
FREE CONVEX ALGEBRAIC GEOMETRY

J. WILLIAM HELTON1, IGOR KLEP2, AND SCOTT MCCULLOUGH3

1. Introduction

This article is a tutorial on techniques and results in free convex algebraic geom-

etry and free positivity. As such it also serves as a point of entry into the larger field

of free real algebraic geometry (free RAG), and makes contact with noncommutative

real algebraic geometry [Hel02, HKM10c, HKM+, HKM++, HM+, KS08a, KS08b,

McC01, PNA10, Smü05, Smü09], free analysis and free probability (lying at its origins

of free analysis, cf. [SV06]), free analytic function theory and free harmonic analysis

[HKM10a, HKM10b, HKMS09, MS+, Pop06, Voi04, Voi10, KVV-].

The term free here refers to the central role played by algebras of (free, or noncom-

muting) polynomials R<x> in free (freely noncommuting) variables x = (x1, . . . , xg).

A striking difference between the free and classical settings is the following Positivstel-

lensatz.

Theorem 1.1 (Helton [Hel02]). A nonnegative (suitably defined) free polynomial is

a sum of squares.

The subject of free RAG flows in two branches. One, free positivity is an analog

of classical real algebraic geometry, a theory of polynomial inequalities embodied in

Positivstellensätze. As is the case with the sum of squares result above (Theorem

1.1), generally free Positivstellensätze have cleaner statements than do their commu-

tative counterparts; see e.g. [McC01, Hel02, HMP04, HKM++] for a sample. Free
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convexity, the second branch of free RAG, arose in an effort to unify a torrent of ad

hoc techniques which came on the linear systems engineering scene in the mid 1990’s.

We soon give a quick sketch of the engineering motivation, based on the slightly more

complete sketch given in the survey article [dOHMP09]. Mathematically, much as

in the commutative case, free convexity is connected with free positivity through the

second derivative: A free polynomial is convex if and only if its Hessian is positive.

The tutorial proper starts with Section 2. In the remainder of this introduction,

motivation for the study of free positivity and convexity arising in Linear Systems

Engineering, Quantum Phenomena, and other subjects such as Free Probability is

provided, as are some suggestions for further reading.

1.1. Motivation. While the theory is both mathematically pleasing and natural,

much of the excitement of free convexity and positivity stems from its applications.

Indeed, the fact that a large class of linear systems engineering problems naturally lead

to free inequalities provided the main force behind the development of the subject.

In this motivational section, we describe in some detail the linear systems point of

view. We also give a brief introduction to other applications.

1.1.1. Linear Systems Engineering. The layout of a linear systems problem is typi-

cally specified by a signal flow diagram. Signals go into boxes and other signals come

out. The boxes in a linear system contain linear differential equations which are spec-

ified entirely by matrices (the coefficients of the differential equations). Often many

boxes appear and many signals transmit between them. In a typical problem some

boxes are given and some we get to design subject to the condition that the L2 norm

of various signals must compare in a prescribed way, e.g. the input to the system has

L2 norm bigger than the output. The signal flow diagram itself and corresponding

problems do not specify the size of matrices involved. So any algorithms derived

ideally apply to matrices of all sizes. Hence the problems are called dimension free.

An empirical observation is that system problems of this type convert to in-

equalities on polynomials in matrices, the form of the polynomials being determined

entirely by the signal flow layout (and independent of the matrices involved). Thus

the systems problem naturally leads to free polynomials and free positivity conditions.

Now we give more details.
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1.1.2. Linear systems. A linear system F is given by the linear differential equations

dx

dt
= Ax+Bu,

y = Cx,

with the vector

• x(t) at each time t being in the vector space X called the state space,

• u(t) at each time t being in the vector space U called the input space,

• y(t) at each time t being in the vector space Y called the output space,

and A,B,C being linear maps on the corresponding vector spaces.

1.1.3. Connecting linear systems. Systems can be connected in incredibly compli-

cated configurations. We describe a simple connection and this goes a long way

toward illustrating the general idea. Given two linear systems F, G, we describe the

formulas for connecting them in feedback.

The systems F and G themselves are respectively given by the linear differential

equations

dx

dt
= Ax+Be,

dξ

dt
= Qξ +Rw,

y = Cx, v = S ξ.

Feedback connection of them is described by the algebraic statements

w = y and e = u− v.

This set up is typically described by the diagram

F

G

u + e y

−
v

called a signal flow diagram. The closed loop system is a new system whose differential

equations are

dx

dt
= Ax−BSξ +Bu,

dξ

dt
= Qξ +Ry = Qξ +RCx,

y = Cx.
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In matrix form this is

d

dt

[
x

ξ

]
=

[
A −BS
RC Q

] [
x

ξ

]
+

[
B

0

]
u,

y =
[
C 0

] [x
ξ

]
,

(1.1)

where the state space of the closed loop systems is the direct sum X ⊕Y of the state

spaces X of F and Y of G. The moral of the story is:

System connections produce a new system whose coefficients are matrices with

entries which are polynomials or at worst “rational expressions” in the coefficients of

the component systems.

Complicated signal flow diagrams give complicated matrices of polynomials or

rationals. Note in what was said the dimensions of vector spaces and matrices never

entered explicitly; the algebraic form of (1.1) is completely determined by the flow

diagram. Thus, such linear systems lead to dimension free problems.

1.1.4. Energy dissipation. We have a system F and want a condition which checks

whether ∫ ∞
0

|u|2dt ≥
∫ ∞

0

|Fu|2dt, x(0) = 0,

holds for all input functions u, where Fu = y in the above notation. If this holds F is

called a dissipative system.

F
L2[0,∞] L2[0,∞]

The energy dissipative condition is formulated in the language of analysis, but

it converts to algebra (or at least an algebraic inequality) because of the following

construction, which assumes the existence of a “potential energy”-like function V on

the state space. A function V which satisfies V ≥ 0, V (0) = 0, and

V (x(t1)) +

∫ t2

t1

|u(t)|2dt ≥ V (x(t2)) +

∫ t2

t1

|y(t)|2dt

for all input functions u and initial states x1 is called a storage function. The dis-

played inequality is interpreted physically as
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potential energy now + energy in ≥ potential energy then + energy out.

Assuming enough smoothness of V , we can differentiate this integral condition

and use dx
dt

(t1) = Ax(t1) +Bu(t1) to obtain a differential inequality

0 ≥ ∇V (x)(Ax+Bu) + |Cx|2 − |u|2, (1.2)

on what is called the “reachable set” (which we do not need to define here).

In the case of linear systems, V can be chosen quadratic. So it has the form

V (x) = 〈Ex, x〉 with E � 0 and ∇V (x) = 2Ex.

Theorem 1.2. The linear system A,B,C is dissipative if inequality (1.2) holds for

all u ∈ U , x ∈ X . Conversely, if A,B,C is “reachable”, then dissipativity implies

inequality (1.2) holds for all u ∈ U , x ∈ X .

In the linear case, we may substitute ∇V (x) = 2Ex in (1.2) to obtain

0 ≥ 2(Ex)ᵀ(Ax+Bu) + |Cx|2 − |u|2,

for all u, x. Then maximize in x to get

0 ≥ xᵀ[EA+ AᵀE + EBBᵀE + CᵀC]x.

Thus the classical Riccati matrix inequality

0 � EA+ AᵀE + EBBᵀE + CᵀC with E � 0 (1.3)

ensures dissipativity of the system; and, it turns out, is also implied by dissipativity

when the system is reachable.

1.1.5. Schur Complements and Linear Matrix Inequalities. Using Schur complements1,

the Riccati inequality of equation (1.3) is equivalent to the inequality

L(E) :=

[
EA+ AᵀE + CᵀC EB

BᵀE −I

]
� 0.

Here A, B, C describe the system and E is an unknown matrix. If the system is

reachable, then A, B, C is dissipative if and only if L(E) � 0 and E � 0.

The key feature in this reformulation of the Riccati inequality is that L(E) is

linear in E, so the inequality L(E) � 0 is a Linear Matrix Inequality (LMI) in E.

1The Schur complement of a matrix (with pivot δ−1) is defined by

SchurComp

[
α β

γ δ

]
:= α− βδ−1γ.

A key fact is: if δ is invertible, then the matrix is positive semidefinite if and only if γ = βᵀ, δ � 0

and its Schur complement is positive semidefinite.
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1.1.6. Putting it together. We have shown two ingredients of linear system theory,

connection laws (algebraic) and dissipation (inequalities), but have yet to put them

together. It is in fact a very mechanical procedure and any trained engineer does it

with no difficulty. After going through the procedure one sees that the problem a

Matlab toolbox designer faces is this:

(GRAIL) Given a symmetric matrix of nc polynomials

p(a, x) =
[
pij(a, x)

]k
i,j=1

,

and a tuple of matrices A, provide an algorithm for finding X making

p(A,X) � 0 or better yet as large as possible.

