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Abstract. This article resides in the realm of the noncommutative (free) analog of real algebraic

geometry – the study of polynomial inequalities and equations over the real numbers – with a focus

on matrix convex sets C and their projections Ĉ. A free semialgebraic set which is convex as well

as bounded and open can be represented as the solution set of a Linear Matrix Inequality (LMI),

a result which suggests that convex free semialgebraic sets are rare. Further, Tarski’s transfer

principle fails in the free setting: The projection of a free convex semialgebraic set need not be

free semialgebraic. Both of these results, and the importance of convex approximations in the

optimization community, provide impetus and motivation for the study of the matrix convex hull

of free semialgebraic sets.

This article presents the construction of a sequence C(d) of LMI domains in increasingly many

variables whose projections Ĉ(d) are successively finer outer approximations of the matrix convex hull

of a free semialgebraic set Dp = {X : p(X) � 0}. It is based on free analogs of moments and Hankel

matrices. Such an approximation scheme is possibly the best that can be done in general. Indeed,

natural noncommutative transcriptions of formulas for certain well-known classical (commutative)

convex hulls do not produce the convex hulls in the free case. This failure is illustrated here on one

of the simplest free nonconvex Dp.

A basic question is which free sets Ŝ are the projection of a free semialgebraic set S? Techniques

and results of this paper bear upon this question which is open even for convex sets.
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1. Introduction

This article resides within the realm of the recently emerging area of noncommutative

(free) real algebraic geometry. As such it concerns free noncommutative polynomials p(x) =

p(x1, . . . , xg), and their associated free semialgebraic sets Dp (resp. Pp) consisting of those

g-tuples of self-adjoint matrices X of the same size for which p(X) is positive semidefinite

(resp. definite). The case of (matrix) convex Dp is important in applications and also serves

as an entrée to basic general aspects of free real algebraic geometry.

From the main result of [HM12], a bounded and open free semialgebraic set that is con-

vex can be represented as the set of solutions to a Linear Matrix Inequality (LMI), called

a free spectrahedron. This result is decidedly negative from the viewpoint of systems engi-

neering, since it means that convex free semialgebraic sets are rare. It also motivates the

theme of this article, the challenging problem of understanding the convex hull of a free

semialgebraic set Dp.
While formal definitions occur later, we now give the basic flavor of our results. The

main classical approach for producing the convex hull of a basic semialgebraic set D ⊆ Rg

is to cleverly construct a spectrahedron C in a bigger space whose projection onto Rg is the

convex hull of D. In the literature the set C goes by several names. Here we will refer to these

as an LMI lift or spectrahedral lift of the convex hull of D. Developing the free analog of

a theorem due to Lasserre for classical semialgebraic sets [Las09a], under modest hypotheses

on Dp, we construct a sequence C(d) of free spectrahedra in larger and larger spaces whose

projections close down on the free convex hull of Dp. See Corollary 6.2.

We remark that solutions sets of LMIs play a prominent role in the theory of completely

positive maps and operator systems [Arv72, Pau02] as well as quantum information theory

(see for instance [JKPP11]). Moreover, their projections are related to recent advances in the

theory of quotients of operator systems for which [FP12] is one of several recent references. A

natural approach to understanding convexity in the free setting is through the study of free

analogs of extreme points. One such is Arveson’s [Arv72] notion of a boundary representation

as a noncommutative analog of a peak point for a uniform algebra. As an emphatic culmina-

tion of a spate of recent activity, the article [DK+] validates Arveson’s vision that an operator

system has sufficiently many boundary representations to generate its C∗-envelope. For ma-

trix convex hulls of free semialgebraic sets other notions of extreme points occur naturally

(see for instance [Far04, WW99, Kls+]) and are treated in the forthcoming article [HKM+].

Beyond this point the news is bad. An approximation scheme, like that found here,

is possibly the best that can be done in general. As evidence, we study thoroughly a Dp
which has a strong claim to the title of simplest nonconvex free semialgebraic set. The

free analogs of two different classical spectrahedral lifts C for Dp each have the property

that the projection Ĉ of C is convex and contains Dp and, at the scalar (commutative)
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level Ĉ(1) = Dp(1). However, in both cases, Ĉ is not the free convex hull of Dp; that is,

comatDp ( Ĉ. See Example 4.4, Subsection 6.3 and Section 7.

A cornerstone of classical real algebraic geometry (RAG) is Tarski’s transfer principle:

the projection of a semialgebraic set is again semialgebraic. In free RAG the corresponding

assertion is false even for convex sets, see [HM12]. Thus a basic question, on which this

article bears and which is perhaps the most accessible path to understanding the class of

sets closed with respect to projections, and containing the free semialgebraic sets, is which

free sets are the projection of a free spectrahedron.

1.1. Context and Perspective. The standard reference on classical RAG is [BCR98]. Two

more tailored to our purposes are [Las09b] and [Lau09].

The construction of lifts used here is analogous to one introduced by Lasserre [Las09a]

and Parrilo [Par06] independently. It involves positivity for multivariable moment matrices,

studied systematically by Curto and Fialkow in a series of articles (see for example [CF08]),

as well as their duals which are algebraic certificates of positivity for polynomials, called

Positivstellensätze. Lasserre’s key idea was to use a Positivstellensatz representation of

linear functionals ` delineating the convex hull of the set D under study. When a nice

Positivstellensatz exists for all such `, one gets that a suitable spectrahedron C, whose

projection equals D, exists. In fact, a related idea is that of the theta body introduced

earlier to combinatorial optimization by Lovász in [Lov79]; see also [GLS93]. The recent

survey [GT12] of Gouveia and Thomas ties these subjects together. See also their papers

with Laurent and Parrilo [GLPT12, GPT10, GPT12]. LMI lifts of convex sets appeared in

the book of Nesterov and Nemirovskii [NN94] at the outset of SDP. In their examples of

sets with LMI representations – see Chapter 6 – rather than representing the sets, they gave

representations for the lifts.

Returning to free lifts we mention that they are used in linear systems engineering to

obtain free convex envelopes of sets. In the absence of any systematic theory, the literature

consists of clever constructions (cf. [OGB02, GO10]). Moment matrix positivity in a free

noncommutative context was studied in [PNA10], in connection with noncommutative sums

of squares, following [HM04] and focusing on computational aspects; see also [HKM12].

While the setup of this paper is complex, that is, we work with self-adjoint complex

matrices, the results carry over with little change to a combination of real symmetric and

skew-symmetric matrices, cf. Remark 6.4.

We thank Cory Stone and Špela Špenko for many helpful comments on early versions

of this manuscript.

1.2. Guide to the Paper.

• Section 2 contains basic definitions, including that of free polynomials, free semialgebraic

sets, free convexity, and the matrix and operator convex hull of a free semialgebraic set.
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• Section 3 concerns linear pencils and their relation to matrix convex hulls.
• Basic properties of projections of free spectrahedra are presented in Section 4.
• For a given free semialgebraic set Dp, the construction of Section 5, based upon free

analogs of moment sequences and Hankel matrices, produces an infinite free spectrahe-

dron C together with a projection from C onto the operator convex hull cooperDp of Dp.
• In Section 6, truncations of the free Hankel matrices from Section 5 which in turn pro-

duce a sequence (C(d))d of (finite) free spectrahedra together with projections πd are

introduced. It is shown that πd(C(d)) produces successively better outer approximations

to cooperDp and, in the limit, converges to cooperDp.
• Examples appear in Section 7.

2. Free Sets and Free Polynomials

Fix a positive integer g. For a positive integer n, let Sgn denote the set of g-tuples of

complex self-adjoint n × n matrices and let Sg denote the sequence (Sgn)n. A subset Γ of

Sg is a sequence Γ = (Γ(n))n where Γ(n) ⊆ Sgn for each n. The subset Γ is closed with

respect to direct sums if A = (A1, . . . , Ag) ∈ Γ(n) and B = (B1, . . . , Bg) ∈ Γ(m) implies

(2.1) A⊕B :=

((
A1 0

0 B1

)
, . . . ,

(
Ag 0

0 Bg

))
∈ Γ(n+m).

It is closed with respect to (simultaneous) unitary conjugation if for each n, each

A ∈ Γ(n) and each n× n unitary matrix U ,

U∗AU = (U∗A1U, . . . , U
∗AgU) ∈ Γ(n).

The set Γ is a free set if it is closed with respect to direct sums and simultaneous unitary

conjugation. We refer the reader to [Voi04, Voi10, KVV+, MS11, Poe10, AM+, BB07] for a

systematic study of free sets and free function theory.

We call a free set Γ (uniformly) bounded if there is a C ∈ R>0 such that C−
∑
X2
j � 0

for all X ∈ Γ.

2.1. Free Polynomials.

2.1.1. Words and free polynomials. We write 〈x〉 for the monoid freely generated by x =

(x1, . . . , xg), i.e., 〈x〉 consists of words in the g noncommuting letters x1, . . . , xg (including

the empty word ∅ which plays the role of the identity). Let C〈x〉 denote the associative

C-algebra freely generated by x, i.e., the elements of C〈x〉 are polynomials in the freely

noncommuting variables x with coefficients in C. Its elements are called free polynomials.

Endow C〈x〉 with the natural involution ∗ which extends the complex conjugation on C,

fixes x, reverses the order of words, and acts R-linearly on polynomials. Polynomials fixed

under this involution are symmetric. The length of the longest word in a free polynomial

f ∈ C〈x〉 is the degree of f and is denoted by deg(f) or |f | if f ∈ 〈x〉. The set of all words
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of degree at most k is 〈x〉k, and C〈x〉k is the vector space of all free polynomials of degree

at most k.

Fix positive integers ν and `. Free matrix polynomials – elements of C`×ν〈x〉 =

C`×ν ⊗ C〈x〉; i.e., ` × ν matrices with entries from C〈x〉 – will play a role in what follows.

Elements of C`×ν〈x〉 are represented as

(2.2) P =
∑
w∈〈x〉

Bww ∈ C`×ν〈x〉,

where Bw ∈ C`×ν , and the sum is finite. The involution ∗ extends to matrix polynomials by

P ∗ =
∑
w

B∗ww
∗ ∈ Cν×`〈x〉.

If ν = ` and P ∗ = P , we say P is symmetric.

2.1.2. Polynomial evaluations. If p ∈ C〈x〉 is a free polynomial and X ∈ Sgn, then the

evaluation p(X) ∈ Cn×n is defined in the natural way by replacing xi by Xi and sending

the empty word to the appropriately sized identity matrix. Such evaluations produce finite

dimensional ∗-representations of the algebra of free polynomials and vice versa.

Polynomial evaluations extend to matrix polynomials by evaluating entrywise. That is,

if P is as in (2.2), then

P (X) =
∑
w∈〈x〉

Bw ⊗ w(X) ∈ C`n×νn,

where ⊗ denotes the (Kronecker) tensor product. Note that if P ∈ C`×`〈x〉 is symmetric,

and X ∈ Sgn, then P (X) ∈ C`n×`n is a self-adjoint matrix.

2.2. Free Semialgebraic Sets. A symmetric free polynomial and even a symmetric matrix

polynomial p in free variables naturally determine free sets [dOHMP09] via

Dp(n) :={X ∈ Sgn : p(X) � 0}, Dp := (Dp(n))n.

