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Abstract. Linear matrix inequalities (LMIs) are ubiquitous in real algebraic geometry, semi-

definite programming, control theory and signal processing. LMIs with (dimension free) ma-

trix unknowns are central to the theories of completely positive maps and operator algebras,

operator systems and spaces, and serve as the paradigm for matrix convex sets. The matricial

feasibility set of an LMI is called a free spectrahedron.

In this article, the bianalytic maps between a very general class of ball-like free spectrahe-

dra (examples of which include row or column contractions, and tuples of contractions) and

arbitrary free spectrahedra are characterized and seen to have an elegant algebraic form. They

are all highly structured rational maps. In the case that both the domain and codomain are

ball-like, these bianalytic maps are explicitly determined and the article gives necessary and

sufficient conditions for the existence of such a map with a specified value and derivative at

a point. In particular, this result leads to a classification of automorphism groups of ball-like

free spectrahedra. The proofs depend on a novel free Nullstellensatz, established only after

new tools in free analysis are developed and applied to obtain fine detail, geometric in nature

locally and algebraic in nature globally, about the boundary of ball-like free spectrahedra.

1. Introduction

Fix a positive integer 𝑔. For positive integers 𝑛, let 𝑀𝑛(C)𝑔 denote the set of 𝑔-tuples
𝑋 = (𝑋1, . . . , 𝑋𝑔) of 𝑛 × 𝑛 matrices with entries from C. Given a tuple 𝐸 = (𝐸1, . . . , 𝐸𝑔) of
𝑑× 𝑒 matrices, the sequence ℬ𝐸 = (ℬ𝐸(𝑛))𝑛 defined by

ℬ𝐸(𝑛) = {𝑋 ∈𝑀𝑛(C)𝑔 : ‖
∑︁

𝐸𝑗 ⊗𝑋𝑗‖ ≤ 1}

is a spectraball. The spectraball at level one, ℬ𝐸(1), is a rotationally invariant closed
convex subset of C𝑔. Conversely, a rotationally invariant closed convex subset of C𝑔 can be
approximated by sets of the form ℬ𝐸(1). A spectraball ℬ𝐸 is not determined by ℬ𝐸(1). For
example, letting 𝐹1 =

(︀
1 0

)︀
, 𝐹2 =

(︀
0 1

)︀
, and 𝐸𝑗 = 𝐹 *

𝑗 , we have ℬ𝐸(1) = ℬ𝐹 (1) = B2,

the unit ball in C2, but ℬ𝐸(2) ̸= ℬ𝐹 (2). Indeed, ℬ𝐹 (resp. ℬ𝐸) is the two variable row
ball (resp. column ball) equal the set of pairs (𝑋1, 𝑋2) such that 𝑋1𝑋

*
1 +𝑋2𝑋

*
2 ⪯ 𝐼 (resp.

𝑋*
1𝑋1 +𝑋*

2𝑋2 ⪯ 𝐼), where the inequality 𝑇 ⪰ 0 indicates the selfadjoint matrix 𝑇 is positive
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semidefinite. Another well-known example is the free polydisc. It is the spectraball ℬ𝐸

determined by the tuple 𝐸 = (𝑒1𝑒
*
1, . . . , 𝑒𝑔𝑒

*
𝑔) ∈ 𝑀𝑔(C)𝑔, where {𝑒1, . . . , 𝑒𝑔} is the standard

orthonormal basis for C𝑔. Thus ℬ𝐸(𝑛) is the set of tuples 𝑋 ∈ 𝑀𝑛(C)𝑔 such that ‖𝑋𝑗‖ ≤ 1
for each 𝑗.

For 𝐴 ∈𝑀𝑑(C)𝑔, let 𝐿𝐴(𝑥, 𝑦) denote the monic pencil

𝐿𝐴(𝑥, 𝑦) = 𝐼 +
∑︁

𝐴𝑗𝑥𝑗 +
∑︁

𝐴*
𝑗𝑦𝑗 ,

and let

𝐿re
𝐴(𝑥) = 𝐿𝐴(𝑥, 𝑥*) = 𝐼 +

∑︁
𝐴𝑗𝑥𝑗 +

∑︁
𝐴*

𝑗𝑥
*
𝑗

denote the corresponding hermitian monic pencil. The set 𝒟𝐴(1) consisting of 𝑥 ∈ C𝑔 such
that 𝐿re

𝐴(𝑥) ⪰ 0 is a spectrahedron. Spectrahedra are basic objects in a number of areas
of mathematics; e.g. semidefinite programming, convex optimization and in real algebraic
geometry [BPR13]. They also figure prominently in determinantal representations [Brä11,
GK-VVW16, NT12, Vin93], in the solution of the Kadison-Singer paving conjecture [MSS15],
the solution of the Lax conjecture [HV07], and in systems engineering [BGFB94, SIG96].

For 𝐴 ∈ 𝑀𝑑×𝑒(C)𝑔, the homogeneous linear pencil Λ𝐴(𝑥) =
∑︀

𝑗 𝐴𝑗𝑥𝑗 evaluates at

𝑋 ∈𝑀𝑛(C)𝑔 as

Λ𝐴(𝑋) =
∑︁

𝐴𝑗 ⊗𝑋𝑗 ∈𝑀𝑑×𝑒(C) ⊗𝑀𝑛(C).

In the case 𝐴 is square (𝑑 = 𝑒), the hermitian monic pencil 𝐿re
𝐴 evaluates at 𝑋 as

𝐿re
𝐴(𝑋) = 𝐼 + Λ𝐴(𝑋) + Λ𝐴(𝑋)* = 𝐼 +

∑︁
𝐴𝑗 ⊗𝑋𝑗 +

∑︁
𝐴*

𝑗 ⊗𝑋*
𝑗 .

Thus 𝐿re
𝐴(𝑋)* = 𝐿re

𝐴(𝑋). Similarly, if 𝑌 ∈𝑀𝑛(C)𝑔, then 𝐿𝐴(𝑋,𝑌 ) = 𝐼 + Λ𝐴(𝑋) + Λ𝐴*(𝑌 ). In
particular, 𝐿re

𝐴(𝑋) = 𝐿𝐴(𝑋,𝑋*).

The free spectrahedron determined by 𝐴 ∈ 𝑀𝑟(C)𝑔 is the sequence of sets 𝒟𝐴 =
(𝒟𝐴(𝑛)), where

𝒟𝐴(𝑛) = {𝑋 ∈𝑀𝑛(C)𝑔 : 𝐿re
𝐴(𝑋) ⪰ 0}.

The spectraball ℬ𝐸 is a spectrahedron since ℬ𝐸 = 𝒟𝐵 for 𝐵 = ( 0 𝐸
0 0 ). Free spectrahedra

arise naturally in applications such as systems engineering [dOHMP09] and in the theories
of matrix convex sets, operator algebras and operator spaces and completely positive maps
[EW97, HKM17, Pau02, PSS18]. They also provide tractable useful relaxations for spectrahe-
dral inclusion problems that arise in semidefinite programming and control theory such as the
matrix cube problem [B-TN02, HKMSw19, DDOSS17].

The interior of the free spectrahedron 𝒟𝐴 is the sequence int(𝒟𝐴) = (int(𝒟𝐴(𝑛)))𝑛, where

int(𝒟𝐴(𝑛)) = {𝑋 ∈𝑀𝑛(C)𝑔 : 𝐿re
𝐴(𝑋) ≻ 0}.

A free mapping 𝜙 : int(𝒟𝐵) → int(𝒟𝐴) is a sequence of maps 𝜙𝑛 : int(𝒟𝐵(𝑛)) → int(𝒟𝐴(𝑛))
such that if 𝑋 ∈ int(𝒟𝐵(𝑛)) and 𝑌 ∈ int(𝒟𝐵(𝑚)), then

𝜙𝑛+𝑚

(︂(︂
𝑋 0
0 𝑌

)︂)︂
=

(︂
𝜙𝑛(𝑋) 0

0 𝜙𝑚(𝑌 )

)︂
,

and if 𝑋 ∈ int(𝒟𝐵(𝑛)) and 𝑆 is an invertible 𝑛× 𝑛 matrix such that

𝑆−1𝑋𝑆 =
(︀
𝑆−1𝑋1𝑆, . . . , 𝑆

−1𝑋𝑔𝑆
)︀
∈ int(𝒟𝐵(𝑛)),
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then

𝜙𝑛(𝑆−1𝑋𝑆) = 𝑆−1𝜙𝑛(𝑋)𝑆.

Often we omit the subscript 𝑛 and write only 𝜙(𝑋). The free mapping 𝜙 is analytic if each
𝜙𝑛 is analytic.

The central result of this article, Theorem 1.1, explicitly characterizes the free bianalytic
mappings 𝜙 between int(ℬ𝐸) and int(𝒟𝐴). These maps are birational and highly structured.
Up to affine linear change of variable, they are what we call convexotonic (see Subsection 1.1
below). In the special case that 𝒟𝐴 = ℬ𝐶 is also a spectraball, given 𝑏 ∈ int(ℬ𝐶) and a 𝑔 × 𝑔
matrix 𝑀 , Corollary 1.3 gives explicit necessary and sufficient algebraic relations between 𝐸
and 𝐶 for the existence of a free bianalytic mapping 𝜙 : int(ℬ𝐸) → int(ℬ𝐶) satisfying 𝜙(0) = 𝑏
and 𝜙′(0) = 𝑀 . As an illustration of the result, this corollary classifies, from first principles,
the free automorphisms of the matrix balls – the row and column balls are special cases – and
of the free polydiscs. See Remark 1.2(d) and Subsubsections 5.3.1 and 5.3.2.

There are two other results we would like to highlight in this introduction. Theorem
1.6, establishes an equivalence between an algebraic irreducibility condition on the defining
polynomial of a spectraball and a geometric property of its boundary critical in the study of
binalaytic maps between free spectrahedra. Its proof requires detailed information, both local
and global, about the boundary of a spectraball, collected in Section 4. As a consequence of
Theorem 1.6, we obtain a version of the main result from [AHKM18] characterizing bianalytic
maps between free spectrahedra that send the origin to the origin with elegant irreducibility and
minimality hypotheses on the free spectrahedra replacing our earlier cumbersome geometric
conditions. See Theorem 1.5 in Subsection 1.3. Another consequence of Theorem 1.6, and an
essential ingredient in the proof of Theorem 1.1, is an of independent interest Nullstellensatz.
It is stated as Proposition 1.7 in Subsection 1.5. Roughly, it says that a matrix-valued analytic
free polynomial singular on the boundary of a spectraball is 0.

1.1. Convexotonic maps. A 𝑔-tuple of 𝑔 × 𝑔 matrices (Ξ1, . . . ,Ξ𝑔) ∈𝑀𝑔(C)𝑔 satisfying

Ξ𝑘Ξ𝑗 =

𝑔∑︁
𝑠=1

(Ξ𝑗)𝑘,𝑠Ξ𝑠,

for each 1 ≤ 𝑗, 𝑘 ≤ 𝑔, is a convexotonic tuple. The expressions 𝑝 =
(︀
𝑝1 · · · 𝑝𝑔

)︀
and

𝑞 =
(︀
𝑞1 · · · 𝑞𝑔

)︀
whose entries are

𝑝𝑖(𝑥) =
∑︁
𝑗

𝑥𝑗𝑒
*
𝑗 (𝐼 − ΛΞ(𝑥))−1𝑒𝑖 and 𝑞𝑖(𝑥) =

∑︁
𝑥𝑗𝑒

*
𝑗 (𝐼 + ΛΞ(𝑥))−1𝑒𝑖,

that is, in row form,

𝑝(𝑥) = 𝑥(𝐼 − ΛΞ(𝑥))−1 and 𝑞 = 𝑥(𝐼 + ΛΞ(𝑥))−1,

are convexotonic maps. Here 𝑝 evaluates at 𝑋 ∈𝑀𝑛(C)𝑔 as

𝑝(𝑋) =
(︀
𝑋1 · · · 𝑋𝑔

)︀⎛⎝𝐼𝑔𝑛 −
𝑔∑︁

𝑗=1

Ξ𝑗 ⊗𝑋𝑗

⎞⎠−1
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and the output 𝑝(𝑋) ∈ 𝑀𝑛×𝑔𝑛(C) = 𝑀𝑛(C)𝑔 is interpreted as a 𝑔-tuple of 𝑛× 𝑛 matrices. It
turns out the mappings 𝑝 and 𝑞 are free rational maps (as explained in Section 2) and inverses
of one another (see [AHKM18, Proposition 6.2]).

Convexotonic tuples arise naturally as the structure constants of a finite dimensional
algebra. If 𝐴 ∈ 𝑀𝑟(C)𝑔 is linearly independent (meaning the set {𝐴1, . . . , 𝐴𝑔} ⊆ 𝑀𝑟(C) is
linearly independent) and spans an algebra, then, e.g. by Lemma 2.7 below, there is a uniquely
determined convexotonic tuple Ξ = (Ξ1, . . . ,Ξ𝑔) ∈𝑀𝑔(C)𝑔 such that

(1.1) 𝐴𝑘𝐴𝑗 =

𝑔∑︁
𝑠=1

(Ξ𝑗)𝑘,𝑠𝐴𝑠.

1.2. Free bianalytic maps from a spectraball to a free spectrahedron. A tuple 𝐸 ∈
𝑀𝑑×𝑒(C)𝑔 is ball-minimal (for ℬ𝐸) if there does not exist 𝐸′ of size 𝑑′×𝑒′ with 𝑑′ +𝑒′ < 𝑑+𝑒
such that ℬ𝐸 = ℬ𝐸′ . In fact, if 𝐸 is ball-minimal and ℬ𝐸′ = ℬ𝐸 , then 𝑑 ≤ 𝑑′ and 𝑒 ≤ 𝑒′. by
Lemma 3.2(9)1 and 𝐸 is unique in the following sense. Given another tuple 𝐹 ∈𝑀𝑑×𝑒(C)𝑔, the
tuples 𝐸 and 𝐹 are ball-equivalent if there exists unitaries 𝑊 and 𝑉 of sizes 𝑑× 𝑑 and 𝑒× 𝑒
respectively such that 𝐹 = 𝑊𝐸𝑉 . Evidently if 𝐸 and 𝐹 are ball-equivalent, then ℬ𝐸 = ℬ𝐹 .
Conversely, if 𝐸 and 𝐹 are both ball-minimal and ℬ𝐸 = ℬ𝐹 , then 𝐸 and 𝐹 are ball-equivalent
(see Lemma 3.2(9) and more generally [FHL18]).

Given 𝐴 ∈𝑀𝑟(C)𝑔, we say 𝐿𝐴 (or 𝐿re
𝐴) is minimal for a free spectrahedron 𝒟 if 𝒟 = 𝒟𝐴

and if for any other 𝐵 ∈ 𝑀𝑟′(C)𝑔 satisfying 𝒟 = 𝒟𝐵 it follows that 𝑟′ ≥ 𝑟. A minimal 𝐿𝐴 for
𝒟𝐴 exists and is unique up to unitary equivalence [HKM13, Zal17]. We can now state Theorem
1.1, our principal result on bianalytic mappings from a spectraball onto a free spectrahedron.
Since the hypotheses of Theorem 1.1 are invariant under affine linear change of variables, the
normalizations 𝑓(0) = 0 and 𝑓 ′(0) = 𝐼 are simply a matter of convenience. Given 𝐵 ∈𝑀𝑑(C)𝑔,
by a free bianalytic map 𝑓 : int(𝒟𝐵) → int(𝒟𝐴), we mean 𝑓 is a free analytic map and there
exists a free analytic map 𝑔 : int(𝒟𝐴) → int(𝒟𝐵) such that 𝑔𝑛(𝑓𝑛(𝑋)) = 𝑋 and 𝑓𝑛(𝑔𝑛(𝑌 )) = 𝑌
for each 𝑛, 𝑋 ∈ int(𝒟𝐵(𝑛)) and 𝑌 ∈ int(𝒟𝐴(𝑛)).

Theorem 1.1. Suppose 𝐸 ∈ 𝑀𝑑×𝑒(C)𝑔 and 𝐴 ∈ 𝑀𝑟(C)𝑔 are linearly independent. If 𝑓 :
int(ℬ𝐸) → int(𝒟𝐴) is a free bianalytic mapping with 𝑓(0) = 0 and 𝑓 ′(0) = 𝐼𝑔, then 𝑓 is
convexotonic.

If, in addition, 𝐴 is minimal for 𝒟𝐴, then there is convexotonic tuple Ξ ∈ 𝑀𝑔(C)𝑔 such
that equation (1.1) holds, and 𝑓 is the corresponding convexotonic map, namely

(1.2) 𝑓(𝑥) = 𝑥(𝐼 − ΛΞ(𝑥))−1.

In particular, {𝐴1, . . . , 𝐴𝑔} spans an algebra.

If 𝐴 is minimal for 𝒟𝐴 and 𝐸 is ball-minimal, then max{𝑑, 𝑒} ≤ 𝑟 ≤ 𝑑 + 𝑒 and there is
an 𝑟 × 𝑟 unitary matrix 𝑈 such that, up to unitary equivalence,

(1.3) 𝐴 = 𝑈

(︂
𝐸 0
0 0

)︂
.

1See also [HKM11a, Section 5 or Lemma 1.2].
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Conversely, given a linearly independent 𝐸 ∈ 𝑀𝑑×𝑒(C)𝑔, an integer 𝑟 ≥ max{𝑑, 𝑒} and
an 𝑟 × 𝑟 unitary matrix 𝑈 , let 𝐴 be given by equation (1.3). If there is a tuple Ξ such that
equation (1.1) holds, then 𝑓 of equation (1.2) is a free bianalytic map 𝑓 : int(ℬ𝐸) → int(𝒟𝐴).

Proof. See Corollary 2.5 and Section 5.2.

Remark 1.2.

(a) The normalizations 𝑓(0) = 0 and 𝑓 ′(0) = 𝐼𝑔 can easily be enforced. Given a 𝑔 × 𝑔 matrix
∆ and a tuple 𝐶 ∈𝑀𝑑×𝑒(C)𝑔, let ∆ · 𝐶 ∈𝑀𝑑×𝑒(C)𝑔 denote the tuple

(1.4) (∆ · 𝐶)𝑗 =
∑︁
𝑘

∆𝑗,𝑘𝐶𝑘.

In the case 𝑓 : int(ℬ𝐸) → int(𝒟𝐴) is bianalytic, but 𝑓(0) = 𝑏 ̸= 0 or 𝑓 ′(0) = 𝑀 ̸= 𝐼, let
𝜆 : 𝒟𝐴 → 𝒟𝐹 denote the affine linear map 𝜆(𝑥) = 𝑥 ·𝑀 + 𝑏, where

𝐹 = 𝑀 · (H𝐴H) and H = 𝐿re
𝐴(𝑏)−1/2.

By Proposition 3.3, ℎ = 𝜆−1 ∘ 𝑓 : int(ℬ𝐸) → int(𝒟𝐵) is bianalytic with ℎ(0) = 0 and
ℎ′(0) = 𝐼𝑔 and, if 𝐴 is minimal for 𝒟𝐴, then 𝐵 is minimal for 𝒟𝐵. In particular, 𝑓 is, up
to affine linear equivalence, convexotonic.

Further, with a bit of bookkeeping the algebraic conditions of equations (1.3) and (1.1)
can be expressed intrinsically in terms of 𝐸 and 𝐴. In the case 𝒟𝐴 is a spectraball, these
conditions are spelled out in Corollary 1.3 below.

(b) In the context of Theorem 1.1 (and Remark 1.2), 𝑓−1 extends analytically to an open set
containing 𝒟𝐴 and if 𝒟𝐴 is bounded, then 𝑓 extends analytically to an open set containing
ℬ𝐸 . The precise result is stated as Theorem 2.1 below. Theorem 2.1 is an elaboration on
[AHKM18, Theorem 1.1].

(c) Given 𝐴 as in equation (1.3) and writing 𝑈 = (𝑈𝑗,𝑘)2𝑗,𝑘=1 in the natural block form, equation

(1.1) is equivalent to 𝐸𝑘𝑈11𝐸𝑗 =
∑︀

𝑠(Ξ𝑗)𝑘,𝑠𝐸𝑠.

(d) Corollary 6.2 and Theorem 6.1 extend Theorem 1.1 to cases where the codomain is matrix
convex2, but not, by assumption, the interior of a free spectrahedron assuming the inverse
of the bianalytic map is rational.

(e) Here is an example of a free spectrahedron that is not a spectraball, but is bianalytically
equivalent to a spectraball. Let

𝐸 = 𝐼2, 𝐸1 =

(︂
0 0
1 0

)︂
, 𝑈 =

⎛⎝0 0 1
1 0 0
0 1 0

⎞⎠
and set

𝐴 = 𝑈

(︂
𝐸 0
0 0

)︂
∈𝑀3(C)2.

With Ξ1 = ( 0 1
0 0 ) and Ξ2 = 0, the tuples 𝐴 and Ξ satisfy equation (1.1) and the corre-

sponding convexotonic map is given by 𝑓(𝑥1, 𝑥2) = (𝑥1, 𝑥2 + 𝑥21). It is thus bianalytic
from int(ℬ𝐸) to int(𝒟𝐴). Moreover, 𝒟𝐴 is not a spectraball since 𝒟𝐴(1) is not rotationally
invariant.

2In the present setting, matrix convex is the same as the convexity at each level.
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For a matrix 𝑇 with ‖𝑇‖ ≤ 1, let 𝐷𝑇 denote the positive square root of 𝐼 − 𝑇 *𝑇 . Thus,
if 𝑇 is 𝑘 × ℓ, then 𝐷𝑇 is ℓ× ℓ and 𝐷𝑇 * is 𝑘 × 𝑘.

Corollary 1.3. Suppose 𝐸 ∈𝑀𝑑×𝑒(C)𝑔 and 𝐶 ∈𝑀𝑘×ℓ(C)𝑔 are linearly independent and ball-
minimal, 𝑏 ∈ int(ℬ𝐶) and 𝑀 ∈ 𝑀𝑔(C). There exists a free bianalytic mapping 𝜙 : int(ℬ𝐸) →
int(ℬ𝐶) such that 𝜙(0) = 𝑏 and 𝑀 = 𝜙′(0) if and only if 𝐸 and 𝐶 have the same size (that is,
𝑘 = 𝑑 and ℓ = 𝑒) and there exist 𝑑 × 𝑑 and 𝑒 × 𝑒 unitary matrices W and V respectively and
a convexotonic 𝑔-tuple Ξ ∈𝑀𝑔(C)𝑔 such that

(a) −𝐸𝑗V *Λ𝐶(𝑏)*W 𝐸𝑘 =
∑︀

𝑠(Ξ𝑘)𝑗,𝑠𝐸𝑠 = (Ξ𝑘 · 𝐸)𝑗; and

(b) 𝐷Λ𝐶(𝑏)*W 𝐸𝑗V *𝐷Λ𝐶(𝑏) =
∑︀

𝑠𝑀𝑗𝑠𝐶𝑠 = (𝑀 · 𝐶)𝑗 ,

for all 1 ≤ 𝑗, 𝑘 ≤ 𝑔. Moreover, in this case 𝜙 = 𝜓 ·𝑀 + 𝑏, where 𝜓 is the convexotonic map
associated to Ξ; i.e., 𝜓(𝑥) = 𝑥(𝐼 − ΛΞ(𝑥))−1.

The proof of Corollary 1.3 appears in Subsubsection 5.3.3.

Remark 1.4. (a) If ℬ𝐸 and ℬ𝐶 are bounded (equivalently 𝐸 and 𝐶 are linearly independent
[HKM13, Proposition 2.6(2)]), then any free bianalytic map 𝜙 : int(ℬ𝐸) → int(ℬ𝐶) is, up
to an affine linear bijection, convexotonic without any further assumptions (e.g., 𝐶 and
𝐸 need not be ball-minimal). Indeed, simply replace 𝐸 and 𝐶 by ball-minimal 𝐸′ and
𝐶 ′ with ℬ𝐸′ = ℬ𝐸 and ℬ𝐶′ = ℬ𝐶 and apply Corollary 1.3. The ball-minimal hypothesis
allows for an explicit description of 𝜙.

(b) While 𝑀 is not assumed invertible, both the condition 𝑀 = 𝜙′(0) (for a bianalytic 𝜙) and
the identity of Corollary 1.3(b) (since 𝐸 is assumed linearly independent) imply it is.

(c) Assuming 𝐸 and 𝐶 of Corollary 1.3 are ball-minimal, by using the relation between 𝐸 and
𝐶 from Corollary 1.3(b), item (a) can be expressed purely in terms of 𝐶 as

(1.5) 𝐶𝑗𝐷
−1
Λ𝐶(𝑏)Λ𝐶(𝑏)*𝐷−1

Λ𝐶(𝑏)*𝐶𝑘 ∈ span{𝐶1, . . . , 𝐶𝑔}.

In particular, given a ball-minimal tuple 𝐶 ∈𝑀𝑑×𝑒(C)𝑔 and 𝑏 ∈ int(ℬ𝐶), if equation (1.5)
holds then, for any choice of 𝑀,W and V and solving equation (b) for 𝐸, there is a free
bianalytic map 𝜙 : int(ℬ𝐸) → int(ℬ𝐶) such that 𝜙(0) = 𝑏 and 𝜙′(0) = 𝑀.

(d) Among the results in [MT16] is a complete analysis of the free bianalytic maps between the
free versions of matrix ball, antecedents and special cases of which appear elsewhere in the
literature such as [HKMSl09] and [Pop10]. The connection between the results in [MT16]
on free matrix balls and Corollary 1.3 is worked out in Subsubsection 5.3.2. Subsubsection
5.3.1 gives a complete classification of free automorphisms of free polydiscs.

1.3. Main result on maps between free spectrahedra. The article [AHKM18] character-
izes the triples (𝑝,𝐴,𝐵) such that 𝑝 : 𝒟𝐴 → 𝒟𝐵 is bianalytic under unconventional geometric
hypotheses (sketched in Subsection 1.4 below), cf. [AHKM18, S7]. Here we obtain Theorem 1.5
by converting those geometric hypotheses to algebraic irreducibility hypotheses that we now
describe.

For a tuple of rectangular matrices 𝐸 = (𝐸1, . . . , 𝐸𝑔) ∈𝑀𝑑×𝑒(C)𝑔 denote

𝑄𝐸(𝑥, 𝑦) := 𝐼 − Λ𝐸*(𝑦)Λ𝐸(𝑥), L𝐸(𝑥, 𝑦) :=

(︂
𝐼 Λ𝐸(𝑥)

Λ𝐸*(𝑦) 𝐼

)︂
,
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ker(𝐸) :=

𝑔⋂︁
𝑗=1

ker(𝐸𝑗) = ker(

⎛⎜⎝𝐸1
...
𝐸𝑔

⎞⎟⎠), ran(𝐸) = ran(
(︀
𝐸1 . . . 𝐸𝑔

)︀
).

Thus L𝐸(𝑥, 𝑦) = 𝐿𝐹 (𝑥, 𝑦) where

𝐹 =

(︂
0 𝐸
0 0

)︂
.

We also let Lre
𝐸 denote the hermitian monic pencil,

Lre
𝐸 (𝑥) := L𝐸(𝑥, 𝑥*) = 𝐿𝐹 (𝑥, 𝑥*) = 𝐿re

𝐹 (𝑥)

and likewise

𝑄re
𝐸 (𝑥) = 𝑄𝐸(𝑥, 𝑥*).

Observe ℬ𝐸 = 𝒟Lre
𝐸

:= {𝑋 : L𝐸(𝑋,𝑋*) ⪰ 0} = 𝒟𝐹 . Finally, for a monic pencil 𝐿𝐴, let

𝒵𝐿𝐴
= {(𝑋,𝑌 ) : det(𝐿𝐴(𝑋,𝑌 )) = 0}, 𝒵re

𝐿𝐴
= {𝑋 : det(𝐿re

𝐴(𝑋)) = 0}.

We also use the notation 𝒵𝑄𝐸
= 𝒵L𝐸

.