Algorithms for doing this are based on numerical optimization or a close relative, so

even if they find a local solution there is no guarantee that it is global. If p is convex

in X, then these problems disappear.

Thus, systems problems described by signal flow diagrams produce messes of ma-

trix inequalities with some matrices known and some unknown and the constraints

that some polynomials are positive semidefinite. The inequalities can get very com-

plicated as one might guess, since signal flow diagrams get complicated. We do not

go into details but refer the reader to [dOHMP09, §4.1] for a classical simple example.

The engineer would like for these polynomial inequalities to be convex in the

unknowns. Convexity guarantees that local optima are global optima (finding global

optima is often of paramount importance) and facilitates numerics.

Hence the major issues in linear systems theory are:

(1) Which problems convert to a convex matrix inequality? How does one do the

conversion?

(2) Find numerics which will solve large convex problems. How do you use special

structure, such as most unknowns are matrices and the formulas are all built of

noncommutative rational functions?

(3) Are convex matrix inequalities more general than LMIs?

The mathematics here aims toward helping an engineer who writes a toolbox

which other engineers will use for designing systems, like control systems. What goes

in such toolboxes is algebraic formulas with matrices A,B,C unspecified and reliable

numerics for solving them when a user does specify A,B,C as matrices. A user who

designs a controller for a helicopter puts in the mathematical systems model for his

helicopter and puts in matrices, for example, A is a particular 8× 8 real matrix etc.

Another user who designs a satellite controller might have a 50 dimensional state
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space and of course would pick completely different A,B,C. Essentially any matrices

of any compatible dimensions can occur. Any claim we make about our formulas

should hold regardless of the size of the matrices plugged in.

The toolbox designer faces two completely different tasks. One is manipulation

of algebraic inequalities; the other is numerical solutions. Often the first is far more

daunting since the numerics is handled by some standard package (although for nu-

merics problem size is a demon). Thus there is a great need for algebraic theory.

Most of this chapter bears on questions like (3) above where the unknowns are ma-

trices. The last two questions will not be addressed. Here we treat (3) when there are

no a variables. When there are a variables see [HHLM08]. Thus we shall consider

polynomials p(x) in free noncommutative variables x and focus on their convexity on

free semialgebraic sets.

1.1.7. Quantum Phenomena. Free Positivstellensätze - algebraic certificates for pos-

itivity - of which Theorem 1.1 is the grandad, have physical applications. Applica-

tions to quantum physics are explained by Pironio, Navascués, Aćın [PNA10] who

also consider computational aspects related to noncommutative sum of squares. How

this pertains to operator algebras is discussed by Schweighofer and the second author

in [KS08a]. The important Bessis-Moussa-Villani conjecture (BMV) from quantum

statistical mechanics is tackled in [KS08b, CKP10]. Doherty, Liang, Toner, Wehner

[DLTW08] employ noncommutative positivity and the Positivstellensatz [HM04b] of

the first and the third author to consider the quantum moment problem and multi-

prover games.

1.1.8. Miscellaneous applications. A number of other scientific disciplines use free

analysis, though less systematically than in free real algebraic geometry.

Free probability. Striking is free probability. Voiculescu developed it to attack one

of the purest of mathematical questions regarding von Neumann algebras. From the

outset it was elegant and it came to have great depth. Subsequently, it was discovered

to bear forcefully and effectively on random matrices. The area is vast, so we do not

dive in but refer the reader to an introduction [SV06, VDN92].

Nonlinear engineering systems. A classical technique in nonlinear systems theory

developed by Fliess is based on manipulation of power series with noncommutative

variables (the Chen series). The area has a new impetus coming from the problem

of data compression, so now is a time when these correspondences are being worked

out. A good entree to the subject is found at a 2011 conference web site

http://www.th.physik.uni-bonn.de/people/fard/RPCCT2011/program.html

http://www.th.physik.uni-bonn.de/people/fard/RPCCT2011/program.html 
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1.2. Further reading. We pause here to offer some suggestions for further reading.

For further engineering motivation we recommend the paper [SI95] or the longer

version [SIG97] for related new directions. Descriptions of Positivstellensätze are

in the surveys [HKM11, dOHMP09, HP07, Smü09] with the first three also briskly

touring free convexity. The survey article [HMPV09] is aimed at engineers.

Noncommutative is a broad term, encompassing essentially all algebras. In be-

tween the extremes of commutative and free lie many important topics, such as Lie

algebras, Hopf algebras, quantum groups, C∗-algebras, von Neumann algebras, etc.

For instance, there are elegant noncommutative real algebraic geometry results for

the Weyl Algebra [Smü05], cf. [Smü09].

1.3. Guide to the tutorial. The goal of this tutorial is to introduce the reader

to the main results and techniques used to dissect free convexity. Fortunately, the

subject is new and the techniques not too numerous so that one can quickly become

an expert.

The basics of free, or nc, polynomials and their evaluations are developed in

Section 2. The key notions are positivity and convexity for free polynomials. The

principle fact is that the second directional derivatives (in direction h) of a free convex

polynomial is a positive quadratic polynomials in h (just like in the commutative case).

Free quadratic (in h) polynomials have a Gram type representation which thus figures

prominently in studying convexity. The nuts and bolts of this Gram representation

and some of its consequences, including Theorem 1.1, are the subjects of Sections 4

and 5 respectively.

The Gram representation techniques actually require only a small amount of

convexity and thus there is a theory of geometry on free varieties having signed

(e.g. positive) curvature. Some details are in Section 6.

A couple of free semialgebraic geometry results which have a heavy convexity

component are described in the last section, Section 7 The first is an optimal free

convex Positivstellensatz which generalizes Theorem 1.1. The second says that free

convex semialgebraic sets are free spectrahedra, giving another example of the much

more rigid structure in the free setting.

Section 3 introduces software which handles free noncommutative computations.

You may find it useful in your free studies.

In what follows, mildly incorrectly, but in keeping with the usage in the literature,

the terms noncommutative (abbreviated nc) and free are used synonymously.
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2. Basics of nc Polynomials and their Convexity

This section treats the basics of polynomials in nc variables, nc differential cal-

culus, and nc inequalities. There is also a brief introduction to nc rational functions

and inequalities.

2.1. Noncommutative polynomials. Before turning to the formalities, we give,

by examples, an informal introduction to noncommutative (nc) polynomials.

A noncommutative polynomial p is a polynomial in a finite set x = (x1, . . . , xg) of

relation free variables. A canonical example, in the case of two variables x = (x1, x2),

is the commutator

c(x1, x2) = x1x2 − x2x1. (2.1)

It is precisely the fact that x1 and x2 do not commute that makes c nonzero.

While a commutative polynomial q ∈ R[t1, t2] is naturally evaluated at points

t ∈ R2, nc polynomials are naturally evaluated on tuples of square matrices. For

instance, with

X1 =

[
0 1

1 0

]
, X2 =

[
1 0

0 0

]
,

and X = (X1, X2), one finds

c(X) =

[
0 1

−1 0

]
.

Importantly, c can be evaluated on any pair (X, Y ) of symmetric matrices of

the same size. (Later in the section we will also consider evaluations involving not

necessarily symmetric matrices.) Note that if X and Y are n × n, then c(X, Y ) is

itself an n×n matrix. In the case of c(x, y) = xy− yx, the matrix c(X, Y ) = 0 if and

only if X and Y commute. In particular, c is zero on R2 (2-tuples of 1× 1 matrices).

For another example, if d(x1, x2) = 1 + x1x2x1, then with X1 and X2 as above,

we find

d(X) = I2 +X1X2X1 =

[
1 0

0 2

]
.

Note that although X is a tuple of symmetric matrices, it need not be the case

that p(X) is symmetric. Indeed, the matrix c(X) above is not. In the present context,

we say that p is symmetric, if p(X) is symmetric whenever X = (X1, . . . , Xg) is a

tuple of symmetric matrices. Another more algebraic definition of symmetric for nc

polynomials appears in Section 2.2.
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2.1.1. Noncommutative convexity for polynomials. Many standard notions for poly-

nomials, and even functions, on Rg extend to the nc setting, though often with un-

expected ramifications. For example, the commutative polynomial q ∈ R[t1, t2] is

convex if, given s, t ∈ R2,

1

2

(
q(s) + q(t)

)
≥ q
(s+ t

2

)
.