By analogy with real algebraic geometry [BCR98], we will refer to these as free (basic

closed) semialgebraic sets.

Example 2.1. Consider

(2.3) p = 1− x2
1 − x4

2.

In this case p is symmetric with p(0) = 1 > 0. The free semialgebraic set Dp is called the

bent free TV screen, or (bent) TV screen for short. We shall use this example at several

places to illustrate the developments in this paper.
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x1

x2

1

1

Bent TV screen Dp(1) = {(x1, x2) ∈ R2 : 1− x2
1 − x4

2 ≥ 0}.

A subset Γ of Sg is closed with respect to restriction to reducing subspaces if

A ∈ Sgn and H ⊆ Cn is an invariant (reducing) subspace for A implies that A restricted to

H is in Γ.

Lemma 2.2.

(1) For each n, the set Dp(n) is a semialgebraic subset of Sgn.

(2) The free semialgebraic setDp is a free set. Moreover, it is closed with respect to restriction

to reducing subspaces.

Proof. Fix n. There are scalar commutative polynomials pi,j in gn2 variables such that

p(X) = (pi,j(X)) for X ∈ Sgn. By Sylvester’s criterion, p(X) � 0 if and only if all the

principal minors of p(X) are nonnegative. Since these minors are all polynomials, it follows

that Dp(n) is a semialgebraic set.

It is evident that Dp is a free set. Suppose H reduces A ∈ Dp(n). In this case, A =

A1 ⊕ A2 for Aj ∈ Sgnj
with n1 + n2 = n. Since 0 � p(A) = p(A1) ⊕ p(A2), it follows that

p(Aj) � 0 for each j. Hence A ∈ Dp(n1) and Dp is closed with respect to restrictions to

reducing subspaces.

2.3. Free Convexity. A set Γ = (Γ(n))n ⊆ Sg is matrix convex or freely convex if it

is closed under direct sums and (simultaneous) isometric conjugation; i.e., if for each

m ≤ n, each A = (A1, . . . , Ag) ∈ Γ(n), and each isometry V : Cm → Cn,

V ∗AV := (V ∗A1V, . . . , V
∗AgV ) ∈ Γ(m)

In particular, a matrix convex set is a free set.



MATRIX CONVEX HULLS OF FREE SEMIALGEBRAIC SETS 7

In the case that Γ is matrix convex, it is easy to show that each Γ(n) is itself convex.

Indeed, given real numbers s, t with s2 + t2 = 1 and X, Y ∈ Γ(n), let

V =

(
sIn
tIn

)
and observe that

(2.4) V ∗
(
X 0

0 Y

)
V = s2X + t2Y ∈ Γ(n).

More generally, if A` = (A`1, . . . , A
`
g) are in Γ(n`), then A =

⊕
`A

` ∈ Γ(n), where n =
∑
n`.

Hence, if

V =


V1

V2

...

Vk


is an isometry and V` are n` ×m matrices (for some m), then

(2.5) V ∗AV =
k∑
`=1

V ∗` A
`V` ∈ Γ(m) where

k∑
`=1

V ∗` V` = I

A sum as in (2.5) is a matrix convex combination of the g-tuples {A` : ` = 1, . . . , k}.

Lemma 2.3. Suppose Γ is a free subset of Sg.

(1) If Γ is closed with respect to restriction to reducing subspaces, then the following are

equivalent:

(i) Γ is matrix convex;

(ii) each Γ(n) is convex in the classical sense of taking scalar convex combinations.

(2) If Γ is (nonempty and) matrix convex, then 0 ∈ Γ(1) if and only if Γ is closed with

respect to (simultaneous) conjugation by contractions.

Proof. Evidently (i) implies (ii). The implication (ii) implies (i) is proved in [HM04, §2].

For item (2), if Γ is closed with respect to conjugation by a contraction, then given an

A ∈ Γ(n), letting z : C → Cn be the zero mapping, gives z∗Az = 0 ∈ Cg. Hence, 0 ∈ Γ(1).

Conversely, suppose 0 ∈ Γ(1). In this case for each n the zero tuple 0n is in Γ(n) as Γ is

closed with respect to direct sums. Given an n × n contraction F , and X ∈ Γ(n) observe

that X ⊕ 0n ∈ Γ(2n), form the isometry

V ∗ =
(
F ∗ (I − F ∗F )

1
2

)
and compute

F ∗XF = V ∗
(
X 0

0 0

)
V ∈ Γ.
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Remark 2.4. Combining the second items of Lemmas 2.2 and 2.3 it follows that the free

semialgebraic set Dp is matrix convex if and only if each Dp(n) is convex.

Example 2.5. Consider the TV screen given by p = 1−x2
1−x4

2 introduced in Example 2.1.

While Dp(1) is convex (see Example 2.1 for a picture), it is known that Dp is not matrix

convex, see [DHM07] or [BPR13, Chapter 8]. Indeed, already Dp(2) is not a convex set.

2.4. The Matrix Convex Hull. The matrix convex hull of a subset Γ = (Γ(n))n of Sg,
denoted comatΓ, is the smallest matrix convex set containing Γ. As usual, the intersection of

matrix convex sets is matrix convex, so the notion of a hull is well defined. Further, there is

a simple description of the matrix convex hull of a free set.

For positive integers n let

(2.6) C(n) :=
⋃
m∈N

{X ∈ Sgn : X = V ∗ZV for some isometry V ∈ Cm×n and Z ∈ Γ(m)}.

In the case that Γ is closed with respect to direct sums, it is straightforward to verify that

C =
(
C(n)

)
n

is a matrix convex set which contains Γ. On the other hand, C must be contained

in any matrix convex set containing Γ. Hence we conclude:

Proposition 2.6. If Γ is closed with respect to direct sums, then C is its matrix convex hull.

2.5. Topological Properties of the Matrix Convex Hull. A natural norm on Sgn is

given by

‖X‖2 =

g∑
j=1

‖Xj‖2

for X = (X1, . . . , Xg) ∈ Sgn.
The subset S = (S(n))n of Sg is open if each S(n) is open.

Lemma 2.7. If the open set S ⊆ Sg is closed with respect to direct sums, then comatS is

open.

Proof. To show that comatS(n) is open, let X ∈ comatS(n) be given. By Proposition 2.6,

there exists an m ∈ N, a Z ∈ S and an isometry V : Cn → Cm such that X = V ∗ZV .

Because S(m) is open, there exists an ε > 0 such that if ‖W − Z‖ < ε, then W ∈ S(m).

Now suppose Y ∈ Sgn and ‖Y −X‖ < ε. Writing,

Z =

(
X β

β∗ δ

)
with respect to the decomposition of Cm as the range of V direct sum its orthogonal com-

plement, let

W =

(
Y β

β∗ δ

)
.
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Thus W ∈ S(m) and, by another application of Proposition 2.6, Y = V ∗WV ∈ comatS(n).

Hence comatS(n) is open.

Let comatΓ denote the closure of the convex hull of the free set Γ, i.e.,

comatΓ =
(

comatΓ(n)
)
n
.

Lemma 2.8. If K = (K(n))n is a matrix convex set, then K = (K(n))n is also matrix

convex. Here K(n) is the closure of K(n) in Sgn.

Proof. To see that K is closed with respect to direct sums, suppose X ∈ K(n) and Y ∈
K(m). There exists sequences (X`) and (Y `) from K(n) and K(m) converging to X and Y

respectively. It follows that X` ⊕ Y ` ∈ K(n + m) converges to X ⊕ Y and thus X ⊕ Y ∈
K(n+m).

To see that K is closed with respect to simultaneous isometric conjugation, suppose

X ∈ K(n) and V : Cm → Cn is an isometry. There exists a sequence (X`) from K(n) which

converges to X. Thus, the sequence (V ∗X`V ) lies in K(m) and converges to V ∗XV . Thus

V ∗XV ∈ K(m) and the proof is complete.

Lemma 2.9. Suppose Γ is a free set. If each Γ(n) is compact, then for each m, comatΓ(m)

is naturally a nested increasing union of compact convex sets.

Proof. For each n ≥ m, let

Pn(m) = {V ∗XV | V : Cm → Cn is an isometry, X ∈ Γ(n)} ⊆ comatΓ(m).

Let En(m) ⊆ comatΓ(m) denote the (ordinary) convex hull of Pn(m). By Caratheodory’s

convex hull theorem [Bar02, Theorem I.2.3], En(m) is a subset of Pn(α+1)(m) (where α is

the dimension of Sm). Since Pn(m) is compact (being the image of the compact set {m× n
isometries}×Γ(n) under the continuous map (V,X) 7→ V ∗XV ), then so is En(m). We have,

comatΓ(m) =
⋃
n≥m

Pn(m) =
⋃
n≥m

En(m).

Thus, comatΓ(m) is the nested increasing union of a canonical sequence of compact convex

sets.

2.6. Basic Definitions. Operator Level. All the notions discussed above have natural

counterparts on infinite-dimensional Hilbert spaces.

Fix a separable Hilbert space K and let Lat(K ) denote the lattice of subspaces of

K . For a K ∈ Lat(K ), let SgK denote g-tuples X = (X1, . . . , Xg) of self-adjoint operators

on K. A collection Γ = (Γ(K))K where Γ(K) ⊆ SgK for each K ≤ K , is a free operator

set if it is closed under direct sums and with respect to simultaneous conjugation by unitary

operators. If in addition it is closed with respect to simultaneous conjugation by isometries

V : H → K, where H,K ∈ Lat(K ), then Γ is operator convex.
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Note that (SgK)K is itself a free operator set which will be henceforth denoted by Sgoper.

Given a symmetric free matrix polynomial p with p(0) � 0, let

D∞p = {X ∈ Sgoper : p(X) � 0}

be the operator free semialgebraic set defined by p. It is easy to see that D∞p is a free

operator set. For K ∈ Lat(K ), we write

D∞p (K) = {X ∈ SgK : p(X) � 0}.

A free operator semialgebraic set Γ is uniformly bounded if there is a C ∈ R>0 such that

C −
∑
X2
j � 0 for all X ∈ Γ.

2.7. The Operator Convex Hull. Each free polynomial p gives rise to two operator convex

hulls. The operator convex hull of Dp is the sequence of sets cooperDp = (cooperDp(n))n
where X ∈ Sgn is in

(
cooperDp

)
(n) if there exists a Z ∈ D∞p (acting on a Hilbert space K )

and an isometry V : Cn → K such that X = V ∗ZV .

The notion of the (operator) convex hull of D∞p is defined similarly. Thus coD∞p
is the sequence of sets (coD∞p (K))K where, for K ∈ Lat(K ), the tuple X ∈ SgK is in(
coD∞p

)
(K) if there exists a Z ∈ D∞p (acting on the Hilbert space K ) and an isometry

V : K → K such that X = V ∗ZV .

Later we will see in Theorem 5.4 that cooperDp is closed.

3. Linear Pencils and Matrix Convex Hulls

Classical convex sets in Rg are defined as intersections of half-spaces and are thus de-

scribed by linear functionals. Matrix convex sets are defined analogously by linear pencils;

cf. [EW97, HM12]. This section surveys some basic facts about convex hulls and their asso-

ciated linear pencils.