Let C<𝑥> denote the free algebra of noncommutative polynomials in the letters 𝑥 =
{𝑥1, . . . , 𝑥𝑔}. Thus elements of C<𝑥> are finite C-linear combinations of words in the letters
{𝑥1, . . . , 𝑥𝑔}. For each positive integer 𝑛, an element 𝑝 of C<𝑥> naturally induces a function,
also denoted 𝑝, mapping 𝑀𝑛(C)𝑔 →𝑀𝑛(C) by replacing the letter 𝑥1, . . . , 𝑥𝑔 by 𝑛×𝑛 matrices
𝑋1, . . . , 𝑋𝑔. In this way, we view 𝑝 as a function on the disjoint union of the sets 𝑀𝑛(C)𝑔

(parameterized by 𝑛). When 𝑒 > 1 there are non-constant 𝐹 ∈ C<𝑥>𝑒×𝑒 that are invertible,
and the appropriate analog of irreducible elements of C<𝑥>𝑒×𝑒 reads as follows. An 𝐹 ∈
C<𝑥>𝑒×𝑒 with det 𝑓(0) ̸= 0 is an atom [Coh95, Chapter 3] if 𝐹 does not factor; i.e., 𝐹 cannot
be written as 𝐹 = 𝐹1𝐹2 for some non-invertible 𝐹1, 𝐹2 ∈ C<𝑥>𝑒×𝑒. As a consequence of
Lemma 3.2(8) below, we will see that if 𝑄𝐸 is an atom, ker(𝐸) = {0} and ker(𝐸*) = {0}, then
𝐸 is ball-minimal.

Theorem 1.5. Suppose 𝐴 ∈𝑀𝑑(C)𝑔, 𝐵 ∈𝑀𝑒(C)𝑔 and

(a) 𝒟𝐴 is bounded;
(b) 𝑄𝐴 and 𝑄𝐵 are atoms, ker(𝐵) = {0} and 𝐴* is ball-minimal;
(c) 𝑡 > 1 and 𝑝 : int(𝑡𝒟𝐴) →𝑀(C)𝑔 and 𝑞 : int(𝑡𝒟𝐵) →𝑀(C)𝑔 are free bianalytic mappings;
(d) 𝑝(0) = 0, 𝑝′(0) = 𝐼, 𝑞(0) = 0 and 𝑞′(0) = 𝐼.

If 𝑞(𝑝(𝑋)) = 𝑋 and 𝑝(𝑞(𝑌 )) = 𝑌 for 𝑋 ∈ 𝒟𝐴 and 𝑌 ∈ 𝒟𝐵 respectively, then 𝑝 is convexotonic,
𝐴 and 𝐵 are of the same size 𝑑 = 𝑒, and there exist 𝑑 × 𝑑 unitary matrices 𝑍 and 𝑀 and a
convexotonic 𝑔-tuple Ξ such that

(1) 𝑝 is the convexotonic map 𝑝 = 𝑥(𝐼 − ΛΞ(𝑥))−1, where for each 1 ≤ 𝑗, 𝑘 ≤ 𝑔,

(1.6) 𝐴𝑘(𝑍 − 𝐼)𝐴𝑗 =
∑︁
𝑠

(Ξ𝑗)𝑘,𝑠𝐴𝑠;

in particular, the tuple 𝑅 = (𝑍 − 𝐼)𝐴 spans an algebra with multiplication table Ξ,

𝑅𝑘𝑅𝑗 =
∑︁
𝑠

(Ξ𝑗)𝑘,𝑠𝑅𝑠;

(2) 𝐵𝑗 = 𝑀*𝑍𝐴𝑗𝑀 for 1 ≤ 𝑗 ≤ 𝑔.
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Proof. See Section 4.4.

1.4. Geometry of the boundary vs irreducibility. At the core of the proofs of our main
theorems in this paper is a richness of the geometry of the boundary, 𝜕ℬ𝐸 , of a spectraball,
ℬ𝐸 . We shall show that a (rather ungainly) key geometric property of the boundary of ℬ𝐸 is
equivalent to the defining polynomial 𝑄𝐸 of ℬ𝐸 being an atom and ker(𝐸) = {0}.

To describe the geometric structure involved, fix 𝐸 ∈𝑀𝑑×𝑒(C)𝑔. The detailed boundarŷ︂𝜕ℬ𝐸 of ℬ𝐸 is the sequence of setŝ︂𝜕ℬ𝐸(𝑛) := {(𝑋, 𝑣) ∈𝑀𝑛(C)𝑔 × [C𝑒 ⊗ C𝑛] : 𝑋 ∈ 𝜕ℬ𝐸 , 𝑣 ̸= 0, 𝑄re
𝐸 (𝑋,𝑋*)𝑣 = 0} .

For 𝑛 ∈ N, let 𝜕1ℬ𝐸(𝑛) denote the points (𝑋, 𝑣) in ̂︂𝜕ℬ𝐸(𝑛) such that dim ker𝑄re
𝐸 (𝑋,𝑋*) = 1.

For a vector 𝑣 ∈ C𝑒 ⊗ C𝑛 = C𝑒𝑛, partitioned as

𝑣 =

⎛⎜⎜⎜⎝
𝑣1
𝑣2
...
𝑣𝑛

⎞⎟⎟⎟⎠
for 𝑣𝑘 ∈ C𝑒, define 𝜋(𝑣) = 𝑣1. The geometric property important to mapping studies is

that 𝜋(𝜕1ℬ𝐸) contain enough vectors to span C𝑒 or better yet to hyperspan C𝑒. Here a set
{𝑢1, . . . , 𝑢𝑒+1} of vectors in C𝑒 hyperspans C𝑒 provided each 𝑒 element subset spans; i.e., is
a basis of C𝑒.

Theorem 1.6. Let 𝐸 ∈𝑀𝑑×𝑒(C)𝑔. Then

(1) 𝐸 is ball-minimal if and only if 𝜋(𝜕1ℬ𝐸) spans C𝑒.

(2) 𝑄𝐸 is an atom and ker(𝐸) = (0) if and only if 𝜋(𝜕1ℬ𝐸) contains a hyperspanning set for C𝑒.

Proof. Part (1) is established in Proposition 4.2, while (2) is Proposition 4.4.

1.5. A Nullstellensatz. Theorem 1.1 uses the following Nullstellensatz whose proof depends
upon Theorem 1.6.

Proposition 1.7. Suppose 𝐸 = (𝐸1, . . . , 𝐸𝑔) ∈ 𝑀𝑑×𝑒(C)𝑔 is ball-minimal and 𝑉 ∈ C<𝑥>ℓ×𝑒

is a (rectangular) matrix polynomial. If 𝑉 vanishes on ̂︂𝜕ℬ𝐸 ; that is 𝑉 (𝑋)𝛾 = 0 whenever

(𝑋, 𝛾) ∈ ̂︂𝜕ℬ𝐸, then 𝑉 = 0.

Proof. See Subsection 5.1.

1.6. An overview of the proof of Theorem 1.1. We are now in a position to convey, in
broad strokes, an outline of the proof of Theorem 1.1. The conversely direction is an immediate
consequence of Proposition 2.2 (see Corollary 2.5) of Section 2. Its proof reflects the fact that
convexotonic maps are bianalytic between certain special spectrahedral pairs. Proposition (2.2)
is also the starting point for the proof of the more challenging converse. Given the tuple 𝐴,
let 𝐽 = (𝐽1, . . . , 𝐽ℎ) denote a basis for the algebra spanned by 𝐴 with 𝐽𝑗 = 𝐴𝑗 , for 1 ≤ 𝑗 ≤ 𝑔.
Proposition 2.2 says that 𝒟𝐽 and ℬ𝐽 are bianalytic via the convexotonic map associated to the
convexotonic ℎ-tuple Ξ determined by the tuple 𝐽 via equation (1.1) (with 𝐽 in place of 𝐴).
Starting with the free bianalytic map 𝑓 : ℬ𝐸 → 𝒟𝐴, observe that 𝐺 = 𝜙 ∘ 𝜄 ∘ 𝑓 : ℬ𝐸 → ℬ𝐽 is
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a free proper map satisfying 𝐺(0) = 0 and 𝐺′(0) =
(︀
𝐼𝑔 0𝑔×(ℎ−𝑔)

)︀
, where 𝜄 : 𝒟𝐴 → 𝒟𝐽 is the

inclusion, since 𝜙(0) = 0 and 𝜙′(0) = 𝐼ℎ. An argument that uses Proposition 1.7 produces a
representation for 𝐺 that can be thought of as an analog of the Schwarz Lemma (see equation
(5.8)). In simple cases,

(1.7) 𝐺(𝑥) =
(︀
𝑥 0

)︀
from which it follows that the 𝑔-tuple ̂︀Ξ ∈𝑀𝑔(C)𝑔 defined by

(̂︀Ξ𝑗)𝑠,𝑡 = (Ξ𝑗)𝑠,𝑡, 1 ≤ 𝑗, 𝑠, 𝑡 ≤ 𝑔

is convexotonic and thus 𝐴 spans an algebra. Hence ℎ = 𝑔, the map 𝜙 (and hence 𝜙−1)
is convexotonic and 𝑓 = 𝜙−1. In general only a weaker version of equation (1.7) holds, an
inconvenience that does not conceptually alter the argument, but one that does make the
proof more technical.

2. Free rational maps and convexotonic maps

In this section we review the notions of a free set and free rational function and provide
further background on free functions and mappings. In particular, convexotonic maps are seen
to be free rational mappings. In Subsection 2.3 we show how algebras of matrices give rise to
convexotonic bianalytic maps between free spectrahedra. See Theorem 2.1.

2.1. Free sets, free analytic functions and mappings. Let 𝑀(C)𝑔 denote the sequence
(𝑀𝑛(C)𝑔)𝑛. A subset Γ of 𝑀(C)𝑔 is a sequence (Γ𝑛)𝑛 where Γ𝑛 ⊆ 𝑀𝑛(C)𝑔. (Sometimes we
write Γ(𝑛) in place of Γ𝑛.) The subset Γ is a free set if it is closed under direct sums and
simultaneous unitary similarity. Examples of such sets include spectraballs and free spectra-
hedra introduced above. We say the free set Γ = (Γ𝑛)𝑛 is open if each Γ𝑛 is open. Generally
adjectives are applied level-wise to free sets unless noted otherwise.

A free function 𝑓 : Γ →𝑀(C) is a sequence of functions 𝑓𝑛 : Γ𝑛 →𝑀𝑛(C) that respects
intertwining; that is, if 𝑋 ∈ Γ𝑛, 𝑌 ∈ Γ𝑚, 𝑇 : C𝑚 → C𝑛, and

𝑋𝑇 = (𝑋1𝑇, . . . ,𝑋𝑔𝑇 ) = (𝑇𝑌1, . . . , 𝑇𝑌𝑔) = 𝑇𝑌,

then 𝑓𝑛(𝑋)𝑇 = 𝑇𝑓𝑚(𝑌 ). In the case Γ is open, 𝑓 is free analytic if each 𝑓𝑛 is analytic in the
ordinary sense. We refer the reader to [Voi10, KVV14, AM15a, AM15b, HKM12b, HKM11a]
for a fuller discussion of free sets and functions. For further results, not already cited, on free
bianalytic and proper free analytic maps see [Pop10, MS08, KŠ17, HKMSl09, HKM11b, SSS18]
and the references therein.

A free mapping 𝑝 : Γ → 𝑀(C)ℎ is a tuple 𝑝 =
(︀
𝑝1 𝑝2 · · · 𝑝ℎ

)︀
where each 𝑝𝑗 : Γ →

𝑀(C) is a free function. The free mapping 𝑝 is free analytic if each 𝑝𝑗 is a free analytic
function. If ℎ = 𝑔 and ∆ ⊆ 𝑀(C)𝑔 is a free set, then 𝑝 : Γ → ∆ is bianalytic if 𝑝 is analytic
and 𝑝 has an inverse, that is necessarily free and analytic, 𝑞 : ∆ → Γ.

2.2. Free rational functions and mappings. Based on the results of [KVV09, Theorem
3.1] and [Vol17, Theorem 3.5] a free rational function regular at 0 can, for the purposes
of this article, be defined with minimal overhead as an expression of the form

(2.1) 𝑟(𝑥) = 𝑐*
(︀
𝐼 − Λ𝑆(𝑥)

)︀−1
𝑏,
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where, for some positive integer 𝑠, we have 𝑆 ∈ 𝑀𝑠(C)𝑔 and 𝑏, 𝑐 ∈ C𝑠. The expression 𝑟 is
known as a realization. Realizations are easy to manipulate and a powerful tool as developed
in the series of papers [BGM05, BGM06a, BGM06b] of Ball-Groenewald-Malakorn; see also
[Coh95, BR11]. The realization 𝑟 is evaluated in the obvious fashion on a tuple 𝑋 ∈ 𝑀𝑛(C)𝑔

as long as 𝐼 − Λ𝑆(𝑋) is invertible. Importantly, free rational functions are free analytic.

Given a tuple 𝑇 ∈𝑀𝑘(C)𝑔, let

(2.2) I𝑇 = {𝑋 ∈𝑀(C)𝑔 : det(𝐼 − Λ𝑇 (𝑋)) ̸= 0}.

A realization 𝑟(𝑥) = 𝑐*(𝐼−Λ̃︀𝑆)−1�̃� is equivalent to the realization 𝑟 as in (2.1) if 𝑟(𝑋) = 𝑟(𝑋)
for 𝑋 ∈ I𝑆∩I𝑆 . A free rational function is an equivalence class of realizations and we identify
𝑟 with its equivalence class and refer to it as a free rational function. The realization (2.1) is
minimal if 𝑠 is the minimum size among all realizations equivalent to 𝑟. By [KVV09, Vol17],
if 𝑟 is minimal and 𝑟 is equivalent to 𝑟, then I𝑆 ⊇ Ĩ︀𝑆 . Moreover, the results in [Vol17] explain
precisely, in terms of evaluations, the sense in which I𝑆 deserves to be called the domain of
the free rational function 𝑟, denoted dom(𝑟).

A free polynomial 𝑝 is a free rational function regular at 0 and, as is well known, its
domain is 𝑀(C)𝑔. If 𝑓 and 𝑔 are free rational functions regular at 0, then so are 𝑓 + 𝑔 and 𝑓𝑔.
Moreover, dom(𝑓 +𝑔) and dom(𝑓𝑔) both contain dom(𝑓)∩dom(𝑔) as a consequence of [Vol18,
Theorem 3.10]. Free rational functions regular at 0 are determined by their evaluations near
0; that is if 𝑓(𝑋) = 𝑔(𝑋) in some neighborhood of 0 in dom(𝑓)∩dom(𝑔), then 𝑓 = 𝑔. In what
follows, we often omit regular at 0 when it is understood from context. We refer the reader to
[Vol17, KVV09] for a fuller discussion of the domain of a free rational function.

A free rational mapping 𝑝 is a tuple of rational functions 𝑝 =
(︀
𝑝1 · · · 𝑝𝑔

)︀
. The

domain of 𝑝 is the intersection of the domains of the 𝑝𝑗 . By [AHKM18, Proposition 1.11], if
𝑟 is a free rational mapping with no singularities on a bounded free spectrahedron 𝒟𝐴, then
there is a 𝑡 > 1 such that 𝑟 has no singularities on 𝑡𝒟𝐴.

2.3. Algebras and convexotonic maps. Theorem 2.1 below is an expanded version of
[AHKM18, Theorem 1.1]. To begin we discuss a sufficient condition for a tuple 𝑋 ∈ 𝑀𝑛(C)𝑔

to lie in dom(𝑝), the domain of a convexotonic mapping

𝑝 =
(︀
𝑝1 · · · 𝑝𝑔

)︀
= 𝑥(𝐼 − ΛΞ(𝑥))−1.

Since

𝑝𝑗 =

𝑔∑︁
𝑘=1

𝑥𝑘
[︀
𝑒*𝑘(𝐼 − ΛΞ(𝑥))−1𝑒𝑗

]︀
,

it follows that IΞ ⊆ ∩dom(𝑝𝑗) = dom(𝑝). Now suppose 𝑅 ∈𝑀𝑁 (C)𝑔 and 𝑓𝑘,𝑠,𝑎,𝑏, 𝑔𝑘,𝑠,𝑎,𝑏, ℎ𝑘 ∈
C<𝑥> and let 𝑟𝑘 denote the free rational function

𝑟𝑘(𝑥) =
∑︁
𝑠,𝑎,𝑏

𝑓𝑘,𝑠,𝑎,𝑏(𝑥)[𝑒*𝑎 (𝐼 − Λ𝑅(𝑥))−1 𝑒𝑏] 𝑔𝑘,𝑠,𝑎,𝑏(𝑥) + ℎ𝑘.

If 𝑟𝑗 = 𝑝𝑗 in some neighborhood of 0 lying in IΞ ∩I𝑅, then 𝑟𝑗 and 𝑝𝑗 represent the same free
rational function. In particular, I𝑅 ⊆ dom(𝑝𝑗) and therefore I𝑅 ⊆ dom(𝑝).

Let ext(𝒟𝐵) denote the sequence (ext(𝒟𝐵(𝑛)))𝑛 where ext(𝒟𝐵(𝑛)) is the complement of
𝒟𝐵(𝑛). Likewise let 𝜕𝒟𝐵(𝑛) denote the boundary of 𝒟𝐵(𝑛) and let 𝜕𝒟𝐵 denote the sequence
(𝜕𝒟𝐵(𝑛))𝑛.
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Theorem 2.1. Suppose A,B ∈𝑀𝑟(C)𝑔 are linearly independent, 𝑈 ∈𝑀𝑟(C)𝑔 is unitary and
B = 𝑈A. If there exists a tuple Ξ ∈𝑀𝑔(C)𝑔 such that

Aℓ(𝑈 − 𝐼)A𝑗 =

𝑔∑︁
𝑠=1

(Ξ𝑗)ℓ,𝑠A𝑠,

then Ξ is convexotonic and the convexotonic maps 𝑝 and 𝑞 associated to Ξ are bianalytic maps
between 𝒟A and 𝒟B in the following sense.

(a) int(𝒟A) ⊆ dom(𝑝), int(𝒟B) ⊆ dom(𝑞); and 𝑝 : int(𝒟A) → int(𝒟B) is bianalytic.
(b) If 𝑋 ∈ ext(𝒟A) ∩ dom(𝑝), then 𝑝(𝑋) ∈ ext(𝒟B).
(c) If 𝑋 ∈ 𝜕𝒟A ∩ dom(𝑝), then 𝑝(𝑋) ∈ 𝜕𝒟B.
(d) If 𝒟B(1) is bounded, then 𝒟A ⊆ dom(𝑝).

Before taking up the proof of Theorem 2.1, we prove the following proposition and collect
a few of its consequences that will be used in the sequel.

Proposition 2.2 ([AHKM19, Proposition 1.3]). Suppose 𝐽 ∈𝑀𝑑(C)𝑔 is linearly independent
and spans an algebra with convexotonic tuple Ξ (as in equation (1.1) with 𝐽 in place of 𝐴).
Let 𝑝 = 𝑥(𝐼 −ΛΞ(𝑥))−1 and 𝑞 = 𝑥(𝐼 + ΛΞ(𝑥))−1 denote the corresponding convexotonic maps.

(i) int(ℬ𝐽) ⊆ dom(𝑝) and 𝑝 : int(ℬ𝐽) → int(𝒟𝐽).
(ii) 𝒟𝐽 ⊆ dom(𝑞) and 𝑞 : int(𝒟𝐽) → int(ℬ𝐽) and 𝑞(𝜕𝒟𝐽) ⊆ 𝜕ℬ𝐽 .

(iii) 𝑝 : int(ℬ𝐽) → int(𝒟𝐽) and 𝑞 : int(𝒟𝐽) → int(ℬ𝐽) are birational inverses of one another.
(iv) If 𝑋 ∈ dom(𝑝), but 𝑋 /∈ int(ℬ𝐽), then 𝑝(𝑋) /∈ int(𝒟𝐽).
(v) If 𝒟𝐽 is bounded, then the domain of 𝑝 contains ℬ𝐽 and 𝑝(𝜕ℬ𝐽) ⊆ 𝜕𝒟𝐽 .

(vi) If 𝑌 ∈ dom(𝑞), but 𝑌 /∈ 𝒟𝐽 , then 𝑞(𝑌 ) /∈ ℬ𝐽 .

Lemma 2.3. Suppose 𝐹 ∈𝑀𝑑(C)𝑔. If 𝐼+Λ𝐹 (𝑋)+Λ𝐹 (𝑋)* ⪰ 0, then 𝐼+Λ𝐹 (𝑋) is invertible.

Proof. Arguing the contrapositive, suppose 𝐼 + Λ𝐹 (𝑋) is not invertible. In this case there is a
unit vector 𝛾 such that

Λ𝐹 (𝑋)𝛾 = −𝛾.
Hence,

⟨(𝐼 + Λ𝐹 (𝑋) + Λ𝐹 (𝑋)*)𝛾, 𝛾⟩ = ⟨Λ𝐹 (𝑋)*𝛾, 𝛾⟩ = ⟨𝛾,Λ𝐹 (𝑋)𝛾⟩ = −1.

Lemma 2.4. Let 𝑇 ∈𝑀𝑑(C). Then

(a) 𝐼 + 𝑇 + 𝑇 * ⪰ 0 if and only if 𝐼 + 𝑇 is invertible and ‖(𝐼 + 𝑇 )−1𝑇‖ ≤ 1;
(b) 𝐼 + 𝑇 + 𝑇 * ≻ 0 if and only if 𝐼 + 𝑇 is invertible and ‖(𝐼 + 𝑇 )−1𝑇‖ < 1.
(c) If ‖𝑇‖ < 1, then 𝐼 − 𝑇 is invertible and 𝐼 + (𝐼 − 𝑇 )−1𝑇 +

(︀
(𝐼 − 𝑇 )−1𝑇

)︀* ≻ 0.

(d) If ‖𝑇‖ = 1 and 𝐼 − 𝑇 is invertible, then 𝐼 + (𝐼 − 𝑇 )−1𝑇 +
(︀
(𝐼 − 𝑇 )−1𝑇

)︀*
is positive

semidefinite and singular.

Proof. Item (a) follows from the chain of equivalences,

‖(𝐼 + 𝑇 )−1𝑇‖ ≤ 1 ⇐⇒ 𝐼 −
(︀
(𝐼 + 𝑇 )−1𝑇

)︀(︀
(𝐼 + 𝑇 )−1𝑇

)︀* ⪰ 0

⇐⇒ 𝐼 − (𝐼 + 𝑇 )−1𝑇𝑇 *(𝐼 + 𝑇 )−* ⪰ 0

⇐⇒ (𝐼 + 𝑇 )(𝐼 + 𝑇 )* − 𝑇𝑇 * ⪰ 0

⇐⇒ 𝐼 + 𝑇 + 𝑇 * ⪰ 0.
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The proof of item (b) is the same.

The proof of (c) is routine. Indeed, it is immediate that 𝐼 − 𝑇 is invertible and

𝐼 + (𝐼 − 𝑇 )−1𝑇 +
(︀
(𝐼 − 𝑇 )−1𝑇

)︀*
= (𝐼 − 𝑇 )−1 (𝐼 − 𝑇𝑇 *) (𝐼 − 𝑇 )−* ≻ 0.

The proof of item (d) is similar.

Proof of Proposition 2.2. Compute

Λ𝐽(𝑞(𝑥)) Λ𝐽(𝑥) =

𝑔∑︁
𝑠,𝑘=1

𝑞𝑠(𝑥)𝑥𝑘𝐽𝑠𝐽𝑘 =

𝑔∑︁
𝑗=1

𝑔∑︁
𝑠=1

𝑞𝑠(𝑥)

[︃
𝑔∑︁

𝑘=1

𝑥𝑘(Ξ𝑘)𝑠,𝑗

]︃
𝐽𝑗

=

𝑔∑︁
𝑗=1

𝑔∑︁
𝑠=1

𝑞𝑠(𝑥)(ΛΞ(𝑥))𝑠,𝑗𝐽𝑗 =

𝑔∑︁
𝑗=1

𝑔∑︁
𝑡=1

𝑥𝑡

[︃
𝑔∑︁

𝑠=1

(𝐼 + ΛΞ(𝑥))−1
𝑡,𝑠 (ΛΞ(𝑥))𝑠,𝑗

]︃
𝐽𝑗

=

𝑔∑︁
𝑗=1

𝑔∑︁
𝑡=1

𝑥𝑡[(𝐼 + ΛΞ(𝑥))−1ΛΞ(𝑥)]𝑡,𝑗𝐽𝑗 .

Hence,

Λ𝐽(𝑞(𝑥)) (𝐼 + Λ𝐽(𝑥)) =

𝑔∑︁
𝑗=1

𝑔∑︁
𝑡=1

𝑥𝑡[(𝐼 + ΛΞ(𝑥))−1(𝐼 + ΛΞ(𝑥))]𝑡,𝑗𝐽𝑗 = Λ𝐽(𝑥).

Thus, as free (matrix-valued) rational functions regular at 0,

(2.3) Λ𝐽(𝑞(𝑥)) = (𝐼 + Λ𝐽(𝑥))−1 Λ𝐽(𝑥) =: 𝐹 (𝑥).

Since 𝐽 is linearly independent, given 1 ≤ 𝑘 ≤ 𝑔, there is a linear functional 𝜆 such that
𝜆(𝐽𝑗) = 0 for 𝑗 ̸= 𝑘 and 𝜆(𝐽𝑘) = 1. Applying 𝜆 to equation (2.3), gives

(2.4) 𝑞𝑘(𝑥) = 𝜆(𝐹 (𝑥)).

Since 𝜆(𝐹 (𝑥)) is a free rational function whose domain contains

D = {𝑋 : 𝐼 + Λ𝐽(𝑋) is invertible},

the same is true for 𝑞𝑘. (As a technical matter, each side of equation (2.4) is a rational
expression. Since they are defined and agree on a neighborhood of 0, they determine the
same free rational function. It is the domain of this rational function that contains D . See
[Vol17], and also [KVV09], for full details.) By Lemma 2.3, D contains 𝒟𝐽 , (as 𝑋 ∈ 𝒟𝐽

implies 𝐼 + Λ𝐽(𝑋) is invertible). Hence the domain of the free rational mapping 𝑞 contains
𝒟𝐽 . By Lemma 2.4 and equation (2.3), 𝑞 maps the interior of 𝒟𝐽 into the interior of ℬ𝐽 and
the boundary of 𝒟𝐽 into the boundary of ℬ𝐽 . Thus item (ii) is proved.

Similarly,

(2.5) (𝐼 − Λ𝐽(𝑥))−1 Λ𝐽(𝑥) = Λ𝐽(𝑝(𝑥)).

Arguing as above shows the domain of 𝑝 contains the set

E = {𝑋 : 𝐼 − Λ𝐽(𝑋) is invertible},

which in turn contains int(ℬ𝐽) (since ‖Λ𝐽(𝑋)‖ < 1 allows for an application of Lemma 2.4).
By Lemma 2.4 and equation (2.5), 𝑝 maps the interior of ℬ𝐽 into the interior of 𝒟𝐽 , proving
item (i). Since 𝑝 and 𝑞 are formal rational inverses of one another, it follows from items (i)
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and (ii) that they are inverses of one another as maps between 𝒟𝐽 and ℬ𝐽 , proving item (iii).
Further, if 𝑋 is in the boundary of ℬ𝐽 , then for 𝑡 ∈ C and |𝑡| < 1, we have 𝑝(𝑡𝑋) ∈ int(𝒟𝐽)
and

Λ𝐽(𝑝(𝑡𝑋)) = (𝐼 − Λ𝐽(𝑡𝑋))−1 Λ𝐽(𝑡𝑋).

Assuming 𝒟𝐽 is bounded, it follows that 𝐼−Λ𝐽(𝑋) is invertible and thus, by Lemma 2.4, 𝑋 is
in the domain of 𝑝 and 𝑝(𝑋) is in the boundary of 𝒟𝐽 , proving item (v). Finally, to prove item
(iv), suppose 𝑋 /∈ int(ℬ𝐽), but 𝑝(𝑋) ∈ int(𝒟𝐽). By item (i), there is a 𝑌 ∈ int(ℬ𝐽) such that
𝑝(𝑌 ) = 𝑝(𝑋). By item (ii), 𝑝(𝑌 ) = 𝑝(𝑋) ∈ dom(𝑞) and therefore, 𝑌 = 𝑞(𝑝(𝑌 )) = 𝑞(𝑝(𝑋)) = 𝑋,
a contradiction. The proof of (vi) is similar.

The converse portion of Theorem 1.1 is an immediate consequence of Proposition 2.2,
stated below as Corollary 2.5.