There is a natural ordering on symmetric n × n matrices defined by X � Y if

the symmetric matrix X − Y is positive semidefinite; i.e., if its eigenvalues are all

nonnegative. Similarly, X � Y , if X − Y is positive definite; i.e., all its eigenvalues

are positive. This order yields a canonical notion of convex nc polynomial. Namely,

a symmetric polynomial p is convex if for each n and each pair of g tuples of n× n
symmetric matrices X = (X1, . . . , Xg) and Y = (Y1, . . . , Yg), we have

1

2

(
p(X) + p(Y )

)
� p
(X + Y

2

)
.

Equivalently,

p(X) + p(Y )

2
− p
(X + Y

2

)
� 0. (2.2)

Even in one variable, convexity for an nc polynomial is a serious constraint. For

instance, consider the polynomial x4. It is symmetric, but with

X =

[
4 2

2 2

]
and Y =

[
2 0

0 0

]
it follows that

X4 + Y 4

2
−
(1

2
X +

1

2
Y
)4

=

[
164 120

120 84

]
is not positive semidefinite. Thus x4 is not convex.

2.1.2. Noncommutative polynomial inequalities and convexity. The study of polyno-

mial inequalities, real algebraic geometry or semialgebraic geometry, has a nc version.

A basic open semialgebraic set is a subset of Rg defined by a list of polynomial in-

equalities; i.e., a set S is a basic open semialgebraic set if

S = {t ∈ Rg : p1(t) > 0, . . . , pk(t) > 0}

for some polynomials p1, . . . , pk ∈ R[t1, . . . , tg].
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t1

t2

1

1

ncTV(1) = {(t1, t2) ∈ R2 : 1− t41 − t42 > 0}.

Because noncommutative polynomials are evaluated on tuples of matrices, a nc

(free) basic open semialgebraic set is a sequence. For positive integers n, let (Sn×n)g

denote the set of g-tuples of n× n symmetric matrices. Given symmetric nc polyno-

mials p1, . . . , pk, let

S(n) = {X ∈ (Sn×n)g : p1(X) � 0, . . . , pk(X) � 0}.

The sequence S = (S(n)) is then a nc (free) basic open semialgebraic set. The

sequence

ncTV(n) = {X ∈ (Sn×n)2 : In −X4
1 −X4

2 � 0}
is an entertaining example. When n = 1, ncTV(1) is a subset of R2 often called the TV

screen. Numerically it can be verified, though it rather tricky to do so (see Exercise

2.7) that the set ncTV(2) is not a convex set. An analytic proof that ncTV(n) is

not a convex set for some n can be found in [DHM07a]. It also follows by combining

results in [HM+] and [HV07]. For properties of the classical commutative TV screen,

see the Chapters ?? of Nie and ?? by Rostalski-Sturmfels in this book.

Example 2.1. Let pε := ε2 −
∑g

j=1 x
2
j . An important example of a nc basic open

semialgebraic set is the ε-neighborhood of 0,

Nε :=
⋃
n∈N

{X ∈ (Sn×n)g : pε(X) � 0}.

�
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2.2. Noncommutative polynomials, the formalities. We now take up the for-

malities of nc polynomials, their evaluations, convexity, and positivity.

Let x = {x1, . . . , xg} denote a g-tuple of free noncommuting variables and let

R<x> denote the associative R-algebra freely generated by x, i.e., the elements of

R<x> are polynomials in the noncommuting variables x with coefficients in R. Its

elements are called (nc) polynomials. An element of the form aw where 0 6= a ∈ R
and w is a word in the variables x is called a monomial and a its coefficient. Hence

words are monomials whose coefficient is 1. Note that the empty word ∅ plays the

role of the multiplicative identity for R<x>.

There is a natural involution ᵀ on R<x> that reverses words. For example,

(2 − 3x2
1x2x3)ᵀ = 2 − 3x3x2x

2
1. A polynomial p is a symmetric polynomial if pᵀ = p.

Later we will see that this notion of symmetric is equivalent to that in the previous

subsection. For now we note that of

c(x) = x1x2 − x2x1

j(x) = x1x2 + x2x1

j is symmetric, but c is not. Indeed, cᵀ = −c. Because xᵀj = xj we refer to the

variables as symmetric variables. Occasionally we emphasize this point by writing

R<x = xᵀ> for R<x>.

The degree of an nc polynomial p, denoted deg(p), is the length of the longest

word appearing in p. For instance the polynomials c and j above both have degree

two and the degree of

r(x) = 1− 3x1x2 − 3x2x1 − 2x2
1x

4
2x

2
1

is eight. Let R<x>k denote the polynomials of degree at most k.

2.2.1. Noncommutative matrix polynomials. Given positive integers d, d′, let Rd×d′<x>

denote the d× d′ matrices with entries from R<x>. Thus elements of Rd×d′<x> are

matrix-valued nc polynomials. The involution on R<x> naturally extends to a map-

ping ᵀ : Rd×d′<x>→ Rd′×d<x>. In particular, if

P =
[
pi,j
]d,d′
i,j=1
∈ Rd×d′<x>,

then

P ᵀ =
[
pᵀj,i
]d,d′
i,j=1
∈ Rd′×d<x>.

In the case that d = d′, such a P is symmetric if P ᵀ = P .



FREE CONVEXITY 13

2.2.2. Linear pencils. Given a positive integer n, let Sn×n denote the real symmetric

n× n matrices. For A0, A1, . . . , Ag ∈ Sd×d, the expression

L(x) = A0 +

g∑
j=1

Ajxj ∈ Sd×d<x> (2.3)

in the noncommuting variables x is a symmetric affine linear pencil. In other

words, these are precisely the symmetric degree one matrix-valued nc polynomials.

If A0 = I, then L is monic. If A0 = 0, then L is a linear pencil. The homogeneous

linear part
∑g

j=1Ajxj of a linear pencil L as in (2.3) will be denoted by L(1).

Example 2.2. Let

A1 =


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 , A2 =


0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

 , A3 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

 .
The corresponding monic affine linear pencil is

I +
∑

Ajxj =


1 x1 0 0

x1 1 x2 0

0 x2 1 x3

0 0 x3 1


�

2.2.3. Polynomial evaluations. If p ∈ Rd×d′<x> is an nc polynomial andX ∈ (Sn×n)g,

the evaluation p(X) ∈ Rdn×d′n is defined by simply replacing xi by Xi. Throughout

we use lower case letters for variables and the corresponding capital letter for matrices

substituted for that variable.

Example 2.3. Suppose p(x) = Ax1x2 where A =

[
−4 2

3 0

]
. That is,

p(x) =

[
−4x1x2 2x1x2

3x1x2 0

]
.

Thus p ∈ R2×2<x> and one example of an evaluation is

p

([
0 1

1 0

]
,

[
1 0

0 −1

])
= A⊗

([
0 1

1 0

] [
1 0

0 −1

])
= A⊗

([
0 −1

1 0

])
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=


0 4 0 −2

−4 0 2 0

0 −3 0 0

3 0 0 0

 .
Similarly, if p is a constant matrix-valued nc polynomial, p(x) = A, and X ∈

(Sn×n)g, then p(X) = A ⊗ In. Here we have taken advantage of the usual tensor

(or Kronecker) product of matrices. Given an ` × `′ matrix A and an n × n′ matrix

B = (Bi,j), by definition, A⊗B is the n× n′ block matrix

A⊗B =
[
ABi,j

]
,

with `×`′ matrix entries. We have reserved the tensor product notation for the tensor

product of matrices and have eschewed the strong temptation of using A⊗x` in place

of Ax` when x` is one of the variables. �

Proposition 2.4. Suppose p ∈ R<x>. In increasing levels of generality,

(1) if p(X) = 0 for all n and all X ∈ (Sn×n)g, then p = 0;

(2) if there is a nonempty nc basic open semialgebraic set O such that p(X) = 0 on

O (meaning for every n and X ∈ O(n), p(X) = 0), then p = 0;

(3) there is an N, depending only upon the degree of p, so that for any n ≥ N if there

is an open subset O ⊆ (Sn×n)g with p(X) = 0 for all X ∈ O, then p = 0.

Proof. See Exercises 2.12, 2.15, and 2.18.

Exercise 2.1. Use Proposition 2.4 to prove the following statement:

Proposition 2.5. Suppose p ∈ R<x>. Show p(X) is symmetric for every n and

every X ∈ (Sn×n)g if and only if pᵀ = p.