3.1. Linear Pencils. Given k × k self-adjoint matrices A0, . . . , Ag, let

L(x) = A0 +

g∑
j=1

Ajxj ∈ Sk〈x〉

denote the corresponding (affine) linear pencil of size k. In the case that A0 = 0; i.e.,

A = (A1, ..., Ag) ∈ Sgk, let

ΛA(x) =

g∑
j=1

Ajxj

denote the corresponding homogeneous (truly) linear pencil and

LA = I + ΛA

the associated monic linear pencil.
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The linear pencil can of course be evaluated at a point x ∈ Rg in the obvious way,

producing the Linear Matrix Inequality, L(x) � 0. The solution set to this inequality is

known as a spectrahedron or LMI domain and is obviously a convex semialgebraic set.

The pencil L is a free object too as it is naturally evaluated on X ∈ Sgn using (Kro-

necker’s) tensor product

(3.1) L(X) := A0 ⊗ I +

g∑
j=1

Aj ⊗Xj.

The free semialgebraic set DL is easily seen to be matrix convex. We will refer to DL as

a free spectrahedron or free LMI domain and say that a free set Γ is freely LMI

representable if there is a linear pencil L such that Γ = DL. In particular, if Γ is freely

LMI representable with a monic LA, then 0 is in the interior of Γ. Note too that DL(1) ⊆ Rg

is a spectrahedron.

Later we shall also use linear pencils which are based on infinite-dimensional operators

Ai and the associated pencil L(x) = A0 +
∑
Ajxj. In this case the free set D = (D(n)),

where D(n) = {X ∈ Sgn : L(X) � 0} is an infinite spectrahedron. We emphasize that

the unmodified term free spectrahedron always requires the Ai to act on a finite-dimensional

space.

The following is a special case (see [HM12, §6]) of a Hahn-Banach separation theorem

due to Effros and Winkler [EW97].

Theorem 3.1. If C = (C(n))n∈N ⊆ Sg is a closed matrix convex set containing 0 and Y ∈ Sgm
is not in C(m), then there is a monic linear pencil L of size m such that L(X) � 0 for all

X ∈ C, but L(Y ) 6� 0.

Proof. From [EW97, Theorem 5.4], there exist m×m matrices A1, . . . , Ag ∈ Cm×m such that

I − 1

2

(∑
Aj ⊗Xj +

(∑
Aj ⊗Xj

)∗) � 0

for all n and X ∈ C(n), but at the same time

I − 1

2

(∑
Aj ⊗ Yj +

(∑
Aj ⊗ Yj

)∗) 6� 0

Note however, that since X∗j = Xj, it follows that Aj ⊗ Xj + A∗j ⊗ X∗j = (Aj + A∗j) ⊗ Xj.

Thus, it can be assumed that A ∈ Sgm.

Though linear matrix inequalities appear special, the following result from [HM12] says

that they actually account for matrix convexity of free semialgebraic sets.

Theorem 3.2. Fix p a symmetric real matrix polynomial. If p(0) � 0 and the strict positivity

set Pp = {X : p(X) � 0} of p is bounded, then Pp is matrix convex if and only if there is a

monic linear pencil L such that Pp = PL = {X : L(X) � 0}.
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3.2. Pencils and Hulls.

Lemma 3.3. Let C be a matrix convex set. If L is a pencil of size k, then L is positive

semidefinite on C if and only if L is positive semidefinite on C(k).

Proof. Suppose L is positive semidefinite on C(k) and let m and X ∈ C(m) be given. Fix

a vector v ∈ Ck ⊗ Cm. Letting {e1, . . . , ek} denote the standard orthonormal basis for Ck,

there exist vectors v1, . . . , vk ∈ Cm such that

v =
k∑
j=1

ej ⊗ vj.

Let H denote the span of {v1, . . . , vk} and let V : H → Cm denote the inclusion mapping.

It follows that

〈L(X)v, v〉 = 〈L(X)I ⊗ V v, I ⊗ V v〉
= 〈L(V ∗XV )v, v〉.

Since V ∗XV ∈ C(k), it follows that 〈L(X)v, v〉 ≥ 0. Hence L(X) � 0 and the proof is

complete.

Proposition 3.4. Let L be a µ× µ linear pencil. Then

L|Dp � 0 ⇐⇒ L|comatDp(µ) � 0.

Of course, the downside of Proposition 3.4 is that it does not give bounds on the isome-

tries needed in comatDp(µ) (as they appear in Equation (2.6)).

Proof. Evidently L is positive semidefinite on Dp if and only if L is positive semidefinite on

comatDp. An application of Lemma 3.3 completes the proof.

Just like the closed convex hull of a subset C of Rg can be written as an intersection of

half-spaces containing C, closed matrix convex hulls are intersections of free spectrahedra.

Corollary 3.5. Let p be a symmetric free polynomial (with as usual p(0) � 0). For n ∈ N,

the set comatDp(n) consists of all g-tuples Z ∈ Sgn satisfying L(Z) � 0 for all n × n monic

linear pencils L with DL ⊇ Dp (equivalently L|Dp � 0).

Proof. This corollary is a version of the matricial Hahn-Banach Theorem 3.1. Indeed, if

Z 6∈ comatDp(n), then by these matricial Hahn-Banach theorems there is an n× n pencil L

with L(Z) 6� 0 and L|comatDp(n) � 0. The latter implies by Proposition 3.4 that L|Dp � 0,

that is, DL ⊇ Dp.
To prove the reverse inclusion, suppose L is n×n with L|Dp � 0. If Z ∈ comatDp(n) there

is a sequence Zi ∈ comatDp(n) converging to Z. Such Zi must have the form Zi = V ∗i XiVi,

with Xi ∈ Dp and Vi is an isometry. Thus

L(V ∗i XiVi) = (I ⊗ Vi)∗L(Xi)(I ⊗ Vi) � 0.
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Since L(Zi)→ L(Z), we have L � 0 on comatDp(n), and so we are done.

Corollary 3.6. Suppose ` is an affine linear function, and L is a linear pencil. Then

`|DL(1) ≥ 0 ⇐⇒ `|DL
� 0.

Proof. While this is an obvious corollary of Proposition 3.4, let us present a short and

independent self-contained argument. The implication (⇐) is obvious. For the converse

assume X ∈ DL(n) with `(X) 6� 0. Let v be a unit eigenvector of `(X) with negative

eigenvalue. For v∗Xv := (v∗X1v, . . . , v
∗Xgv) ∈ Rg we have

L(v∗Xv) = (I ⊗ v)∗L(X)(I ⊗ v) � 0,

i.e., v∗Xv ∈ DL(1), and

`(v∗Xv) = v∗`(X)v < 0.

4. Projections of Free Spectrahedra: Free Spectrahedrops

Let L be a linear pencil in the variables (x1, . . . , xg; y1, . . . , yh),

L = D +

g∑
j=1

Ajxj +
h∑
`=1

B`y`.

The set

projxDL(1) = {x ∈ Rg : ∃ y ∈ Rh such that L(x, y) � 0}
is known as a spectrahedral shadow or is a semidefinite programming (SDP) rep-

resentable set [BPR13] and the representation afforded by L is an SDP representation.

SDP representable sets are evidently convex and lie in a middle ground between LMI repre-

sentable sets and general convex sets. They play an important role in convex optimization.

In the case that S ⊆ Rg is closed semialgebraic and with some mild additional hypothesis,

it is proved in [HN10] based upon the Lasserre–Parrilo construction ([Las09a, Par06]) that

the convex hull of S is SDP representable.

Given a linear pencil L, let projxDL denote the free set

projxDL =
⋃
n∈N

{X ∈ Sgn : ∃Y ∈ Shn such that L(X, Y ) � 0}.

We will call a set of the form projxDL a free spectrahedrop or a freely SDP rep-

resentable set or even a free spectrahedral shadow. Thus a free spectrahedrop is a

coordinate projection of a free spectrahedron.

Proposition 4.1. Free spectrahedrops are matrix convex. In particular, they are closed with

respect to restrictions to reducing subspaces.
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Example 4.2. The second half of Proposition 4.1 fails for projections of general free semi-

algebraic sets. As an example, consider

(4.1) q = yx2y + zx2z − 1

and the projection S of Dq onto x. Thus,

S = {X ∈ S : ∃ (Y, Z) ∈ S2 such that q(X, Y, Z) � 0}.

It is easy to show I3 ⊕ 03 is in S, but of course 03 is not. Incidentally, this gives a simple

example of a free semialgebraic set whose projection is not semialgebraic, in sharp contrast

to Tarski’s transfer principle in classical real algebraic geometry [BCR98].

On the other hand, Proposition 4.1 implies that, for a linear pencil L, projections of DL
are closed with respect to restrictions to reducing subspaces. Nevertheless, a projection of

DL need not be semialgebraic, cf. [HM12, §9].

4.1. Free Spectrahedrops and Monic Lifts. Recall a free set K is a free spectrahedrop

if it is a (coordinate) projection of a free spectrahedron, DΛ. The next lemma shows that

even when Λ is not a monic pencil, if 0 is in the interior of K, then K admits a monic LMI

lift.

Lemma 4.3. If K = projxDΛ is a free spectrahedrop containing 0 in its interior, then there

exists a monic linear pencil L(x, y) such that

(4.2) K = projxDL = {X ∈ Sg | ∃Y ∈ Sh : L(X, Y ) � 0}.

If DΛ is bounded, then we may further ensure DL is bounded.

Proof. Suppose

(i) Λ(x, y) is an affine linear pencil,

Λ(x, y) = Λ0 +

g∑
j=1

Λjxj +
h∑
k=1

Ωkyk;

(ii) K is the projection of DΛ onto x-space. Thus, K = {X ∈ Sg : ∃Y ∈ Sh : Λ(X, Y ) � 0}.

Without loss of generality, it may be assumed the number h of y-variables is the smallest

possible with respect to the the properties (i) and (ii).

Let
◦
DΛ(1) denote the interior of DΛ(1) and suppose first that this interior is empty. In

this case the convex subset DΛ(1) of Rg+h lies in a proper affine subspace of Rg+h. That is,

there is an affine linear functional (with real coefficients)

`(x, y) = `0 +

g∑
j=1

`jxj +
h∑
k=1

ωkyk
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such that ` = 0 on DΛ(1). Equivalently, ` = 0 on DΛ, cf. Corollary 3.6. At least one

ωk is nonzero as otherwise ` would produce a nontrivial affine linear map vanishing on K,

contradicting the assumption that K has nonempty interior. Without loss of generality,

ωh = 1. Consider the pencil Λ̃ in the variables (x, ỹ) = (x1, . . . , xg, y1, . . . , yh−1),

Λ̃(x, ỹ) = `0(Λ0 − Ωh) +

g∑
j=1

(Λj − `jΩh)xj +
h−1∑
k=1

(Ωk − ωkΩh)yk = Λ(x, y)− Ωh`(x, y).

Given X ∈ K(n), there is a Y ∈ Shn such that Λ(X, Y ) � 0. Letting Ỹ = (Y1, . . . , Yh−1),

Λ̃(X, Ỹ ) = Λ(X, Y )− Ωh ⊗ `(X, Y ) = Λ(X, Y ) � 0.