Corollary 2.5. Suppose 𝐸 ∈ 𝑀𝑑×𝑒(C)𝑔 is linearly independent, 𝑟 ≥ max{𝑑, 𝑒}, the 𝑟 × 𝑟
matrix 𝑈 is unitary and

𝐴 = 𝑈

(︂
0 𝐸
0 0

)︂
.

If there exists a tuple Ξ ∈ 𝑀𝑔(C)𝑔 such that equation (1.1) holds, then Ξ is convexotonic and
the associated convexotonic map 𝑝 is a bianalytic mapping int(ℬ𝐸) = int(ℬ𝐴) → int(𝒟𝐴).
Moreover, 𝒟𝐴 ⊆ dom(𝑞) and 𝑞(𝜕𝒟𝐴) ⊆ 𝜕ℬ𝐴, where 𝑞 = 𝑥(𝐼 + ΛΞ(𝑥))−1 is the inverse of 𝑝.

Proof. By the definition of 𝐴 we have ℬ𝐴 = ℬ𝐸 . The rest follows by Proposition 2.2.

In the case 𝐽 does not span an algebra, we have the following variant of Proposition 2.2.
It says that each free spectrahedron can be mapped properly to a bounded spectraball and
is used in the proof of Theorem 1.1. Recall a mapping between topological spaces is proper
if the inverse image of each compact sets is compact. Thus, for free open sets 𝒰 ⊆ 𝑀(C)𝑔

and 𝒱 ⊆ 𝑀(C)ℎ, a free mapping 𝑓 : 𝒰 → 𝒱 is proper if each 𝑓𝑛 : 𝒰𝑛 → 𝒱𝑛 is proper. For
perspective, given subsets Ω ⊆ C𝑔 and ∆ ⊆ Cℎ (that are not necessarily closed), and a proper
analytic map 𝜓 : Ω → ∆, if Ω ∋ 𝑧𝑗 → 𝜕Ω, then 𝜓(𝑧𝑗) → 𝜕∆. [Kra92, page 429].

Corollary 2.6. Let 𝐴 ∈ 𝑀𝑑(C)𝑔 and assume 𝐴 is linearly independent. Let 𝐶𝑔+1, . . . , 𝐶ℎ ∈
𝑀𝑑(C) be any matrices such that the tuple 𝐽 = (𝐽1, . . . , 𝐽ℎ) = (𝐴1, . . . , 𝐴𝑔, 𝐶𝑔+1, . . . , 𝐶ℎ) is a

basis for the algebra generated by the tuple 𝐴. Let Ξ ∈ 𝑀ℎ(C)ℎ denote the convexotonic tuple
associated to 𝐽 , let 𝑝 : int(ℬ𝐽) → int(𝒟𝐽) denote the corresponding convexotonic map, let 𝑞
denote the inverse of 𝑝, and let 𝜄 : int(𝒟𝐴) → int(𝒟𝐽) denote the inclusion. Then we have the
commutative diagram

int(ℬ𝐽)

int(𝒟𝐴) int(𝒟𝐽)

𝑝 ∼=
𝑓

𝜄
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and the mapping

(2.6) 𝑓(𝑥) = 𝑞 ∘ 𝜄(𝑥) =
(︀
𝑥1 · · · 𝑥𝑔 0 · · · 0

)︀ (︁
𝐼 +

𝑔∑︁
𝑗=1

Ξ𝑗𝑥𝑗

)︁−1

is (injective) proper and extends analytically to a neighborhood of 𝒟𝐴.

Proof. By Proposition 2.2, 𝑝 : int(ℬ𝐽) → int(𝒟𝐽) is birational and the domain of its inverse 𝑞
contains 𝒟𝐽 and maps 𝜕𝒟𝐽 into 𝜕ℬ𝐽 . In particular 𝑞 is proper.

Given 𝑋 ∈𝑀(C)𝑔, letting 𝑌 =
(︀
𝑋 0

)︀
,

Λ𝐽(𝑌 ) =

ℎ∑︁
𝑗=1

𝐽𝑗 ⊗ 𝑌𝑗 =

𝑔∑︁
𝑗=1

𝐴𝑗 ⊗𝑋𝑗 .

Hence 𝐿re
𝐽 (
(︀
𝑋 0

)︀
) = 𝐿re

𝐴(𝑋) and it follows that 𝑋 ∈ int(𝒟𝐴) if and only if 𝑌 ∈ int(𝒟𝐽).
Hence, we obtain a mapping 𝜄 : int(𝒟𝐴) → int(𝒟𝐽) defined by 𝜄(𝑋) = 𝑌 .

Fix 𝑚 ∈ N and suppose 𝐾 ⊆ int(𝒟𝐽(𝑚)) is compact and let 𝐾* = 𝜄−1(𝐾) ⊆ 𝒟𝐴(𝑚).
If (𝑋𝑛) is a sequence from 𝐾*, then 𝑌 𝑛 =

(︀
𝑋𝑛 0

)︀
is a sequence from 𝐾. Since 𝐾 is

compact, (𝑌 𝑛)𝑛 has a subsequence (𝑌 𝑛𝑗 )𝑗 that converges to some 𝑌 ∈ 𝐾. It follows that

𝑌 =
(︀
𝑋 0

)︀
∈ 𝐾 ⊆ int(𝒟𝐽) for some 𝑋 ∈ 𝐾*. Hence (𝑋𝑛𝑗 )𝑗 converges to 𝑋 and we conclude

that 𝐾* is compact. Thus 𝜄 is proper. Since 𝑞 is also proper, 𝑓 = 𝑞 ∘ 𝜄 is too. Letting
𝑧 = (𝑧1, . . . , 𝑧ℎ) denote an ℎ tuple of freely noncommuting indeterminates,

𝑞(𝑧) = 𝑧(𝐼 + ΛΞ(𝑧))−1

and thus 𝑓 takes the form of equation (2.6).

2.4. Proof of Theorem 2.1.

Lemma 2.7. Suppose 𝐺 ∈𝑀𝑑×𝑒(C)𝑔 is linearly independent, 𝐶 ∈𝑀𝑒×𝑑(C) and Ψ ∈𝑀𝑔(C)𝑔.
If

𝐺ℓ𝐶𝐺𝑗 =

𝑔∑︁
𝑠=1

(Ψ𝑗)ℓ,𝑠𝐺𝑠,

then the tuple Ψ is convexotonic. Moreover, letting 𝑇 = 𝐶𝐺 ∈𝑀𝑒(C)𝑔,

(2.7) 𝐺ℓ𝑇
𝛼 =

𝑔∑︁
𝑠=1

(Ψ𝛼)ℓ,𝑠𝐺𝑠.

In particular, if 𝐴 ∈ 𝑀𝑑(C)𝑔 is linearly independent and spans an algebra, then the tuple
Ψ uniquely determined by equation (1.1) is convexotonic.

Note that the hypothesis implies 𝑇 spans an algebra (but not that 𝑇 is linearly indepen-
dent).

Proof. Routine calculations give

(𝐺ℓ𝑇𝑗)𝑇𝑘 =

𝑔∑︁
𝑡=1

(Ψ𝑗)ℓ,𝑡𝐺𝑡 𝑇𝑘 =
∑︁
𝑠,𝑡=1

(Ψ𝑗)ℓ,𝑡(Ψ𝑘)𝑡,𝑠𝐺𝑠 =
∑︁
𝑠

(Ψ𝑗 Ψ𝑘)ℓ,𝑠𝐺𝑠.
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On the other hand

𝐺ℓ(𝑇𝑗𝑇𝑘) = 𝐺ℓ𝐶(𝐺𝑗𝑇𝑘) =
∑︁
𝑡

𝐺ℓ(Ψ𝑘)𝑗,𝑡𝑇𝑡 =
∑︁
𝑠,𝑡

(Ψ𝑡)ℓ,𝑠(Ψ𝑘)𝑗,𝑡𝐺𝑠.

By independence of 𝐺,

(Ψ𝑗Ψ𝑘)ℓ,𝑠 =
∑︁
𝑡

(Ψ𝑘)𝑗,𝑡(Ψ𝑡)ℓ,𝑠

and therefore

Ψ𝑗Ψ𝑘 =
∑︁
𝑡

(Ψ𝑘)𝑗,𝑡Ψ𝑡.

Hence Ψ is convexotonic.

A straightforward induction argument establishes the identity (2.7).

Proposition 2.8. Suppose 𝐴,𝐵 ∈ 𝑀𝑡(C)𝑔 are linearly independent, 𝑈 ∈ 𝑀𝑡(C)𝑔 is unitary,
𝐵 = 𝑈𝐴 and there exists a convexotonic tuple Ξ ∈𝑀𝑔(C)𝑔 such that

𝐴ℓ(𝑈 − 𝐼)𝐴𝑗 =

𝑔∑︁
𝑠=1

(Ξ𝑗)ℓ,𝑠𝐴𝑠.

Letting 𝑝 denote the associated convexotonic map, 𝑅 the tuple (𝑈 − 𝐼)𝐴 = 𝐵 −𝐴 and

𝑄(𝑥) = 𝐼 − Λ𝑅(𝑥),

(a) we have (︀
𝐼 + Λ𝐵(𝑝(𝑥))

)︀
𝑄(𝑥) = 𝐼 + Λ𝐴(𝑥);

(b) if 𝑍 ∈ dom(𝑝), then

(2.8)
(︀
𝐼 + Λ𝐵(𝑝(𝑍))

)︀
𝑄(𝑍) = 𝐼 + Λ𝐴(𝑍),

and

(2.9) 𝑄(𝑍)*𝐿re
𝐵(𝑝(𝑍))𝑄(𝑍) = 𝐿re

𝐴(𝑍);

(c) if 𝑍 ∈𝑀(C)𝑔 and 𝑄(𝑍) is invertible, then 𝑍 ∈ dom(𝑝) and equation (2.9) holds.

Proof. Item (a) is straightforward, so we merely outline a proof. From Lemma 2.7, for words
𝛼 and 1 ≤ 𝑗 ≤ 𝑔,

𝐴𝑗𝑅
𝛼 =

𝑔∑︁
𝑠=1

(Ξ𝛼)𝑗,𝑠𝐴𝑠.

Hence

𝐵𝑗𝑅
𝛼 =

𝑔∑︁
𝑠=1

(Ξ𝛼)𝑗,𝑠𝐵𝑠,
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from which it follows that, letting {𝑒1, . . . , 𝑒𝑔} denote the standard basis for C𝑔,

Λ𝐵(𝑝(𝑥)) =
∑︁
𝑠

𝐵𝑠𝑝
𝑠(𝑥) =

𝑔∑︁
𝑠=1

𝑔∑︁
𝑗=1

𝑥𝑗 [𝑒*𝑗 (𝐼 − ΛΞ(𝑥))−1𝑒𝑠]

=

∞∑︁
𝑛=0

𝑔∑︁
𝑗,𝑠=1

𝑥𝑗 [𝑒*𝑗ΛΞ(𝑥)𝑛𝑒𝑠] =

∞∑︁
𝑛=0

∑︁
|𝛼|=𝑛

[

𝑔∑︁
𝑗,𝑠=1

(Ξ𝛼)𝑗,𝑠𝐵𝑠]𝑥𝑗𝛼 =

∞∑︁
𝑛=0

𝑔∑︁
𝑗=1

𝐵𝑗𝑥𝑗
∑︁
|𝛼|=𝑛

𝑅𝛼𝛼

=

𝑔∑︁
𝑗=1

𝐵𝑗𝑥𝑗

∞∑︁
𝑛=0

Λ𝑅(𝑥)𝑛 = Λ𝐵(𝑥)(𝐼 − Λ𝑅(𝑥))−1.

In particular, (︀
𝐼 + Λ𝐵(𝑝(𝑥))

)︀
𝑄(𝑥) =

(︀
𝐼 + Λ𝐵(𝑝(𝑥))

)︀
(𝐼 − Λ𝑅(𝑥))

= 𝐼 − Λ𝑅(𝑥) + Λ𝐵(𝑥) = 𝐼 + Λ𝐴(𝑥),

since 𝑅 = 𝐵 − 𝐴. This computation also shows if both ‖ΛΞ(𝑍)‖ < 1 and ‖Λ𝑅(𝑍)‖ < 1, then
equation (2.8) holds. Since both sides of equation (2.8) are rational functions, equation (2.8)
holds whenever 𝑍 ∈ dom(𝑝). Finally, using Λ𝐵(𝑝(𝑥))𝑄(𝑥) = Λ𝐵(𝑥) as well as 𝑅 = 𝐵 −𝐴 and
𝐵 = 𝑈𝐴,

𝑄(𝑍)*𝐿re
𝐵(𝑝(𝑍))𝑄(𝑍) = 𝑄*(𝑍)𝑄(𝑍) +𝑄(𝑍)*Λ𝐵(𝑍) + Λ𝐵(𝑋)*𝑄(𝑍)

= 𝐼 + Λ𝐴(𝑍) + Λ𝐴(𝑍) + Λ𝐵(𝑍)*Λ𝐵(𝑍) − Λ𝐴(𝑍)*Λ𝐴(𝑍) = 𝐿re
𝐴(𝑍).

a routine calculation shows that equation (2.8) implies equation (2.9).

Since 𝐵 ∈ 𝑀𝑡(C)𝑔 is linearly independent, for each 1 ≤ 𝑘 ≤ 𝑔 there exists a linear
functional 𝜆𝑘 : 𝑀𝑡(C) → C such that 𝜆𝑘(𝐵𝑘) = 1 and 𝜆𝑘(𝐵𝑗) = 0 if 𝑗 ̸= 𝑘. For each 𝑘, there
is a matrix Ψ𝑘 ∈ 𝑀𝑡(C) such that 𝜆𝑘(𝑇 ) = trace(𝑇Ψ𝑘). Writing Ψ𝑘 =

∑︀
𝑠 𝑣𝑘,𝑠𝑢

*
𝑘,𝑠 for vectors

𝑢𝑘,𝑠, 𝑣𝑘,𝑠 ∈ C𝑡,

𝜆𝑘(𝑇 ) =
∑︁
𝑠

𝑢*𝑘,𝑠𝑇𝑣𝑘,𝑠.

Let

𝑟𝑘(𝑥) =
∑︁
ℓ,𝑠

(𝑢*𝑘,𝑠 + 𝑢*𝑘,𝑠𝐴ℓ𝑥ℓ)(𝐼 − Λ𝑅(𝑥))−1𝑣𝑘,𝑠 − 𝜆𝑘(𝐼).

Hence, for 𝑋 ∈𝑀𝑛(C)𝑔 sufficiently close to 0, and with 𝑊 = 𝑄−1 and Φ𝑘 = 𝜆𝑘 ⊗ 𝐼𝑛,

𝑝𝑘(𝑋) = Φ𝑘 (Λ𝐵(𝑝(𝑋))) = Φ𝑘 ([𝐼𝑡 ⊗ 𝐼𝑛 + Λ𝐴(𝑋)]𝑊 (𝑋) − 𝐼𝑡 ⊗ 𝐼𝑛)

=
∑︁
ℓ,𝑠

[𝑢*𝑘,𝑠 ⊗ 𝐼 + (𝑢*𝑘,𝑠𝐴𝑗 ⊗ 𝐼𝑛)(𝐼𝑡 ⊗𝑋𝑗)](𝐼𝑡 ⊗ 𝐼𝑛 − Λ𝑅(𝑋))−1[𝑣𝑘,𝑠 ⊗ 𝐼𝑛] − 𝜆𝑘(𝐼) ⊗ 𝐼𝑛

= 𝑟𝑘(𝑋).

Thus, in the notation of equation (2.2), I𝑅 ⊆ dom(𝑝); that is, if 𝑄(𝑍) = 𝐼−Λ𝑅(𝑍) is invertible,
then 𝑍 ∈ dom(𝑝), proving item (c).

Proof of Theorem 2.1. That Ξ is convexotonic follows from Lemma 2.7. Let 𝑝 denote the
resulting convexotonic map. Let 𝑅 = B − A = (𝑈 − 𝐼)A and 𝑄(𝑥) = 𝐼 − Λ𝑅(𝑥). From
Proposition 2.8,

(2.10) 𝑄(𝑋)*𝐿re
B(𝑝(𝑋))𝑄(𝑋) = 𝐿re

A (𝑋),
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holds whenever 𝑄(𝑋) is invertible.

Let 𝑋 ∈ int(𝒟A(𝑛)) be given. The function 𝐹𝑋(𝑧) = ΛB(𝑝((1−𝑧)𝑋)) is a 𝑀𝑑(C)⊗𝑀𝑛(C)-
valued rational function (of the single complex variable 𝑧 that is regular at 𝑧 = 1). Suppose
lim𝑧→0 𝐹𝑋(𝑧) exists and let 𝑇 denote the limit. In that case,

𝑄(𝑋)*(𝐼 + 𝑇 + 𝑇 *)𝑄(𝑋) = lim
𝑧→0

𝑄((1 − 𝑧)𝑋)*(𝐼 + 𝐹𝑋(𝑧) + 𝐹𝑋(𝑧)*)𝑄((1 − 𝑧)𝑋)

= 𝐿re
A (𝑋) ≻ 0

and therefore 𝑄(𝑋) is invertible (and 𝐼 + 𝑇 + 𝑇 * ≻ 0). Hence, if lim𝑧→0 𝐹𝑋(𝑧) exists, then
𝑄(𝑋) is invertible.

We now show the limit lim𝑧→0 𝐹𝑋(𝑧) must exist, arguing by contradiction. Accordingly,
suppose this limit fails to exist. Equivalently, 𝐹𝑋(𝑧) has a pole at 0. In this case there exists
a 𝑀𝑑(C) ⊗ 𝑀𝑛(C) matrix-valued function Ψ(𝑧) analytic and never 0 in a neighborhood of
0 and a positive integer 𝑚 such that 𝐹𝑋(𝑧) = 𝑧−𝑚Ψ(𝑧). Since Ψ(0) ̸= 0, there is a vector
𝛾 such that ⟨Ψ(0)𝛾, 𝛾⟩ ̸= 0 (since the scalar field is C). Choose a real number 𝜃 such that
𝜅 := 𝑒−𝑖𝑚𝜃⟨Ψ(0)𝛾, 𝛾⟩ < 0. Hence, for 𝑡 real and positive,

⟨(𝐹𝑋(𝑡𝑒𝑖𝜃) + 𝐹𝑋(𝑡𝑒𝑖𝜃)*)𝛾, 𝛾⟩

= 𝑡−𝑚⟨[𝑒−𝑖𝑚𝜃Ψ(𝑡𝑒𝑖𝜃) + 𝑒𝑖𝑚𝜃Ψ(𝑡𝑒𝑖𝜃)*]𝛾, 𝛾⟩

= 𝑡−𝑚
[︁
2⟨𝑒−𝑖𝑚𝜃Ψ(0)𝛾, 𝛾⟩ + ⟨[𝑒−𝑖𝑚𝜃[Ψ(𝑡𝑒−𝑖𝜃) − Ψ(0)]𝛾, 𝛾⟩ + 𝑒𝑖𝑚𝜃⟨[Ψ(𝑡𝑒−𝑖𝜃)* − Ψ(0)*]𝛾, 𝛾⟩

]︁
≤ 2𝑡−𝑚[𝜅+ 𝛿𝑡],

where 𝛿𝑡 tends to 0 as 𝑡 tends to 0. Hence, for 0 < 𝑡 sufficiently small,

⟨𝐿re
B(𝑝((1 − 𝑡𝑒−𝑖𝑚𝜃)𝑋))𝛾, 𝛾⟩ = ⟨(𝐼 + 𝐹𝑋(𝑡𝑒𝑖𝜃) + 𝐹𝑋(𝑡𝑒𝑖𝜃)*)𝛾, 𝛾⟩ < 0,

contradicting the fact that (1 − 𝑡𝑒−𝑖𝑚𝜃)𝑋 ∈ int(𝒟A) ∩ dom(𝑝) for all 0 < 𝑡 sufficiently small.
At this point we have shown if 𝑋 ∈ int(𝒟A), then 𝑄(𝑋) is invertible and therefore, by Propo-
sition 2.8, 𝑋 ∈ dom(𝑝). Further, if 𝑋 ∈ int(𝒟A), then, by equation (2.10),

𝑄(𝑋)*𝐿re
B(𝑝(𝑋))𝑄(𝑋) = 𝐿re

A (𝑋) ≻ 0

and thus 𝐿re
B(𝑝(𝑋)) ≻ 0; that is 𝑝(𝑋) ∈ int(𝒟B), By symmetry, the same is true for 𝑞.

Consequently, 𝑝 : int(𝒟A) → int(𝒟B) is bianalytic with inverse 𝑞 : int(𝒟B) → int(𝒟A), proving
item (a).

If 𝑋 ∈ ext(𝒟A) ∩ dom(𝑝), then 𝐿re
B(𝑝(𝑋)) ̸⪰ 0 by Proposition 2.8(b) and equation (2.9),

proving item (b).

Now suppose 𝒟B(1) is bounded and 𝑍 ∈ 𝜕𝒟A(𝑛). By [HKM13, Proposition 2.4], 𝒟B(𝑛)
is also bounded. For 0 < 𝑡 < 1, we have 𝑡𝑍 ∈ dom(𝑝) (by item (a)) and hence 𝜙, defined
on (0, 1) by 𝜙𝑍(𝑡) := 𝑝(𝑡𝑍), maps into int(𝒟B(𝑛)) and is thus bounded. It follows that
𝐺𝑍(𝑡) = ΛB(𝜙𝑍(𝑡)) is also a bounded function on (0, 1). Arguing by contradiction, suppose
𝑄(𝑍) = 𝐼−Λ𝑅(𝑍) is not invertible. Thus there is a unit vector 𝛾 such that 𝑄(𝑧𝑍)𝛾 = (1−𝑧)𝛾.
For 0 < 𝑡 < 1, equation (2.10) gives,

(1 − 𝑡)2⟨𝐿re
B(𝜙𝑍(𝑡))𝛾, 𝛾⟩ = 1 − 𝑡[−⟨[ΛA(𝑍) + ΛA(𝑍)*]𝛾, 𝛾⟩].
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Since the left hand side converges to 0 as 𝑡 approaches 1 from below, the right hand equals
1 − 𝑡. Hence

(1 − 𝑡)⟨𝐿re
B(𝜙𝑍(𝑡))𝛾, 𝛾⟩ = 1,

and we have arrived at a contradiction, as the left hand side converges to 0 as 𝑡 tends to 1 from
below. Hence 𝑄(𝑍) is invertible. By Proposition 2.8(c), if 𝒟B is bounded, then 𝒟A ⊆ dom(𝑝),
proving item (d).

Suppose 𝑋 ∈ dom(𝑝) ∩ 𝜕𝒟A. Since dom(𝑝) is open, 𝑡𝑋 ∈ dom(𝑝) for 𝑡 ∈ R sufficiently
close to 1. Further 𝑝(𝑡𝑋) ∈ int(𝒟𝐴) for 𝑡 < 1 and 𝑝(𝑡𝑋) ∈ ext(𝒟B) for 𝑡 > 1. By continuity,
𝑝(𝑋) ∈ 𝜕𝒟B, proving item (c).

3. Minimality and indecomposability

A monic pencil 𝐿𝐴 = 𝐿𝐴(𝑥, 𝑦) of size 𝑒 is indecomposable if its coefficients {𝐴1, . . . , 𝐴𝑔, 𝐴
*
1, . . . , 𝐴

*
𝑔}

generate 𝑀𝑒(C) as a C-algebra.3 A collection of sets {𝑆1, . . . , 𝑆𝑘} is irredundant if
⋂︀

𝑗 ̸=ℓ 𝑆𝑗 ̸⊆
𝑆ℓ for all ℓ. A collection {𝐿𝐴1 , . . . , 𝐿𝐴𝑘} of monic pencils is irredundant if {𝒟𝐴𝑗 : 1 ≤ 𝑗 ≤ 𝑘}
is irredundant.

Lemma 3.1. Given 𝐵 ∈ 𝑀𝑟(C)𝑔, there exists a reducing subspace M for {𝐵1, . . . , 𝐵𝑔} such
that, with 𝐴 = 𝐵|M , the monic pencil 𝐿𝐴 is minimal for 𝒟𝐵 = 𝒟𝐴.

If 𝐿𝐴 and 𝐿𝐵 are both minimal and 𝒟𝐴 = 𝒟𝐵, then 𝐴 and 𝐵 are unitarily equivalent. In
particular 𝐴 and 𝐵 have the same size.

Given a monic pencil 𝐿𝐴(𝑥, 𝑦) = 𝐼 +
∑︀
𝐴𝑗𝑥𝑗 +

∑︀
𝐴*

𝑗𝑦, there is a 𝑘 and indecomposable
monic pencils 𝐿𝐴𝑗 such that

𝐿𝐴 =
𝑘⨁︁

𝑗=1

𝐿𝐴𝑗 = 𝐿⨁︀𝑘
𝑗=1 𝐴

𝑗 ,

where the direct sum is in the sense of an orthogonal direct sum decomposition of the space
that 𝐴 acts upon. Moreover, 𝐿𝐴 is minimal if and only if {𝐿𝐴𝑗 : 1 ≤ 𝑗 ≤ ℓ} is irredundant.

Proof. Zalar [Zal17] (see also [HKM13]) establishes this result over the reals, but the proofs
work (and are easier) over C; it can also be deduced from the results in [KV17] and [HKV18].

Note if 𝐸 is ball-minimal then ker(𝐸) = {0} and ker(𝐸*) = {0}, an observation that will
be used repeatedly in the sequel.

Lemma 3.2. Let 𝐸 be a 𝑔-tuple of 𝑑×𝑒 matrices and assume ker(𝐸*) = {0} and ker(𝐸) = {0}.

(1) We have

(3.1)

(︂
𝐼 0

Λ𝐸* 𝐼

)︂(︂
𝐼 0
0 𝑄𝐸

)︂(︂
𝐼 Λ𝐸

0 𝐼

)︂
= L𝐸 .

(2) The monic pencil L𝐸 is indecomposable if and only if 𝑄𝐸 is an atom.
(3) 𝐸 is ball-minimal if and only if Lre

𝐸 is minimal.

3Previously, in [KV17] such pencils were called irreducible.
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(4) If 𝐴 ∈ 𝑀𝑁 (C)𝑔 and 𝐴𝑚𝐴𝑗 = 0 for all 1 ≤ 𝑗,𝑚 ≤ 𝑔 then, dim rg𝐴 + dim rg𝐴* ≤ 𝑁 and
for any 𝑠 ≥ dim rg𝐴 and 𝑡 ≥ dim rg𝐴* with 𝑠+ 𝑡 = 𝑁 , there exists a tuple 𝐹 ∈𝑀𝑠×𝑡(C)𝑔

such that 𝐴 is unitarily equivalent to (︂
0 𝐹
0 0

)︂
.

(5) If 𝐿𝐴 is minimal and 𝒟𝐴 is a spectraball, then there exist ball-minimal tuples 𝐹 1, . . . , 𝐹 𝑘

such that each L𝐹 𝑗 is an indecomposable monic pencil, {ℬ𝐹 1 , . . . ,ℬ𝐹𝑘} is irredundant and
𝐿𝐴 is unitarily equivalent to L𝐹 1 ⊕ · · · ⊕ L𝐹𝑘 .

(6) If 𝐴 is ball-minimal, then 𝐿𝐴 is minimal.
(7) If 𝐸 is ball-minimal, then, up to unitary equivalence, 𝑄𝐸 = 𝑄𝐸1 ⊕ · · · ⊕ 𝑄𝐸𝑘 , where the

𝑄𝐸𝑗 ∈ C<𝑥, 𝑦>𝑒𝑗×𝑒𝑗 are atoms, ker(𝐸𝑗) = {0} for all 𝑗, and the spectraballs ℬ𝐸𝑗 are
irredundant.

(8) If 𝑄𝐸 is an atom, then 𝐸 is ball-minimal.
(9) If 𝐸 ball-minimal, 𝐹 ∈𝑀𝑘×ℓ(C)𝑔 and ℬ𝐸 = ℬ𝐹 , then there is a tuple 𝑅 ∈𝑀(𝑘−𝑑)×(ℓ−𝑒)(C)𝑔

and unitaries 𝑈, 𝑉 of sizes 𝑘 × 𝑘 and ℓ× ℓ respectively such that ℬ𝐸 ⊆ ℬ𝑅 and

(3.2) 𝐹 = 𝑈

(︂
𝐸 0
0 𝑅

)︂
𝑉.