2.3. Noncommutative convexity revisited and nc positivity. Now we return

with a bit more detail on our main theme, convexity. A symmetric polynomial p is

matrix convex, if for each positive integer n, each pair of g-tuples X = (X1, . . . , Xg)

and Y = (Y1, . . . , Yg) in (Sn×n)g and each 0 ≤ t ≤ 1,

tp(X) + (1− t)p(Y )− p
(
tX + (1− t)Y

)
� 0,

where, for an n × n matrix A ∈ Rn×n, the notation A � 0 means A is positive

semidefinite. Synonyms for matrix convex include both nc convex, and simply convex.
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Exercise 2.2. Show that the definition here of (matrix) convex is equivalent to that

given in equation (2.2) in the informal introduction to nc polynomials.

As we have already seen in the informal introduction to nc polynomials, even in

one-variable, convexity in the noncommutative setting differs from convexity in the

commutative case because here Y need not commute with X. Thus, although the

polynomial x4 is a convex function of one real variable, it is not matrix convex. On

the other hand, to verify that x2 is a matrix convex polynomial, observe that

tX2 + (1− t)Y 2 − (tX + (1− t)Y )2

= t(1− t)(X2 −XY − Y X + Y 2) = t(1− t)(X − Y )2 � 0.

A polynomial p ∈ R<x> is matrix positive, synonymously nc positive or simply

positive if p(X) � 0 for all tuples X = (X1, . . . , Xg) ∈ (Sn×n)g. A polynomial p is a

sum of squares if there exists k ∈ N and polynomials h1, . . . , hk such that

p =
k∑
j=1

hᵀjhj.

Because, for a matrix A, the matrix AᵀA is positive semidefinite, if p is a sum of

squares, then p is positive. Though we will not discuss its proof in this chapter, we

mention that, in contrast with the commutative case, the converse is true [Hel02,

McC01].

Theorem 2.6. If p ∈ R<x> is positive, then p is a sum of squares.

As for convexity, note that p(x) is convex if and only if the polynomial q(x, y) in

2g nc variables given by

q(x, y) =
1

2

(
p(x) + p(y)

)
− p
(x+ y

2

)
is positive.

2.4. Directional derivatives vs. nc convexity and positivity. Matrix convexity

can be formulated in terms of positivity of the Hessian, just as in the case of a real

variable. Thus we take a few moments to develop a very useful nc calculus.

Given a polynomial p ∈ R<x>, the `th directional derivative of p in the “direc-

tion” h is

p(`)(x)[h] :=
d`p(x+ th)

dt`

∣∣∣∣
t=0

.
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Thus p(`)(x)[h] is the polynomial that evaluates to

d`p(X + tH)

dt`

∣∣∣∣
t=0

for every choice of X, H ∈ (Sn×n)g .

We let p′(x)[h] denote the first derivative and the Hessian, denoted p′′(x)[h] of p(x),

is the second directional derivative of p in the direction h.

Equivalently, the Hessian of p(x) can also be defined as the part of the polynomial

r(x)[h] := 2
(
p(x+ h)− p(x)

)
in

R<x>[h] := R<x1, . . . , xg, h1, . . . , hg >

that is homogeneous of degree two in h.

If p′′ 6= 0, that is, if p = p(x) is an nc polynomial of degree two or more, then the

polynomial p′′(x)[h] in the 2g variables x1, . . . , xg, h1 . . . , hg is homogeneous of degree

two in h and has degree equal to the degree of p.

Example 2.7.

(1) The Hessian of the polynomial p = x2
1x2 is

p′′(x)[h] = 2(h2
1x2 + h1x1h2 + x1h1h2) .

(2) The Hessian of the polynomial f(x) = x4 (just one variable) is

f ′′(x)[h] = 2(h2x2 + hxhx+ hx2h+ xhxh+ xh2x+ x2h2)

�

NC convexity is neatly described in terms of the Hessian.

Lemma 2.8. p ∈ R<x> is nc convex if and only if p′′(x)[h] is nc positive.

Proof. See Exercise 2.10.

Example 2.9. Various directional derivatives of p in (2.5) are

Dx1p(x)[h1] = hᵀ1x1 + xᵀ1h1 +
3

4
h1x2x

ᵀ
1 +

3

4
x1x2h

ᵀ
1, Dx1p(x)[h2] = x2 +

3

4
x1h2x

ᵀ
1,

Dxp(x)[h] = hᵀ1x1 + xᵀ1h1 + h2 +
3

4
h1x2x

ᵀ
1 +

3

4
x1x2h

ᵀ
1 +

3

4
x1h2x

ᵀ
1,

�



FREE CONVEXITY 17

2.5. Symmetric, free, mixed, and classes of variables. To this point, our vari-

ables x have been symmetric in the sense that, under the involution, xᵀj = xj. The

corresponding polynomials, elements of R<x> are then the nc analog of polynomials

in real variables, with evaluations at tuples Sn×n. In various applications and settings

it is natural to consider nc polynomials in other types of variables.

2.5.1. Free variables. The nc analog of polynomials in complex variables are obtained

by allowing evaluations on tuples X of not necessarily symmetric matrices. In this

case, the involution must be interpreted differently and the variables are called free.

In this setting, given the nc variables x = (x1, . . . , xg), let xᵀ = (xᵀ1, . . . , x
ᵀ
g)

denote another collection of nc variables. On the ring R<x, xᵀ> define the involution
ᵀ by the requiring xj 7→ xᵀj ; x

ᵀ
j 7→ xj;

ᵀ reverses the order of words; and linearity. For

instance, for

q(x) = 1 + xᵀ1x2 − xᵀ2x1 ∈ R<x, xᵀ>,
we have

qᵀ(x) = 1 + xᵀ2x1 − xᵀ1x2.

Elements of R<x, xᵀ> are polynomials in free variables and in this setting the vari-

ables themselves are free.

A polynomial p ∈ R<x, xᵀ> is symmetric provided pᵀ = p. In particular, q above

is not symmetric, but

p = 1 + xᵀ1x2 + xᵀ2x1 (2.4)

is.

A polynomial p ∈ R<x, xᵀ> is analytic if there are no transposes; i.e., if p is a

polynomial in x alone.

Elements of R<x, xᵀ> are naturally evaluated on tuples X = (X1, . . . , Xg) ∈
(R`×`)g. For instance, if p is the polynomial in equation (2.4) and X = (X1, X2) ∈
(R2×2)2 where

X1 =

[
0 0

1 0

]
= X2

then

p(X) =

[
3 0

0 1

]
.

The space Rd×d′<x, xᵀ> is defined by analogy with Rd×d′<x> and evaluation of

elements in Rd×d′<x, xᵀ> at a tuple X ∈ (R`×`)g is defined in the obvious way.

Exercise 2.3. State and prove analogs of Propositions 2.4 and 2.5 for R<x, xᵀ> and

evaluations from (R`×`)g.
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2.5.2. Mixed variables. At times it is desirable to mix free and symmetric variables.

We won’t introduce notation for this situation as it will generally be understood from

the context. Here are some examples:

Example 2.10.

p(x) = xᵀ1x1 + x2 +
3

4
x1x2x

ᵀ
1, x2 = xᵀ2; (2.5)

ric(a1, a2, x) = a1x+ xaᵀ1 − xa2a
ᵀ
2x, x = xᵀ,

In the first case x1 is free, but x2 is symmetric; and in the second a1 and a2 are

free, but x is symmetric. Two additional remarks are in order about the second

polynomial. First, it is a Riccati polynomial ubiquitous in control theory. Second, we

have separated the variables into two classes of variables, the a variables and the x

variable(s); thus p ∈ R<a, x = xᵀ>. In applications, the a variables can be chosen

to represent known (system parameters), while the x variables are unknown(s). Of

course, it could be that some of the a variables are symmetric and some free and ditto

for the x variables. �

Continuing with the variable class warfare, consider the following matrix-valued

example.

Example 2.11. Let

L(a1, a2, x) =

[
a1x+ xaᵀ1 aᵀ2x

xa2 1

]
.

We consider L ∈ R2×2<a, x = xᵀ>; i.e., the a variables are free, and the x-variables

symmetric. Note that L is linear in x if we consider a1, a2 fixed. Of course, if a1, a2

and x are all scalars, then using a Schur complement tells us there is a close relation

between L in this example and the Riccati of the previous example. �

2.6. Noncommutative rational functions. While it is possible to define nc func-

tions [Tay73, SV06, Voi04, Voi10, Pop06, Pop10, KVV-, HKM10a, HKM10b], in this

section we content ourselves with a relatively informal discussion of nc rational func-

tions [Coh95, Coh06, HMV06, KVV09].