On the other hand, if there is a Ỹ = (Y1, . . . , Yh−1) such that Λ̃(X, Ỹ ) � 0, then with

Yh = −(`0I +

g∑
j=1

`jXj +
h−1∑
k=1

ωkYk),

and Y = (Ỹ, Yh), it follows that `(X, Y ) = 0. Hence,

Λ(X, Y ) = Λ̃(X, Ỹ ) + Ωh ⊗ `(X, Y ) = Λ̃(X, Ỹ ) � 0.

It follows that Λ̃ satisfies conditions (i) and (ii), contradicting the minimality assumption on

the number of y-variables. Hence DΛ(1) has a nontrivial interior.

The projection projx : DΛ(1) → K(1) is continuous, so the preimage of a small ball

Bε ⊆ Rg around 0 ∈
◦
K(1) is an open subset of DΛ(1). At least one of these points will have its

x-component equal to 0, say (0, ŷ) ∈
◦
DΛ(1). By replacing Λ(x, y) with L(x, y) = Λ(x, y− ŷ)

we obtain a linear pencil L such that projxDL = projxDΛ but now the free spectrahedron

DL has (0, 0) as an interior point. Hence a standard reduction shows we may take L to be

monic (cf. [HV07]). It is clear that DL is bounded if DΛ is bounded.

4.2. Convex Hulls and Spectrahedrops. Given a free semialgebraic set Dp, a goal is to

determine when its convex hull, or closed convex hull, or its operator convex hull is a free

spectrahedrop. When this can be done it provides a potentially useful approximation to Dp.

Example 4.4. Recall the polynomial p = 1−x2
1−x4

2 from Example 2.1. That the set Dp(1)

has an LMI lift is well known and is given as follows. Let

Λ(x1, x2, y) =

 1 0 x1

0 1 y

x1 y 1

⊕ ( 1 x2

x2 y

)
.

It is readily checked that projxDΛ(1) = Dp(1). Further, Lemma 4.3 implies that Λ can be

replaced by a monic linear pencil L, cf. Subsection 7.1.
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Proposition 4.5. Assume Dp(1) is bounded and L is a monic linear pencil. If co(Dp(1)),

the ordinary convex hull of Dp(1) ⊆ Rg, admits an LMI lift to DL(1) and Dp ⊆ projxDL,
then co(Dp(1)) = comatDp(1).

Proof. Suppose ` is an affine linear function nonnegative on Dp(1). Then `|DL(1) ≥ 0 and

hence by Corollary 3.6, `|DL
� 0. Since comatDp ⊆ projxDL, this implies `|comatDp(1) ≥ 0. As

Dp(1) ⊆ comatDp(1), this shows coDp(1) = comatDp(1). As Dp(1) is compact, its convex hull

is closed, so we are done.

Remark 4.6. Later in Section 5 we shall give a procedure for constructing a family of L

with the property

(4.3) comatDp ⊆ projxDL.

While for many p the ordinary convex hull of Dp(1), admits an LMI lift to DL(1), the

property (4.3) is not always satisfied. Indeed, the conclusion of Proposition 4.5 can fail.

Example 4.7. Returning to the polynomial p(x1, x2) = 1− x2
1− x4

2 of Example 4.4, Propo-

sition 4.5 implies that Dp(1) = comatDp(1). Since, as noted in Example 2.5, Dp(2) is not

convex, Dp is not a free spectrahedrop. We do not know if the closed matrix convex hull of

Dp is a free spectrahedrop, but Theorem 5.4 below says it almost is.

5. Construction of the Free Lift

Classically, given a commutative semialgebraic set Dp(1) ⊆ Rg, a construction proposed

by Lasserre [Las09a] (see also Parrilo [Par06]) produces a sequence of spectrahedra (D(n))

and projections (πn) such that πn(D(n)) ⊇ Dp(1) is a nested decreasing sequence of semialge-

braic sets approximating the convex hull of Dp(1). Under mild hypotheses, this sequence of

relaxations actually terminates and presents co
(
Dp(1)

)
as a projection of a spectrahedron;

i.e., there is an m such that co
(
Dp(1)

)
= πm(D(m)) [HN09, HN10]. For a substantial recent

advance, see Scheiderer’s complete solution in two dimensions [Sce11, Sce+]. We refer to

[DKL11, Hen11, NPS10] for further results in this direction.

There are two parts to our free analog of the Lasserre–Parrilo construction. The first,

described in this section, constructs for a given Dp, via free analogs of moment sequences

and Hankel matrices, an infinite free spectrahedron Lp, and a canonical projection of Lp onto

the operator convex hull of Dp.
The second part of the construction, appearing in Section 6, consists of a systematic

procedure for passing from Lp to a sequence of finite free spectrahedra and corresponding

projections onto increasingly finer outer approximations to the operator convex hull of Dp.

5.1. Free Hankel matrices. The key ingredient of the systematic method for constructing

lifts presented here are the block free (multivariable) analogs of Hankel matrices. A Hankel

matrix H is one that is constant on antidiagonals so that the entry Hi,j depends only on the
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sum i+ j. In particular, a sequence (hk)k of self-adjoint m×m matrices determines a block

Hankel matrix H = (hi+j)i,j. The sequence (hk) is often referred to as a moment sequence.

In the case that H is positive semidefinite, the normalization h0 = I is typically harmless.

Free Hankel matrices have a description in terms of free moment sequences. Given a

positive integer n, a sequence W := (Wα)α of n × n matrices Wα indexed by words α in

the free symmetric variables x = (x1, . . . , xg) is a moment sequence if it is symmetric in

the sense that Wα∗ = W ∗
α and is normalized by W∅ = I. Note that the symmetry of W

implies that each Wxj is a self-adjoint matrix. The moment sequence (Wα) determines the

free Hankel matrix

H(W ) =
(
Wα∗β

)
α,β
.

For a positive integer d,

Hd(W ) =
(
Wα∗β

)
|α|,|β|≤d.

is a truncated free Hankel matrix associated to W .

Let p be a `× `-matrix valued polynomial of degree at most δ. Thus,

p(x) =
∑
|γ|≤δ

pγγ

for some ` × ` matrices pγ. The p−localizing matrix H⇑p (W ) associated to H(W ) is the

n`× n` (block) matrix with (α, β) entry

H⇑p (W )α,β :=
∑
|γ|≤δ

pγ ⊗Wα∗γβ.

Of course, if p = 1, then

H⇑1 (W ) = H(W ).

For d ∈ N, the d-truncated localizing matrix of p is

H⇑p,d(W ) :=
(
H⇑p (W )α,β

)
|α|,|β|≤d.

Note that if the word γ has length 2m−1 or 2m, then it can be written as a product γ = η∗σ

of words of length at most m. Hence, the truncated localizing matrix actually only depends

upon the entries Wα∗β for |α|, |β| ≤ d +
⌈

1
2

deg(p)
⌉
. Here d e denotes the “smallest integer

not less than” function. The reader is encouraged to skip ahead temporarily to Subsection

6.3 to get a feel for the structure of these matrices.

An element Z ∈ Dp(m) (so acting on Cm) along with an isometry V : Cn → Cm

determines a moment sequence,

(5.1) Yα = V ∗ZαV.

For instance, if α = x1x2x1, then

Yα = V ∗Z1Z2Z1V.
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Note that the fact that Z∅ = I and the assumption that V is an isometry implies Y∅ = I.

Further, an easy calculation shows that this moment sequence satisfies

(5.2) H(Y ) � 0 and H⇑p (Y ) � 0.

Likewise, an element Z ∈ D∞p (K) along with n ∈ N and an isometry V : Cn → K determines

a moment sequence (Yα)α via (5.1) for which (5.2) holds.

5.2. Riesz Maps. Let s ∈ N. To a moment sequence W = (Wα)α of n × n matrices there

is the associated linear Riesz mapping

Φs
W : Cs×s〈x〉 → Csn×sn,

∑
α∈〈x〉

Bαα 7→
∑
α∈〈x〉

Bα ⊗Wα.

This linear map is symmetric in the sense that

Φs
W (P ∗) = Φs

W (P )∗

for P ∈ Cs×s〈x〉.
Similarly, to a truncated Hankel matrix Hd(W ), or the corresponding truncated moment

sequence W = (Wα)|α|≤2d, we can associate a Riesz map

Φs
W : Cs×s〈x〉2d → Csn×sn,

∑
α∈〈x〉2d

Bαα 7→
∑

α∈〈x〉2d

Bα ⊗Wα.

Proposition 5.1. Suppose W is a moment sequence and let p ∈ C`×`〈x〉 be a symmetric

free matrix polynomial. For positive integers s and t,

(1) if H(W ) � 0, then Φs
W (P ∗P ) � 0 for all P ∈ Ct×s〈x〉;

(2) if Hd(W ) � 0, then Φs
W (P ∗P ) � 0 for all P ∈ Ct×s〈x〉d;

(3) if H⇑p (W ) � 0, then Φs
W (f ∗(It ⊗ p)f) � 0 for all f ∈ Ct`×s〈x〉;

(4) if H⇑p,d(W ) � 0, then Φs
W (f ∗(It ⊗ p)f) � 0 for all f ∈ Ct`×s〈x〉d.

Proof. (1) Write P =
∑

α∈〈x〉 Pαα. Then

Φs
W (P ∗P ) =

∑
α,β

P ∗αPβ ⊗Wα∗β.

Let ~P =
(
Pv
)
v∈〈x〉 be a column block-vector of coefficients of P . Then

(5.3) Φs
W (P ∗P ) =

(
~P ⊗ In

)∗(
It ⊗H(W )

)(
~P ⊗ In

)
� 0

since It ⊗H(W ) � 0 by assumption. For the proof of (2) simply replace H(W ) by Hd(W )

in (5.3).
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The proofs of (3) and (4) are similar to those of (1) and (2) respectively. For (3), using

the vector notation as in items (1) and (2),

Φs
W

(
f ∗(It ⊗ p)f

)
=
∑
σ

(∑
α,β

∑
γ:α∗γβ=σ

f ∗αpγfβ

)
⊗Wσ

=
∑
α,β

(
f ∗α ⊗ In

) (∑
γ

It ⊗ pγ ⊗Wα∗γβ

) (
fβ ⊗ In

)
=
(
~f ⊗ In

)∗(
It ⊗H⇑p (W )

)(
~f ⊗ In

)
.

For (4) we use the corresponding truncated version

Φs
W (f ∗pf) =

(
~f ⊗ In

)∗(
It ⊗H⇑p,d(W )

)(
~f ⊗ In

)
,

where ~f is a block column vector consisting of coefficients of f .

5.3. Lasserre–Parrilo Lift: Moment Relaxations. Given a positive integer n, let

Lp(n) := {Y = (Yα)α : Yα ∈ Cn×n, Y∅ = I, Yα∗ = Y ∗α , H(Y ) � 0, H⇑p (Y ) � 0}

and let Lp denote the sequence (Lp(n))n. Implicitly, the Y in Lp are understood to be

moment sequences. Moreover, let

Lfin
p := {Y ∈ Lp : rankH(Y ) <∞}.

