 0 3
1 2 0 4 0 0
1 0 3 0 0 9
2 4 0 9 0 0
0 0 0 0 0 0
3 0 9 0 0 27 + ε

 .
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For ε > 0, the matrix H is psd of rank 5 and does not admit a flat extension [CF02, Theorem
4.1]. We shall explain how the non-flat GNS construction together with the theory of near
commuting matrices can be used to approximate the corresponding Riesz functional ϕH (and
thus H itself) with a convex combination of Dirac measures. That is, we approximately solve
the truncated moment problem (see e.g. [CF96]) associated to H.

Let

K =



1 1 1 2 0 3 4 0 0 9
1 2 0 4 0 0 9 0 0 0
1 0 3 0 0 9 0 0 0 27 + ε
2 4 0 9 0 0 18 0 0 0
0 0 0 0 0 0 0 0 0 0
3 0 9 0 0 27 + ε 0 0 0 81
4 9 0 18 0 0 42 + ε 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
9 0 27 + ε 0 0 81 0 0 0 243 + 28ε+ ε2


be a psd Hankel extension of H. For ε = 0.001 we perform a GNS construction. Letting
USUT = H be a singular value decomposition, U is an isometry (i.e., UTU = I) and S is a 5× 5

pd diagonal matrix. Then YKj =
√
S
−1
UTK(j)U

√
S
−1

, where K(j) = (Ku,yjv)u,v∈[y]2 , i.e.,

YK1 =


0.00089 −0.04199 −0.00684 0.00878 −0.00002
−0.04199 2.06201 0.16149 −0.55935 0.00252
−0.00684 0.16149 −0.35568 1.41864 −0.00765

0.00878 −0.55935 1.41864 −1.70723 0.00503
−0.00002 0.00252 −0.00765 0.00503 0.00000

 ,

YK2 =


2.99841 0.06282 0.02143 0.01261 −0.03086
0.06282 0.00132 0.00045 0.00027 −0.00116
0.02143 0.00045 0.00017 0.00011 −0.01168
0.01261 0.00027 0.00011 0.00008 −0.01735
−0.03086 −0.00116 −0.01168 −0.01735 −5.99997

 .

The norm of the commutator YK1 YK2 − YK2 YK1 is 0.0275054, so the two matrices are almost
commuting. We diagonalize a random linear combination ρ1YK1 + ρ2YK2 of these two matrices;
OT(ρ1YK1 + ρ2YK2 )O is diagonal for an orthogonal matrix O. Then we discard all off-diagonal
entries of OTYKj O and arrive at

Y1 = diag(−2.66908, 2.14507, 0.00004, 0.00000, 0.52396),

Y2 = diag(0.00001, −0.00009, −5.65386, 3.00003, 0.00008).

Letting v be the first column of OT
√
SUT,

v = (−0.07225, 0.64160, 0.00379, 0.57734, −0.49979)T,

we get

ϕH(f) ≈
∑
i

v2
i f
(
(Y1)ii, (Y2)ii

)
.

The Hankel matrix associated with the right-hand side functional is
1.00000 0.99996 0.99989 1.99990 −0.00007 3.00047
0.99996 1.99990 −0.00007 3.99973 −0.00017 0.00000
0.99989 −0.00007 3.00047 −0.00017 0.00000 8.99754
1.99990 3.99973 −0.00017 8.99931 −0.00038 0.00000
−0.00007 −0.00017 0.00000 −0.00038 0.00000 0.00000

3.00047 0.00000 8.99754 0.00000 0.00000 27.0154


and is close to H (the operator norm of the difference is 0.0148).
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5.2.5. Commutative polynomial optimization. Lastly we discuss some consequences of the pre-
vious approximation results for commutative polynomial optimization. For the rest of the paper
let H be a psd commutative Hankel matrix of order d. Let K a psd commutative Hankel ex-
tension of H of order d+ δ and s ∈ R[y]2δ. Analogously as in Section 4 we define the localizing

matrix of K with respect to s, denoted K⇑s . Let ŝ ∈ R<x>2δ be an arbitrary symmetric nc
polynomial such that π(ŝ) = s. By Proposition 5.4 we have

(5.4) π̃ ◦ ŝ(XKnc
) = ŝ(YK) ◦ π̃.

It is also easy to verify that K⇑s is psd if and only if (Knc)⇑ŝ is psd.