2.6.1. Rational functions, a gentle introduction. Noncommutative rational expres-

sions are obtained by allowing inverses of polynomials. An example is the discrete

time algebraic Riccati equation (DARE)

r(a, x) = aᵀ1xa1 − (aᵀ1xa2)a1(a3 + aᵀ2xa2)−1(aᵀ2xa1) + a4, x = xᵀ.
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It is a rational expression in the free variables a and the symmetric variable x, as is

r−1. An example, in free variables, which arises in operator theory is

s(x) = xᵀ(1− xxᵀ)−1. (2.6)

Thus, we define (scalar) nc rational expressions for free nc variables x by starting

with nc polynomials and then applying successive arithmetic operations - addition,

multiplication, and inversion. We emphasize that an expression includes the order in

which it is composed and no two distinct expressions are identified, e.g., (x1)+(−x1),

(−1) + (((x1)−1)(x1)), and 0 are different nc rational expressions.

Evaluation on polynomials naturally extends to rational expressions. If r is a

rational expression in free variables and X ∈ (R`×`)g, then r(X) is defined - in the

obvious way - as long as any inverses appearing actually exist. Indeed, our main

interest is in the evaluation of a rational expression. For instance, for the polynomial

s above in one free variable, s(X) is defined as long as I −XXᵀ is invertible and in

this case,

s(X) = Xᵀ(I −XXᵀ)−1.

Generally, a nc rational expression r can be evaluated on a g-tuple X of n×n matrices

in its domain of regularity, dom r, which is defined as the set of all g-tuples of square

matrices of all sizes such that all the inverses involved in the calculation of r(X)

exist. For example, if r = (x1x2−x2x1)−1 then dom r = {X = (X1, X2) : det(X1X2−
X2X1) 6= 0}. We assume that dom r 6= ∅. In other words, when forming nc rational

expressions we never invert an expression that is nowhere invertible.

Two rational expressions r1 and r2 are equivalent if r1(X) = r2(X) at anyX where

both are defined. For instance, for the rational expression t in one free variable,

t(x) = (1− xᵀx)−1xᵀ,

and s from equation (2.6), it is an exercise to check that s(X) is defined if and only if

t(X) is and moreover in this case s(X) = t(X). Thus s and t are equivalent rational

expressions. We call an equivalence class of rational expressions a rational function.

The set of all rational functions will be denoted by R (<x )>.

Here is an interesting example of an nc rational function with nested inverses. It

is taken from [Ber76, Theorem 6.3].

Example 2.12. Consider two free variables x, y. For any r ∈ R (<x, y )> let

W (r) := c
(
x, c(x, r)2

)
· c
(
x, c(x, r)−1

)−1 ∈ R (<x, y )>. (2.7)
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Recall that c denotes the commutator (2.1). Bergman’s nc rational function is given

by:

b := W (y) ·W
(
c(x, y)

)
·W
(
c
(
x, c(x, y)

)−1
)
·W
(
c
(
x, c(x, c(x, y))

)−1
)
∈ R (<x, y )>.

(2.8)

�

Exercise 2.4. Consider the function W from (2.7). Let R,X be n× n matrices and

assume c
(
X, c(X,R)−1

)
exists and is invertible. Prove:

(1) If n = 2, then W (R) = 0.

(2) If n = 3, then W (R) = det(c(X,R)).

Exercise 2.5. Consider Bergman’s rational function (2.8).

(1) Show that on a dense set of 2× 2 matrices (X, Y ), b(X, Y ) = 0.

(2) Prove that on a dense set of 3× 3 matrices (X, Y ), b(X, Y ) = 1.

The moral of Exercise 2.5 is that, unlike in the case of polynomial identities, a

nc rational function that vanishes on (a dense set of) 3× 3 matrices need not vanish

on (a dense set of) 2× 2 matrices.

2.6.2. Matrices of Rational Functions; LDLᵀ. One of the main ways nc rational func-

tions occur in systems engineering is in the manipulation of matrices of polynomials.

Extremely important is the LDLᵀ decomposition. Consider the 2× 2 matrix with nc

entries

M =

[
a bᵀ

b c

]
where a = aᵀ. The entries themselves could be a nc polynomials, or even rational

functions. If a is not zero, then M has the following decomposition

M = LDLᵀ =

[
I 0

ba−1 I

] [
a 0

0 c− ba−1bᵀ

] [
I a−1bᵀ

0 I

]
.

Note that this formula holds in the case that c is itself a (square) matrix nc rational

function and b (and thus bᵀ) are vector-valued nc rational functions. On the hand, if

both a = c = 0, then M is the block matrix,

M =

[
0 b

bᵀ 0

]
.

If we have k × k matrix M, iterating this procedure produces a decomposition

of a permutation ΠMΠᵀ of M of the form ΠMΠᵀ = LDLᵀ where D and L have the
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form

D =



d1 0 0 0 0 0 0
...

. . . 0 0 · · · 0 0

0 · · · dk 0 · · · 0 0

0 . . . 0 Dk+1 · · · 0 0
... · · · ...

...
. . . 0 0

0 · · · 0 0 · · · D` 0

0 · · · 0 0 · · · 0 E


(2.9)

and L has the form,

L =



1 0 0 0 0 0 0

∗ . . . 0 0 0 0

∗ ∗ 1 0 0 0 0

∗ ∗ ∗ I2 0 0 0

∗ ∗ ∗ ∗ . . . 0 0

∗ ∗ ∗ ∗ ∗ I2 0

∗ ∗ ∗ ∗ ∗ ∗ Ia


, (2.10)

where dj are symmetric rational functions, and the Dj are nonzero 2× 2 matrices of

the form

Dj =

[
0 bj
bᵀj 0

]
,

E is a square 0 matrix (possibly of size 0× 0 - so absent), and I2 is the 2× 2 identity

and the ∗’s represent possibly nonzero rational expressions (in some cases matrices

of rational), some of the 0s are zero matrices (of the appropriate sizes), and a is the

dimension of the space that E acts upon. The permutation Π is necessary in cases

where the procedure hits a 0 on the diagonal, necessitating a permutation to bring a

nonzero diagonal entry into the “pivot” position.

Theorem 2.13. Suppose M(x) ∈ R (<x )>`×` is symmetric, and ΠMΠᵀ = LDLᵀ where

L,D are `×` matrices with nc rational entries as in equations (2.10) and (2.9) and L

respectively. If n is a positive integer and X ∈ (Sn×n)g is in the domains of both L and

D, then M(X) is positive semidefinite if and only if D(X) is positive semidefinite.

Proof. The proof is an easy exercise based on the fact that a square block lower

triangular matrix whose diagonal blocks are invertible is itself invertible. In this case,

L(X) is block lower triangular with the n×n identity In as each diagonal entry. Thus

M(X) and D(X) are congruent, so have the same number of negative eigenvalues.
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Remark 2.14. Note that if D has any 2 × 2 blocks Dj, the D(X) � 0 if and only

if each Dj(X) = 0. Thus, if D has any 2 × 2 blocks, generically D(X), and hence

M(X), is not positive semidefinite (recall we assume, without loss of generality that

Dj are not zero).

2.6.3. More on rational functions. The matrix positivity and convexity properties of

nc rational functions go just like those for polynomials. One only tests r on a matrices

X in the domain of regularity. The definition of directional derivatives goes as before

and it is easy to compute them formally. There are issues of equivalences which

we avoid here, instead referring the reader to [Coh95, KVV09] or our treatment in

[HMV06].

We emphasize that proving the assertions above takes considerable effort, because

of dealing with the equivalence relation. In practice one works with rational expres-

sions, and calculations with nc rational expressions themselves are straightforward.

For instance, computing the derivative of a symmetric nc rational function r leads to

an expression of the form

Dr(x)[h] = symmetrize

[
k∑
`=1

a`(x)hb`(x)

]
,

where a`, b` are nc rational functions of x, and the symmetrization of a (not necessarily

symmetric) rational expression s is s+sᵀ

2
.

2.7. Exercises. Section 3 gives a very brief chapter on nc computer algebra and

some might enjoy playing with computer algebra in working some of these exercises.

Define for use in later exercises the nc polynomials

p = x2
1x

2
2 − x1x2x1x2 − x2x1x2x1 − x2

2x
2
1

q = x1x2x3 + x2x3x1 + x3x1x2 − x1x3x2 − x2x1x3 − x3x2x1

s = x1x3x2 − x2x3x1.

Exercise 2.6.

(a) What is the derivative with respect to x1 in direction h1 of q, s and u.

(b) Concerning the formal derivative with respect to x1 in direction h1.

(i) Show the derivative of r(x1) = x1
−1 is −x−1

1 h1x
−1
1 .

(ii) What is the derivative of u(x1, x2) = x2(1 + 2x1)−1 ?