In particular, the Y appearing in (5.1) is in Lp if Z ∈ D∞p , and is in Lfin
p if Z ∈ Dp,. Given

Y ∈ Lp(n), let

Ŷ = (Yx1 , Yx2 , . . . , Yxg) ∈ Sgn.

Theorem 5.2. If X ∈ comatDp, then there is a Y ∈ Lfin
p such that

X = Ŷ.

Conversely, if Y ∈ Lfin
p , then Ŷ ∈ comatDp.

Proof. If X is in the matrix convex hull of Dp, then there is an isometry Q and Z ∈ Dp such

that X = Q∗ZQ. In this case the moment sequence Yα = Q∗ZαQ satisfies the conclusion of

the first part of the theorem.

To prove the converse, suppose (Yα) is a moment sequence from Lfin
p (n). Define, on the

vector space C〈x〉 ⊗ Cn, the sesquilinear form

(5.4) [s, t]Y =
∑
α,β

〈Yβ∗αsα, tβ〉

where s =
∑
α⊗sα and t =

∑
β⊗ tβ. The assumption that H(Y ) � 0 implies that the form

[s, t]Y is positive semidefinite. Let EY denote the (pre-)Hilbert space obtained by modding

out the subspace

N = {s : [s, s]Y = 0}.
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Note that rankH(Y ) <∞ implies dim EY <∞ and hence EY is a Hilbert space.

An important observation is the following: If s ∈ N and 1 ≤ j ≤ g, then r = xjs ∈ N ,
i.e., N is a left C〈x〉-submodule of C〈x〉⊗Cn. To prove this observation, note that, because

H(Y ) is positive semidefinite, if s ∈ N then∑
α

Yβ∗αsα = 0

for each β (and conversely). In this case,∑
γ

Yβ∗γrγ =
∑
α

Yβ∗xjαsα =
∑
γ

Y(xjβ)∗αsα = 0

and hence r ∈ N . It now follows that the mapping Zj sending s to xjs is well defined on

the finite-dimensional Hilbert space EY . The computation above also shows that whether or

not s ∈ N ,

〈xjs, t〉 = 〈s, xjt〉
and hence Z∗j = Zj.

Define Q : Cn → EY by

Qv = ∅⊗ v
and note that Q is an isometry. By construction, Q∗ZαQ = Yα.

Finally, to see p(Z) =
∑
pγ ⊗ Zγ is positive definite, let s =

∑
ej ⊗ α ⊗ sα,j be given,

where {e1, . . . , e`} is the standard orthonormal basis for C` (the space that the pγ act on)

and sα,j ∈ Cn. Then,

〈p(Z)s, s〉 =
∑

α,β,γ,j,k

〈pγ ⊗ Zγej ⊗ α⊗ sα,j, ek ⊗ β ⊗ sβ,k〉

=
∑
〈pγej, ek〉 〈Zγα⊗ sα,j, β ⊗ sβ,k〉

=
∑
〈pγej, ek〉 〈Yβ∗γαsα,j, sβ,k〉

=
∑
α,β

〈(∑
γ

pγ ⊗ Yβ∗γα
)∑

j

ej ⊗ sα,j,
∑
k

ek ⊗ sβ,k
〉

= 〈H⇑p (Y )~s, ~s 〉 ≥ 0,

where ~s is the vector (sα)α for sα =
∑

j ej⊗sα,j. Thus the assumption that H⇑p (Y ) is positive

semidefinite implies p(Z) is positive semidefinite. We conclude that Ŷ = Q∗ZQ is in the

matrix convex hull of Dp.

Definition 5.3. Given p, let

L̂p := {Ŷ : Y ∈ Lp} and L̂fin
p := {Ŷ : Y ∈ Lfin

p }.

Theorem 5.2 says that the matrix convex hull comatDp of Dp equals L̂fin
p .
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Next we turn to operator convex hulls. To obtain a good lifting theorem we make a

boundedness assumption which replaces the rankH(Y ) finite condition used in Theorem 5.2.

Given K ∈ R>0, the matrix polynomial p is K-archimedean if there exist matrix

polynomials sj and fj such that

(5.5) K2 −
∑
j

x2
j =

∑
s∗jsj +

∑
f ∗j pfj,

and p is archimedean if it is K-archimedean for some K > 0.

Theorem 5.4. If p is archimedean, then cooperDp = L̂p. Moreover, cooperDp(n) is closed

and bounded and contains comatDp(n) for each n.

5.3.1. Proof of Theorem 5.4. The proof begins with several lemmas.

Lemma 5.5. If p is archimedean, then D∞p is uniformly bounded.

Proof. If p is archimedean, then by (5.5) there is N ∈ N with N −
∑

j x
2
j |D∞p � 0. Hence

D∞p ⊆
{
X ∈ Sgoper : ‖X‖2 ≤ N

}
.

Lemma 5.6. If Y ∈ Lp(n), then there exist

(i) a Hilbert space H ;

(ii) a dense subset P of H ;

(iii) a tuple Z = (Z1, . . . , Zg) such that each Zj : P → P is self-adjoint in the sense that

〈Zjp, q〉 = 〈p, Zjq〉 for each p, q ∈P; and

(iv) an isometry V : Cn →P

such that

(a) p(Z) : P →P is positive semidefinite;

(b) Ŷ = V ∗ZV ; and

(c) if in addition p is K-archimedean, then each Zj is a bounded operator (and so extends

to all of H ) with K2 −
∑
Z2
j � 0. Hence the Ŷ from (b) is in cooperDp.

Proof. Following the proof of Theorem 5.2, given a moment sequence (Yα) ∈ Lp(n), define

the pre-inner product [ , ] on R = C〈x〉 ⊗ Cn, as in Equation (5.4). Let

N = {f ∈ C〈x〉 ⊗ Cn : [f, f ] = 0}.

A standard argument shows that N is a subspace of R and that the form

[f, g] = [f +N , g +N ]

is well defined and positive definite on the quotient P of R by N .

The operators Zj of multiplication by xj are as before (see the proof of Theorem 5.2)

well defined relative to this pre-inner product; i.e., each Zj : P →P. Moreover,

(5.6) p(Z) � 0
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on P too. Define V : Cn → R by

V h = (∅⊗ h) +N .

Then V is an isometry (since Y∅ = I) and V ∗ZV = Ŷ .

Let us show that the Zj are bounded under the archimedean hypothesis. By K-

archimedeanity of p,

K2 −
∑
j

x2
j =

∑
i

f ∗i fi +
∑
k

r∗kprk

for some free polynomials fi, rk. It is now clear that (5.6) implies K2 −
∑

j Z
2
j � 0, i.e.,

‖Z‖2 ≤ K2 so Z is bounded. Then by definition, Ŷ ∈ cooperDp(n).

The proof of the moreover statement in Theorem 5.4 will use the following lemma.

Lemma 5.7. If p is archimedean, then for each α there is a constant Cα such that if Y ∈ Lp,
then ‖Yα‖ ≤ Cα. Further, if (Y j)j = ((Y j

α )α)j is a sequence from Lp(n) satisfying for each α

there is a Yα such that (Y j
α )j converges to Yα, then Y = (Yα)α ∈ Lp(n).

Proof. Suppose p isK-archimedean. By Lemma 5.6, given Y ∈ Lp(n) there exists an operator

tuple Z acting on a Hilbert space H with K2−
∑
Z2
j � 0 and p(Z) � 0 as well as an isometry

V : Cn → H such that Yα = V ∗ZαV . Letting |α| denote the length of the word α, it is

immediate that

‖Yα‖ ≤ K |α|.

For the second part of the lemma, note that for d fixed, each Hd(Y
j) is positive semi-

definite. Since Hd(Y
j) is a (finite) matrix and depends only upon |α| ≤ 2d, it follows that

(Hd(Y
j))j converges to Hd(Y ). Thus Hd(Y ) is positive semidefinite. Since Hd(Y ) is positive

semidefinite for all d, it follows that H(Y ) is also positive semidefinite.

In a similar manner, each H⇑p,d(Y
j) is positive semidefinite and, for d fixed, (H⇑p,d(Y

j))j

converges to H⇑p,d(Y ) and thus H⇑p,d(Y ) is positive semidefinite. It follows that H⇑p (Y ) is

positive semidefinite. Thus Y ∈ Lp.

Proof of Theorem 5.4. From Lemma 5.6 it follows that L̂p ⊆ cooperDp. The reverse inclusion

follows along the lines of the proof of the similar statement in Theorem 5.2. Namely, simply

observe that if Z ∈ D∞p and V is an isometry from Cn into the space H that Z acts on,

then Yα = V ∗ZαV defines a moment sequence Y ∈ Lp(n).

The inclusionDp ⊆ comatDp is evident. Likewise the archimedean hypothesis and Lemma

5.5 readily imply the boundedness of cooperDp. Thus, to finish the proof of the moreover

statement, it remains to show each cooperDp(n) is closed. Accordingly, suppose (X(j)) is a

sequence from comatDp(n) which converges to some X ∈ Sgn. In particular, the X(j) act on

Cn and for each k, the sequence (X
(j)
k )j converges to Xk.
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For each j there is a tuple Z(j) ∈ D∞p acting on a Hilbert space Kj and an isometry

Vj : Cn → Kj such that

X(j) = V ∗j Z
(j)Vj.

The moment sequence, (Y
(j)
α ) coming from the pairs (Z(j), Vj) via

Y (j)
α = V ∗j (Z(j))αVj

is in Lp.
For fixed α, the hypothesis and Lemma 5.7 together imply that the sequence (Y

(j)
α ) is

bounded and thus has a convergent subsequence. Thus, by passing to a subsequence (using

the usual diagonalization argument) we can assume that, for each α, there is a Yα to which

Y
(j)
α converges. By the second part of Lemma 5.7, this moment sequence (Yα) belongs to Lp.

Hence the corresponding operator Z from Lemma 5.6 satisfies p(Z) � 0. Thus Z ∈ D∞p . By

construction,

V ∗0 ZV0 = (Yx1 , . . . , Yxg) = X.

Hence X ∈ cooperDp(n) and therefore cooperDp(n) is closed.

Remark 5.8. Note that the reverse inclusion,

cooperDp(n) ⊆ comatDp(n),

holds exactly when matrices - and not operators - suffice in the [HM04] Positivstellensatz.

Indeed, cooperDp is the intersection of all DL for monic L such that L(Z) � 0 for all Z ∈ D∞p .

On the other hand, comatDp is the intersection of all DL for monic L such that L(Z) � 0 for

all Z ∈ Dp. This theme was discussed in Corollary 3.5 above; see also Subsection 6.5.2.

6. Truncated Moments - Approximations of the Matrix Convex Hull

This section presents the second part of the Lasserre–Parrilo construction in the free

setting. It consists of a sequence of truncations of the lift Lp of Dp from Section 5 to a

sequence of finite free spectrahedra and corresponding projections onto increasingly finer

outer approximations to the operator convex hull of Dp. Alternately, the construction can

be thought of as producing a sequence of approximate free spectrahedral lifts of a given free

semialgebraic set Dp to LMI domains in increasingly many variables.