In particular,
(a) 𝑑 ≤ 𝑘 and 𝑒 ≤ ℓ;
(b) if 𝐹 ∈𝑀𝑑×𝑒(C)𝑔 is ball-minimal too, then 𝐸 and 𝐹 are ball-equivalent.

Item (9) can be interpreted in terms of completely contractive maps and as special cases
of the rectangular operator spaces of [FHL18]. Indeed, letting E and F denote the spans of
{𝐸1, . . . , 𝐸𝑔} and {𝐹1, . . . , 𝐹𝑔} respectively, the inclusion ℬ𝐸 ⊆ ℬ𝐹 is equivalent to the mapping
Φ : E → F defined by Φ(𝐸𝑗) = 𝐹𝑗 being completely contractive. Hence ℬ𝐸 = ℬ𝐹 if and only
if Φ is completely isometric.

Proof. (1) Straightforward.

(2) By (3.1), 𝑄𝐸 and L𝐸 are stably associated, cf. [HKV18, Section 4]. Hence L𝐸 does

not factor in C<𝑥, 𝑦>(𝑑+𝑒)×(𝑑+𝑒) if and only if 𝑄𝐸 does not factor in C<𝑥, 𝑦>𝑒×𝑒 by [HKV18,
Section 4]. Next, L𝐸 is indecomposable if and only if it does not factor and

ker(

(︂
0 𝐸
0 0

)︂
) ∩ ker(

(︂
0 0
𝐸* 0

)︂
) = {0}

([HKV18, Section 2.1 and Theorem 3.4]). Thus L𝐸 is indecomposable if and only if 𝑄𝐸 does
not factor.

(3) Let 𝐿𝐵 be minimal for 𝒟𝐵 = ℬ𝐸 and let 𝑁 denote the size of 𝐵. By [EHKM17,
Theorem 1.1(2)] there exists positive integers 𝑠, 𝑡 such that 𝑠+𝑡 = 𝑁 and a tuple 𝐹 ∈𝑀𝑠×𝑡(C)𝑔

such that

𝐵 =

(︂
0 𝐹
0 0

)︂
.

Thus ℬ𝐸 = ℬ𝐹 . On the other hand, with

𝐴 =

(︂
0 𝐸
0 0

)︂
,
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𝒟𝐴 = ℬ𝐸 too. By minimality of 𝐵, 𝑠+ 𝑡 ≤ 𝑑+ 𝑒. If 𝐸 is ball-minimal, then, since ℬ𝐸 = ℬ𝐹 ,
we have 𝑠 + 𝑡 ≥ 𝑑 + 𝑒 and hence 𝐿re

𝐴 = Lre
𝐸 is minimal. On the other hand, if Lre

𝐸 is minimal,
then Lre

𝐸 and 𝐿𝐵 have the same size, 𝑁 = 𝑠+ 𝑡 = 𝑑+ 𝑒 and thus 𝐸 is ball-minimal.

(4) Let R = rg𝐴 and R* = rg𝐴*. Since 𝐴𝑚𝐴𝑗 = 0 it follows that R and R* are orthogonal
and also that 𝐴𝑚R = 0 and 𝐴*

𝑚R* = 0 for 1 ≤ 𝑚 ≤ 𝑔. In particular, dim R + dim R* ≤ 𝑁.
Letting 𝑉 and 𝑉* denote the inclusions of R and R* into C𝑁 respectively,

(3.3) 𝐴 =

⎛⎝0 0 𝑉 *𝐴𝑉*
0 0 0
0 0 0

⎞⎠ ,

with respect to the decomposition C𝑁 = (R ⊕ R*)
⊥ ⊕ R ⊕ R*. Now any choice of 𝑠 ≥ dim R

and 𝑡 ≥ dim R* with 𝑠+ 𝑡 = 𝑁 applied to (3.3) gives the desired decomposition.

(5) Since 𝐿𝐴 is minimal, by Lemma 3.1, 𝐿𝐴 is unitarily equivalent to 𝐿𝐴1 ⊕ · · · ⊕ 𝐿𝐴𝑘

for some indecomposable irredundant monic pencils 𝐿𝐴1 , . . . , 𝐿𝐴𝑘 . Let 𝑁𝑗 denote the size of
𝐴𝑗 . Now suppose 𝒟𝐴 is a spectraball. Thus, there exists 𝑚, ℓ and a ball-minimal tuple
𝐺 ∈𝑀𝑚×ℓ(C)𝑔 such that 𝒟𝐴 = ℬ𝐺. By item (3) Lre

𝐺 is minimal for 𝒟𝐴. Thus

𝐵 :=

(︂
0 𝐺
0 0

)︂
∈𝑀𝑚+ℓ(C)𝑔

is unitarily equivalent to 𝐴1 ⊕ · · · ⊕ 𝐴𝑘 by Lemma 3.1. Since 𝐵𝑚𝐵𝑗 = 0 for 1 ≤ 𝑗,𝑚 ≤ 𝑔, it

follows that 𝐴ℓ
𝑚𝐴

ℓ
𝑗 = 0 for all 𝑗,𝑚, ℓ. By item (4), there exists 𝑠𝑗 , 𝑡𝑗 such that 𝑠𝑗 + 𝑡𝑗 = 𝑁𝑗

and tuples 𝐹 𝑗 ∈𝑀𝑠𝑗×𝑡𝑗 (C)𝑔 such that, up to unitary equivalence,

𝐴𝑗 =

(︂
0 𝐹 𝑗

0 0

)︂
∈𝑀𝑁𝑗 (C)𝑔.

Moreover, since 𝐿𝐴 is minimal and 𝒟𝐴 = ∩𝑘
𝑗=1ℬ𝐹 𝑗 , each 𝐹 𝑗 is ball-minimal.

(6) Given a tuple 𝐴 ∈𝑀𝑑(C)𝑔, observe that 𝑋 ∈ ℬ𝐴 if and only if 𝑆 ⊗𝑋 ∈ 𝒟𝐴, where

𝑆 =

(︂
0 1
0 0

)︂
.

Thus, if 𝐵 ∈ 𝑀𝑟(C)𝑑 and 𝒟𝐵 = 𝒟𝐴, then ℬ𝐵 = ℬ𝐴 and by ball-minimality, 𝑟 ≥ 𝑑. Hence 𝐿𝐴

is minimal.

(7) Combine items (3), (5) and (2) in that order.

(8) By item (2), L𝐸 is indecomposable. For a pencil 𝐿, indecomposability of 𝐿 implies
minimality of 𝐿re by Lemma 3.1. Thus Lre

𝐸 is minimal and hence 𝐸 is ball-minimal by item
(3).

(9) Let

𝐴 =

(︂
0 𝐸
0 0

)︂
∈𝑀𝑑+𝑒(C)𝑔.

By item (3), 𝐿re
𝐴 = Lre

𝐸 is minimal. Since Lre
𝐹 defines ℬ𝐸 , there is a reducing subspace M for

𝐵 =

(︂
0 𝐹
0 0

)︂
∈𝑀𝑘+ℓ(C)𝑔
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such that the restriction of 𝐵 to M is unitarily equivalent to 𝐴 by Lemma 3.1. Thus, there
is unitary 𝑍 ∈ 𝑀𝑘+ℓ(C) and a tuple 𝐶 ∈ 𝑀(𝑘+ℓ)−(𝑑+𝑒)(C)𝑔 such that, with respect to the

decomposition M ⊕ M⊥,

𝐵 = 𝑍*
(︂
𝐴 0
0 𝐶

)︂
𝑍.

Since 𝐵𝑚𝐵𝑗 = 0 for all 𝑗,𝑚, we have 𝐶𝑚𝐶𝑗 = 0 too. Further, using ball-minimality of 𝐸, ℓ ≥
rk𝐹 *𝐹 = rk𝐸*𝐸+ rk𝐶*𝐶 = 𝑒+ rk𝐶*𝐶. Thus dim rg𝐶 ≤ ℓ− 𝑒. Likewise, dim rg𝐶* ≤ 𝑘− 𝑑.
By item (4), there exists a tuple 𝑅 ∈𝑀(𝑘−𝑑)×(ℓ−𝑒)(C)𝑔 such that, up to unitary equivalence,

𝐶 =

(︂
0 𝑅
0 0

)︂
.

Thus, letting 𝐺 = ( 𝐸 0
0 𝑅 ) ∈𝑀𝑘×ℓ(C)𝑔,(︂

0 𝐹
0 0

)︂
𝑋 = 𝑋

(︂
0 𝐺
0 0

)︂
for some unitary matrix 𝑋. Writing 𝑋 = (𝑋𝑗,𝑘)2𝑗,𝑘=1 with respect to the decomposition C𝑘⊕Cℓ,
it follows that

𝑋11𝐺 = 𝐹𝑋22, 𝑋21𝐺 = 0, 𝐹𝑋21 = 0.

Hence 𝐹𝑋22𝑋
*
22 = 𝐹 and 𝑋*

11𝑋11𝐺 = 𝐺. Thus 𝑋11 is isometric on rg𝐺 and therefore 𝑋11

extends to a unitary mapping 𝑈 on all of C𝑘 such that 𝑈𝐺 = 𝑋11𝐺. Similarly, 𝑋*
22 is isometric

on rg𝐹 * and hence 𝑋*
22 extends to a unitary 𝑉 on all of Cℓ such that 𝑉 𝐹 * = 𝑋*

21𝐹
*. Finally,

𝑈𝐺 = 𝑋11𝐺 = 𝐹𝑋22 = 𝐹𝑉 *. Hence equation (3.2) holds, which implies ℬ𝐸 = ℬ𝐹 = ℬ𝐸 ∩ℬ𝑅.
Thus ℬ𝐸 ⊆ ℬ𝑅 and the remainder of item (9) follows.

Minimality and indecomposability of monic pencils are preserved under an affine linear
change of variables.

Proposition 3.3. Consider a hermitian monic pencil 𝐿re
𝐴 and an affine linear change of vari-

ables 𝜆 : 𝑥 ↦→ 𝑥𝑀 + 𝑏 for some invertible 𝑔 × 𝑔 matrix 𝑀 and vector 𝑏 ∈ C𝑔. If 𝐿re
𝐴(𝑏) ≻ 0,

then 𝜆−1(𝒟𝐴) = 𝒟𝐹 , where

(3.4) 𝐹 = 𝑀 · (H𝐴H) and H = 𝐿re
𝐴(𝑏)−1/2.

Further,

(1) 𝐿𝐴 is indecomposable if and only if 𝐿𝐹 indecomposable;
(2) 𝐿𝐴 is minimal if and only if 𝐿𝐹 is minimal.

Proof. Equation (3.4) is proved in [AHKM18, S8.2].

Turning to item (1), let us first settle the special case 𝑀 = 𝐼. If 𝐿𝐴 is not indecomposable,
then there is a common non-trivial reducing subspace M for 𝐴. It follows that M is reducing
for 𝐿re

𝐴(𝑏) and hence for 𝐹 = H𝐴H.

Now suppose 𝐿𝐹 is not indecomposable; that is, there is a non-trivial reducing subspace
N for 𝐹 = H𝐴H. Since

H(𝐿re
𝐴(𝑏) − 𝐼)H = H(Λ𝐴(𝑏) + Λ𝐴(𝑏)*)H = Λ𝐹 (𝑏) + Λ𝐹 (𝑏)*,

we conclude that (︀
𝐼 − 𝐿re

𝐴(𝑏)−1
)︀
N = H(𝐿re

𝐴(𝑏) − 𝐼)HN ⊆ N .
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Hence N is invariant for 𝐿re
𝐴(𝑏)−1. Since N is finite dimensional and 𝐿re

𝐴(𝑏)−1 is invertible,
𝐿re
𝐴(𝑏)−1N = N and consequently HN = N . Because 𝐹 = H𝐴H it is now evident that N

is reducing for 𝐴.

Now consider the special case 𝑏 = 0. A subspace M reduces 𝐴 if and only if it reduces
𝑀 ·𝐴. Combining these two special cases proves item (1).

Finally we prove item (2). By Lemma 3.1, 𝐿𝐴 is unitarily equivalent to
⨁︀ℓ

𝑗=1 𝐿𝐴𝑗 , where

the 𝐿𝐴𝑗 are indecomposable monic pencils. Now 𝐿𝐹 is unitarily equivalent to
⨁︀ℓ

𝑗=1 𝐿𝐹 𝑗 , where

𝐹 𝑗 = 𝑀 · (H𝐴𝑗H). By item (1), each of these summands 𝐿𝐹 𝑗 is indecomposable. Furthermore,
since Ψ is bijective it is clear that

⋂︀
𝑘 ̸=𝑖𝒟𝐴𝑘 ⊆ 𝒟𝐴𝑖 if and only if

⋂︀
𝑘 ̸=𝑗 𝒟𝐹𝑘 ⊆ 𝒟𝐹 𝑗 . Therefore

{𝐿𝐴𝑗 : 1 ≤ 𝑗 ≤ ℓ} is irredundant if and only if {𝐿𝐹 𝑗 : 1 ≤ 𝑗 ≤ ℓ} is irredundant. Hence 𝐿𝐴 is
minimal for 𝒟𝐴 if and only if 𝐿𝐹 is minimal for 𝒟𝐹 , again by Lemma 3.1.

Example 3.4. Even with 𝑀 = 𝐼, the property (1) of Proposition 3.3 fails for a general positive
definite H and 𝐹 as in (3.4). For example, let

𝐴 =

⎛⎜⎜⎝
2 4 2 0
1 2 2 2
0 0 2 4
0 0 1 2

⎞⎟⎟⎠ , H =

⎛⎜⎜⎝
2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 2

⎞⎟⎟⎠
−1

.

Then 𝐿𝐴 is indecomposable, but since

𝐹 =

⎛⎜⎜⎝
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞⎟⎟⎠ ,

the monic pencil 𝐿𝐹 is clearly not.

Remark 3.5. Suppose 𝐸 ∈𝑀𝑑×𝑒(C)𝑔 and 𝐶 ∈𝑀𝑔(C) is invertible. If 𝐸 is ball-minimal, then
𝐶 · 𝐸 (see equation (1.4)) is ball-minimal.

4. Characterizing bianalytic maps between spectrahedra

In this section we prove Theorem 1.5 and Proposition 1.6, stated as Propositions 4.2 and
4.4 below. A major accomplishment, exposited in Subsection 4.3, is the reduction of the eig-
generic type hypotheses of [AHKM18] to various natural and cleaner algebraic conditions on
the corresponding pencils defining spectrahedra.

Lemma 4.1. Let 𝐿𝐴 be a monic pencil. The set {(𝑋,𝑋*) : 𝑋 ∈ 𝒵re
𝐿𝐴

(𝑛)} is Zariski dense in

the set 𝒵𝐿𝐴
(𝑛) for every 𝑛. Likewise, {(𝑋,𝑋*) : 𝑋 ∈ 𝒵re

𝑄𝐴
(𝑛)} is Zariski dense in 𝒵𝑄𝐴

(𝑛) =

{(𝑋,𝑌 ) ∈𝑀𝑛(C)2𝑔 : det𝑄𝐴(𝑋,𝑌 ) = 0}.

Proof. The first statement holds by [KV17, Proposition 5.2]. The second follows immediately
from the first.
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4.1. The detailed boundary. Let 𝜌 be a hermitian 𝑑× 𝑑 free matrix polynomial with
𝜌(0) = 𝐼𝑑. Thus 𝜌 ∈ C<𝑥, 𝑦>𝑑×𝑑 and 𝜌(𝑋,𝑋*)* = 𝜌(𝑋,𝑋*) for all 𝑋 ∈𝑀(C)𝑔. The detailed
boundary of 𝒟𝜌 is the sequence of setŝ︂𝜕𝒟𝜌(𝑛) :=

{︁
(𝑋, 𝑣) ∈𝑀𝑛(C)𝑔 × (C𝑑𝑛 ∖ {0}) : 𝑋 ∈ 𝜕𝒟𝜌, 𝜌(𝑋,𝑋*)𝑣 = 0

}︁
over 𝑛 ∈ N. The nomenclature and notation are somewhat misleading in that ̂︂𝜕𝐷𝜌 is not
determined by the set 𝒟𝜌 but by its defining polynomial 𝜌. Denote also

𝜕1𝒟𝜌(𝑛) :=
{︁

(𝑋, 𝑣) ∈ ̂︂𝜕𝒟𝜌(𝑛) : dim ker(𝜌(𝑋,𝑋*)) = 1
}︁
.

For (𝑋, 𝑣) ∈ ̂𝜕1𝒟𝜌(𝑛), we call 𝑣 the hair at 𝑋. Letting

𝜋1 : 𝑀𝑛(C)𝑔 × C𝑑𝑛 →𝑀𝑛(C)𝑔 and 𝜋2 : 𝑀𝑛(C)𝑔 × C𝑑𝑛 → C𝑑𝑛

denote the canonical projections, set

𝜕1𝒟𝜌(𝑛) = 𝜋1

(︁
𝜕1𝒟𝜌(𝑛)

)︁
, hair𝒟𝜌(𝑛) = 𝜋2

(︁
𝜕1𝒟𝜌(𝑛)

)︁
.

Observe ̂︂𝜕ℬ𝐸(𝑛) := 𝜕𝒟𝑄𝐸
(𝑛), etc.

4.1.1. Boundary hair spans. In this subsection we connect the notion of boundary hair to ball-

minimality. Given a tuple 𝐸 ∈𝑀𝑑×𝑒(C)𝑔, a subset S ⊆ 𝜕1ℬ𝐸 is closed under unitary similarity

if for each 𝑛, each (𝑋, 𝑣) ∈ 𝜕1ℬ𝐸(𝑛) and each 𝑛× 𝑛 unitary 𝑈 , we have (𝑈𝑋𝑈*, (𝐼𝑒 ⊗ 𝑈)𝑣) ∈
S (𝑛). Assuming S ⊆ 𝜕1ℬ𝐸 is closed under unitary similarity, let

𝜋(hair S ) =
{︁
𝑢 ∈ C𝑒 : ∃𝑛 ∈ N, ∃𝑣 ∈ S (𝑛) ∩ hairℬ𝐸(𝑛) : 𝑣 = 𝑢⊗ 𝑒1 +

𝑛∑︁
𝑗=2

𝑢𝑗 ⊗ 𝑒𝑗

}︁
,

where {𝑒1, . . . , 𝑒𝑛} is the standard basis for C𝑛. Because S is invariant under unitary similarity,
the definition of 𝜋(hair S ) does not actually depend on the choice of orthonormal basis for
C𝑛. Thus, for instance, 𝜋(hair 𝜕1ℬ𝐸) is the set of those vectors 𝑢 ∈ C𝑒 such that there exists
an 𝑛, a pair (𝑋, 𝑣) ∈ 𝑀𝑛(C)𝑔 ⊕ [C𝑒 ⊗ C𝑛] and a unit vector ℎ ∈ C𝑛 such that 𝑄re

𝐸 (𝑋) ⪰ 0,
dim ker(𝑄re

𝐸 (𝑋)) = 1, 𝑄re
𝐸 (𝑋)𝑣 = 0 and 𝑢 = (𝐼𝑒 ⊗ ℎ*)𝑣. For notational convenience we write

𝜋(hairℬ𝐸) as shorthand for 𝜋(hair 𝜕1ℬ𝐸).

Proposition 4.2. A tuple 𝐸 ∈ 𝑀𝑑×𝑒(C)𝑔 is ball-minimal if and only if 𝜋(hairℬ𝐸) spans C𝑒

and ker(𝐸*) = {0}. Moreover, if 𝜋(hairℬ𝐸) spans C𝑒, then there exists a positive integer 𝑟4

and pairs (𝛼𝑎, 𝛾𝑎) ∈ ̂𝜕1ℬ𝐸(𝑟) for 1 ≤ 𝑎 ≤ 𝑒 such that, writing 𝛾𝑎 =
∑︀𝑟

𝑡=1 𝛿
𝑎
𝑡 ⊗ 𝑒𝑡 ∈ C𝑒 ⊗C𝑟 the

set {𝛿𝑎1 : 1 ≤ 𝑎 ≤ 𝑒} spans C𝑒.

Proof. Suppose 𝐸 is ball-minimal and let 𝑒′ ≤ 𝑒 denote the dimension of the span of 𝜋(hairℬ𝐸).
Let

𝒯𝐸 = {(𝑋,𝑋*) : 𝑋 ∈ 𝜕1𝒟𝑄𝐸
= 𝜕1ℬ𝐸}.

Let 𝑊 denote the inclusion of span𝜋(hairℬ𝐸) into C𝑒. Observe that

𝑊 *𝑄𝐸(𝑥, 𝑦)𝑊 = 𝑊 *𝑊 −𝑊 *Λ𝐸*(𝑦)Λ𝐸(𝑥)𝑊 = 𝑄𝐸𝑊 (𝑥, 𝑦).

4While it is not needed here, 𝑟 can be chosen at most 𝑒.
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Thus ℬ𝐸 ⊆ ℬ𝐸𝑊 and moreover (𝑋, 𝑣) ∈ ̂𝜕1𝒟𝑄𝐸
= 𝜕1ℬ𝐸 implies

𝑄re
𝐸𝑊 (𝑋)(𝑊 * ⊗ 𝐼)𝑣 = (𝑊 * ⊗ 𝐼)𝑄re

𝐸 (𝑋)𝑣 = 0,

so 𝒯𝐸 ⊆ 𝒵L𝐸𝑊
. Since 𝜕1𝒟L𝐸

= 𝜕1𝒟𝑄𝐸
= 𝜕1ℬ𝐸 by equation (3.1), Lre

𝐸 (equivalently L𝐸) is
minimal by Lemma 3.2(3), and 𝒯𝐸 is Zariski dense in 𝒵L𝐸

by [HKV18, Corollary 8.5], it follows
that 𝒵L𝐸

⊆ 𝒵L𝐸𝑊
. Since are convex sets containing 0 in their interiors, and their boundaries

are contained in 𝒵L𝐸
and 𝒵L𝐸𝑊

respectively, the inclusion 𝒵L𝐸
⊆ 𝒵L𝐸𝑊

implies ℬ𝐸𝑊 ⊆ ℬ𝐸 .
Indeed, if 𝑋 ∈ ℬ𝐸𝑊 but 𝑋 /∈ ℬ𝐸 , then there is a 0 < 𝑡 < 1 such that 𝑡𝑋 ∈ 𝜕ℬ𝐸 ∩ ℬ𝐸𝑊 .
Thus (𝑡𝑋, 𝑡𝑋*) ∈ 𝒵L𝐸

⊆ 𝒵L𝐸𝑊
. Consequently 𝑄re

𝐸𝑊 (𝑡𝑋) has a kernel and finally 𝑄re
𝐸 (𝑋) ̸⪰ 0,

contradicting 𝑋 ∈ ℬ𝐸𝑊 . Hence 𝐸 and 𝐸𝑊 define the same spectraball. Since 𝐸𝑊 is a
𝑑 × 𝑒′-tuple and 𝐸 is ball-minimal and 𝑑 × 𝑒, Lemma 3.2(9) implies 𝑒′ ≥ 𝑒. Thus 𝑒′ = 𝑒 and
𝜋(hairℬ𝐸) spans C𝑒. If ker(𝐸*) ̸= {0} then 𝐸 is not ball-minimal. Hence we have shown, if 𝐸
is ball-minimal, then 𝜋(hairℬ𝐸) spans and ker(𝐸*) = {0}.

To prove the converse, suppose 𝐹 ∈ 𝑀𝑘×ℓ(C)𝑔 is not ball-minimal, but ker(𝐹 *) = {0}.
Let H𝐹 ⊆ Cℓ denote the span of 𝜋(hairℬ𝐹 ). It suffices to show H𝐹 ̸= Cℓ. Let 𝐸 ∈𝑀𝑑×𝑒(C)𝑔

be ball-minimal with ℬ𝐹 = ℬ𝐸 . By Lemma 3.2(9), 𝑑 ≤ 𝑘 and 𝑒 ≤ ℓ and, letting 𝑑′ = 𝑘 − 𝑑
and 𝑒′ = ℓ− 𝑒, there is a tuple 𝑅 ∈𝑀𝑑′×𝑒′(C)𝑔 and 𝑘 × 𝑘 and ℓ× ℓ unitary matrices 𝑈 and 𝑉
respectively so that equation (3.2) holds and ℬ𝐸 ⊆ ℬ𝑅. Note that 𝑒′ ̸= 0 since ker(𝐹 *) = {0}
and further

𝑄𝐹 = 𝑉 *
(︂
𝑄𝐸 0
0 𝑄𝑅

)︂
𝑉 = 𝑉 *(𝑄𝐸 ⊕𝑄𝑅)𝑉.

Without loss of generality, we may assume 𝑉 = 𝐼.

Suppose 𝑋 ∈ 𝜕1ℬ𝐹 (𝑛) and 0 ̸= 𝑣 ∈ Cℓ ⊗ C𝑛 is in the kernel of 𝑄re
𝐹 (𝑋). With respect

to the decomposition of Cℓ ⊗ C𝑛 = [C𝑒 ⊗ C𝑛] ⊕ [C𝑒′ ⊗ C𝑛], decompose 𝑣 = 𝑢 ⊕ 𝑢′. It follows
that 0 = 𝑄re

𝐹 (𝑋)𝑣 = 𝑄re
𝐸 (𝑋)𝑢 ⊕ 𝑄re

𝑅(𝑋)𝑢′ and hence both 𝑄re
𝐸 (𝑋)𝑢 = 0 and 𝑄re

𝑅(𝑋)𝑢′ = 0.
Therefore,

(︀
0
𝑢′
)︀

is in the kernel of 𝑄re
𝐹 (𝑋). On the other hand, 𝑋 ∈ 𝜕ℬ𝐸(𝑛). Hence there is a

0 ̸= 𝑤 ∈ C𝑒 ⊗ C𝑛 such that 𝑄re(𝑋)𝑤 = 0. Thus 0 ̸= ( 𝑤
0 ) is in the kernel of 𝑄re

𝐹 (𝑋). Since the

dimension of the kernel of 𝑄re
𝐹 (𝑋) is one, 𝑢′ = 0 and therefore H𝐹 ⊆ C𝑒⊕{0} ( C𝑒⊕C𝑒′ = Cℓ.

To prove the moreover portion of the proposition, note that the assumption that the
𝜋(hairℬ𝐸) spans implies the existence of 𝑛1, . . . , 𝑛𝑒 ∈ N and pairs (𝛼𝑎, 𝛾𝑎) ∈𝑀𝑛𝑎(C)𝑔 × [C𝑒 ⊗
C𝑛𝑎 ] such that, writing 𝛾𝑎 =

∑︀𝑛𝑎
𝑡=1 𝛿

𝑎
𝑡 ⊗ 𝑒𝑡, the set {𝛿𝑎1 : 1 ≤ 𝑎 ≤ 𝑒} spans C𝑒. By choosing

𝑟 = max{𝑛𝑎 : 1 ≤ 𝑎 ≤ 𝑒} and padding 𝛿𝑎 and 𝛾𝑎 by zeros as needed, it can be assumed that
𝑛𝑎 = 𝑟 for all 𝑎.

4.2. From basis to hyperbasis. Call an 𝑒 + 1-element subset 𝒰 = {𝑢1, . . . , 𝑢𝑒+1} of C𝑒 a
hyperbasis if each 𝑒-element subset of 𝒰 is a basis. This notion critically enters the genericity
conditions considered in [AHKM18].

Lemma 4.3. Given 𝐸 ∈ 𝑀𝑑×𝑒(C)𝑔 and 𝑛 ∈ N, if 𝒵𝑄𝐸
(𝑛) is an irreducible hypersurface in

𝑀𝑛(C)2𝑔,

{(𝑋,𝑋*) : 𝑋 ∈ 𝜕1ℬ𝐸(𝑛)}

is Zariski dense in 𝒵𝑄𝐸
(𝑛), and 𝜋(hairℬ𝐸) spans C𝑒, then 𝜋(hairℬ𝐸) contains a hyperbasis

for C𝑒.



BIANALYTIC FREE MAPS BETWEEN SPECTRAHEDRA AND SPECTRABALLS 25

Proof. By Proposition 4.2 there exist a positive integer 𝑟, tuples 𝑋1, . . . , 𝑋𝑒 ∈ 𝜕1ℬ𝐸(𝑟) and

vectors 𝛾𝑗 =
∑︀𝑟

𝑡=1 𝛿
𝑗
𝑡 ⊗ 𝑒𝑡 ∈ ker(𝑄re

𝐸 (𝑋𝑗)) ⊆ C𝑒 ⊗ C𝑟, such that {𝛿𝑗1 : 1 ≤ 𝑗 ≤ 𝑒} spans C𝑒.