Corollary 5.8. Let s ∈ R[y]2δ and e = 4g−1. Let K be a psd commutative Hankel extension

of H of order d + δ such that K⇑s is psd. Then there exists a constant C > 0 depending
on s, ‖K‖2, σmin(H) (and on d if g ≥ 3) such that the following holds. For every flat psd
commutative Hankel extension L of H of order d+ δ satisfying

(5.5) ‖K − L‖2 ≤ ‖K‖2
(√

1 + 2−(1+2e) − 1
)

if g ≥ 3, there exists a point α ∈ Rg such that

(5.6) s(α) ≥
λmin

(
K⇑s
)

‖H‖2
− C‖K − L‖1/e2 .

Proof. Since ‖L‖2 ≤ ‖K‖2 + ‖K − L‖2, (5.5) ensures that the assumptions of Corollary 5.7 are

met if g ≥ 3. Also, in Corollary 5.6 one can choose ε such that t1/5ε(t) grows slower than t1/4

if g = 2.
Now (5.4), Theorem 4.1 and Lemma 5.3 imply

(5.7) λmin

(
ŝ(YK)

)
= λmin

(
ŝ(XKnc

)
)
≥
λmin

(
K⇑s
)

‖H‖2
− C1‖K − L‖2,

where C1 > 0 is a constant depending on s, ‖K‖2, σmin(H).
Let Y1, . . . , Yk be commuting symmetric matrices from Corollary 5.6 (if g = 2) or Corollary

5.7 (if g ≥ 3). Then

(5.8) ‖ŝ(Y )− ŝ(YK)‖ ≤ C2‖K − L‖1/e2

for some constant C2 depending on s, ‖K‖2, σmin(H) (and dimH if g ≥ 3). Since Yj commute,
we have s(Y ) = ŝ(Y ). Moreover, Yj are jointly orthogonally diagonalizable, so from their
eigenvalues we can make a tuple α ∈ Rg such that s(α) equals the least eigenvalue of s(Y ). The
conclusion now follows by (5.6) and (5.7). �

Now we apply the preceding results to the Lasserre relaxation scheme for commutative POP;
see [Las09, Chapter 5] for a comprehensive explanation. Assume that polynomials s1, . . . , sh ∈
R[y]2δ generate an Archimedean quadratic module and consider the corresponding semialgebraic
set

S = {α ∈ Rg : s1(α) ≥ 0, . . . , sh(α) ≥ 0} .
For f ∈ R[y]d we are interested in α0 ∈ S such that

(5.9) f(α0) = f∗ := min
α∈S

f(α).

Following [Las01, Section 4] or [HL06, Subsection II.C], we can form SDP relaxations of (5.9)
analogously as in Subsection 4.4. Let K(d) be a psd commutative Hankel matrix of order d+ δ

that is an optimal solution of the relaxation of order d + δ. Then K(d)⇑si is psd for every
1 ≤ i ≤ h. If

f (d) = 〈K(d)
#–

f ,
#–
1 〉2,

then by [Las01, Theorem 4.2] or [HL06, Theorem 2.1] there exists d0 ∈ N such that the sequence

{f (d)}d≥d0 is monotonically increasing and limd f
(d) = f∗.
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Assume that d ≥ d0 is such that K(d)⇑si is pd for 1 ≤ i ≤ h and K(d) is close to being flat
in the sense that there exists a flat psd commutative Hankel extension L of H(d) of order d+ δ
with ‖K(d)−L‖2 � 1. If ‖K(d)−L‖2 is small enough, then by Corollary 5.8 there exists α ∈ Rg
such that si(α) ≥ 0 and hence α ∈ S. Therefore

f (d) ≤ f∗ ≤ f(α).

By the proof of Corollary 5.8, f(α)− f (d) grows (at most) as ‖K(d)− L‖1/e2 .

6. Conclusions

In this paper we presented a robustness analysis of the minimizer extraction via the Gelfand-
Naimark-Segal (GNS) construction for polynomial optimization problems. We proved that in

the case of constraint-free NCPOP we can bound the differences XK−XK′ and f(XK)−f(XK′)
in terms of ‖K − K ′‖. In Section 4 we applied the preceding results to constrained NCPOPs
and showed that the almost flat Hankel extensions of given matrix H associated to positive
functionals are also almost feasible and we have quantified the deviation from feasibility in
terms of deviation from flatness. We additionally explained how our results pertain to the
classical, commutative POP, and to the tracial NCPOP. We also provided extensive numerical
examples that support the theoretical results and show that the robustness analysis is often very
tight.

When we are solving examples of POP and NCPOP using numerical methods we never end
up with solutions of the dual (moment problems) that are precisely flat Hankel matrices but
they are usually almost flat. For this situation the results presented in this paper imply that
we can still use the GNS construction to extract solutions that are almost optimal and we can
even estimate how far from the optimum they are.
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