Whether this construction produces the matrix convex hull at a finite stage is a basic

question. In Subsection 7.4 we give examples where the answer is yes. In fact, in these the

convex hulls involved require no lifts, they are themselves free spectrahedra. In the other

direction, for the TV screen the construction does not produce the matrix convex hull at the

first stage, cf. Section 7.
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6.1. Main Formulas for Lifts. To state the main result of this paper precisely, for n ∈ N
and d ∈ N0, let

Lp(n; d) :=
{

(Yα)α : |α| ≤ 2d+ deg p+ 1, Yα ∈ Cn×n, Y∅ = I, Yα∗ = Y ∗α ,

Hd+d 12 deg pe(Y ) � 0, H⇑p,d(Y ) � 0
}
.

The sequence Lp( ; d) = (Lp(n; d))n is a free convex set and, as before, L̂p(n; d) denotes the

image of the projection

Lp(n; d) 3 Y 7→ Ŷ = (Yx1 , . . . , Yxg) ∈ Sgn.

Theorem 6.1 (Clamping down theorem). If p is archimedean, then for each n,
∞⋂
d=0

L̂p(n; d) = L̂p(n).

Corollary 6.2. If p is archimedean, then cooperDp(n) = L̂p(n) for each n ∈ N. Hence the

sets L̂p(n; d) close down on cooperDp(n). Further, for each d there exists a linear pencil Ld
such that L̂p( ; d) lifts to DLd

. Thus L̂p( ; d) is a sequence of free spectrahedrops which are

outer approximations to cooperDp and which converge monotonically to cooperDp as d tends

to infinity.

Corollary 6.2 is an immediate consequence of Theorems 6.1 and 5.4, and the fact that

there exists a linear pencil Ld such that projxDLd
= L̂p( ; d) as we now explain.

6.2. L̂p( ; d) are free spectrahedrops. The free Lasserre–Parrilo construction produces

the approximate lifts D∆ = Lp( ; d) of cooperDp, in which D∆ is the positivity set of a linear

matrix polynomial

(6.1) ∆(x, y) = A0 +

g∑
j=1

Ajxj +
h∑
`=1

(
B`y` +B∗` y

∗
` )

where the coefficients are k × k self-adjoint matrices A0, . . . , Ag ∈ Sk, and k × k matrices

B1, . . . , Bh ∈ Ck×k. This ∆ can be naturally evaluated at tuples (X, Y ) ∈ Sgn × (Cn×n)h by

∆(X, Y ) = A0 ⊗ In +

g∑
j=1

Aj ⊗Xj +
h∑
`=1

(
B` ⊗ Y` +B∗` ⊗ Y ∗` ) ∈ Snk.

While the coefficients Aj are self-adjoint and the variables xj are symmetric, the coefficients

and variables B` and y` are not. Hence ∆ is not a linear pencil according to the terminology

in this article. The following lemma shows that the coefficients B` and variables y` can be

replaced with self-adjoint coefficients and symmetric variables in such a way as to obtain a

linear pencil L such that projxD∆ = projxDL.
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Lemma 6.3. Given a linear matrix polynomial ∆(x, y) as in (6.1) in g symmetric and h

free variables, there exists a linear pencil L(x,w) in g + 2h variables such that

projxD∆ = projxDL.

Proof. Write B` = C`+iD` for C`, D` ∈ Sk, and let y` = w`+iw−`, where w = (w−h, . . . , w−1,

w1, . . . , wh) are free symmetric variables. Then

B`y` +B∗` y
∗
` = (C` + iD`)(w` + iw−`) + (C` − iD`)(w` − iw−`)

= 2(C`w` −D`w−`).

Let

(6.2) L(x,w) = A0 +

g∑
j=1

Ajxj + 2
h∑
`=1

(
C`w` −D`w−`) ∈ Sk〈x,w〉.

This is a linear pencil in symmetric variables with self-adjoint coefficients. By construction,

projxDL = projxD∆.

Proof of Corollary 6.2. There is a linear matrix polynomial ∆ as in (6.1) such that

Lp( ; d) = D∆

and thus

L̂p( ; d) = projxD∆.

Hence Lemma 6.3 yields a linear pencil Ld with

projxDLd
= projxD∆ = L̂p( ; d).

Remark 6.4. Free Sets in Real Variables. The first part of Corollary 6.2 holds when complex

scalars, and thus complex self-adjoint matrices as well as complex polynomials, are replaced

by real scalars, symmetric matrices and real polynomials. Call a linear matrix polynomial

of the type in Equation (6.1) a pencil in mixed variables. If the notion of a spectrahedrop

is relaxed to include the projection of the positivity set D∆ a pencil ∆ in mixed variables

onto the x (symmetric) variables, then the second part of Corollary 6.2 holds over R too.

In the real setting, the construction of Lemma 6.3 expresses B` = C` + D` where C` is

a symmetric matrix and D` is a skew-symmetric matrix. Thus, a mixed variable pencil can

be replaced by a mixed variable pencil which is the sum of a linear pencil in symmetric co-

efficients and variables and a homogeneous linear polynomial in skew-symmetric coefficients

and variables.

6.3. Examples. Here we explicitly write down the first Lasserre–Parrilo lift for the bent

TV screen. For convenience, a word xi1xi2 · · ·xik will be denoted by i1 i2 . . . ik and the

corresponding moment by Yi1 i2 ... ik .
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6.3.1. The d = 0 relaxation. L̂p( ; 0). We first apply the lifting construction to d = 0, and

p = 1− x2
1 − x4

2. Since deg p = 4, the lift can be written as

H2(Y ) =



1 X1 X2 Y11 Y12 Y21 Y22

X1 Y11 Y12 Y111 Y112 Y121 Y122

X2 Y21 Y22 Y211 Y212 Y221 Y222

Y11 Y111 Y112 Y1111 Y1112 Y1121 Y1122

Y21 Y211 Y212 Y2111 Y2112 Y2121 Y2122

Y12 Y121 Y122 Y1211 Y1212 Y1221 Y1222

Y22 Y221 Y222 Y2211 Y2212 Y2221 Y2222


� 0,

H⇑p,0(Y ) = 1− Y11 − Y2222 � 0.

(6.3)

It is well known (see e.g. [HN08]) that (6.3) is exact at the scalar level, meaning that

(X1, X2) ∈ Dp(1) if and only if (6.3) has a solution.

Consider the following cut-down of (6.3):

Ȟ2(Y ) =


1 X1 X2 Y22

X1 Y11 Y12 Y122

X2 Y21 Y22 Y222

Y22 Y221 Y222 Y2222

 � 0,

H⇑p,0(Y ) = 1− Y11 − Y2222 � 0.

(6.4)

We shall see later that the lifts given by (6.3) and (6.4) are equivalent, and are equivalent

to the standard LMI lift for the TV screen; see Section 7 below for details.

6.3.2. The d = 1 relaxation. L̂p( ; 1). Here is the next Lasserre–Parrilo relaxation:

H3(Y ) =



1 X1 X2 Y11 Y12 Y21 Y22 Y111 Y112 Y121 Y122 Y211 Y212 Y221 Y222

X1 Y11 Y12 Y111 Y112 Y121 Y122 Y1111 Y1112 Y1121 Y1122 Y1211 Y1212 Y1221 Y1222

X2 Y21 Y22 Y211 Y212 Y221 Y222 Y2111 Y2112 Y2121 Y2122 Y2211 Y2212 Y2221 Y2222

Y11 Y111 Y112 Y1111 Y1112 Y1121 Y1122 Y11111 Y11112 Y11121 Y11122 Y11211 Y11212 Y11221 Y11222

Y21 Y211 Y212 Y2111 Y2112 Y2121 Y2122 Y21111 Y21112 Y21121 Y21122 Y21211 Y21212 Y21221 Y21222

Y12 Y121 Y122 Y1211 Y1212 Y1221 Y1222 Y12111 Y12112 Y12121 Y12122 Y12211 Y12212 Y12221 Y12222

Y22 Y221 Y222 Y2211 Y2212 Y2221 Y2222 Y22111 Y22112 Y22121 Y22122 Y22211 Y22212 Y22221 Y22222

Y111 Y1111 Y1112 Y11111 Y11112 Y11121 Y11122 Y111111 Y111112 Y111121 Y111122 Y111211 Y111212 Y111221 Y111222

Y211 Y2111 Y2112 Y21111 Y21112 Y21121 Y21122 Y211111 Y211112 Y211121 Y211122 Y211211 Y211212 Y211221 Y211222

Y121 Y1211 Y1212 Y12111 Y12112 Y12121 Y12122 Y121111 Y121112 Y121121 Y121122 Y121211 Y121212 Y121221 Y121222

Y221 Y2211 Y2212 Y22111 Y22112 Y22121 Y22122 Y221111 Y221112 Y221121 Y221122 Y221211 Y221212 Y221221 Y221222

Y112 Y1121 Y1122 Y11211 Y11212 Y11221 Y11222 Y112111 Y112112 Y112121 Y112122 Y112211 Y112212 Y112221 Y112222

Y212 Y2121 Y2122 Y21211 Y21212 Y21221 Y21222 Y212111 Y212112 Y212121 Y212122 Y212211 Y212212 Y212221 Y212222

Y122 Y1221 Y1222 Y12211 Y12212 Y12221 Y12222 Y122111 Y122112 Y122121 Y122122 Y122211 Y122212 Y122221 Y122222

Y222 Y2221 Y2222 Y22211 Y22212 Y22221 Y22222 Y222111 Y222112 Y222121 Y222122 Y222211 Y222212 Y222221 Y222222



� 0,
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H⇑p,1(Y ) =

(
1−Y11−Y2222 X1−Y111−Y22221 X2−Y112−Y22222

X1−Y111−Y12222 Y11−Y1111−Y122221 Y12−Y1112−Y122222
X2−Y211−Y22222 Y21−Y2111−Y222221 Y22−Y2112−Y222222

)
� 0.

6.4. Proof of Theorem 6.1. The following lemma generalizes Lemma 5.7.

Lemma 6.5. If p is archimedean, then there is a natural number ν and a positive number

C such that if

Y ∈ Lp(n; d)

and α is a word with length |α| at most 2(d− ν), then

‖Yα‖ ≤ C |α|.

The proof of this lemma uses the following variant of the Gelfand-Naimark-Segal (GNS)

construction. A Hankel matrix Y ∈ Lp(n; d) with a truncated positive semidefiniteness

property generates a pre-Hilbert space as follows. Assuming that Hd+d 12 deg pe(Y ) and H⇑p,d(Y )

are positive semidefinite, define the sesquilinear form on Cn ⊗ C〈x〉d+d 12 deg(p)e by

〈h⊗ α, k ⊗ β〉 = 〈Yβ∗αh, k〉.

Positivity of H⇑p,d(Y ) is then equivalent to the condition,〈∑
hα ⊗ pα,

∑
hβ ⊗ β

〉
≥ 0

for all h ∈ Cn ⊗ C〈x〉d+d 12 deg(p)e of the form

h =
∑
|α|≤d

hα ⊗ α.