Exercise 2.7. Consider the polynomials p, q, s and rational functions r, u from above.

(a) Evaluate the polynomials p, q, s on some matrices of size 1× 1, 2× 2 and 3× 3.
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(b) Redo part (a) for the rational functions r, u.

Try to use Mathematica or Matlab.

Exercise 2.8. Show c = x1x2−x2x1 is not symmetric, by finding n and X = (X1, X2)

such that c(X) is not a symmetric matrix.

Exercise 2.9. Consider the following polynomials in two and three variables, respec-

tively:

h1 = c2 = (x1x2)2 − x1x
2
2x1 − x2x

2
1x2 + (x2x1)2,

h2 = h1x3 − x3h1.

(a) Compute h1(X1, X2) and h2(X1, X2, X3) for several choices of 2× 2 matrices Xj.

What do you find? Can you formulate and prove a statement?

(b) What happens if you plug in 3× 3 matrices into h1 and h2?

Exercise 2.10. Prove that a symmetric nc polynomial p is matrix convex if and only

if the Hessian p′′(x)[h] is matrix positive, by completing the following exercise.

Fix n, suppose ` is a positive linear functional on Sn×n, and consider

f = ` ◦ p : (Sn×n)g → R.

(a) Show f is convex if and only if d2f(X+tH)
dt2

≥ 0 at t = 0 for all X,H ∈ (Sn×n)g.

Given v ∈ Rn, consider the linear functional `(M) := vᵀMv and let fv = ` ◦ p.

(b) Geometric: Fix n. Show, each fv satisfies the convexity inequality if and only if

p satisfies the convexity inequality on (Sn×n)g; and

(b) Analytic: show, for each v ∈ Rn, f ′′v (X)[H] ≥ 0 for every X,H ∈ (Sn×n)g if and

only if p′′(X)[H] � 0 for every X,H ∈ (Sn×n)g.

Exercise 2.11. For n ∈ N let

sn =
∑

τ∈Symn

sign(τ)xτ(1) · · ·xτ(n)

be a polynomial of degree n in n variables. Here Symn denotes the symmetric group

on n elements.

(a) Prove that s4 is a polynomial identity for 2× 2 matrices. That is, for any choice

of 2× 2 matrices X1, . . . , X4, we have

s4(X1, . . . , X4) = 0.

(b) Fix d ∈ N. Prove that there exists a nonzero polynomial p vanishing on all tuples

of d× d matrices.
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Several of the next exercises use a version of the shift operators on Fock space.

With g fixed, the corresponding Fock space, F = Fg, is the Hilbert space obtained

from R<x> by declaring the words to be an orthonormal basis; i.e., if v, w are words,

then

〈v, w〉 = δv,w,

where δv,w = 1 if v = w and is 0 otherwise. Thus Fg is the closure of R<x> in

this inner product. For each j, the operator Sj on Fg densely defined by Sjp = xjp,

for p ∈ R<x> is an isometry (preserves the inner product) and hence extends to an

isometry on all of Fg. Of course, Sj acts on an infinite dimensional Hilbert space and

thus is not a matrix.

Exercise 2.12. Given a natural number k, note that R<x>k is a finite dimensional

(and hence closed) subspace of F = Fg. The dimension of R<x>k is

σ(k) =
k∑
j=0

gj. (2.11)

Let V : R<x>k → F denote the inclusion and

Tj = V ᵀSjVk.

Thus Tj does act on a finite dimensional space, and T = (T1, . . . , Tg) ∈ (Rn×n)g, for

n = σ(k).

(a) Show, if v is a word of length at most k − 1, then

Tjv = xjv;

and Tjv = 0 if the length of v is k.

(b) Determine T ᵀj ;

(c) Show, if p is a nonzero polynomial of degree at most k and Yj = Tj + T ᵀj , then

p(Y )∅ 6= 0;

(d) Conclude, if, for every n and X ∈ (Sn×n)g, p(X) = 0, then p is 0.

Exercise 2.12 shows there are no nc polynomials vanishing on all tuples of (sym-

metric) matrices of all sizes. The next exercise will lead the reader through an alter-

native proof inspired by standard methods of polynomial identities.

Exercise 2.13. Let p ∈ R<x>n be an analytic polynomial that vanishes on (Rn×n)g

(same fixed n). Write p = p0 + p1 + · · · + pn, where pj is the homogeneous part of p

of degree j.

(a) Show that pj also vanishes on (Rn×n)g.
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(b) A polynomial q is called multilinear if it is homogeneous of degree one with respect

to all of its variables. Equivalently, each of its monomials contains all variables

exactly once, i.e.,

q =
∑
π∈Sn

απXπ(1) · · ·Xπ(n).

Using the staircase matrices E11, E12, E22, E23, . . . , En−1n, Enn show that a nonzero

multilinear polynomial q of degree n cannot vanish on all n× n matrices.

(c) By (a) we may assume p is homogeneous. By induction on the biggest degree

a variable in p can have, prove that p = 0. Hint: What are the degrees of the

variables appearing in

p(x1 + x̂1, x2, . . . , xg)− p(x1, x2, . . . , xg)− p(x̂1, x2, . . . , xg)?

Exercise 2.14. Redo Exercise 2.13 for a polynomial

(a) p ∈ R<x, xᵀ>, not necessarily analytic, vanishing on all tuples of matrices;

(b) p ∈ R<x> vanishing on all tuples of symmetric matrices.

Exercise 2.15. Show, if p ∈ R<x> vanishes on a nonempty basic open semialgebraic

set, then p = 0.

Exercise 2.16. Suppose p ∈ R<x>, n is a positive integer and O ⊆ (Sn×n)g is an

open set. Show, if p(X) = 0 for each X ∈ O, then P (X) = 0 for each X ∈ (Sn×n)g.

Hint: given X0 ∈ O and X ∈ (Sn×n)g, consider the matrix valued polynomial,

q(t) = p(X0 + tX).

Exercise 2.17. Suppose r ∈ R (<x )> is a rational function and there is a nonempty

nc basic open semialgebraic set O ⊆ dom(r) with r|O = 0. Show that r = 0.

Exercise 2.18. Prove item (3) of Proposition 2.4. You may wish to use Exercises

2.16 and 2.12.

Exercise 2.19. Prove the following proposition:

Proposition 2.15. If π : R<x>→ Rn×n is an involution preserving homomorphism,

then there is an X ∈ (Sn×n)g such that π(p) = p(X); i.e., all finite dimensional

representations of R<x> are evaluations.

Exercise 2.20. Do the algebra to show

xᵀ(1− xxᵀ)−1 = (1− xᵀx)−1xᵀ.

(This is a key fact used in the model theory for contractions [NFBK10].)
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Exercise 2.21. Give an example of symmetric 2 × 2 matrices X, Y such that X �
Y � 0, but X2 6� Y 2.

This failure of a basic order property of R for Sn×n is closely related to the rigid

nature of positivity and convexity in the nc setting.

Exercise 2.22. Antiderivatives.

(a) Is q(x)[h] = xh+ hx the derivative of any nc polynomial p? If so what is p?

(b) Is q(x)[h] = hhx + hxh + xhh the second derivative of any nc polynomial p? If

so what is p?

(c) Describe in general which polynomials q(x)[h] are the derivative of some nc poly-

nomial p(x).

(d) Check you answer against the theory in [GHV+].

Exercise 2.23. (Requires background in algebra) Show that R (<x )> is a division ring;

i.e., the nc rational functions form a ring in which every nonzero element is invertible.

Exercise 2.24. In this exercise we will establish that it is possible to embed the free

algebra R<x1, . . . , xg> into R<x, y> for any g ∈ N.

(a) Show that the subalgebra of R<x, y> generated by xyn, n ∈ N0, is free.

(b) Ditto for the subalgebra generated by

x1 = x, x2 = c(x1, y), x3 = c(x2, y), . . . , xn = c(xn−1, y), . . . .

Here, as before, c is the commutator, c(a, b) = ab− ba.

A comprehensive study of free algebras and nc rational functions from an alge-

braic viewpoint is developed in [Coh95, Coh06].

Exercise 2.25. As a hard exercise, numerically verify that the set

ncTV(2) = {X ∈ (S2×2)2 : 1−X4
1 −X4

2 � 0}

is not convex. That is, find X = (X1, X2) and Y = (Y1, Y2) where X1, X2, Y1, Y2 are

2× 2 symmetric matrices such that both

1−X4
1 −X4

2 � 0 and 1− Y 4
1 − Y 4

2 � 0,

but

1−
(X1 + Y1

2

)4

−
(X2 + Y2

2

)4

6� 0.