Note too that 𝛿𝑗1 = (𝐼 ⊗ 𝜚*1)𝛿
𝑗 , where {𝜚1, . . . 𝜚𝑟} is the standard orthonormal basis for C𝑟.

If 𝑋 ∈ 𝜕1ℬ𝐸(𝑛), then the adjugate matrix, adj(𝑄re
𝐸 (𝑋)), is of rank one and its range is

ker(𝑄re
𝐸 (𝑋)). Let 𝑀(𝑖) denote the 𝑖-th column of a matrix 𝑀 and suppose 𝛾 =

∑︀𝑟
𝑡=1 𝛿𝑡 ⊗ 𝑒𝑡

spans ker(𝑄re
𝐸 (𝑋)). It follows that (𝐼 ⊗ 𝜚*1) adj(𝑄re

𝐸 (𝑋𝑘))(𝑖) = 𝜇𝛿1 for some 𝜇 ∈ C. Moreover,

for every 𝑘 = 1, . . . , 𝑒 there exists 1 ≤ 𝑖𝑘 ≤ 𝑒𝑟 such that ker(𝑄re
𝐸 (𝑋𝑘)) = span(adj𝑄re

𝐸 (𝑋𝑘))(𝑖𝑘),

and hence (𝐼 ⊗ 𝑒*1) adj(𝑄re
𝐸 (𝑋𝑘))(𝑖𝑘) = 𝜇𝑘𝛿

𝑘
1 for some 𝜇𝑘 ̸= 0. Now consider

(4.1) 𝑣(𝑡,𝑋, 𝑌 ) :=

𝑒∑︁
𝑘=1

𝑡𝑘 (𝐼 ⊗ 𝜚*1) adj(𝑄𝐸(𝑋,𝑌 ))(𝑖𝑘) ∈ C𝑒

as a vector of polynomials in indeterminates 𝑡 = (𝑡1, . . . , 𝑡𝑒) and entries of (𝑋,𝑌 ) (i.e., coor-
dinates of 𝑀𝑟(C)2𝑔). Let {𝜀1, . . . , 𝜀𝑒} denote the standard basis for C𝑒. For every 𝑘 we have
𝑣(𝜀𝑘, 𝑋

𝑘, 𝑋𝑘*) = (𝐼 ⊗ 𝜚*1) adj(𝑄re(𝑋𝑘))(𝑖𝑘) = 𝜇𝑘𝛿
𝑘
1 ̸= 0. Since the complements of zero sets are

Zariski open and dense in the affine space, for each 𝑘 the set 𝑈𝑘 = {𝑡 ∈ C𝑔 : 𝑣(𝑡,𝑋𝑘𝑋𝑘*) ̸=
0} ⊆ C𝑔 is open and dense and thus so is

⋂︀𝑒
𝑘=1 𝑈𝑘. Hence there exists 𝜆 ∈ C𝑒 such that

𝑣(𝜆,𝑋𝑘, 𝑋𝑘*) ̸= 0 for every 𝑘. Now define the map

𝑢 : 𝒵𝑄𝐸
(𝑛) → C𝑒, 𝑢(𝑋,𝑌 ) := 𝑣(𝜆,𝑋, 𝑌 ).

Note that 𝑢 is a polynomial map by (4.1) and, for 𝑋 ∈ 𝜕1ℬ𝐸(𝑟) and 0 ̸= 𝛿 =
∑︀𝑟

𝑡=1 𝛿𝑡 ⊗ 𝜚𝑡 ∈
ker(𝑄re

𝐸 (𝑋)),

𝑢(𝑋,𝑋*) =

𝑒∑︁
𝑠=1

𝜆𝑠(𝐼 ⊗ 𝜚*1) adj(𝑄re
𝐸 (𝑋))(𝑖𝑠) =

𝑒∑︁
𝑠=1

𝜆𝑠𝜈𝑠𝛿
1 = 𝜈𝛿1,

for some 𝜈 ∈ C. In particular, if 𝑈(𝑋,𝑋*) ̸= 0, then 𝑢(𝑋,𝑋*) ∈ 𝜋(hairℬ𝐸).

0 ̸= 𝑢(𝑋𝑘, 𝑋𝑘*) = 𝜈𝑘𝛿
1
𝑘,

for each 𝑘 and hence 𝑢(𝑋1, 𝑋1*), . . . , 𝑢(𝑋𝑒, 𝑋𝑒*) form a basis of C𝑒. Therefore,

𝑢(𝑋,𝑌 ) =

𝑒∑︁
𝑘=1

𝑟𝑘(𝑋,𝑌 )𝑢(𝑋𝑘, 𝑋𝑘*)

for (𝑋,𝑌 ) ∈ 𝒵𝑄𝐸
(𝑛), where 𝑟𝑘 are polynomial functions on𝑀𝑟(C)2𝑔. In particular, 𝑟𝑘(𝑋𝑗 , 𝑋𝑗*) =

δ𝑗,𝑘, where δ is the Kronecker delta function.

Suppose that the product 𝑟1 · · · 𝑟𝑒 ≡ 0 on

{(𝑋,𝑋*) : 𝑋 ∈ 𝜕1ℬ𝐸(𝑛)} ⊆ 𝒵𝑄𝐸
.

Then 𝑟1 · · · 𝑟𝑒 ≡ 0 on 𝒵𝑄𝐸
(𝑛) by the Zariski denseness hypothesis. Therefore 𝑟𝑘 ≡ 0 on 𝒵𝑄𝐸

(𝑛)

for some 𝑘 by the irreducibility hypothesis, contradicting 𝑟𝑘(𝑋𝑘, 𝑋𝑘*) = 1. Consequently there
exists 𝑋0 ∈ 𝜕1ℬ𝐸(𝑛) such that 𝑟1(𝑋

0, 𝑋0*) · · · 𝑟𝑒(𝑋0, 𝑋0*) ̸= 0. By the construction it follows
that {𝑢(𝑋0, 𝑋0*), 𝑢(𝑋1, 𝑋1*), . . . , 𝑢(𝑋𝑒, 𝑋𝑒*)} ⊆ 𝜋(hairℬ𝐸) forms a hyperbasis of C𝑒.

Proposition 4.4. Let 𝐸 ∈ 𝑀𝑑×𝑒(C)𝑔. Then 𝑄𝐸 is an atom and ker(𝐸) = {0} if and only if
𝜋(hairℬ𝐸) contains a hyperbasis of C𝑒.
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Proof. Let 𝜄 denote the inclusion of rg(𝐸) into C𝑑 and let ̂︀𝐸 = 𝜄*𝐸. Note that ℬ𝐸 = ℬ ̂︀𝐸 and

thus 𝜋(hairℬ𝐸) = 𝜋(hairℬ ̂︀𝐸). Further 𝑄𝐸 = 𝑄 ̂︀𝐸 and ker( ̂︀𝐸) = ker(𝐸) and ker( ̂︀𝐸*) = {0}.
It follow that 𝑄𝐸 is an atom if and only if 𝑄 ̂︀𝐸 is an atom; ker(𝐸) = {0} if and only if

ker( ̂︀𝐸) = {0}; and 𝜋(hairℬ𝐸) contains a hyperbasis of C𝑒 if and only if 𝜋(hairℬ ̂︀𝐸) does. Thus,

by replacing 𝐸 with ̂︀𝐸 we may assume that ker(𝐸*) = {0}.
(⇒) Suppose 𝑄𝐸 is an atom and ker(𝐸) = {0} and ker(𝐸*) = {0}. By Lemma 3.2(2),

L𝐸 (equivalently Lre
𝐸 ) is indecomposable. By [KV17, Proposition 3.12]5, 𝒵L𝐸

is an irre-
ducible free locus. By [HKV18, Corollary 3.6], 𝒵L𝐸

(𝑛) is an irreducible hypersurface for
large enough 𝑛. Thus, by [HKV18, Corollary 8.5], 𝜕1ℬ𝐸(𝑛) = 𝜕1𝑄re

𝐸 (𝑛) is Zariski dense in
𝒵re
Lre
𝐸

(𝑛) for large enough 𝑛. Thus {(𝑋,𝑋*) : 𝑋 ∈ 𝜕1ℬ𝐸(𝑛)} is Zariski dense in {(𝑋,𝑋*) : 𝑋 ∈
𝑀𝑛(C)𝑔, detLre

𝐸 (𝑋) = 0} for large enough 𝑛. By Lemma 4.1 it now follows that {(𝑋,𝑋*) : 𝑋 ∈
𝜕1ℬ𝐸} is Zariski dense in 𝒵L𝐸

= 𝒵𝑄𝐸
= {(𝑋,𝑌 ) : det𝑄𝐸(𝑋,𝑌 ) = 0}. Thus the assumptions

of Lemma 4.3 are satisfied for some 𝑛 ∈ N, so 𝜋(hairℬ𝐸) contains a hyperbasis for C𝑒.

(⇐) Suppose 𝑄𝐸 is not an atom. If 𝐸 is not ball-minimal, then 𝜋(hairℬ𝐸) does not span
C𝑒 by Proposition 4.2, since ker(𝐸*) = {0}. If 𝐸 is ball-minimal, then Lre

𝐸 is minimal but
not indecomposable by Lemma 3.2 items (2) and (3). Thus Lre

𝐸 decomposes non-trivially as
Lre
𝐸1 ⊕Lre

𝐸2 by Lemma 3.2(5). Hence 𝑄𝐸 decomposes as 𝑄𝐸1 ⊕𝑄𝐸2 . Letting 𝑒𝑖 ≥ 1 denote the
size of 𝑄𝐸𝑖 ,

𝜋(hairℬ𝐸) ⊆ (C𝑒1 ⊕ {0}𝑒2) ∪ ({0}𝑒1 ⊕ C𝑒2) .

Thus 𝜋(hairℬ𝐸) cannot contain a hyperbasis for C𝑒 = C𝑒1 ⊕ C𝑒2 .

Remark 4.5. (1) Note that 𝑄𝐸 is an atom, ker(𝐸) = {0} and ker(𝐸*) = {0} (or equivalently,
L𝐸 is indecomposable) if and only if the centralizer of(︂

0 𝐸1

0 0

)︂
, . . .

(︂
0 𝐸𝑔

0 0

)︂
,

(︂
0 0
𝐸*

1 0

)︂
, . . .

(︂
0 0
𝐸*

𝑔 0

)︂
,

is trivial. Verification of this fact amounts to checking whether a system of linear equations
has a solution.

(2) If L𝐸 is indecomposable, then so is 𝐿𝐸 . Indeed, if 𝐿𝐸 = 𝐿𝐸1 ⊕ 𝐿𝐸2 , then L𝐸 equals
L𝐸1 ⊕ L𝐸2 up to a canonical shuffle.

However, the converse is not true. For example, with Λ(𝑥) =

(︂
0 𝑥2
𝑥1 0

)︂
,

𝐼 + Λ(𝑥) + Λ*(𝑦) =

(︂
1 𝑥2 + 𝑦1

𝑥1 + 𝑦2 1

)︂
is an indecomposable monic pencil, but

𝐼 − ΛΛ* =

(︂
1 − 𝑥1𝑦1 0

0 1 − 𝑥2𝑦2

)︂
factors.

5Irreducible in [KV17] is indecomposable here
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4.3. The eig-generic conditions. In this subsection we connect the various genericity as-
sumptions on tuples in 𝑀𝑑(C)𝑔 used in [AHKM18] to clean, purely algebraic conditions of
the corresponding hermitian monic pencils, see Proposition 4.8. We begin by recalling these
assumptions precisely.

Definition 4.6 ([AHKM18, S7.1.2]). A tuple 𝐴 ∈ 𝑀𝑑(C)𝑔 is weakly eig-generic if there
exists an ℓ ≤ 𝑑+ 1 and, for 1 ≤ 𝑗 ≤ ℓ, positive integers 𝑛𝑗 and tuples 𝛼𝑗 ∈𝑀𝑛𝑗 (C)𝑔 such that

(a) for each 1 ≤ 𝑗 ≤ ℓ, the eigenspace corresponding to the largest eigenvalue of Λ𝐴(𝛼𝑗)*Λ𝐴(𝛼𝑗)

has dimension one and hence is spanned by a vector 𝑢𝑗 =
∑︀𝑛𝑗

𝑎=1 𝑢
𝑗
𝑎 ⊗ 𝑒𝑎; and

(b) the set U = {𝑢𝑗𝑎 : 1 ≤ 𝑗 ≤ ℓ, 1 ≤ 𝑎 ≤ 𝑛𝑗} contains a hyperbasis for ker(𝐴)⊥ = rg(𝐴*).

The tuple is eig-generic if it is weakly eig-generic and ker(𝐴) = {0} (equivalently, rg(𝐴*) =
C𝑑).

Finally, a tuple 𝐴 is *-generic (resp. weakly *-generic) if there exists an ℓ ≤ 𝑑 and
tuples 𝛽𝑗 ∈𝑀𝑛𝑗 (C)𝑔 such that the kernels of 𝐼 − Λ𝐴(𝛽𝑗)Λ𝐴(𝛽𝑗)* have dimension one and are

spanned by vectors 𝜇𝑗 =
∑︀
𝜇𝑗𝑎 ⊗ 𝑒𝑎 for which the set {𝜇𝑗𝑎 : 1 ≤ 𝑗 ≤ ℓ, 1 ≤ 𝑎 ≤ 𝑛𝑗} spans C𝑑

(resp. rg(𝐴) = ker(𝐴*)⊥).

Remark 4.7. One can replace 𝑛𝑗 with
∑︀ℓ

𝑗=1 𝑛𝑗 in Definition 4.6, so we can without loss of
generality assume 𝑛1 = · · · = 𝑛𝑔.

Mixtures of these generic conditions were critical assumptions in the main theorems of
[AHKM18]. The next proposition gives elegant and much more familiar replacements for
them.

Proposition 4.8. Let 𝐴 ∈𝑀𝑑(C)𝑔.

(1) 𝐴 is eig-generic if and only if 𝑄𝐴 is an atom and ker(𝐴) = {0}.
(2) 𝐴 is *-generic and ker(𝐴) = {0} if and only if 𝐴* is ball-minimal.
(3) Let 𝜄 denote the inclusion of rg(𝐴*) into C𝑑. Then 𝐴 is weakly eig-generic if and only if

𝑄𝐴𝜄 is an atom and ker(𝐴𝜄) = {0}.
(4) Let 𝜄 denote the inclusion of rg(𝐴) into C𝑑. Then 𝐴 is weakly *-generic and ker(𝐴) = {0}

if and only if 𝐴*𝜄 is ball-minimal.

Proof. It is immediate from the definitions that if 𝜋(hairℬ𝐴) contains a hyperbasis, then 𝐴

is eig-generic. On the other hand, if (𝛼, 𝑢) ∈ 𝜕1ℬ𝐸 . then 𝑢 is an eigenvector of Λ𝐴(𝛼)*Λ𝐴(𝛼)
corresponding to its largest eigenvalue 1. Writing 𝑢 =

∑︀𝑛
𝑎=1 𝑢𝑎 ⊗ 𝑒𝑎 ̸= 0, each 𝑢𝑎 ∈ 𝜋(hairℬ𝐸)

because if 𝑈 is a unitary matrix, then (𝑈𝛼𝑈*, 𝑈𝑢) ∈ 𝜕1ℬ𝐸 . Hence 𝜋(hairℬ𝐴) contains a
hyperbasis if and only if 𝐴 is eig-generic and therefore item (1) Follows from Proposition 4.4
and Remark 4.7.

A similar argument to that above shows 𝜋(hairℬ𝐴*) spans if and only if 𝐴 is *-generic.
Thus item (2) follows from the Proposition 4.2 and Remark 4.7.

Item (3) follows from (1) since 𝐴𝜄 is eig-generic and ker(𝐴𝜄) = {0}.
Item (4) follows from (2) since 𝜄*𝐴 is weakly *-generic and ker(𝜄*𝐴) = ker(𝐴).
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4.4. Proof of Theorem 1.5. We use Proposition 4.8. In the terminology of [AHKM18],
assumptions (a) and (b) imply that 𝐴 is eig-generic and *-generic, and 𝐵 is eig-generic, since the
ball-minimal hypothesis on 𝐴* implies ker(𝐴) = {0}. Theorem 1.5 thus follows from [AHKM18,
Corollary 7.11] once it is verified that the assumptions imply 𝒟𝐵 is bounded, 𝑝(𝜕𝒟𝐴) ⊆ 𝜕𝒟𝐵

and 𝑞(𝜕𝒟𝐵) ⊆ 𝜕𝒟𝐴. For instance, if 𝑋 ∈ 𝜕𝒟𝐴, but 𝑝(𝑋) ∈ int(𝒟𝐵), then there is a 𝑍 /∈ 𝒟𝐴

such that 𝑝(𝑍) ∈ 𝒟𝐵. But then, 𝑍 = 𝑞(𝑝(𝑍)) ∈ 𝒟𝐴, a contradiction.

5. Bianalytic maps between spectraballs and free spectrahedra

In this section we prove the rest of our main results, Proposition 1.7, and then Theorem
1.1 and its Corollary 1.3.

5.1. The proof of Proposition 1.7. Throughout this subsection, we fix a tuple 𝐸 ∈𝑀𝑑×𝑒(C)𝑔,
a positive integer𝑀 and an 𝐹 ∈ C<𝑥>1×𝑒 of degree degree at most𝑀.Write 𝐹 =

(︀
𝐹 1 · · · 𝐹 𝑒

)︀
and

𝐹 𝑠 =
∑︁

|𝑤|≤𝑀

𝐹 𝑠
𝑤𝑤,

where |𝑤| denotes the length of the word 𝑤 and 𝐹 𝑠
𝑤 ∈ C.

Let 𝑆 denote the tuple of shifts on the truncated Fock space F𝑀 with orthonormal basis
the words of length at most 𝑀 in the freely noncommuting variables {𝑥1, . . . , 𝑥𝑔}. When
viewing a word 𝑤 as an element of the finite dimensional Hilbert space F𝑀 we will write 𝑤.
Thus 𝑆ℓ𝑤 = 𝑥ℓ𝑤 if |𝑤| < 𝑀 and 𝑆ℓ𝑤 = 0 if |𝑤| = 𝑀. Let 𝑃 denote the projection of F𝑀 onto
the subspace F𝑀−1 and note that 𝑆*

𝑘𝑆ℓ = 𝑃 if 𝑘 = ℓ and 𝑆*
𝑘𝑆ℓ = 0 if 𝑘 ̸= ℓ.

Given a matrix 𝛽 = (𝛽𝑗,𝑘)𝑔𝑗,𝑘=1 ∈𝑀𝑔(𝑀𝑟(C)) and words 𝑢,𝑤 of the same length 𝑁 ,

𝑢 = 𝑥𝑗1𝑥𝑗2 · · ·𝑥𝑗𝑁 , 𝑤 = 𝑥𝑘1𝑥𝑘2 · · ·𝑥𝑘𝑁 ,

let ̂︀𝛽𝑢,𝑤 = 𝛽𝑘1,𝑗1𝛽𝑘2,𝑗2 · · ·𝛽𝑘𝑁 ,𝑗𝑁 .

In particular, 𝛽𝑗,𝑘 = ̂︀𝛽𝑥𝑘,𝑥𝑗

(5.1) ̂︀𝛽𝑢,𝑤 ̂︀𝛽𝑥𝑗 ,𝑥𝑘
= 𝛽𝑘1,𝑗1𝛽𝑘2,𝑗2 · · ·𝛽𝑘𝑁 ,𝑗𝑁𝛽𝑘,𝑗 = ̂︀𝛽𝑢𝑥𝑗 ,𝑤𝑥𝑘

.

Let

(𝛽 · 𝑆)𝑗 =

𝑔∑︁
𝑘=1

𝛽𝑗,𝑘 ⊗ 𝑆𝑘

and 𝛽 · 𝑆 = ((𝛽 · 𝑆)1, . . . , (𝛽 · 𝑆)𝑔).

Lemma 5.1. Given 1 ≤ 𝑁 ≤𝑀 and a word 𝑤 of length 𝑁 ,

(𝛽 · 𝑆)𝑤 =
∑︁

|𝑢|=𝑁

̂︀𝛽𝑢,𝑤 ⊗ 𝑆𝑢.

Proof. We induct on 𝑁. For 𝑁 = 1 and 𝑤 = 𝑥𝑡,

(𝛽 · 𝑆)𝑤 =

𝑔∑︁
𝑘=1

𝛽𝑡,𝑘 ⊗ 𝑆𝑘 =
∑︁
𝑘

̂︀𝛽𝑥𝑘,𝑥𝑡𝑆𝑘 =
∑︁
|𝑢|=1

̂︀𝛽𝑢,𝑥𝑡𝑆
𝑢
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Now suppose the result holds for 𝑁. Let 𝑣 be a word of length 𝑁 and consider the word 𝑤 = 𝑣𝑥𝑡
of length 𝑁 + 1. Using the induction hypothesis and equation (5.1),

(𝛽 · 𝑆)𝑤 = (𝛽 · 𝑆)𝑣(𝛽 · 𝑆)𝑥𝑡 = [
∑︁

|𝑢|=𝑁

̂︀𝛽𝑢,𝑣 ⊗ 𝑆𝑢] [
∑︁
𝑘

𝛽𝑡,𝑘 ⊗ 𝑆𝑘]

=
∑︁

|𝑢|=𝑁

𝑔∑︁
𝑘=1

̂︀𝛽𝑢,𝑣𝛽𝑡,𝑘 ⊗ 𝑆𝑢𝑆𝑘 =
∑︁

|𝑢|=𝑁

𝑔∑︁
𝑘=1

̂︀𝛽𝑢𝑥𝑘,𝑣𝑥𝑡 ⊗ 𝑆𝑢𝑥𝑘

=
∑︁

|𝑧|=𝑁+1

̂︀𝛽𝑧,𝑤 ⊗ 𝑆𝑧.

Given 𝑁 , let G𝑁 denote the subspace of F𝑀 spanned by words of length 𝑁. Thus the
words of length 𝑁 form an orthonormal basis for G𝑁 . Given words 𝑢,𝑤 ∈ G𝑁 , let 𝑢𝑤* denote
the linear mapping on G𝑁 determined by 𝑢𝑤*𝑣 = ⟨𝑣, 𝑤⟩𝑢, for words 𝑣 ∈ G𝑁 . Let

𝐵(𝛽,𝑁) =
∑︁

|𝑢|=𝑁=|𝑤|

̂︀𝛽𝑢,𝑤 ⊗ 𝑢𝑤* =
(︁̂︀𝛽𝑢,𝑤)︁|𝑢|=𝑁=|𝑤|

∈𝑀𝑟(C) ⊗𝑀𝑔𝑁 (𝐶),

where the second equality is understood in the sense of unitary equivalence. In particular,
𝐵(𝛽, 1) =

(︀
𝛽𝑘,𝑗

)︀𝑔
𝑗,𝑘=1

.

Lemma 5.2. For each positive integer 𝑁 the set of 𝛽 ∈ 𝑀𝑔(𝑀𝑟(C)) such that 𝐵(𝛽,𝑁) is
invertible is open and dense.

Proof. For the second statement, observe that 𝐵(𝐼,𝑁) is the identity matrix since, with 𝛽𝑗,𝑘 =

δ𝑗,𝑘𝐼𝑟, we have ̂︀𝛽𝑢,𝑤 = 𝛿𝑢,𝑤𝐼𝑟. Hence the mapping 𝜓 : 𝑀𝑔(𝑀𝑟(C)) → C defined by 𝜓(𝛽) =
det𝐵(𝛽,𝑁) is a polynomial in the entries of 𝛽 that is not identically zero. Thus 𝜓 is nonzero
on an open dense set and the result follows.

For notational purposes, let 1 denote the emptyword ∅ ∈ F𝑀 . Let {𝜀1, 𝜀2, . . . , 𝜀𝑒} denote
the standard orthonormal basis for C𝑒.

Lemma 5.3. Suppose 𝛽 ∈𝑀𝑔(𝑀𝑟(C)) and 𝛾 =
∑︀𝑒

𝑠=1 𝜀𝑠 ⊗ 𝛾𝑠 ∈ C𝑒 ⊗ C𝑟. If

𝑒∑︁
𝑠=1

𝐹 𝑠(𝛽 · 𝑆)[𝛾𝑠 ⊗ 1] = 0,

then, for 1 ≤ 𝑁 ≤𝑀 and each word 𝑢 of length 𝑁,∑︁
|𝑤|=𝑁

̂︀𝛽𝑢,𝑤[
𝑒∑︁

𝑠=1

𝐹 𝑠
𝑤𝛾𝑠] = 0.

Moreover, if 𝐵(𝛽,𝑁) is invertible, then

𝑒∑︁
𝑠=1

𝐹 𝑠
𝑤𝛾𝑠 = 0

for each word |𝑤| = 𝑁.
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Proof. Since 𝐹 𝑠
𝑤 ∈ C, by Lemma 5.1,

𝑀∑︁
𝑁=0

∑︁
|𝑤|=𝑁

𝐹 𝑠
𝑤(𝛽 · 𝑆)𝑤 =

𝑀∑︁
𝑁=0

∑︁
|𝑢|=𝑁

⎡⎣ ∑︁
|𝑤|=𝑁

𝐹 𝑠
𝑤
̂︀𝛽𝑢,𝑤

⎤⎦⊗ 𝑆𝑢.

Thus,

0 =

𝑒∑︁
𝑠=1

𝐹 𝑠(𝛽 · 𝑆)[𝛾𝑠 ⊗ 1] =

𝑀∑︁
𝑁=0

∑︁
|𝑢|=𝑁

⎛⎝ ∑︁
|𝑤|=𝑁

̂︀𝛽𝑢,𝑤[

𝑒∑︁
𝑠=1

𝐹 𝑠
𝑤𝛾𝑠]

⎞⎠⊗ 𝑢

and the first part of the result follows.

To prove the second part, let

𝑦 =
∑︁
|𝑣|=𝑁

𝑦𝑣 ⊗ 𝑣 ∈ C𝑟 ⊗ G𝑁 ,

where 𝑦𝑣 =
∑︀𝑒

𝑠=1 𝐹
𝑠
𝑣 𝛾𝑠 ∈ C𝑟. Thus

𝐵(𝛽,𝑁)𝑦 =
∑︁

|𝑢|=𝑁=|𝑤|

̂︀𝛽𝑢,𝑤 ⊗ 𝑢𝑤*
∑︁
|𝑣|=𝑁

𝑦𝑣 ⊗ 𝑣

=
∑︁

|𝑢|=𝑁=|𝑤|

̂︀𝛽𝑢,𝑤𝑦𝑤 ⊗ 𝑢 =
∑︁

|𝑢|=𝑁

[
∑︁

|𝑤|=𝑁

̂︀𝛽𝑢,𝑤𝑦𝑤] ⊗ 𝑢 = 0.

Hence if 𝐵(𝛽,𝑁) is invertible, then 𝑦 = 0 and therefore
∑︀𝑒

𝑠=1 𝐹
𝑠
𝑤𝛾𝑠 = 0 for each |𝑤| = 𝑁.

We continue to let {𝜀1, 𝜀2, . . . , 𝜀𝑒} denote the standard basis for C𝑒. Let {𝜚1, . . . , 𝜚𝑟} denote
the standard orthonormal basis for C𝑟.

Proposition 5.4. Fix 1 ≤ 𝑁 ≤𝑀. If there exist a positive integer 𝑟 and (𝛽𝑎, 𝛾𝑎) ∈𝑀𝑔(𝑀𝑟(C))×
[C𝑒 ⊗ C𝑟] for 1 ≤ 𝑎 ≤ 𝑒 such that,

(a) writing

𝛾𝑎 =
𝑟∑︁

𝑡=1

𝛿𝑎𝑡 ⊗ 𝜚𝑡

the vectors {𝛿𝑎1 : 1 ≤ 𝑎 ≤ 𝑒} span C𝑒;
(b) 𝐵(𝛽𝑎, 𝑁) is invertible for each 1 ≤ 𝑎 ≤ 𝑒;
(c) 𝐹 (𝛽𝑎 · 𝑆)[𝛾𝑎 ⊗ 1] = 0 for each 1 ≤ 𝑎 ≤ 𝑒,

then 𝐹 𝑠
𝑤 = 0 for each 1 ≤ 𝑠 ≤ 𝑒 and |𝑤| = 𝑁.