In particular, if f is a polynomial of degree ν and

q = f ∗pf,

then for h =
∑
|α|≤d−ν hα ⊗ α,〈
hα ⊗ f ∗pfα,

∑
β

hβ ⊗ β
〉

=
〈
hα ⊗ pfα,

∑
β

hβ ⊗ fβ
〉
≥ 0.

Hence the localizing matrix H⇑q,d−ν(Y ) is positive semidefinite. An analogous statement is

true for a polynomial q = s∗s when s has degree at most ν +
⌈

1
2

deg(p)
⌉
.

Proof of Lemma 6.5. By the archimedean hypothesis, there exist a constant C and a natural

number µ such that for each j there exist polynomials sj,1, . . . , sj,µ and fj,1, . . . , fj,µ with

(6.5) qj = C2 − x2
j =

∑
k

s∗j,ksj,k +
∑
`

f ∗j,`pfj,`.
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Choose ν such that deg(fj,`) ≤ ν for all j, ` and deg(sj,k) ≤ ν+
⌈

1
2

deg(p)
⌉

for all j, k. Fixing

j and letting Sk = s∗j,ksj,k and Fk = f ∗j,`pfj,` it follows that

H⇑qj ,d−ν(Y ) =
∑

H⇑Sk,d−ν(Y ) +
∑

H⇑F`,d−ν(Y ).

Hence, by the discussion above, the localizing matrix H⇑qj ,d−ν(Y ) is positive semidefinite.

Given a β with |β| < d− ν, positivity of the localizing matrix for C2 − x2
j implies that

C2Yβ∗β � Yx∗jβ∗βxj .

Thus an induction argument on |β| gives, for any |β| ≤ d− ν that

Yβ∗β � C2|β|I.

Now suppose α is a word with |α| ≤ 2(d− ν). There exist words β and γ of length at most

d− ν such that α = β∗γ. From the fact that H(Y ) � 0, it follows that(
Yβ∗β Yβ∗γ
Yγ∗β Yγ∗γ

)
is positive semidefinite. Thus,

Yγ∗βYβ∗γ � C2
(
|β|+|γ|

)
I.

The desired inequality follows.

Proof of Theorem 6.1. It is obvious that⋂
d

Lp(n; d) = Lp(n)

in the sense that a moment sequence (Yα)α all of whose truncations satisfy the positive

semidefiniteness of the Hankel matrices Hd+d 12 deg pe(Y ), and H⇑p,d(Y (n)), is in Lp(n), i.e.,

makes the infinite Hankel matrices H(Y ) and H⇑p (Y ) positive semidefinite.

Suppose the moment sequence Z ∈
⋂
d L̂p(n; d). In this case, for each d there is a

(truncated) moment sequence Y (d) = (Y
(d)
α ) ∈ L̂p(n; d) such that

(Y (d)
x1
, . . . , Y (d)

xg ) = Z.

By construction, for each α the sequence (Y
(d)
α )2d≥|α|+deg(p) is bounded. Since we have count-

ably many such sequences, there is a subsequence (dk) with the property that (Y
(dk)
α ) con-

verges termwise (in α with k tending to∞). This limit moment sequence Y will be in Lp(n)

and moreover,

Z = (Yx1 , . . . , Yxg) = Ŷ

so that Z ∈ L̂p(n).
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6.5. Truncated Quadratic Modules and the BPCP. Given α, β, µ ∈ N, and an ` × `
free matrix polynomial p, set

(6.6) Mµ
α,β(p) := Σµ

α +
{ finite∑

i

f ∗i pfi : fi ∈ C`×µ〈x〉β
}
⊆ Cµ×µ〈x〉max{2α,2β+a},

where a = deg(p) and Σµ
α denotes all µ × µ sums of squares of degree ≤ 2α. Obviously, if

f ∈Mµ
α,β(p) then f |Dp � 0. We call Mµ

α,β(p) the truncated quadratic module defined by

p. For notational convenience, we write Mk for Mα,β with k = max{2α, 2β + a}. We also

introduce

Mµ(p) :=
⋃
α,β

Mµ
α,β(p),

the quadratic module defined by p. If µ = 1 we shall often omit the superscript µ. Observe

that p is archimedean if the convex cone Mµ(p) has an order unit, i.e., for all symmetric

µ×µ matrix polynomials f there is N ∈ N with N − f ∈Mµ(p). (This notion is easily seen

to be independent of µ, cf. [HKM13, §6].)

Definition 6.6. Let µ,N ∈ N. We say that p has the (N,µ)-bound positivity certificate

property (BPCP), if for every µ× µ linear pencil L, we have

L|Dp � 0 ⇐⇒ L ∈Mµ
N(p).

If N can be chosen independently of µ, then we say p has the N-BPCP.

We refer the reader to [Scw04, NiS07] for the classical commutative study of degree

bounds needed in Positivstellensatz certificates.

6.5.1. A sufficient stopping criterion for the free Lasserre–Parrilo lift.

Lemma 6.7. If, for a positive integer n, the set Lp(n) is bounded in the sense that for each

α there exists a Cα such that ‖Yα‖ ≤ Cα for all Y ∈ Lp(n), then L̂p(n) is compact.

Proof. With the boundedness hypothesis, the set Lp(n), viewed as a subset of the product

space
∏

α Sn is entrywise bounded. It is also seen to be entrywise closed. Thus it is a

product of compact sets and therefore compact. Consequently the projection Y 7→ Ŷ being

the finite product of the projections determined by the xj has compact range; i.e., L̂p(n) is

compact.

The next theorem says if N -BPCP holds, then one of the truncated Lasserre–Parrilo

lifts gives exactly the free convex hull of Dp.

Theorem 6.8. If Dp is uniformly bounded, and p has the N-BPCP, then

comatDp = L̂p
(

;

⌈
N

2

⌉)
.
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Proof. Let η = dN
2
e. Clearly, Dp ⊆ L̂p( ; η), and since L̂p( ; η) is matrix convex, comatDp ⊆

L̂p( ; η). Since Dp is uniformly bounded and p has the N -BPCP, p is archimedean. Hence

by Lemma 6.5, Lp( ; η) is compact (e.g. in the product topology), and hence comatDp ⊆
L̂p( ; η) = L̂p( ; η).

Now assume Y ∈ L̂p( ; η)\comatDp, and choose W ∈ Lp( ; η) satisfying Ŵ = Y . Suppose

Y is a g-tuple of size µ × µ matrices. By the Hahn-Banach Theorem 3.1 there is a linear

pencil L (of size µ) with L|comatDp
� 0 and L(Y ) 6� 0. By the N -BPCP property for p, we

have that L ∈Mµ
N(p), i.e.,

(6.7) L =
∑
k

h∗khk +
r∑
i=1

f ∗i pfi.

Here deg(hk) ≤ bN2 c and 2 deg(fi) + deg(p) ≤ N for i = 1, . . . , r. Now apply the Riesz map

Φµ
W to (6.7):

(6.8) Φµ
W (L) =

∑
k

Φµ
W (h∗khk) +

r∑
i=1

Φµ
W (f ∗i pfi).

Since Hη(W ) � 0 and H⇑p,η(W ) � 0, Proposition 5.1 implies the right hand side of (6.8) is

positive semidefinite. On the other hand, since L is linear, Φµ
W (L) = L(Ŵ ) = L(Y ) 6� 0, a

contradiction.

6.5.2. More on the Positivstellensatz. The polynomial p has the linear Positivstellensatz

property (LPP) if whenever L is a monic linear pencil positive semidefinite on Dp, then

for each ε > 0 there exists natural numbers ns and nf and matrix polynomials s1, . . . , sns

and f1, . . . , fnf
such that

L+ ε =
ns∑
j=1

s∗jsj +

nf∑
j=1

f ∗j pfj.

(So L+ ε ∈Mµ(p).) Note that the LPP condition is weaker than the BPCP.

Proposition 6.9. Suppose Dp is uniformly bounded and p has the LPP. Then comatDp = L̂p.

Proof. Observe that the uniform boundedness of Dp together with the LPP implies p is

archimedean. Suppose L is positive semidefinite on Dp. By the LPP,

(6.9) ε+ L =
∑

s∗jsj +
∑

f ∗j pfj.

On the other hand, if X ∈ L̂p, then by Lemma 5.6 there exists a Z ∈ D∞p and an isometry

V such that X = V ∗ZV . Because Z ∈ D∞p , it follows from the representation (6.9), that

ε + L(Z) � 0. Since ε > 0 was arbitrary, this shows L(Z) � 0. Hence by Corollary 3.5,

X ∈ comatDp.
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7. Examples

In this section we present a few examples, starting with a detailed study of the TV screen

and its “classical” spectrahedral lifts, see Subsections 7.1 and 7.2. We show that, unlike in

the commutative settings, the first Lasserre–Parrilo lift is not exact. Then in Subsection 7.3

we prove that the matrix convex hull of the TV screen is dense in its operator convex hull.

Finally, Subsection 7.4 contains simple examples where the Lasserre–Parrilo lifts are exact.

7.1. The Bent TV Screen. Recall the bent TV screen,

p = 1− x2 − y4.

The corresponding free semialgebraic set Dp is called the TV screen.

Lemma 7.1. p is 5
4
-archimedean.

Proof. Simply note that

5

4
− x2 − y2 =

(
y2 − 1

2

)2

+ (1− x2 − y4).

The usual lift of Dp(1) = co
(
Dp(1)

)
is given by DΛ(1), where

Λ =

1 0 x

0 1 w

x w 1

⊕ (1 y

y w

)
.

However, Λ is not monic, so we modify the construction somewhat. Let

L1(x, y, w) =

(
1 γy

γy w + α

)
, L2(x, y, w) =

 1 0 γ2x

0 1 w

γ2x w 1− 2αw


where α > 0 and 1 + α2 = γ4, and set L = L1 ⊕ L2. While strictly speaking L is not monic,

the free spectrahedron DL contains 0 in its interior, so L can be easily modified to become

monic. It is worth noting that

(7.1) Λ(X, Y,W ) � 0 ⇐⇒ W � Y 2 and 1−X2 −W 2 � 0

as is easily seen by using Schur complements.

Let C denote the free spectrahedrop obtained as the projection of DL onto the first two

coordinates. Thus,

(7.2) C = {(X, Y ) ∈ S2 : ∃W ∈ S such that L(X, Y,W ) � 0}.

It is easy to see C = {(X, Y ) ∈ S2 : ∃W ∈ S such that Λ(X, Y,W ) � 0}.
The main result of this section is:

Theorem 7.2. comatDp = cooperDp ( C.
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We shall prove the equality in Subsection 7.3 below, and now proceed to establish the

strict inclusion.

Lemma 7.3.

(1) The projection C(1) of DL(1) onto the (x, y)-space equals Dp(1).

(2) comatDp ⊆ C.

Proof. Given (x, y) ∈ Dp(1), let w = γ2y2 − α. This makes L1(x, y, w) positive semidefinite

and singular. The Schur complement of the top 2× 2 block of L2(x, y, w) is thus

1− 2αw − γ4x2 − w2 = 1 + α2 − γ4x2 − γ4y4 = γ4(1− x2 − y4) ≥ 0

making L2(x, y, w) � 0.