You may wish to write a numerical search routine.
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3. Computer algebra support

There are several computer algebra packages available to ease the first contact

with free convexity and positivity. In this section we briefly describe two of them:

(1) NCAlgebra running under Mathematica;

(2) NCSOStools running under Matlab.

The former is more universal in that it implements manipulation with noncommuta-

tive variables, including nc rationals, and several algorithms pertaining to convexity.

The latter is focused on nc positivity and numerics.

3.1. NCAlgebra. NCAlgebra [HOMS+] runs under Mathematica and gives it the

capability of manipulating noncommuting algebraic expressions. An important part

of the package (which we shall not go into here) is NCGB, which computes noncom-

mutative Groebner Bases and has extensive sorting and display features as well as

algorithms for automatically discarding “redundant” polynomials.

We recommend the user to have a look at the Mathematica notebook

NCBasicCommandsDemo available from the NCAlgebra website

http://math.ucsd.edu/~ncalg/

for the basic commands and their usage in NCAlgebra. Here is a sample.

The basic ingredients are (symbolic) variables, which can be either noncommu-

tative or commutative. At present, single-letter lower case variables are noncommu-

tative by default and all others are commutative by default. To change this one can

employ

NCAlgebra Command: SetNonCommutative[listOfVariables] to make all the vari-

ables appearing in listOfVariables noncommutative. The converse is given by

NCAlgebra Command: SetCommutative.

Example 3.1. Here is a sample session in Mathematica running NCAlgebra.

In[1]:= a ** b - b ** a

Out[1]= a ** b - b ** a

In[2]:= A ** B - B ** A

Out[2]= 0

In[3]:= A ** b - b ** a

Out[3]= A b - b ** a

http://www.math.ucsd.edu/~ncalg/
http://ncsostools.fis.unm.si/
http://math.ucsd.edu/~ncalg/NCBasicCommandsDemo.nb
http://math.ucsd.edu/~ncalg/


28 HELTON, KLEP, AND MCCULLOUGH

In[4]:= CommuteEverything[a ** b - b ** a]

Out[4]= 0

In[5]:= SetNonCommutative[A, B]

Out[5]= {False, False}

In[6]:= A ** B - B ** A

Out[6]= A ** B - B ** A

In[7]:= SetNonCommutative[A];SetCommutative[B]

Out[7]= {True}

In[8]:= A ** B - B ** A

Out[8]= 0

�

Slightly more advanced is the NCAlgebra command to generate the directional

derivative of a polynomial p(x, y) with respect to x, which is denoted by Dxp(x, y)[h]:

NCAlgebra Command: DirectionalD[Function p, x, h], and is abbreviated

NCAlgebra Command: DirD.

Example 3.2. Consider

a = x ** x ** y - y ** x ** y

Then

DirD[a, x, h] = (h ** x + x ** h) ** y - y ** h ** y

or in expanded form,

NCExpand[DirD[a, x, h]] = h ** x ** y + x ** h ** y - y ** h ** y

Note that we have used

NCAlgebra Command: NCExpand[Function p] to expand a noncommutative expres-

sions. The command comes with a convenient abbreviation

NCAlgebra Command: NCE. �
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NCAlgebra is capable of much more. For instance, is a given noncommutative

function “convex”? You type in a function of noncommutative variables; the com-

mand

NCAlgebra Command: NCConvexityRegion[Func, ListOfVariables] tells you where

the (symbolic) Function is convex in the Variables. The algorithm comes from the

paper of Camino, Helton, Skelton, Ye [CHSY03].

NCAlgebra Command: {L,D,U, P}:=NCLDUDecomposition[Matrix]. Computes the

LDU Decomposition of Matrix and returns the result as a 4 tuple. The last entry is

a Permutation matrix which reveals which pivots were used. If Matrix is symmetric

then U = Lᵀ.

The NCAlgebra website comes with extensive documentation. A more advanced

notebook with a hands on demonstration of applied capabilities of the package is

DemoBRL.nb; it derives the Bounded Real Lemma for a linear system.

Exercise 3.1. For the polynomials and rational functions defined at the beginning

of Section 2.7, use NCAlgebra to calculate

(a) p**q and NCExpand[p**q]

(b) NCCollect[p**q, x1]

(c) D[p,x1,h1] and D[u,x1,h1]

3.1.1. Warning. The Mathematica substitute commands \., \> and \:> are not re-

liable in NCAlgebra, so a user should use NCAlgebra’s Substitute command.

Example 3.3. Here is an example of unsatisfactory behavior of the built-in Mathe-

matica function.

In[1]:= (x ** a ** b) /. {a ** b -> c}

Out[1]= x ** a ** b

On the other hand, NCAlgebra performs as desired:

In[2]:= Substitute[x ** a ** b, a ** b -> c]

Out[2]= x ** c �

3.2. NCSOStools. A reader mainly interested in positivity of noncommutative poly-

nomials might be better served by NCSOStools [CKP11]. NCSOStools is an open

source Matlab toolbox for

(a) basic symbolic computation with polynomials in noncommuting variables;

http://math.ucsd.edu/~ncalg/DEMOS/DemoBRL.nb


30 HELTON, KLEP, AND MCCULLOUGH

(b) constructing and solving sum of hermitian squares (with commutators) programs

for polynomials in noncommuting variables.

It is normally used in combination with standard semidefinite programming software

to solve these constructed LMIs.

The NCSOStools website

http://ncsostools.fis.unm.si

contains documentation and a demo notebook NCSOStoolsdemo to give the user a

gentle introduction into its features.

Example 3.4. Despite some ability to manipulate symbolic expressions, Matlab can-

not handle noncommuting variables. They are implemented in NCSOStools.

NCSOStools Command: NCvars x introduces a noncommuting variable x into the

workspace. �

NCSOStools is well equipped to work with commutators and sums of (hermitian)

squares. Recall: a commutator is an expression of the form fg − gf .

Exercise 3.2. Use NCSOStools to check whether the polynomial x2yx+yx3−2xyx2

is a sum of commutators. (Hint: Try the NCisCycEq command.) If so, can you find

such an expression?

Let us demonstrate an example with sums of squares.

Example 3.5. Consider

f = 5 + x^2 - 2*x^3 + x^4 + 2*x*y + x*y*x*y - x*y^2 + x*y^2*x

-2*y + 2*y*x + y*x^2*y - 2*y*x*y + y*x*y*x - 3*y^2 - y^2*x + y^4

Is f matrix positive? By Theorem 2.6 it suffices to check whether f is a sum of

squares. This is easily done using

NCSOStools Command: NCsos(f), which checks the polynomial f is a sum of squares.

Running NCsos(f) tells us that f is indeed a sum of squares. What NCSOStools does,

is transform this question into a semidefinite program (SDP) and then calls a solver.

NCsos comes with several options. Its full command line is

[IsSohs,X,base,sohs,g,SDP_data,L] = NCsos(f,params)

The meaning of the output is as follows:

• IsSohs equals 1 if the polynomial f is a sum of hermitian squares and 0 otherwise;

• X is the Gram matrix solution of the corresponding SDP returned by the solver;

http://ncsostools.fis.unm.si
http://ncsostools.fis.unm.si/documentation/NCSOStoolsdemo
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• base is a list of words which appear in the SOHS decomposition;

• sohs is the SOHS decomposition of f ;

• g is the NCpoly representing
∑

im
ᵀ
imi;

• SDP_data is a structure holding all the data used in SDP solver;

• L is the operator representing the dual optimization problem (i.e., the dual feasible

SDP matrix). �

Exercise 3.3. Use NCSOStools to compute the smallest eigenvalue f(X, Y ) can

attain for a pair of symmetric matrices (X, Y ). Can you also find a minimizer pair

(X, Y )?

Exercise 3.4. Let f = y2 + (xy − 1)ᵀ(xy − 1). Show that

(a) f(X, Y ) is always positive semidefinite.

(b) For each ε > 0 there is a pair of symmetric matrices (X, Y ) so that the smallest

eigenvalue of f(X, Y ) is ε.

(c) Can f(X, Y ) be singular?

The moral of Example 3.4 is that even if an nc polynomial is bounded from below,

it need not attain its minimum.

Exercise 3.5. Redo the Exercise 3.4 for f(x) = xᵀx+ (xxᵀ − 1)ᵀ(xxᵀ − 1).

4. A Gram like representation

The next two sections are devoted to a powerful representation of quadratic

functions q in nc variables which takes a strong form when q is matrix positive; we

call it a QuadratischePositivstellensatz. Ultimately we shall apply this to q(x)[h] =

p′′(x)[h] and show that if p is matrix convex (i.e., q is matrix positive), then p has

degree two. We begin by illustrating our grand scheme with examples.