Proof. Note that

0 = 𝐹 (𝛽𝑎 · 𝑆)[𝛾𝑎 ⊗ 1] =

𝑒∑︁
𝑠=1

𝐹 𝑠(𝛽𝑎 · 𝑆)[𝛾𝑎𝑠 ⊗ 1].

Thus items (b) and (c) validate the hypotheses of Lemma 5.3, and hence
∑︀

𝑠 𝐹
𝑠
𝑤𝛾

𝑎
𝑠 = 0 for

each |𝑤| = 𝑁 and 1 ≤ 𝑎 ≤ 𝑒. Writing 𝛾𝑎 =
∑︀𝑒

𝑠=1 𝜀𝑠 ⊗ 𝛾𝑎𝑠 , it follows that

𝑒∑︁
𝑠=1

[𝜚*1𝛾
𝑎
𝑠 ]𝜀𝑠 = (𝐼 ⊗ 𝜚*1)

𝑒∑︁
𝑠=1

𝜀𝑠 ⊗ 𝛾𝑎𝑠 = 𝛿𝑎1 =

𝑒∑︁
𝑠=1

[𝜀*𝑠𝛿
𝑎
1 ]𝜀𝑠.
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Therefore 𝜚*1𝛾
𝑎
𝑠 = 𝜀*𝑠𝛿

𝑎
1 and consequently, for |𝑤| = 𝑁,

0 =
𝑒∑︁

𝑠=1

𝐹 𝑠
𝑤[𝜚*1𝛾

𝑎
𝑠 ] =

𝑒∑︁
𝑠=1

𝐹 𝑠
𝑤[𝜀*𝑠𝛿

𝑎
1 ] = 𝐹𝑤𝛿

𝑎
1 ,

where 𝐹𝑤 =
(︀
𝐹 1
𝑤 . . . 𝐹 𝑒

𝑤

)︀
∈ C1×𝑒. Since, by hypothesis, {𝛿𝑎1 : 1 ≤ 𝑎 ≤ 𝑒} spans C𝑒 it follows

that 𝐹𝑤 = 0 whenever |𝑤| = 𝑁. Thus 𝐹 𝑠
𝑤 = 0 for 1 ≤ 𝑠 ≤ 𝑒 and |𝑤| = 𝑁.

Given 𝛽 = (𝛽𝑗,𝑘) ∈𝑀𝑔(𝑀𝑟(C)), let

(𝐸 · 𝛽)𝑘 =

𝑔∑︁
𝑗=1

𝐸𝑗 ⊗ 𝛽𝑗,𝑘

Lemma 5.5. For 𝛽 ∈𝑀𝑔(𝑀𝑟(C)),

Λ𝐸(𝛽 · 𝑆) =
∑︁
𝑘

(𝐸 · 𝛽)𝑘 ⊗ 𝑆𝑘

𝑄re
𝐸 (𝛽 · 𝑆) = [𝐼 −

∑︁
𝑘

(𝐸 · 𝛽)*𝑘(𝐸 · 𝛽)𝑘] ⊗ 𝑃 + 𝐼 ⊗ (𝐼 − 𝑃 ),

where 𝑃 is the projection of F𝑀 onto F𝑀−1.

Proof. Compute,

Λ𝐸(𝛽 · 𝑆) =

𝑔∑︁
𝑗=1

𝐸𝑗 ⊗ (

𝑔∑︁
𝑘=1

𝛽𝑗,𝑘 ⊗ 𝑆𝑘) =

𝑔∑︁
𝑘=1

[

𝑔∑︁
𝑗=1

𝐸𝑗 ⊗ 𝛽𝑗,𝑘] ⊗ 𝑆𝑘 =

𝑔∑︁
𝑘=1

(𝐸 · 𝛽)𝑘 ⊗ 𝑆𝑘,

and thus

Λ𝐸(𝛽 · 𝑆)*Λ𝐸(𝛽 · 𝑆) = [

𝑔∑︁
𝑘=1

(𝐸 · 𝛽)*𝑘(𝐸 · 𝛽)𝑘] ⊗ 𝑃

and the result follows.

5.1.1. The hair spanning condition. A subset {(𝛼𝑎, 𝛾𝑎) : 1 ≤ 𝑎 ≤ 𝑒} ⊆ 𝑀𝑟(C)𝑔 × [C𝑒 ⊗ C𝑟] is

a boundary spanning set for ℬ𝐸 if each (𝛼𝑎, 𝛾𝑎) ∈ ̂︂𝜕ℬ𝐸 and, writing 𝛾𝑎 =
∑︀𝑟

𝑡=1 𝛿
𝑎
𝑡 ⊗ 𝜚𝑡,

the set {𝛿𝑎1 : 1 ≤ 𝑎 ≤ 𝑒} spans C𝑒. This set is a boundary hair spanning set for ℬ𝐸 if

moreover (𝛼𝑎, 𝛾𝑎) ∈ 𝜕1ℬ𝐸 for each 𝑎. By Proposition 4.2, if 𝐸 is ball-minimal, then there
exists a boundary hair spanning set for ℬ𝐸 .

Proposition 5.6. Fix 1 ≤ 𝑁 ≤ 𝑀. If 𝐸 ∈ 𝑀𝑑×𝑒(C)𝑔 is ball-minimal, then there exists a
positive integer 𝑟 and a subset {(𝛽𝑎, 𝛾𝑎) : 1 ≤ 𝑎 ≤ 𝑒} of 𝑀𝑔(𝑀𝑟(C)) ⊗ [C𝑒 ⊗ C𝑟] such that
𝐵(𝛽𝑎, 𝑁) is invertible for each 1 ≤ 𝑎 ≤ 𝑒 and {(𝛽𝑎 · 𝑆, 𝛾𝑎 ⊗ 1) : 1 ≤ 𝑎 ≤ 𝑒} is a boundary
spanning set for ℬ𝐸 .

The proof of Proposition 5.6 uses the following special case of a standard result from the
theory of perturbation of matrices [Kat95, Chapter 2, Section 4].

Lemma 5.7. Suppose 𝑅 ∈𝑀𝑑(C), 𝐼 −𝑅 ⪰ 0 and ker(𝐼 −𝑅) is one-dimensional and spanned
𝑣 ∈ C𝑑. For each 𝜖 > 0, there is a 𝜇 > 0 such that if 𝑄 ∈ 𝑀𝑑(C) is self-adjoint and ‖𝑄‖ < 𝜇,
then there is a 𝑐 > 0 and 𝑤 ∈ C𝑑 such that 𝐼 − 𝑐(𝑅+𝑄) ⪰ 0, ker(𝐼 − 𝑐(𝑅+𝑄)) is spanned by
𝑤 and ‖𝑣 − 𝑤‖ < 𝜖.
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Proof of Proposition 5.6. Since 𝐸 is ball-minimal, there is an 𝑟 and a boundary hair spanning
set {(𝛼𝑎, 𝜁𝑎) : 1 ≤ 𝑎 ≤ 𝑒} ⊆ 𝑀𝑟(C)𝑔 × [C𝑒 ⊗ C𝑟] for ℬ𝐸 by Proposition 4.2. In particular,
writing 𝜁𝑎 =

∑︀𝑟
𝑡=1 𝜒

𝑎
𝑡 ⊗ 𝜚𝑡, the set {𝜒𝑎

1 : 1 ≤ 𝑎 ≤ 𝑒} spans C𝑒. There is an 𝜖 > 0 such that, if
𝜏𝑎 =

∑︀𝑔
𝑡=1 𝜏

𝑎
𝑡 ⊗ 𝜌𝑡 and ‖𝜁𝑎 − 𝜏𝑎‖ < 𝜖 for each 1 ≤ 𝑎 ≤ 𝑒, then the set {𝜏𝑎1 : 1 ≤ 𝑎 ≤ 𝑒} spans

C𝑒.

Fix 1 ≤ 𝑎 ≤ 𝑒 and let, for 1 ≤ 𝑗, 𝑘 ≤ 𝑔,

̃︀𝛽𝑎𝑗,𝑘 =

{︃
𝛼𝑎
𝑗 if 𝑘 = 1

0 if 𝑘 > 1.

Thus

𝐼 − [

𝑔∑︁
𝑗=1

𝐸𝑗 ⊗ ̃︀𝛽𝑎𝑗,1]* [

𝑔∑︁
𝑗=1

𝐸𝑗 ⊗ ̃︀𝛽𝑎𝑗,1] = 𝑄re
𝐸 (𝛼𝑎)

is positive semidefinite with kernel spanned by 𝜁𝑎. By Lemmas 5.2 and 5.7, there exists a
𝛽𝑎 ∈𝑀𝑔(𝑀𝑟(C)) such that 𝐵(𝛽𝑎, 𝑁) is invertible and

(5.2) 𝑅(𝛽𝑎) := 𝐼 −
𝑔∑︁

𝑘=1

⎛⎝[

𝑔∑︁
𝑗=1

𝐸𝑗 ⊗ 𝛽𝑗,𝑘]* [

𝑔∑︁
𝑗=1

𝐸𝑗 ⊗ 𝛽𝑗,𝑘]

⎞⎠ = 𝐼 −
𝑔∑︁

𝑘=1

(𝐸 · 𝛽)*𝑘 (𝐸 · 𝛽)𝑘

is positive semidefinite and has kernel spanned by a vector 𝛾𝑎 such that ‖𝜁𝑎 − 𝛾𝑎‖ < 𝜖. In
particular, writing 𝛾𝑎 =

∑︀𝑟
𝑡=1 𝛿

𝑎
𝑡 ⊗ 𝜚𝑡, from the first paragraph of the proof, the set {𝛿𝑎1 : 1 ≤

𝑎 ≤ 𝑒} spans C𝑒.

To complete the proof, observe, using 𝑅(𝛽𝑎) defined in equation (5.2) and Lemma 5.5,
that

𝑄re
𝐸 (𝛽𝑎 · 𝑆) = 𝑅(𝛽𝑎) ⊗ 𝑃 + 𝐼 ⊗ (𝐼 − 𝑃 ).

It follows that {(𝛽𝑎 · 𝑆, 𝛾𝑎 ⊗ 1) : 1 ≤ 𝑎 ≤ 𝑒} is a boundary spanning set for ℬ𝐸 .

5.1.2. Proof of Proposition 1.7. Suppose 𝐸 is ball-minimal6 and 𝐹 ∈ C<𝑥>1×𝑒 vanishes on̂︂𝜕ℬ𝐸 and has degree at most 𝑀.

Fix 1 ≤ 𝑁 ≤ 𝑀. By Proposition 5.6, there exists an 𝑟 > 0 and (𝛽𝑎, 𝛾𝑎) ∈ 𝑀𝑔(𝑀𝑟(C)) ×
[C𝑒⊗C𝑟] such that {(𝛽𝑎 ·𝑆, 𝛾𝑎⊗1) : 1 ≤ 𝑎 ≤ 𝑒} is a boundary spanning set for ℬ𝐸 and 𝐵(𝛽𝑎, 𝑁)

is invertible for each 1 ≤ 𝑎 ≤ 𝑒. Since (𝛽𝑎 · 𝑆, 𝛾𝑎) ∈ ̂︂𝜕ℬ𝐸 , it follows that 0 = 𝐹 (𝛽 · 𝑆)𝛾𝑎. An
application of Proposition 5.4 implies 𝐹 𝑠

𝑤 = 0 for all 1 ≤ 𝑠 ≤ 𝑒 and |𝑤| = 𝑁. Hence 𝐹 𝑠
𝑤 = 0 for

all 1 ≤ 𝑠 ≤ 𝑒 and |𝑤| ≤ 𝑀 and therefore 𝐹 = 0. To complete the proof, given 𝑉 ∈ C<𝑥>ℓ×𝑒

that vanishes on ̂︂𝜕ℬ𝐸 , apply what has already been proved to each row of 𝑉 to conclude
𝑉 = 0.

5.2. Theorem 1.1. In this subsection we prove the first part Theorem 1.1. (The conversely
portion was already proved as Corollary 2.5.)

A free analytic mapping 𝑓 into 𝑀(C)ℎ defined in a neighborhood of 0 of 𝑀(C)𝑔 has a
power series expansion ([HKM12b, Voi10, KVV14]),

(5.3) 𝑓(𝑥) =
∞∑︁
𝑗=0

𝐺𝑗(𝑥) =
∞∑︁
𝑗=0

∑︁
|𝛼|=𝑗

𝑓𝛼𝑥
𝛼,

6It is enough to assume that 𝑃𝐸 is ball-minimal, where 𝑃 is the projection of C𝑑 onto rg(𝐸).
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where 𝑓𝛼 ∈ C1×ℎ. The term 𝐺𝑗 is the homogeneous of degree 𝑗 part of 𝑓 . It is a polynomial

mapping 𝑀(C)𝑔 →𝑀(C)ℎ.

Lemma 5.8. Let 𝐸 ∈𝑀𝑑×𝑒(C)𝑔 and 𝐵 ∈𝑀𝑟(C)ℎ. Suppose 𝑓 : int(ℬ𝐸) → int(𝒟𝐵) is proper.
For each positive integer 𝑁 there exists a free polynomial mapping 𝑝 = 𝑝𝑁 of degree at most
𝑁 such that if 𝑋 ∈ ℬ𝐸 is nilpotent of order 𝑁 , then 𝑓𝑋(𝑧) := 𝑓(𝑧𝑋) = 𝑝(𝑧𝑋) for 𝑧 ∈ C with
|𝑧| < 1. Further, if 𝑋 ∈ 𝜕ℬ𝐸 (equivalently ‖Λ𝐸(𝑋)‖ = 1), then 𝑝(𝑋) ∈ 𝜕𝒟𝐵.

Proof. Fix a positive integer 𝑁 . The series expansion of equation (5.3) converges as written
on 𝒩𝜖 = {𝑋 ∈ 𝑀(C)𝑔 :

∑︀
𝑋𝑗𝑋

*
𝑗 ≺ 𝜖2} for any 𝜖 > 0 such that 𝑁𝜖 ⊆ int(ℬ𝐸) [HKM12b,

Proposition 2.24]. In particular, if 𝑋 ∈ ℬ𝐸 is nilpotent of order 𝑁 and |𝑧| is small, then

𝑓𝑋(𝑧) := 𝑓(𝑧𝑋) =

𝑁∑︁
𝑗=1

𝐺𝑗(𝑧𝑋) =

𝑁∑︁
𝑗=1

⎡⎣∑︁
|𝛼|=𝑗

𝑓𝛼 ⊗𝑋𝛼

⎤⎦ 𝑧𝑗 =: 𝑝(𝑧𝑋).

It now follows that 𝑓𝑋(𝑧) = 𝑝(𝑧𝑋) for |𝑧| < 1 (since 𝑧𝑋 ∈ int(ℬ𝐸) for such 𝑧 and both sides
are analytic in 𝑧 and agree on a neighborhood of 0).

Now suppose 𝑋 ∈ 𝜕ℬ𝐸(𝑛) (still nilpotent of order 𝑁). Since 𝑓 : int(ℬ𝐸) → int(𝒟𝐵), it
follows that 𝐿re

𝐵(𝑝(𝑡𝑋)) ≻ 0 for 0 < 𝑡 < 1. Thus 𝐿re
𝐵(𝑝(𝑋)) ⪰ 0. Arguing by contradiction,

suppose 𝐿re
𝐵(𝑝(𝑋)) ≻ 0; that is 𝑝(𝑋) ∈ int(𝒟𝐵(𝑛)). Hence there is an 𝜂 such that

𝐵𝜂(𝑝(𝑋)) := {𝑌 ∈𝑀𝑛(C)𝑔 : ‖𝑌 − 𝑝(𝑋)‖ ≤ 𝜂} ⊆ int(𝒟𝐵(𝑛)).

Since 𝐾 = 𝐵𝜂(𝑝(𝑋)) is compact, 𝐿 = 𝑓−1
𝑛 (𝐾) ⊆ int(ℬ𝐸) is also compact by the proper

hypothesis on 𝑓 (and hence on each 𝑓𝑛 : int(ℬ𝐸(𝑛)) → int(𝒟𝐵(𝑛))). On the other hand, for
𝑡 < 1 sufficiently large, 𝑡𝑋 ∈ 𝐿, but 𝑋 /∈ int(ℬ𝐸(𝑛)), and we have arrived at the contradiction
that 𝐿 cannot be compact.

Remark 5.9. In view of Lemma 5.8, for 𝑋 ∈ 𝜕ℬ𝐸 nilpotent we let 𝑓(𝑋) denote 𝑓𝑋(1).
Observe also, if 𝑔 = ℎ, 𝑓(0) = 0, 𝑓 ′(0) = 𝐼𝑔 and 𝑋 ∈ ℬ𝐸 is nilpotent of order two, then
𝑓(𝑋) = 𝑋.

Lemma 5.10. Suppose 𝐵 ∈𝑀𝑟(C)𝑔 and V ∈𝑀𝑟×𝑢(C) and let B denote the algebra generated
by 𝐵. Let ℎ denote the dimension of B as a vector space. If {𝐵1V, . . . , 𝐵𝑔V} is linearly
independent, then there exists a 𝑔 ≤ 𝑡 ≤ ℎ and a basis {𝐽1, . . . , 𝐽ℎ} of B such that

(1) 𝐽𝑗 = 𝐵𝑗 for 1 ≤ 𝑗 ≤ 𝑔;
(2) {𝐽1V, . . . , 𝐽𝑡V} is linearly independent; and
(3) 𝐽𝑗V = 0 for 𝑡 < 𝑗 ≤ ℎ.

Letting Ξ ∈𝑀ℎ(C)ℎ denote the convexotonic tuple associated to 𝐽 ,

(Ξ𝑗)ℓ,𝑘 = 0 for 𝑗 > 𝑡, 𝑘 ≤ 𝑡 and 1 ≤ ℓ ≤ ℎ.

Proof. The set N = {𝑇 ∈ B : 𝑇V = 0} ⊆ B is a subspace(in fact a left ideal). Since
{𝐵1V, . . . , 𝐵𝑔V} is linearly independent, the subspace M of B spanned by {𝐵1, . . . , 𝐵𝑔} has
dimension 𝑔 and satisfies M ∩ N = {0}. Thus there is a 𝑔 ≤ 𝑡 ≤ ℎ such that ℎ − 𝑡 is the
dimension of N . Choose a basis {𝐽𝑡+1, . . . , 𝐽ℎ} for N . Thus the set {𝐵1, . . . , 𝐵𝑔, 𝐽𝑡+1, . . . , 𝐽ℎ}
is linearly independent and 𝑔 ≤ 𝑡 ≤ ℎ. Extend it to a basis {𝐽1, . . . , 𝐽ℎ}. To see that item (2)
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holds, we argue by contradiction. If {𝐽1V, . . . , 𝐽𝑡V} is linearly dependent, then some linear
combination of {𝐽1, . . . , 𝐽𝑡} lies in N .

The last statement is a consequence of the fact that 𝒩 is a left ideal. Indeed, since the
tuple Ξ satisfies,

𝐽ℓ𝐽𝑗 =
ℎ∑︁

𝑘=1

(Ξ𝑗)ℓ,𝑘𝐽𝑘

for 1 ≤ 𝑗, ℓ ≤ ℎ we have, for 𝑗 > 𝑡 and 1 ≤ ℓ ≤ ℎ,

0 = 𝐽ℓ𝐽𝑗V =

ℎ∑︁
𝑘=1

(Ξ𝑗)ℓ,𝑘𝐽𝑘V =

𝑡∑︁
𝑘=1

(Ξ𝑗)ℓ,𝑘𝐽𝑘V.

By independence of {𝐽𝑘V : 1 ≤ 𝑘 ≤ 𝑡}, it follows that (Ξ𝑗)ℓ,𝑘 = 0 for 𝑘 ≤ 𝑡.

Lemma 5.11. Let 𝐸 ∈𝑀𝑑×𝑒(C)𝑔 and 𝐴 ∈𝑀𝑟(C)𝑔. If there is a proper free analytic mapping
𝑓 : int(ℬ𝐸) → int(𝒟𝐴) such that 𝑓(0) = 0 and 𝑓 ′(0) = 𝐼, then ℬ𝐸 = ℬ𝐴.

Proof. We perform the off diagonal trick. Given a tuple 𝑋, let

𝑆𝑋 =

(︂
0 𝑋
0 0

)︂
.

Suppose 𝑋 ∈ 𝑀𝑛(C)𝑔 and ‖Λ𝐸(𝑋)‖ = 1. It follows that ‖Λ𝐸(𝑆𝑋)‖ = 1. Thus 𝑆𝑋 ∈ 𝜕ℬ𝐸 .
Since 𝑓 : int(ℬ𝐸) → int(𝒟𝐴) is proper with 𝑓(0) = 0 and 𝑓 ′(0) = 𝐼 (and 𝑆𝑋 is nilpotent),
𝑓(𝑆𝑋) = 𝑆𝑋 (see Remark 5.9), and 𝑆𝑋 ∈ 𝜕𝒟𝐴. Thus 𝐼 + Λ𝐴(𝑆𝑋) + Λ𝐴(𝑆𝑋)* is positive
semidefinite and has a (non-trivial) kernel. Equivalently,

1 = ‖Λ𝐴(𝑆𝑋)‖ = ‖Λ𝐴(𝑋)‖.

Hence, by homogeneity, ‖Λ𝐸(𝑋)‖ = ‖Λ𝐴(𝑋)‖ for all 𝑛 and 𝑋 ∈𝑀𝑛(C)𝑔. Thus ℬ𝐸 = ℬ𝐴.

5.2.1. Proof of Theorem 1.1. We assume, without loss of generality, that 𝐸 is ball-minimal.
We will now show 𝑓 is convexotonic.

Lemma 5.11 applied to the proper free analytic mapping 𝑓 : int(ℬ𝐸) → int(𝒟𝐴) gives
ℬ𝐸 = ℬ𝐴. Applying Lemma 3.2(9) there exist 𝑟 × 𝑟 unitary matrices W and V such that
𝐴 = W( 𝐸 0

0 𝑅 )V*, where 𝑅 ∈ 𝑀(𝑟−𝑑)×(𝑒−𝑑)(C)𝑔 and ℬ𝐸 ⊆ ℬ𝑅. Replacing 𝐴 with the unitarily
equivalent tuple V*𝐴V, we assume

(5.4) 𝐴 = 𝑈
𝑒 𝑟−𝑒(︂
𝐸 0
0 𝑅

)︂
𝑑
𝑟−𝑑

where

(5.5) 𝑈 = V* W =
𝑑 𝑟−𝑑(︂
𝑈11 𝑈12

𝑈21 𝑈22

)︂
𝑒
𝑟−𝑒

.

With respect to the orthogonal decomposition in equation (5.4), let

V =

(︂
𝐼𝑒

0𝑟−𝑒,𝑒

)︂
∈𝑀𝑟×𝑒(C).
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We will use later the fact that if 𝑄re
𝐸 (𝑋) ⪰ 0 and 𝑄re

𝐸 (𝑋)𝛾 = 0, then 𝑄re
𝐴(𝑋)V𝛾 = 0. For now

observe

(5.6) 𝐴𝑗V = 𝑈

(︂
𝐸𝑗

0

)︂
.

Thus, since {𝐸1, . . . , 𝐸𝑔} is linearly independent, the set {𝐴1V, . . . , 𝐴𝑔V} is linearly indepen-
dent.

We now apply Lemma 5.10 to 𝐴 in place of 𝐵 and obtain a basis {𝐽1, . . . , 𝐽ℎ} for A , the
algebra generated by {𝐴1, . . . , 𝐴𝑔}, and a 𝑔 ≤ 𝑡 ≤ ℎ such that 𝐽𝑗 = 𝐴𝑗 for 1 ≤ 𝑗 ≤ 𝑔, the set

{𝐽𝑗V : 1 ≤ 𝑗 ≤ 𝑡} is linearly independent and 𝐽𝑗V = 0 for 𝑡 < 𝑗 ≤ ℎ. Let ξ ∈ 𝑀ℎ(C)ℎ denote
the convexotonic tuple associated to 𝐽 and let Ξ = −ξ. Thus (Ξ𝑗)ℓ,𝑘 = 0 for 𝑗 > 𝑡, 𝑘 ≤ 𝑡, and
all ℓ and

𝐽ℓ𝐽𝑗 = −
ℎ∑︁

𝑠=1

(Ξ𝑗)ℓ,𝑠𝐽𝑠.

Let 𝜙 : int(𝒟𝐽) → int(ℬ𝐽) denote the convexotonic map

𝜙(𝑥) = 𝑥(𝐼 − ΛΞ(𝑥))−1

from Proposition 2.2. Let 𝜄 : 𝒟𝐴 → 𝒟𝐽 denote the inclusion. By Corollary 2.6 the composition
𝜙∘ 𝜄 is proper from int(𝒟𝐴) to int(ℬ𝐽). Hence, F = 𝜙∘ 𝜄∘𝑓 is proper from int(ℬ𝐸) to int(ℬ𝐽).
Further F (0) = 0 and F ′(0) =

(︀
𝐼𝑔 0

)︀
because essentially the same is true for each of the

components 𝑓, 𝜄, 𝜙. Thus F (𝑥) =
(︀
𝑥 0

)︀
+ 𝜌(𝑥), where 𝜌(0) = 0 and 𝜌′(0) = 0.

Write

F =
(︀
F 1 . . . F ℎ

)︀
.

Expand F as a power series,

F =
∑︁

𝐻𝑗 =

∞∑︁
𝑗=1

∑︁
|𝛼|=𝑗

F𝛼 𝛼,

where 𝐻𝑗 is the homogeneous of degree 𝑗 part of F . Thus,

𝐻𝑗 =
(︀
𝐻1

𝑗 . . . 𝐻ℎ
𝑗

)︀
and 𝐻1(𝑥) =

(︀
𝑥 0

)︀
. Likewise,

F𝑥𝑗 (𝑥) =
(︀
0 . . . 0 𝑥𝑗 0 . . . 0

)︀
for 1 ≤ 𝑗 ≤ 𝑔 and F𝑥𝑗 = 0 for 𝑗 > 𝑔.

The next objective is to show 𝐻𝑠
𝑚 = 0 for 𝑚 ≥ 2 and 𝑠 ≤ 𝑡. Given a positive integer 𝑚,

let 𝑆 denote the (𝑚+ 1) × (𝑚+ 1) matrix, indexed by 𝑗, 𝑘 = 0, 1, . . . ,𝑚, with 𝑆𝑎,𝑎+1 = 1 and
𝑆𝑎,𝑏 = 0 otherwise. Thus 𝑆 has ones on the first super diagonal and 0 everywhere else and
𝑆𝑚+1 = 0. Let 𝑌 ∈ ℬ𝐸 be given. Since 𝑆⊗𝑌 is nilpotent with (𝑆⊗𝑌 )𝛼 = 0 if 𝛼 is a word with
|𝛼| > 𝑚, Lemma 5.8 (and Remark 5.9) imply F (𝑆 ⊗ 𝑌 ) ∈ ℬ𝐽 ; that is if ‖Λ𝐸(𝑌 )‖ ≤ 1, then

‖Λ𝐽(F (𝑆⊗𝑌 ))‖ ≤ 1. Let Z 𝑗 = F 𝑗(𝑆⊗𝑌 ) =
∑︀𝑚

𝜇=1 𝑆
𝜇⊗𝐻𝑗

𝜇(𝑌 ). With respect to the natural

block matrix decomposition, Z 𝑗
0,𝑚 = 𝐻𝑗

𝑚(𝑌 ) and Z 𝑗
𝑚−1,𝑚 = 𝐻𝑗

1(𝑌 ). Thus Z 𝑗
𝑚−1,𝑚 = 𝑌𝑗

for 1 ≤ 𝑗 ≤ 𝑔 and Z 𝑗
𝑚−1,𝑚 = 𝐻𝑗

1(𝑌 ) = 0 for 𝑗 > 𝑔. Now ‖Λ𝐽(Z )‖ ≤ 1 is equivalent to

𝐼 − Λ𝐽(Z )*Λ𝐽(Z ) ⪰ 0. Thus,

𝐼 − Λ𝐴(𝑌 )*Λ𝐴(𝑌 ) − Λ𝐽(𝐻𝑚(𝑌 ))*Λ𝐽(𝐻𝑚(𝑌 )) ⪰ 0.
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Multiplying on the right by V⊗ 𝐼 and on the left by V* ⊗ 𝐼,

𝐼 − Λ𝐴V(𝑌 )*Λ𝐴V(𝑌 ) − Λ𝐽V(𝐻𝑚(𝑌 ))*Λ𝐽V(𝐻𝑚(𝑌 )) ⪰ 0.