Conversely, if (x, y, w) ∈ DL(1), then w ≥ γ2y2−α. Again, by way of Schur complements,

0 ≤ 1− 2αw − γ4x2 − w2 = 1 + α2 − (α + w)2 − γ4x

≤ 1 + α2 − γ4y4 − γ4x2 = γ4(1− x2 − y4),

showing 1− x2 − y4 ≥ 0.

For (2), take (X, Y ) ∈ Dp. Thus I − X2 − Y 4 � 0. Set W = γ2Y 2 − αI. This makes

L1(X, Y,W ) � 0. The Schur complement of the block top 2× 2 block of L2(X, Y,W ) is thus

1− 2αW − γ4X2 −W 2 = 1 + α2 − γ4X2 − γ4Y 4 = γ4(1−X2 − Y 4) � 0

making L2(X, Y,W ) � 0. Since C is matrix convex, this establishes comatDp ⊆ C.

Lemma 7.4. cooperDp ( C.

Proof. For this strict inclusion we simply exhibit matrix tuples, namely, points in the pro-

jection C onto the (x, y)-space of DL which are not in cooperDp. In terms of µ > 0 specified

below, let

Y =
√
µ

(
1 0

0 0

)
.

Take

W = µ

(
2 1

1 1

)
.

Choose µ so that the norm of W is 1 and let

X2 = 1−W 2.

Then 1 − X2 −W 2 = 0 and at the same time Y 2 ≤ W . Thus (X, Y ) ∈ C. On the other

hand,

Y 4 −W 2 = µ2

(
4 3

3 2

)
6� 0.

Hence I −X2 − Y 4 6� 0, i.e., (X, Y ) 6∈ Dp.
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We next show that (X, Y ) 6∈ cooperDp. It suffices to show if X̃, Ỹ are of the form

X̃ =

(
X α

α∗ ∗

)
, Ỹ =

(
Y β

β∗ ν

)
.

then I − X̃2− Ỹ 4 6� 0. We argue by contradiction and accordingly assume I − X̃2− Ỹ 4 � 0.

To do this the first step will be to show that β = 0. Next, β = 0 implies, projecting onto

the top subspace,

0 � I − (X2 + αα∗)− Y 4 � I −X2 − Y 4.

But then, because I −X2 − Y 4 6� 0, we get a contradiction.

Now to the attack on β. Note that

(7.3) Ỹ 2 =

(
Y 2 + ββ∗ δ

δ∗ ∗

)
.

for some δ and some ∗. Let T := Y 2 + ββ∗ � Y 2. Further, note that

Ỹ 4 =

(
T 2 + δδ∗ ∗
∗ ∗

)
.

The upper left entry of I − X̃2 − Ỹ 4 equals

(7.4) 0 � I − (X2 + αα∗)− (T 2 + δδ∗) � I −X2 − T 2 = W 2 − T 2.

Further, we have

Y 2 = µ

(
1 0

0 0

)
.

So after dividing (7.4) through by µ2, we obtain,

(7.5)

(
2 1

1 1

)2

�
((

1 0

0 0

)
+

1

µ
ββ∗

)2

.

Since the square root function is operator monotone, (7.5) yields

(7.6)

(
1

1

)(
1 1

)
=

(
1 1

1 1

)
� 1

µ
ββ∗,

or equivalently,

β =
√
µ

(
1

1

)
b∗,

for some vector b with norm ≤ 1. Putting these back into (7.5) leads to(
−2‖b‖4 − 2‖b‖2 + 4 −2‖b‖4 − ‖b‖2 + 3

−2‖b‖4 − ‖b‖2 + 3 2− 2‖b‖4

)
� 0.

Since the determinant of this matrix equals

−(‖b‖2 − 1)2,
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we see ‖b‖ = 1. In particular, we have equality in (7.6) and (7.4). Hence T = W so that

I −X2 − T 2 = 0.

Returning to the upper left hand entry of I − X̃2 − Ỹ 4, it follows from (7.3) and (7.4)

that we have

I −X2 − T 2 − δδ∗ � 0.

Hence δδ∗ = 0 and so δ = 0. Since δ is of the form δ = Y β + βν, we have

0 = Y β + βν =
√
µ

(
1 0

0 0

)
β + βν

= µ

(
1 0

0 0

)(
1

1

)
b∗ +

√
µ

(
1

1

)
b∗ν

= µ

(
1

0

)
b∗ +

√
µ

(
1

1

)
b∗ν,

leading to

b∗ν = 0 and b∗ν +
√
µb∗ = 0.

Hence b∗ = 0. This implies β = 0, delivering the promised contradiction.

Proposition 7.5. comatDp(1) = Dp(1).

Proof. This follows from Lemma 7.3 and Proposition 4.5. Alternately, use Dp ⊆ comatDp ⊆ C
together with item (1) of Lemma 7.3.

7.2. Comparing the L-Lift with the Lasserre–Parrilo Relaxations. Two Lasserre-

Parrilo lifts of the bent TV screen were proposed in Subsection 6.3. The malicious point

constructed in the proof of Lemma 7.4 serves to show that the lift Lp( ; 0) based on H⇑p,0(Y )⊕
H2(Y ) � 0 is again inexact, i.e., its projection L̂p( ; 0) is still strictly bigger than comatDp.
On the other hand, the second Lasserre–Parrilo relaxation H⇑p,1(Y )⊕H3(Y ) � 0 does seem

to separate the malicious point from comatDp – according to our computer experiments.

Proposition 7.6. Let p = 1− x2
1 − x4

2. Then L̂p( ; 0) = C, while L̂p(2; 1) ( C(2).

Proof. Let L′p( ; 0) denote the “reduced” lift obtained by using (6.4), and L̂′p( ; 0) its projec-

tion. It is clear that L̂′p( ; 0) ⊇ L̂p( ; 0). Next, assume (X1, X2) ∈ L̂′p( ; 0), and take a feasible

point Y for (6.4). Then with W = Y22 we have W � X2
2 by considering the submatrix of

Ȟ2(Y ) spanned by columns and rows 1, 3. Likewise, Y11 � X2
1 and Y2222 � W 2. Hence

0 � 1− Y11 − Y2222 � 1−X2
1 −W 2,

showing Λ(X1, X2,W ) � 0, i.e., (X1, X2) ∈ C.
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Conversely, let (X1, X2) ∈ C. Choose Y so that

Ȟ2(Y ) =


1 X1 X2 W

X1 X2
1 X1X2 X1W

X2 X2X1 W X2W

W WX1 WX2 W 2

 .

Then

H⇑p,0(Y ) = 1−X2
1 −W 2 � 0

by assumption. Furthermore,

Ȟ2(Y ) =

(
1 0 X2 W

0 1 0 0

)∗(
1 X1

X1 X2
1

)(
1 0 X2 W

0 1 0 0

)
+


0 0 0 0

0 0 0 0

0 0 W −X2
2 0

0 0 0 0

 � 0.

All this shows (X1, X2) ∈ L̂′p( ; 0).

As a final step, we extend Ȟ2(Y ) to a positive semidefinite H2(Y ). Again, this is now

straightforward. Using

Z =


X2

1 X1X2 0

0 0 0

0 0 X1

0 0 0


we set

PH2(Y )P =
(
I4 Z

)∗
Ȟ2(Y )

(
I4 Z

)
,

where P is the permutation matrix of the permutation
(
4 5 6 7

)
. Hence (X1, X2) ∈

L̂p( ; 0), concluding the first part of the proof.

The second statement of the proposition follows from numerical computer experiments;

see the Mathematica notebook TVlift.nb available from arxiv.

7.3. Matrix versus Operator Convex Hull: Bent TV Screen. From Theorem 5.4,

the closure of comatDp is contained in cooperDp. While this inclusion is generally proper

(e.g. there are examples of archimedean p with Dp = ∅ 6= D∞p ), the proposition below says

that these sets are the same in at least one non-trivial example. The proof uses spectral

theory for bounded self-adjoint operators on a Hilbert space.

Proposition 7.7. Let p = 1− x2
1 − x4

2. Then cooperDp(n) is the closure of comatDp(n).

Proof. Fix a point X ∈ S2
m in the operator convex hull of the bent TV screen. Thus, there

a Hilbert space H and a tuple Y = (Y1, Y2) of bounded self-adjoint operators on H such

that

I � Y 2
1 + Y 4

2 ,
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and an isometry V : Cm →H such that X = V ∗Y V .

Since Y2 is self-adjoint, it has a spectral decomposition,

Y2 =

∫ 1

−1

t dE(t),

for a spectral measure E on the interval [−1, 1]. Given a positive integer N , let

ωNj =

[
j

N
,
j + 1

N

)
for −N ≤ j < N − 1 and let ωNN−1 = [N−1

N
, 1]. For 0 ≤ j, let tj = j

N
and for j < 0, let

tj = j+1
N

. Let

Z =
N−1∑
j=−N

tjE(ωNj )

and observe that Z and Y2 commute. In particular,

(7.7) Z4 � Y 4
2 .

Consider finite dimensional subspaces

E(ωNj )H ⊇Hj = E(ωNj )V Cm.

Let K =
⊕N−1

j=−N Hj. Thus, K is finite dimensional and contained in H . Further, letting

W : K →H denote the inclusion of K into H ,

Ỹ2 = W ∗ZW

satisfies,

Ỹ 4
2 = W ∗Z4W � W ∗Y 4

2 W,

because of (7.7). Let Ỹ1 = W ∗Y1W . It follows that

Ỹ 2
1 + Ỹ 4

2 � Y 2
1 + Y 4

2 � I.

At the same time, by construction, V maps into K so that W ∗V is an isometry and

X1 = (W ∗V )∗(W ∗Y1W )W ∗V

Thus, the pair (W ∗V )∗Ỹ W ∗V = (X1, (W
∗V )∗Ỹ2W

∗V ) is in the bent TV screen.

Emphasizing the dependence of W on N , write WN = W and ZN = Z. With this

notation, observe that

‖ZN − Y2‖ =

∥∥∥∥∑ tjE(ωNj )−
∫
t dE(t)

∥∥∥∥ ≤ 1

N
.

Hence, ZN converges in the strong operator topology to Y2. Since WNW
∗
NV = V , it follows

that

(W ∗
NV )∗Ỹ N

2 W ∗
NV = (W ∗

NV )∗W ∗
NZ

NWN(W ∗
NV ) = V ∗ZNV
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converges to V ∗Y2V = X2. The conclusion is that X is in the closure of the matrix convex

hull of the bent TV screen.

7.4. Examples where the Lasserre–Parrilo Lift is Exact. Consider first p = 1−xy2x.

Then

Dp ⊇
(
{0} × S

)
∪
(
S× {0}

)
,

so comatDp will equal S2. In particular, the first Lasserre–Parrilo lift L̂p( ; 0) is exact.

For an example with a little different flavor, let p = (1−2y2 +x2)⊕ (1−2x2 + y2). Then

Dp given by

Dp =
{

(X, Y ) ∈ S2 : Y 2 − 1

2
X2 � 1

2
, X2 − 1

2
Y 2 � 1

2

}
is bounded, and

comatDp =
{

(X, Y ) ∈ S2 : ‖X‖ ≤ 1, ‖Y ‖ ≤ 1}
is again the projection of the first Lasserre–Parrilo lift Lp( ; 0).
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