By equation (5.6) Λ𝐴V(𝑌 )*Λ𝐴V(𝑌 ) = Λ𝐸(𝑌 )*Λ𝐸(𝑌 ), and hence,

𝑄re
𝐸 (𝑌 )−Λ𝐽V(𝐻𝑚(𝑌 ))*Λ𝐽V(𝐻𝑚(𝑌 ))

= 𝐼 − Λ𝐸(𝑌 )*Λ𝐸(𝑌 ) − Λ𝐽V(𝐻𝑚(𝑌 ))*Λ𝐽V(𝐻𝑚(𝑌 )) ⪰ 0.
(5.7)

Let 𝑉 (𝑦) = Λ𝐽V(𝐻𝑚(𝑦)). If (𝑌, 𝛾) ∈ ̂︂𝜕ℬ𝐸 , then 𝑄re
𝐸 (𝑌 )𝛾 = 0 and hence, by equation (5.7),

𝑉 (𝑌 )𝛾 = 0. Thus 𝑉 vanishes on ̂︂𝜕ℬ𝐸 and hence 𝑉 = 0 by Proposition 1.7; that is

0 = 𝑉 (𝑦) = Λ𝐽V(𝐻𝑚(𝑦)) =

ℎ∑︁
𝑗=1

𝐽𝑗V𝐻𝑗
𝑚(𝑦) =

𝑡∑︁
𝑗=1

𝐽𝑗V𝐻𝑗
𝑚(𝑦).

Since {𝐽1V, . . . , 𝐽𝑡V} is linearly independent, it follows that 𝐻𝑗
𝑚(𝑦) = 0 for all 1 ≤ 𝑗 ≤ 𝑡 and

all 𝑚 ≥ 2. Hence,

F (𝑥) =
(︀
𝑥 0 Ψ(𝑥)

)︀
where the 0 has length 𝑡− 𝑔 and Ψ has length ℎ− 𝑡 and moreover, Ψ(0) = 0 and Ψ′(0) = 0.

Let 𝜓 denote the inverse of 𝜙,

𝜓(𝑥) = 𝑥(𝐼 + ΛΞ(𝑥))−1.

Thus, 𝜓 ∘ F = 𝜄 ∘ 𝑓 =
(︀
𝑓(𝑥) 0 0

)︀
and consequently,

(5.8)
(︀
𝑓(𝑥) 0 0

)︀
=
(︀
𝑥 0 Ψ(𝑥)

)︀ (︀
(𝐼 + ΛΞ(

(︀
𝑥 0 Ψ(𝑥)

)︀
))
)︀−1

.

Rearranging gives,

(5.9)
(︀
𝑥 0 Ψ(𝑥)

)︀
=
(︀
𝑓(𝑥) 0 0

)︀
(𝐼 + ΛΞ(

(︀
𝑥 0 Ψ(𝑥)

)︀
)).

We now examine the 𝑘-th entry on the right hand side of equation (5.9). First,

(︀
𝐼 + ΛΞ(

(︀
𝑥 0 Ψ(𝑥)

)︀
)
)︀
ℓ,𝑘

=
(︀
𝐼 +

𝑔∑︁
𝑗=1

Ξ𝑗𝑥𝑗 +
ℎ∑︁

𝑗=𝑡+1

Ξ𝑗Ψ𝑗−𝑡

)︀
ℓ,𝑘

= 𝐼ℓ,𝑘 +

𝑔∑︁
𝑗=1

(Ξ𝑗)ℓ,𝑘𝑥𝑗 +

ℎ∑︁
𝑗=𝑡+1

(Ξ𝑗)ℓ,𝑘Ψ𝑗−𝑡.

Since (Ξ𝑗)ℓ,𝑘 = 0 for 𝑗 > 𝑡 and 𝑘 ≤ 𝑡 (see Lemma 5.10), if 𝑘 ≤ 𝑡, then

(︀
𝐼 + ΛΞ(

(︀
𝑥 0 Ψ(𝑥)

)︀
)
)︀
ℓ,𝑘

= 𝐼ℓ,𝑘 +

𝑔∑︁
𝑗=1

(Ξ𝑗)ℓ,𝑘𝑥𝑗

for all ℓ. Hence, the right hand side of equation (5.9), for 𝑔 < 𝑘 ≤ 𝑡 (so that 𝐼ℓ,𝑘 = 0 for ℓ ≤ 𝑔)
is,

(5.10)

𝑔∑︁
ℓ=1

𝑓 ℓ(𝑥)
(︀
𝐼 + ΛΞ(

(︀
𝑥 0 Ψ(𝑥)

)︀
)
)︀
ℓ,𝑘

=

𝑔∑︁
𝑗,ℓ=1

(Ξ𝑗)ℓ,𝑘𝑓
ℓ(𝑥)𝑥𝑗
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and similarly, for 1 ≤ 𝑘 ≤ 𝑔,

(5.11)

𝑔∑︁
ℓ=1

𝑓 ℓ(𝑥) (𝐼 +

𝑔∑︁
𝑗=1

Ξ𝑗𝑥𝑗 +

ℎ∑︁
𝑗=𝑡+1

Ξ𝑗Ψ𝑗−𝑡)ℓ,𝑘 = 𝑓𝑘(𝑥) +

𝑔∑︁
𝑗,ℓ=1

(Ξ)ℓ,𝑘𝑓
ℓ(𝑥)𝑥𝑗 .

Combining equations (5.10) and (5.9), for 𝑔 < 𝑘 ≤ 𝑡,

𝑔∑︁
𝑗=1

[︃
𝑔∑︁

ℓ=1

(Ξ𝑗)ℓ,𝑘𝑓
ℓ(𝑥)

]︃
𝑥𝑗 = 0.

Hence, for each 1 ≤ 𝑗 ≤ 𝑔 and 𝑔 < 𝑘 ≤ 𝑡,

𝑔∑︁
ℓ=1

(Ξ𝑗)ℓ,𝑘𝑓
ℓ(𝑥) = 0.

Since {𝑓1, . . . , 𝑓𝑔} is linearly independent, it follows that

(5.12) (Ξ𝑗)ℓ,𝑘 = 0, 1 ≤ 𝑗, ℓ ≤ 𝑔, 𝑔 < 𝑘 ≤ 𝑡.

We next show ̂︀Ξ ∈𝑀𝑔(C)𝑔 defined by

(̂︀Ξ𝑗)ℓ,𝑘 = (Ξ𝑗)ℓ,𝑘, 1 ≤ 𝑗, ℓ, 𝑘 ≤ 𝑔

is convexotonic. Using equation (5.12), for 1 ≤ 𝑗, ℓ ≤ 𝑔,

𝐴ℓ𝐴𝑗V = 𝐽ℓ𝐽𝑗V = −
ℎ∑︁

𝑠=1

(Ξ𝑗)ℓ,𝑠𝐽𝑠V = −
𝑡∑︁

𝑠=1

(Ξ𝑗)ℓ,𝑠𝐽𝑠V

= −
𝑔∑︁

𝑠=1

(Ξ𝑗)ℓ,𝑠𝐽𝑠V = −
𝑔∑︁

𝑠=1

(Ξ𝑗)ℓ,𝑠𝐴𝑠V.

(5.13)

Multiplying equation (5.13) on the left by 𝑈* and using equation (5.6) gives(︂
𝐸ℓ 0
0 𝑅ℓ

)︂
(−𝑈)

(︂
𝐸𝑗

0

)︂
=

(︂∑︀𝑔
𝑠=1(Ξ𝑗)ℓ,𝑠𝐸𝑠

0

)︂
.

Using equation (5.5), it follows that

(5.14) 𝐸ℓ(−𝑈11)𝐸𝑗 =

𝑔∑︁
𝑠=1

(Ξ𝑗)ℓ,𝑠𝐸𝑠 =

𝑔∑︁
𝑠=1

(̂︀Ξ𝑗)ℓ,𝑠𝐸𝑠.

By Lemma 2.7, the tuple ̂︀Ξ is convexotonic.

Combining equation (5.9) and equation (5.11), if 1 ≤ 𝑘 ≤ 𝑔, then

𝑥𝑘 =

𝑔∑︁
ℓ=1

𝑓 ℓ(𝑥) (𝐼 + ΛΞ(
(︀
𝑥 0 Ψ(𝑥)

)︀
))ℓ,𝑘

= 𝑓𝑘(𝑥) +

𝑔∑︁
𝑗,ℓ=1

(Ξ𝑗)ℓ,𝑘𝑓
ℓ(𝑥)𝑥𝑗 = 𝑓𝑘(𝑥) +

𝑔∑︁
𝑗,ℓ=1

(̂︀Ξ𝑗)ℓ,𝑘𝑓
ℓ(𝑥)𝑥𝑗 .

Thus,

𝑥 = 𝑓(𝑥)(𝐼 + Λ̂︀Ξ(𝑥))
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and consequently

(5.15) 𝑓(𝑥) = 𝑥(𝐼 + Λ̂︀Ξ(𝑥))−1

is convexotonic.

We now complete the proof by showing, if 𝐴 is minimal for 𝒟𝐴 (we continue to assume 𝐸
is ball-minimal), then 𝐴 is unitarily equivalent to

(5.16) 𝐵 = 𝑈

(︂
𝐸 0
0 0

)︂
=

(︂
𝑈11𝐸 0
𝑈21𝐸 0

)︂
∈𝑀𝑟(C)𝑔

and 𝐵 spans an algebra. To this end, using equations (5.16) and (5.14), observe

𝐵ℓ𝐵𝑗 =

(︂
𝑈11𝐸ℓ𝑈11𝐸𝑗 0
𝑈21𝐸ℓ𝑈11𝐸𝑗 0

)︂
=

𝑔∑︁
𝑠=1

(−̂︀Ξ𝑗)ℓ,𝑠

(︂
𝑈11𝐸𝑠 0
𝑈21𝐸𝑠 0

)︂
=

𝑔∑︁
𝑠=1

(−̂︀Ξ𝑗)ℓ,𝑠𝐵𝑠.

Thus 𝐵 spans an algebra and, by Proposition 2.2, the convexotonic map 𝑓 of equation (5.15)
is a bianalytic map 𝑓 : int(ℬ𝐵) → int(𝒟𝐵). On the other hand, ℬ𝐵 = ℬ𝐸 = ℬ𝐴. Thus, as
𝑓 : int(ℬ𝐸) → int(𝒟𝐴) is bianalytic, 𝒟𝐵 = 𝒟𝐴. Since 𝐴 is minimal defining for 𝒟𝐴 and 𝐴 and
𝐵 have the same size, 𝐵 is minimal for 𝒟𝐴. Hence 𝐴 and 𝐵 are unitarily equivalent by Lemma
3.1. From the form of 𝐵, it is evident that 𝑟 ≥ max{𝑑, 𝑒}. On the other hand, if 𝑟 > 𝑑 + 𝑒,
then 𝐵 must have 0 as a direct summand and so is not minimal. Thus 𝑟 ≤ 𝑑+ 𝑒.

5.3. Corollary 1.3. This subsection begins by illustrating Corollary 1.3 in the case of free
automorphism of free matrix balls and free polydiscs before turning to the proof of the corollary.

5.3.1. Automorphisms of free polydiscs. Let {𝑒1, . . . , 𝑒𝑔} denote the usual orthonormal basis
for C𝑔 and let 𝐸𝑗 = 𝑒𝑗𝑒

*
𝑗 . The spectraball ℬ𝐸 is then the free polydisc with

int(ℬ𝐸(𝑛)) = {𝑋 ∈𝑀𝑛(C)𝑔 : ‖𝑋𝑗‖ < 1}.

Let 𝑏 ∈ int(ℬ𝐸(1)) = D𝑔 be given.

In the setting of Corollary 1.3, we choose 𝐶 = 𝐸. If V ,W are 𝑔 × 𝑔 unitary matrices
such that equation Corollary 1.3(b) holds, then there exists a 𝑔× 𝑔 permutation matrix Π and
unitary diagonal matrices 𝜌 and 𝜇 such that W = Π𝜌 and V = 𝜇Π. We can in fact assume
𝜇 = 𝐼𝑔. It is now evident that item (a) of Corollary 1.3 holds and determines Ξ. Conversely,
given a triple (𝑏,Π, 𝜌), where 𝑏 ∈ D𝑔, Π is a 𝑔 × 𝑔 permutation matrix and 𝜌 is a diagonal
unitary matrix, the equations (b) and (a) of Corollary 1.3 hold with W = Π𝜌 and V = Π.
Hence the automorphisms of ℬ𝐸 are determined by triples (𝑏,Π, 𝜌).

By pre (or post) composing with a permutation, we may assume Π = 𝐼𝑔. In this case 𝑀
is the 𝑔× 𝑔 diagonal matrix with diagonal entries 𝑀𝑗𝑗 = 𝜌𝑗(1− |𝑏𝑗 |2) and Ξ𝑘 = −𝜌𝑗𝑏*𝑗𝐸𝑘. The

corresponding convexotonic map 𝜓(𝑥) = 𝑥(𝐼 − ΛΞ(𝑥))−1 has entries

𝜓𝑗(𝑥) = 𝑥𝑗(1 + 𝑐*𝑗𝑥𝑗)
−1,

where 𝑐𝑗 = 𝜌𝑗𝑏
*
𝑗 . Thus the mapping 𝜙(𝑥) = 𝜓(𝑥) ·𝑀 + 𝑏 has entries,

𝜙𝑗(𝑥) = 𝜌𝑗𝑥𝑗(1 + 𝑐*𝑗𝑥𝑗)
−1(1 − |𝑏𝑗 |2) + 𝑏𝑗 = 𝜌𝑗(𝑥𝑗 + 𝑐𝑗)(1 + 𝑐*𝑗𝑥𝑗)

−1,

where 𝑐𝑗 = 𝜌𝑗𝑏
*
𝑗 . Hence, the automorphisms of the free polydisc are given by

𝜙(𝑥) =
(︁
𝜌𝜋(1)(𝑥𝜋(1) + 𝑐𝜋(1))(1 + 𝑐*𝜋(1)𝑥𝜋(1))

−1, . . . , 𝜌𝜋(𝑔)(𝑥𝜋(𝑔) + 𝑐𝜋(𝑔))(1 + 𝑐*𝜋(𝑔)𝑥𝜋(𝑔))
−1,
)︁
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for 𝑐 = (𝑐1, . . . , 𝑐𝑔) ∈ D𝑔, unimodular 𝜌𝑗 and a permutation 𝜋 of {1, . . . , 𝑔}.

5.3.2. Automorphisms of free matrix balls. Let (𝐸𝑖𝑗)
𝑑,𝑒
𝑖,𝑗=1 denote the matrix units in 𝑀𝑑×𝑒(C)

and view 𝐸 ∈𝑀𝑑×𝑒(C)𝑑𝑒. We consider automorphisms of ℬ𝐸 , the free 𝑑× 𝑒 matrix ball.

Before proceeding further, note, since {𝐸𝑖𝑗 : 1 ≤ 𝑖 ≤ 𝑑, 1 ≤ 𝑗 ≤ 𝑒} spans all of 𝑀𝑑×𝑒(C),
by the reverse implication in Corollary 1.3, any choice of 𝑏 in the unit ball of 𝑀𝑑×𝑒(C) and 𝑑×𝑑
and 𝑒×𝑒 unitary matrices W and V determines uniquely a 𝑔×𝑔 invertible matrix 𝑀 satisfying
the identity of item (b) of Corollary 1.3. Likewise a convexotonic tuple is uniquely determined
by the identity of item (a). The resulting bianalytic automorphism 𝜙 of ℬ𝐸 satisfying 𝜙(0) = 𝑏
and 𝜙′(0) = 𝑀 is then given by the formula in Corollary 1.3. Our objective in the remainder
of this example is to show this formula for 𝜙 agrees with that of [MT16, Theorem 13]. Doing
so requires passing back and forth between row vectors of length 𝑑𝑒 and matrices of size 𝑑× 𝑒.

First note that

Λ𝐸(𝑏) = 𝑏.

From item (b) of Corollary 1.3 (which defines 𝑀 in terms of 𝑏, V and W ),∑︁
𝑢,𝑣

𝑀(𝑖,𝑗),(𝑢,𝑣)𝐸𝑢,𝑣 = (𝑀 · 𝐸)𝑖,𝑗

= 𝐷Λ𝐸(𝑏)*W 𝐸𝑖,𝑗V
*𝐷Λ𝐸(𝑏)

=
∑︁
𝑢,𝑣

[𝑒*𝑢𝐷Λ𝐸(𝑏)*W 𝑒𝑖] [𝑒*𝑗V
*𝐷Λ𝐸(𝑏)𝑒𝑣] 𝑒𝑢𝑒

*
𝑣.

Hence,

𝑀(𝑖,𝑗),(𝑢,𝑣) = [𝑒*𝑢𝐷Λ𝐸(𝑏)*W 𝑒𝑖] [𝑒*𝑗V
*𝐷Λ𝐸(𝑏)𝑒𝑣].

Next observe that,

−𝐸𝑖𝑗V
*Λ𝐸(𝑏)*W 𝐸𝑠𝑡 = −𝑒𝑖𝑒*𝑗V *𝑏*W 𝑒𝑠𝑒

*
𝑡 = −(𝑒*𝑗V

*𝑏*W 𝑒𝑠)𝐸𝑖𝑡.

Hence, letting 𝛽𝑗𝑠 = −(𝑒*𝑗V
*𝑏*W 𝑒𝑠) for 1 ≤ 𝑗 ≤ 𝑒 and 1 ≤ 𝑠 ≤ 𝑑, the tuple Ξ ∈ 𝑀𝑑𝑒(C)𝑑𝑒

defined by (for 1 ≤ 𝑖, 𝑢 ≤ 𝑑 and 1 ≤ 𝑣 ≤ 𝑒)

(Ξ𝑠𝑡)(𝑖,𝑗),(𝑢,𝑣) =

{︃
𝛽𝑗𝑠 𝑣 = 𝑡, 𝑢 = 𝑖

0 otherwise,

satisfies the identity of equation item (a) of Corollary 1.3. Hence the free bianalytic automor-
phism of ℬ𝐸 determined by 𝑏, W and V is

(5.17) 𝜙(𝑥) = 𝜓(𝑥) ·𝑀 + 𝑏

where 𝜓 = 𝑥(𝐼 − ΛΞ(𝑥))−1 is the convexotonic map determined by Ξ.

We next express formula for 𝜙 in equation (5.17) in terms of the canonical matrix structure

on ℬ𝐸 . Given a matrix 𝑦 = (𝑦𝑖𝑗)
𝑑,𝑒
𝑖,𝑗=1, let

row(𝑦) =
(︀
𝑦11 𝑦12 . . . 𝑦1𝑒 𝑦21 . . . 𝑦𝑑𝑒

)︀
.
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Similarly, given 𝑧 = (𝑧𝑗)
𝑑𝑒
𝑗=1, let

mat𝑑×𝑒(𝑧) =

⎛⎜⎜⎜⎜⎜⎝
𝑧1 𝑧2 . . . 𝑧𝑒
𝑧𝑒+1 𝑧𝑒+2 . . . 𝑧2𝑒

...
... · · ·

...
𝑧(𝑑−1)𝑒 𝑧(𝑑−1)𝑒+1 . . . 𝑧𝑑𝑒

⎞⎟⎟⎟⎟⎟⎠ .

Since 𝑑 and 𝑒 are fixed in this example, it is safe to abbreviate mat𝑑×𝑒 to simply mat. For a

tuple 𝑦 = (𝑦𝑠,𝑡)
𝑑,𝑒
𝑠,𝑡=1 of indeterminates,

(𝑦 ·𝑀)𝑢,𝑣 =
∑︁
𝑖,𝑗

𝑀(𝑖,𝑗),(𝑢,𝑣)𝑦𝑖,𝑗

=
∑︁
𝑖,𝑗

[𝑒*𝑢𝐷Λ𝐸(𝑏)*W ] 𝑦𝑖,𝑗𝑒𝑖𝑒
*
𝑗 [V *𝐷Λ𝐸(𝑏)𝑒𝑣]

= 𝑒*𝑢 [𝐷Λ𝐸(𝑏)*W ] mat(𝑦) [V *𝐷Λ𝐸(𝑏)] 𝑒𝑣.

Thus,

(5.18) mat(𝑦 ·𝑀) = 𝐷Λ𝐸(𝑏)*W mat(𝑦) V *𝐷Λ𝐸(𝑏).

Let

Γ(𝑖,𝑗),(𝑢,𝑣)(𝑥) :=
(︁ 𝑑,𝑒∑︁

𝑠,𝑡=1

Ξ𝑠𝑡𝑥𝑠𝑡

)︁
(𝑖,𝑗),(𝑢,𝑣)

=

{︃∑︀𝑑
𝑠=1 𝛽𝑗𝑠𝑥𝑠𝑣 𝑢 = 𝑖

0 otherwise.

Thus, Γ is a 𝑑𝑒× 𝑑𝑒 linear matrix polynomial of the form,

Γ = 𝐼𝑑 ⊗ 𝛽mat(𝑥)

and (𝐼−Γ)−1 = 𝐼𝑑⊗ (𝐼−𝛽mat(𝑥))−1. In the formula for the convexotonic map 𝜓 determined
by Ξ, the indeterminates 𝑥 = (𝑥𝑠𝑡)𝑠,𝑡 are arranged in a row and we find,

row(𝜓(𝑥)) = row(𝑥)(𝐼 − ΛΞ(𝑥))−1 =
(︀
𝑥11 𝑥12 . . . 𝑥1𝑒 𝑥21 . . . 𝑥𝑑𝑒

)︀ (︁
𝐼 ⊗ (𝐼 − 𝛽mat(𝑥))−1

)︁
=
(︀
�̂�1(𝐼 − 𝛽mat(𝑥))−1 . . . �̂�𝑑(𝐼 − 𝛽mat(𝑥))−1

)︀
,

where �̂�𝑗 =
(︀
𝑥𝑗1 . . . 𝑥𝑗𝑒

)︀
. Thus,

row(𝑥)(𝐼 − ΛΞ(𝑥))−1

=
(︀
(mat(𝑥)[𝐼 − 𝛽mat(𝑥)]−1)11 (mat(𝑥)[𝐼 − 𝛽mat(𝑥)]−1)12 . . . (mat(𝑥)[𝐼 − 𝛽mat(𝑥)]−1)𝑑𝑒

)︀
.

Hence, in matrix form,

mat(𝜓(𝑥)) = mat(𝑥)(𝐼 − 𝛽mat(𝑥))−1 = mat(𝑥)(𝐼 + (V *𝑏*W ) mat(𝑥))−1.

Let 𝑐 = W *𝑏V and note

𝐼 − Λ𝐸(𝑏)Λ𝐸(𝑏)* = 𝐼 − 𝑏𝑏* = 𝐼 − W 𝑐𝑐*W * = W (𝐼 − 𝑐𝑐*)W * = W (𝐼 − Λ𝐸(𝑐)Λ𝐸(𝑐)*)W *.

Thus,

(5.19) 𝐷Λ𝐸(𝑏)*W = W 𝐷Λ𝐸(𝑐)*
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and similarly V *𝐷Λ𝐸(𝑏) = 𝐷Λ𝐸(𝑐)V
*. Consequently, using, in order, equations (5.17), (5.18),

and (5.19) together with the definition of 𝑐 in the first three equalities followed by some algebra,

mat(𝜙(𝑥)) = mat(𝜓(𝑥) ·𝑀) + 𝑏

= 𝐷Λ𝐸(𝑏)*W mat(𝜓)V *𝐷Λ𝐸(𝑏) + 𝑏

= W [𝐷*
Λ𝐸(𝑐) mat(𝜓)𝐷Λ𝐸(𝑐) + 𝑐]V *

= W 𝐷Λ𝐸(𝑐)* [mat(𝜓) +𝐷−2
Λ𝐸(𝑐)*

𝑐]𝐷Λ𝐸(𝑐)V
*

= W 𝐷Λ𝐸(𝑐)* [mat(𝑥)(𝐼 + 𝑐* mat(𝑥))−1 +𝐷−2
Λ𝐸(𝑐)*

𝑐]𝐷Λ𝐸(𝑐)V
*

= W 𝐷−1
Λ𝐸(𝑐)* [𝐷2

Λ𝐸(𝑐)*
mat(𝑥) + 𝑐(𝐼 + 𝑐* mat(𝑥))] [𝐼 + 𝑐* mat(𝑥)]−1𝐷Λ𝐸(𝑐)V

*

= W (𝐼 − 𝑐𝑐*)−
1
2 [(1 − 𝑐𝑐*) mat(𝑥) + 𝑐+ 𝑐𝑐* mat(𝑥)] [𝐼 + 𝑐* mat(𝑥)]−1𝐷Λ𝐸(𝑐)V

*

= W (𝐼 − 𝑐𝑐*)−
1
2 [mat(𝑥) + 𝑐] [𝐼 + 𝑐* mat(𝑥)]−1(𝐼 − 𝑐*𝑐)

1
2 V *,

giving the standard formula for the automorphisms of ℬ𝐸 that send 0 to 𝑏. (See, for example,
[MT16].)

5.3.3. Proof of Corollary 1.3. Suppose 𝐸 = (𝐸1, . . . , 𝐸𝑔) ∈𝑀𝑑×𝑒(C)𝑔 and 𝐶 = (𝐶1, . . . , 𝐶𝑔) ∈
𝑀𝑘×ℓ(C)𝑔 are linearly independent and ball-minimal and 𝜙 : int(ℬ𝐸) → int(ℬ𝐶) is bianalytic.

Let ̂︀𝐶 denote the tuple ̂︀𝐶𝑗 =

(︂
0𝑘,𝑘 𝐶𝑗

0ℓ,𝑘 0ℓ,ℓ

)︂
∈𝑀𝑟(C),

where 𝑟 = 𝑘+ ℓ. Thus ℬ𝐶 = 𝒟 ̂︀𝐶 and, since 𝐶 is ball-minimal, ̂︀𝐶 is minimal for 𝒟 ̂︀𝐶 by Lemma
3.2(3).

Let 𝑏 = 𝜙(0) and for notational convenience, let Λ = Λ𝐶(𝑏) ∈𝑀𝑘×ℓ(C). Set

(5.20) G =

(︂
𝐼𝑘 Λ
0 𝐷Λ

)︂−1

=

(︃
𝐼𝑘 −Λ𝐷−1

Λ

0 𝐷−1
Λ

)︃
∈𝑀𝑟(C),

and observe that G *L𝐶(𝑏)G = 𝐼 and therefore L𝐶(𝑏)−1 = G G *. Hence there is a unitary matrix

𝑇 such that G = L𝐸(𝑏)−
1
2𝑇. It follows from Proposition 3.3, letting 𝐴 ∈𝑀𝑟×𝑟(C)𝑔 denote the

𝑔-tuple with entries

(5.21) 𝐴𝑗 = G *
(︂

0 (𝑀 · 𝐶)𝑗
0 0

)︂
G ∈𝑀𝑟(C)𝑔,

and 𝑀 = 𝜙′(0), that the inverse of the mapping 𝜆(𝑥) = 𝑥 ·𝑀 + 𝑏 is an affine linear bijection
from ℬ𝐶 = 𝒟 ̂︀𝐶 to 𝒟𝐴 and 𝐴 is minimal for 𝒟𝐴.

The mapping

𝑓 := 𝜆−1 ∘ 𝜙 : int(ℬ𝐸) → int(𝒟𝐴)

is a free bianalytic mapping with 𝑓(0) = 0 and 𝑓 ′(0) = 𝐼, where 𝐸 is ball-minimal and 𝐴
is minimal for 𝒟𝐴. An application of Theorem 1.1 now implies that there is a convexotonic
tuple Ξ such that equation (1.1) holds, 𝑓 is the corresponding convexotonic map and there are
unitaries 𝑉 and 𝑊 of size 𝑟 such that

(5.22) 𝐴 = 𝑊

(︂
0𝑑,𝑟−𝑒 𝐸

0𝑟−𝑑,𝑟−𝑒 0𝑟−𝑑,𝑒

)︂
𝑉 *.
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In particular, 𝜙(𝑥) = 𝑓(𝑥) ·𝑀 + 𝑏.

From equation (5.22), ∑︁
𝐴*

𝑗𝐴𝑗 = 𝑉

(︂
0 0
0
∑︀

𝑗 𝐸
*
𝑗𝐸𝑗

)︂
𝑉 *

and consequently rk
∑︀
𝐴*

𝑗𝐴𝑗 = rk
∑︀
𝐸*

𝑗𝐸𝑗 . Since 𝐸 is ball-minimal, ker(𝐸) = {0}. Equiva-

lently, rk
∑︀
𝐸*

𝑗𝐸𝑗 = 𝑒. On the other hand, from equation (5.21),∑︁
𝐴*

𝑗𝐴𝑗 = G *
(︂

0 0
0 (𝑀 · 𝐶)*𝑗Γ(𝑀 · 𝐶)𝑗

)︂
G ,

where Γ is the (1, 1) block entry of G G *. Observe that Γ is positive definite and, since 𝐶 is
ball-minimal, ker(𝑀 ·𝐶) = {0}. Hence rk

∑︀
𝐴*

𝑗𝐴𝑗 = ℓ. Thus 𝑒 = ℓ. Computing
∑︀
𝐴𝑗𝐴

*
𝑗 using

equation (5.22) shows rk
∑︀
𝐴𝑗𝐴

*
𝑗 = 𝑑. On the other hand, using equation (5.21),

𝑔∑︁
𝑗=1

𝐴𝑗𝐴
*
𝑗 = G

(︂∑︀𝑔
𝑗=1(𝑀 · 𝐶)𝑗𝐷

−2
Λ (𝑀 · 𝐶)*𝑗 0

0 0

)︂
G *.

Since 𝐶 is 𝑘×ℓ and ball-minimal, ker((𝑀 ·𝐶)*) = {0} and 𝐷−2
Λ is positive definite, rk

∑︀𝑔
𝑗=1(𝑀 ·

𝐶)𝑗𝐷
−2
Λ (𝑀 · 𝐶)*𝑗 = 𝑘. Hence 𝑑 = rk

∑︀𝑔
𝑗=1𝐴𝑗𝐴

*
𝑗 = 𝑘. Thus 𝐸 and 𝐶 have the same size 𝑑× 𝑒.

Since 𝐸 and 𝐶 are both 𝑑× 𝑒 and 𝑟 = 𝑑+ 𝑒, the matrices 𝑉 and 𝑊 decompose as

𝑉 =

(︂
𝑉11 𝑉12
𝑉21 𝑉22

)︂
, 𝑊 =

(︂
𝑊11 𝑊12

𝑊21 𝑊22

)︂
with respect to the decomposition C𝑟 = C𝑑 ⊕ C𝑒. In particular, 𝑉𝑗𝑗 and 𝑊𝑗𝑗 are all square.
Comparing equation (5.22) and equation (5.21) gives

(5.23)

(︂
𝑊11𝐸𝑗𝑉

*
12 𝑊11𝐸𝑗𝑉

*
22

𝑊21𝐸𝑗𝑉
*
12 𝑊21𝐸𝑗𝑉

*
22

)︂
=

(︂
0 (𝑀 · 𝐶)𝑗𝐷

−1
Λ

0 −𝐷−1
Λ Λ*(𝑀 · 𝐶)𝑗𝐷

−1
Λ

)︂
.

Multiplying both sides of equation (5.23) by
(︀
𝑊 *

11 𝑊 *
21

)︀
and using the fact that 𝑊 is unitary

shows,

𝐸𝑗𝑉
*
12 = 0.

Since 𝐸 is ball-minimal and
∑︀
𝐸*

𝑗𝐸𝑗𝑉
*
12 = 0 we conclude that 𝑉12 = 0. Since 𝑉 is unitary, 𝑉22

is isometric and since 𝑉22 is square (𝑒× 𝑒) it is unitary (and thus 𝑉21 = 0). Further,

𝑊11𝐸𝑗𝑉
*
22 = (𝑀 · 𝐶)𝑗𝐷

−1
Λ

𝑊21𝐸𝑗𝑉
*
22 = −𝐷−1

Λ Λ*(𝑀 · 𝐶)𝑗𝐷
−1
Λ .

(5.24)

Thus, 𝑊21𝐸𝑗𝑉
*
22 = −𝐷−1

Λ Λ*𝑊11𝐸𝑗𝑉
*
22 and hence 𝑊21𝐸𝑗 = −𝐷−1

Λ Λ*𝑊11𝐸𝑗 . It follows that

𝑊21

∑︁
𝐸𝑗𝐸

*
𝑗 = −𝐷−1

Λ Λ*𝑊11

∑︁
𝐸𝑗𝐸

*
𝑗 .

Thus, again using that 𝐸 is ball-minimal (so that ker(𝐸*) = {0}),

𝑊21 = −𝐷−1
Λ Λ*𝑊11.

Hence,

𝐼 = 𝑊 *
11𝑊11 +𝑊 *

21𝑊21 = 𝑊 *
11[𝐼 + Λ𝐷−2

Λ Λ*]𝑊11 = 𝑊 *
11𝐷

−2
Λ*𝑊11
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and, since 𝑊11 is 𝑑× 𝑑, we conclude that it is invertible and

𝑊11𝑊
*
11 = 𝐷2

Λ* .

Consequently there is a 𝑑× 𝑑 unitary W such that

𝑊11 = 𝐷Λ*W

𝑊21 = −𝐷−1
Λ Λ*𝐷Λ*W = −Λ*W .

(5.25)

Combining the first bits of each of equations (5.24) and (5.25) and setting V = 𝑉22 gives
Corollary 1.3(b). Namely,

(𝑀 · 𝐶)𝑗 = 𝐷Λ*W 𝐸𝑗V
*𝐷Λ.

Observe (using 𝐸 and 𝐶 have the same size) that,

𝐴 = 𝑊

(︂
𝐸 0
0 0

)︂ (︂
0𝑒×𝑑 𝐼𝑒
𝐼𝑑 0𝑑×𝑒

)︂
𝑉 *.

The tuple 𝐴 is, up to unitary equivalence, of the form of equation (1.3) where

𝑈 =

(︂
0 𝑉 *

22

𝑉 *
11 0

)︂ (︂
𝑊11 𝑊12

𝑊21 𝑊22

)︂
=

(︂
V *𝑊21 *

* *

)︂
.

Thus, 𝑈11 = V *𝑊21 = −V *Λ*W . Since the pair (𝐴,Ξ) satisfies equation (1.1),(︂
𝐸𝑘 0
0 0

)︂
𝑈

(︂
𝐸𝑗 0
0 0

)︂
=
∑︁
𝑠

(Ξ𝑗)𝑘,𝑠

(︂
𝐸𝑠 0
0 0

)︂
,

item (a) holds.

To prove the converse, suppose 𝐸,𝐶 ∈𝑀𝑑×𝑒(C)𝑔 and 𝑏 ∈ ℬ𝐶(1) are given and there exists
an invertible 𝑀 ∈𝑀𝑔(C), a convexotonic tuple Ξ ∈𝑀𝑔(C)𝑔 and unitaries W and V such that
items (a) and (b) of Corollary 1.3 hold. Let Λ = Λ𝐶(𝑏) and define G and 𝐴 as in equations
(5.20) and (5.21) respectively. The map 𝜆(𝑥) = 𝑥 ·𝑀 + 𝑏 is again an affine linear bijection
from 𝒟𝐴 to ℬ𝐶 .

Define 𝑊11 and 𝑊21 by equation (5.25). It follows that 𝑊11𝑊
*
11 + 𝑊21𝑊

*
21 = 𝐼. Choose

𝑊12 and 𝑊22 such that 𝑊 = (𝑊𝑖𝑗)
2
𝑖,𝑗=1 is a (block) unitary matrix. Let 𝑉22 = V and take any

unitary 𝑉11 (of the appropriate size) and set

𝑉 =

(︂
𝑉11 0
0 𝑉22

)︂
.

Next, using item (b), the definitions of 𝑊11 and 𝑊12 and 𝐷−1
Λ Λ*𝐷Λ* = Λ*,

𝐴𝑘 = G *
(︂

0 (𝑀 · 𝐶)𝑘
0 0

)︂
G =

(︂
0 (𝑀 · 𝐶)𝑘𝐷

−1
Λ

0 −𝐷−1
Λ Λ*(𝑀 · 𝐶)𝑘𝐷

−1
Λ

)︂
=

(︂
0 𝐷Λ*W 𝐸𝑘V

*

0 −Λ*W 𝐸𝑘V
*

)︂
=

(︂
0 𝑊11𝐸𝑘V

*

0 𝑊21𝐸𝑘V
*

)︂
.

Thus, using item (a),

𝐴𝑗𝐴𝑘 =

(︂
0 𝑊11𝐸𝑗V *𝑊21𝐸𝑘V

*

0 𝑊21𝐸𝑗V *𝑊21𝐸𝑘V
*

)︂
=
∑︁
𝑠

(Ξ𝑘)𝑗,𝑠

(︂
0 𝑊11𝐸𝑠V *

0 𝑊21𝐸𝑠V *

)︂
=
∑︁
𝑠

(Ξ𝑘)𝑗,𝑠𝐴𝑠.
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Thus 𝐴 spans an algebra with multiplication table given by Ξ. Consequently 𝑓(𝑥) = 𝑥(𝐼 −
ΛΞ(𝑥))−1 is convexotonic from int(ℬ𝐴) to int(𝒟𝐴) by Proposition 2.2 . On the other hand,
ℬ𝐴 = ℬ𝐸 , since

𝐴*
𝑗𝐴𝑘 =

(︂
0 0
0 V 𝐸*

𝑗𝐸𝑘V
*

)︂
(because 𝑊 *

11𝑊11 + 𝑊 *
21𝑊21 = 𝐼). Thus 𝑓 is convexotonic from int(ℬ𝐸) to int(𝒟𝐴). Finally,

𝜙 = 𝜆 ∘ 𝑓 is convexotonic from int(ℬ𝐸) to int(ℬ𝐶) with 𝜙(0) = 𝑏 and 𝜙′(0) = 𝑀 .

The uniqueness is well known. Indeed, if 𝜙 and 𝜁 are both bianalytic from ℬ𝐸 → ℬ𝐶 , send
0 to 𝑏 and have the same derivative at 0, then 𝑓 = 𝜙 ∘ 𝜁−1 is an analytic automorphism of ℬ𝐶

sending 0 to 0 and having derivative the identity at 0. Since ℬ𝐶 is circular, the free version of
Cartan’s Theorem [HKM11b] says 𝑓(𝑥) = 𝑥 and hence 𝜁 = 𝜙.

6. Convex sets defined by rational functions

In this section we employ a variant of the main result of [HM14] to extend Theorem 1.1 to
cover birational maps from a matrix convex set to a spectraball. A free set is matrix convex
if it is closed with respect to isometric conjugation. We refer the reader to [EW97, HKM17,
Kri19, FHL18, PSS18] for the theory of matrix convex sets. For expository convenience, by free
rational mapping 𝑝 : 𝑀(C)𝑔 → 𝑀(C)𝑔 we mean 𝑝 =

(︀
𝑝1 𝑝2 . . . 𝑝𝑔

)︀
where each 𝑝𝑗 = 𝑝𝑗(𝑥)

is a free rational function (in the 𝑔-variables 𝑥 = (𝑥1, . . . , 𝑥𝑔)) regular at 0. Theorem 6.1
immediately below is the main result of this section. It is followed up by two corollaries.

Theorem 6.1. Suppose 𝑞 : 𝑀(C)𝑔 → 𝑀(C)𝑔 is a free rational mapping, C ⊆ 𝑀(C)𝑔 is a
bounded open matrix convex set containing the origin and 𝐸 ∈ 𝑀𝑑×𝑒(C)𝑔. If 𝐸 is linearly
independent, C ⊆ dom(𝑞) and 𝑞 : C → int(ℬ𝐸) is bianalytic, then there exists an 𝑟 ≤ 𝑑 + 𝑒
and a tuple 𝐴 ∈ 𝑀𝑟(C)𝑔 such that C = int(𝒟𝐴) and 𝑞 is, up to affine linear equivalence,
convexotonic.

Corollary 6.2. Suppose 𝑝 : 𝑀(C)𝑔 → 𝑀(C)𝑔 is a free rational mapping, 𝐸 ∈ 𝑀𝑑×𝑒(C)𝑔 is
linearly independent and let

C := {𝑋 : 𝑋 ∈ dom(𝑝), ‖Λ𝐸(𝑝(𝑋))‖ < 1}.

Assume C is bounded, convex and contains 0. If 𝑋𝑘 ∈ C (𝑛) and the sequence (𝑋𝑘)𝑘 converges
to 𝑋 ∈ 𝜕C implies lim𝑘→∞ ‖Λ𝐸(𝑝(𝑋𝑘))‖ = 1, then there exists an 𝑟 ≤ 𝑑 + 𝑒 and a tuple
𝐴 ∈ 𝑀𝑟(C)𝑔 such that C = int(𝒟𝐴) and 𝑝 : int(𝒟𝐴) → int(ℬ𝐸) is bianalytic and, up to affine
linear equivalence, convexotonic.

Proof. By assumption 𝑝 : C → int(ℬ𝐸) is a proper map. By [HKM11b, Theorem 3.1], 𝑝 is
bianalytic. Hence Corollary 6.2 follows from Theorem 6.1.

Corollary 6.3. Suppose 𝑝 : 𝑀(C)𝑔 →𝑀(C)𝑔 is a free polynomial mapping, 𝐸 ∈𝑀𝑑×𝑒(C)𝑔 is
linearly independent and let

C := {𝑋 : ‖Λ𝐸(𝑝(𝑋))‖ < 1}.
If C is bounded, convex and contains 0, then there exists an 𝑟 ≤ 𝑑+ 𝑒 and a tuple 𝐴 ∈𝑀𝑟(C)𝑔

such that C = int(𝒟𝐴) and 𝑝 : int(𝒟𝐴) → int(ℬ𝐸) is bianalytic and, up to affine linear
equivalence, convexotonic.
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Proof. By hypothesis 𝑝 : C → int(ℬ𝐸). Let 𝑋 ∈ 𝜕C be given. By convexity and continuity
𝑝(𝑡𝑋) ∈ int(ℬ𝐸) for 0 ≤ 𝑡 < 1 and 𝑝(𝑋) ∈ ℬ𝐸 . If 𝑝(𝑋) ∈ int(ℬ𝐸), then there exists 𝑡* > 1
such 𝑝(𝑡*𝑋) ∈ int(ℬ𝐸). But then 0, 𝑡*𝑋 ∈ C and 𝑋 /∈ C , violating convexity of C . Hence
𝑝(𝑋) ∈ 𝜕ℬ𝐸 and consequently 𝑝 is a proper map. Thus Corollary 6.3 follows from Corollary
6.2.

The proof of Theorem 6.1 given here depends on two preliminary results. Let C (<𝑥, 𝑦 )>
denote the skew field of free rational functions in the freely noncommuting variables
(𝑥, 𝑦) = (𝑥1, . . . , 𝑥𝑔, 𝑦1, . . . , 𝑦𝑔). There is an involutionqon C (<𝑥, 𝑦 )> determined by q𝑥𝑗 = 𝑦𝑗 .
A 𝑝 ∈ C (<𝑥, 𝑦 )> is symmetric if q𝑝 = 𝑝. An important feature of the involution is the fact
that, if 𝑝 ∈ C (<𝑥, 𝑦 )> and (𝑋,𝑋*) ∈ dom(𝑝), then q𝑝(𝑋,𝑋*) = 𝑝(𝑋,𝑋*)* and 𝑝 is symmetric if
and only if q𝑝(𝑋,𝑋*) = 𝑝(𝑋,𝑋*) for all (𝑋,𝑋*) ∈ dom(𝑝) ∩ dom(q𝑝). These notions naturally
extend to matrices over C (<𝑥, 𝑦 )>.

Proposition 6.4 below is a variant of the main result of [HM14]. Taking advantage of recent
advances in our understanding of the singularities of free rational functions (e.g., [Vol17]), the
proof given here is rather short, compared to that of the similar result in [HM14].

Proposition 6.4. Suppose 𝑠(𝑥, 𝑦) is a 𝜇 × 𝜇 symmetric matrix-valued free rational function
in the 2𝑔-variables (𝑥1, . . . , 𝑥𝑔, 𝑦1, . . . , 𝑦𝑔) that is regular at 0. Let

𝑆 = {𝑋 ∈𝑀(C)𝑔 : (𝑋,𝑋*) ∈ dom(𝑠), 𝑠(𝑋,𝑋*) ≻ 0},
let 𝑆0 denote the (level-wise) connected component of 0 of 𝑆, and assume 𝑆0(1) ̸= ∅. If each
𝑆0(𝑛) is convex, then there is a positive integer 𝑁 and a tuple 𝐴 ∈ 𝑀𝑁 (C)𝑔 such that 𝑆0 =
int(𝒟𝐴).

Proof. From [KVV09, Vol17] the free rational function 𝑠 has an observable and controllable
realization. By [HMV06], since 𝑠 is symmetric, this realization can be symmetrized. Hence,
there exists a positive integer 𝑡, a tuple 𝑇 ∈ 𝑀𝑡(C)𝑔, a signature matrix 𝐽 ∈ 𝑀𝑡(C) (thus
𝐽 = 𝐽* and 𝐽2 = 𝐼) and matrices 𝐷 and 𝐶 of sizes 𝜇× 𝜇 and 𝑡× 𝜇 respectively such that

𝑠(𝑥, 𝑦) = 𝐷 + 𝐶*𝐿𝐽,𝑇 (𝑥, 𝑦)−1𝐶

and dom(𝑠) = {(𝑋,𝑌 ) : det(𝐿𝐽,𝑇 (𝑋,𝑌 )) ̸= 0}, where

𝐿𝐽,𝑇 (𝑥, 𝑦) = 𝐽 − Λ𝑇 (𝑥) − Λ𝑇 *(𝑦) = 𝐽 −
∑︁

𝑇𝑗𝑥𝑗 −
∑︁

𝑇 *
𝑗 𝑦𝑗 .

Let 𝑠(𝑥, 𝑦) = 𝑠(𝑥, 𝑦)−1. Thus 𝑠(𝑥, 𝑦) is also a 𝜇 × 𝜇 symmetric matrix-valued free rational
function. It has a representation,

𝑠(𝑥, 𝑦) = �̃� + 𝐶*𝐿𝐽,𝑇 (𝑥, 𝑦)−1𝐶,

with dom(𝑠) = {(𝑋,𝑌 ) : det(𝐿𝐽,𝑇 (𝑋,𝑌 )) ̸= 0}. Let

𝑄(𝑥) =
(︁𝐽

2
− Λ𝑇 (𝑥)

)︁
⊕
(︁𝐽

2
− Λ𝑇 (𝑥)

)︁
,

let 𝑃 (𝑥, 𝑥*) = 𝑄(𝑥) + 𝑄(𝑥)*, let I = {𝑋 : det(𝑃 (𝑋)) ̸= 0} and let I 0 denote its connected
component of 0. Observe that {(𝑋,𝑋*) : 𝑋 ∈ I } = {𝑋 : (𝑋,𝑋*) ∈ dom(𝑠) ∩ dom(𝑠)}. In
particular, if 𝑋 ∈ I 0, then (𝑋,𝑋*) ∈ dom(𝑠) ∩ dom(𝑠). On the other hand, if (𝑋,𝑋*) ∈
dom(𝑠) and 𝑠(𝑋,𝑋*) ≻ 0, then 𝑠(𝑋,𝑋*) is invertible and hence (𝑋,𝑋*) ∈ dom(𝑠). Hence, if
𝑋 ∈ 𝑆0, then (𝑋,𝑋*) ∈ dom(𝑠) ∩ dom(𝑠) too.
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Suppose 𝑋 ∈ 𝑆0. Thus 𝑡𝑋 ∈ 𝑆0 for 0 ≤ 𝑡 ≤ 1 by convexity. It follows that 𝑡(𝑋,𝑋*) ∈
dom(𝑠) ∩ dom(𝑠). Hence 𝑡𝑋 ∈ I for 0 ≤ 𝑡 ≤ 1. Thus 𝑋 ∈ I 0 and 𝑆0 ⊆ I 0.

Arguing by contradiction, suppose there exists 𝑋 ∈ I 0 ∖ 𝑆0. It follows that there is a
(continuous) path 𝐹 in I 0 such that 𝐹 (0) = 0 and 𝐹 (1) = 𝑋. There is a smallest 0 < 𝛼 ≤ 1
with the property 𝑌 = 𝐹 (𝛼) is in the boundary of 𝑆0. Since 𝑌 ∈ I 0, (𝑌, 𝑌 *) ∈ dom(𝑠).
Since 𝑌 /∈ 𝑆0, 𝑠(𝑌, 𝑌 *) ⪰ 0 is not invertible. It follows that 𝑌 ∈ I 0, but (𝑌, 𝑌 *) /∈ dom(𝑠), a
contradiction. Hence I 0 = 𝑆0 is the component of the origin of the set of 𝑋 ∈ 𝑀(C)𝑔 such
that 𝑃 (𝑋) is invertible. By a variant of the main result in [HM12], 𝑆0 is the interior of a free
spectrahedron.

Lemma 6.5. If 𝑞 : 𝑀(C)𝑔 →𝑀(C)𝑔 is a free rational mapping and 𝐸 ∈𝑀𝑑×𝑒(C)𝑔 is linearly
independent, then

(1) the domains of 𝑞 and 𝑄(𝑥) := Λ𝐸(𝑞(𝑥)) coincide;
(2) dom(q𝑞) = dom(𝑞)* := {𝑋 : 𝑋* ∈ dom(𝑞)}; and
(3) the domain of

(6.1) 𝑟(𝑥, 𝑦) :=

(︂
𝐼𝑑×𝑑 𝑄(𝑥)
q𝑄(𝑦) 𝐼𝑒×𝑒

)︂
is dom(𝑞) × dom(𝑞)* = {(𝑋,𝑌 ) : 𝑋,𝑌 * ∈ dom(𝑞)}.

Proof. The inclusion dom(𝑞) ⊆ dom(𝑄) is evident. To prove the converse, let 1 ≤ 𝑘 ≤ 𝑔 be
given. Using the linear independence of {𝐸1, . . . , 𝐸𝑔}, choose a linear functional 𝜆𝑘 on the span
of {𝐸1, . . . , 𝐸𝑔} such that 𝜆𝑘(𝐸𝑗) = 1 if 𝑗 = 𝑘 and 0 otherwise. It follows that the domain of

𝜆𝑘(𝑄(𝑥)) = 𝑞𝑘(𝑥) contains dom(𝑄). Hence dom(𝑄) ⊆ dom(𝑞), proving item (1).

Item (2) is evident as is the inclusion dom(𝑟) ⊇ dom(𝑞) × dom(𝑞)* of (3). For 1 ≤ 𝑗 ≤ 𝑔,
let

𝐹𝑗 =

(︂
0 𝐸𝑗

0 0

)︂
and let 𝐹𝑗 = 𝐹 *

𝑗−𝑔 for 𝑔 < 𝑗 ≤ 2𝑔. Observe that 𝑟(𝑥, 𝑦) = Λ𝐹 (𝑞(𝑥), q𝑞(𝑦)). It follows from item

(1) applied to (𝑞(𝑥), q𝑞(𝑦)) and 𝐹 that

dom(𝑟) = [dom(𝑞) ×𝑀(C)𝑔] ∩ [𝑀(C)𝑔 × dom(q𝑞)] = dom(𝑞) × dom(𝑞)*,

proving item (3) and the lemma.

Proof of Theorem 6.1. It is immediate that

C ⊆ 𝑆 := {𝑋 : 𝑋 ∈ dom(𝑞), ‖Λ𝐸(𝑞(𝑋))‖ < 1}.
Let 𝑆0 denote the connected component of 𝑆 containing 0. Since C is open, connected and
contains the origin, C ⊆ 𝑆0.

Let 𝑄 = Λ𝐸 ∘ 𝑝 and let 𝑟 denote the ((𝑑 + 𝑒) × (𝑑 + 𝑒) symmetric matrix-valued) free
rational function defined in equation (6.1). By Lemma 6.5, {𝑋 : (𝑋,𝑋*) ∈ dom(𝑟)} = dom(𝑞)
and moreover, for 𝑋 ∈ dom(𝑞), we have 𝑞(𝑋) ∈ int(ℬ𝐸) if and only if 𝑟(𝑋,𝑋*) ≻ 0. Thus,

𝑆 = {𝑋 : (𝑋,𝑋*) ∈ dom(𝑟), 𝑟(𝑋) ≻ 0}.

Arguing by contradiction, suppose 𝑌 ∈ 𝑆0, but 𝑌 /∈ C . By connectedness, there is a
continuous path 𝐹 in 𝑆0 such that 𝐹 (0) = 0 and 𝐹 (1) = 𝑌 . Let 0 < 𝛼 ≤ 1 be the smallest
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number such that 𝑋 = 𝐹 (𝛼) ∈ 𝜕C . Since 𝑞 : C → int(ℬ𝐸) is bianalytic, it is proper. Hence, if
𝑋 ∈ dom(𝑞), then 𝑞(𝑋) ∈ 𝜕ℬ𝐸 and consequently 𝑋 /∈ 𝑆. On the other hand, if 𝑋 /∈ dom(𝑞),
then 𝑋 /∈ 𝑆. In either case we obtain a contradiction. Hence 𝑆0 ⊆ C .

Since C = 𝑆0 is convex (and so connected), Proposition 6.4 implies there is a positive
integer 𝑁 and tuple 𝐴 ∈𝑀𝑁 (C)𝑔 such that C = int(𝒟𝐴). Since int(𝒟𝐴) is bounded, the tuple
𝐴 is linearly independent. Without loss of generality, we may assume that 𝐴 is minimal for 𝒟𝐴.
Since 𝑝−1 : int(𝒟𝐴) → int(ℬ𝐸) is bianalytic and 𝐴 and 𝐸 are linearly independent, Theorem
1.1 and Remark 1.2(a) together imply 𝑝−1, and hence 𝑝, is, up to affine linear equivalence,
convexotonic and 𝑟 ≤ 𝑑+ 𝑒 by Theorem 1.1.

Appendix A. Context and motivation

The main development over the past two decades in convex programming has been the
advent of linear matrix inequalities (LMIs); with the subject generally going under the heading
of semidefinite programming (SDP). SDP is a generalization of linear programming and many
branches of science have a collection of paradigm problems that reduce to SDPs, but not
to linear programs. There is highly developed software for solving optimization problems
presented as LMIs. In R𝑔 sets defined by LMIs are very special cases of convex sets known as
spectrahedra. However, as to be discussed, in the noncommutative case convexity is closely
tied to free spectrahedra.

The study of free spectrahedra and their bianalytic equivalence derives motivation from
systems engineering and connections to other areas of mathematics. Indeed the paradigm
problems in linear systems engineering textbooks are dimension free in that what is given is
a signal flow diagram and the algorithms and resulting software toolboxes handle any system
having this signal flow diagram. Such a problem leads to a matrix inequality whose solution
(feasible) sets 𝐷 is free semialgebraic [dOHMP09]. Hence 𝐷 is closed under direct sums and
simultaneous unitary conjugation, i.e., it is a free sets. In this dimension free setting, if 𝐷 is
convex, then it is a free spectrahedron [HM12, Kri19]. For optimization and design purposes,
it is hoped that 𝐷 is convex (and hence a spectrahedron), and algorithm designers put great
effort into converting (say by change of variables) the problem they face to one that is convex.

If the domain 𝐷 is not convex one might attempt to map it bianalytically to a free spec-
trahedron. The classical problems of linear control that reduce to convex problems all require
a change of variables, see [SIG96]. One bianalytic map composed with the inverse of another
leads to a bianalytic map between free spectrahedra; thus maps between free spectrahedra
characterize the non-uniqueness of bianalytic mappings from the solution set 𝐷 of a system of
matrix inequalities to a free spectrahedron.

Studying bianalytic maps between free spectrahedra is a free analog of rigidity problems
in several complex variables [DAn93, For89, For93, HJ01, HJY14, Kra92]. Indeed, there is a
large literature on bianalytic maps on convex sets. For example, Forstnerič [For93] showed
that any proper map between balls with sufficient regularity at the boundary must be rational.
The conclusions we see here in Theorems 1.1, 1.3 and 2.1 are vastly more rigid than mere
birationality.
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