4.1. Illustrating the ideas.

Example 4.1. The (symmetric) polynomial p(x) = x1x2x1 + x2x1x2 (in symmetric

variables) has Hessian q(x)[h] = p′′(x)[h] which is homogeneous quadratic in h and is

q(x)[h] = 2h1h2x1 + 2h1x2h1 + 2h2h1x2 + 2h2x1h2 + 2x1h2h1 + 2x2h1h2.

We can write q in the form

q(x)[h] =
[
h1 h2 x2h1 x1h2

] 
2x2 0 0 2

0 2x1 2 0

0 2 0 0

2 0 0 0



h1

h2

h1x2

h2x1

 .
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�

The representation of q displayed above is of the form

q(x)[h] = V (x)[h]ᵀZ(x)V (x)[h]

where Z is called the middle matrix (MM) and V the border vector (BV). The MM

does not contain h. The BV is linear in h with h always on the left. In Section 4.2

we define this border vector-middle matrix (BV-MM) representation generally for nc

polynomials q(x)[h] which are homogeneous of degree two in the h variables. Note

the entries of the BV are distinct monomials.

Example 4.2. Let p = x2x1x2x1 + x1x2x1x2. Then

q = p′′ = 2h1h2x1x2 + 2h1x2h1x2 + 2h1x2x1h2 + 2h2h1x2x1 + 2h2x1h2x1 + 2h2x1x2h1

+ 2x1h2h1x2 + 2x1h2x1h2 + 2x1x2h1h2 + 2x2h1h2x1 + 2x2h1x2h1 + 2x2x1h2h1.

The BV-MM representation for q is

q =
[
h1 h2 x2h1 x1h2 x1x2h1 x2x1

]


0 2x2x1 2x2 0 0 2

2x1x2 0 0 2x1 2 0

2x1 0 0 2 0 0

0 2x2 2 0 0 0

0 2 0 0 0 0

2 0 0 0 0 0





h1

h2

h1x2

h2x1

h1x2x1

h2x1x2


�

Example 4.3. In one variable with h1 = hᵀ1 we abbreviate it to h. Fix some nc

variables not necessarily symmetric w := (a, b, d, e) and consider

q(w)[h] := hah+ eᵀhbh+ hbᵀhe+ eᵀhdhe. (4.1)

which is a quadratic function of h. It can be written in the BV-MM form

q(w)[h] =
[
h eᵀh

] [a bᵀ

b d

] [
h

he

]
. (4.2)

The representation is unique.

Observe (4.2) contrasts strongly with the commutative case wherein (4.1) takes

the form

q(w)[h] = h(a+ eᵀb+ bᵀg + eᵀde)h.

�
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Example 4.4. The Hessian of p(x) = x4 is

q(x)[h] := p′′(x)[h] = 2(x2h2 + xh2x+ h2x2)

+ 2(xhxh+ hxhx)

+ hx2h

(4.3)

is a polynomial that is homogeneous of degree two in x and homogeneous of degree

two in h that can be expressed as

q(x)[h] = 2
[
h xh x2h

] x2 x 1

x 1 0

1 0 0

 h

hx

hx2

 .
�

Notice that the contribution of the main antidiagonal of the MM for q in Example

4.4 (all 1′s) corresponds to the right hand side of first line of (4.3). Indeed, each

antidiagonal corresponds to a line of (4.3).

Exercise 4.1. In Example 4.4, for which symmetric matrices X is Z(X) positive

semidefinite?

Exercise 4.2. What is the MM for p(x) = x3? For which symmetric matrices is X

is Z(X), the MM, positive semidefinite?

Exercise 4.3. Compute middle matrix representations using NCAlgebra. The com-

mand is

{lt,mq, rt} =NCMatrixOfQuadratic[q, {h, k}]

In the output mq is the MM and rt is the BV and lt is (rt)ᵀ. For examples, see

NCConvexityRegionDemo.nb In the NC/DEMOS directory.

4.1.1. The positivity of q vs. positivity of the MM. In this section we let q(x)[h] denote

a polynomial which is homogeneous of degree two in h, but which is not necessarily the

Hessian of a nc polynomial. While we have focused on Hessians, such a q will still have

a BV-MM representation. So what good is this representation? After all one expects

that q could have wonderful properties, such as positivity, which are not shared by its

middle matrix. No, the striking thing is that positivity of q implies positivity of the

MM. Roughly we shall prove what we call the QuadratischePositivstellensatz, which

is essentially Theorem 3.1 of [CHSY03].

http://www.math.ucsd.edu/~ncalg/
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Theorem 4.5. If the polynomial2 q(x)[h] is homogeneous quadratic in h, then q is

matrix positive if and only if its middle matrix Z is matrix positive.

More generally, suppose O is a nonempty nc basic open semialgebraic set. If

q(X)[H] is positive semidefinite for all n ∈ N, X ∈ O(n) and H ∈ (Sn×n)g, then

Z(X) � 0 for all X ∈ O.

We emphasize that, in the theorem, the convention that the terms of the border

vector are distinct is in force.

To foreshadow Section 5 and to give an idea of the proof and we illustrate it on

an example in one variable. This time we use a free rather than symmetric variable

since proofs are a bit easier.

Proof of Theorem 4.5 for an example. Consider the noncommutative quadratic func-

tion q given by

q(w)[h] := hᵀbh+ eᵀhᵀch+ hᵀcᵀhe+ eᵀhᵀahe (4.4)

where w = (a, b, c, e). The border vector V (w)[h] and the coefficient matrix Z(w)

with noncommutative entries are

V (w)[h] =

[
h

he

]
and Z(w) =

[
b cᵀ

c a

]
,

that is, q has the form

q(w)[h] = V (w)[h]ᵀZ(w)V (w)[h] =
[
hᵀ eᵀhᵀ

] [b cᵀ

c a

] [
h

he

]
.

Now, if in equation (4.4) the elements a, b, c, e, h are replaced by matrices in

Rn×n, then the noncommutative quadratic function q(w)[h] becomes a matrix valued

function q(W )[H]. The matrix valued function q[H] is matrix positive if and only

if vᵀq(W )[H]v ≥ 0 for all vectors v ∈ Rn and all H ∈ Rn×n. Or equivalently, the

following inequality must hold[
vᵀHᵀ vᵀEᵀHᵀ

]
Z

[
Hv

HEv

]
≥ 0. (4.5)

Let

yᵀ :=
[
vᵀHᵀ vᵀEᵀHᵀ

]
.

Then (4.5) is equivalent to yᵀZ y ≥ 0. Now it suffices to prove that all vectors of the

form y sweep R2n. This will be completely analyzed in full generality in Section 5.1

but next we give the proof for our simple situation.

2This theorem is true (but not proved here) for q which are nc rational in x.
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Suppose for a given v, with n ≥ 2, the vectors v and Ev are linearly independent.

Let y =

[
v1

v2

]
be any vector in R2n, then we can choose H ∈ Rn×n with the property

that v1 = Hv and v2 = HEv. It is clear that

Rv :=

{[
Hv

HEv

]
: H ∈ Rn×n

}
(4.6)

is all R2n as required.

Thus we are finished unless for all v the vectors v and Ev are linearly dependent.

That is for all v, λ1(v)v + λ2(v)Ev = 0 for nonzero λ1(v) and λ2(v). Note λ2(v) 6= 0,

unless v = 0. Set τ(v) := λ1(v)
λ2(v)

, then the linear dependence becomes τ(v)v + Ev = 0

for all v. It turns out that this does not happen unless E = τI for some τ ∈ R. This

is a baby case of Theorem 5.11 which comes later and is a subject unto itself.

To finish the proof pick a v which makesRv equal all of R2n. Then vᵀq(W )[H]v ≥
0 implies that Z � 0, by (4.5).

4.2. Details of the Middle Matrix representation. The following representation

for symmetric nc polynomials q(x)[h] that are of degree ` in x and homogeneous of

degree two in h is exploited extensively in this subject:

q(x)[h] =
[
V ᵀ0 V ᵀ1 · · · V ᵀ`−1 V ᵀ`

]

Z00 Z01 · · · Z0,`−1 Z0`

Z10 Z11 · · · Z1,`−1 0
...

... . . .
...

...

Z`−1,0 Z`−2,1 · · · 0 0

Z`0 0 · · · 0 0




V0

V1
...

V`−1

V`

 ,
(4.7)

where:

(1) The degree d of q(x)[h] is d = `+ 2.

(2) Vj = Vj(x)[h], j = 0, . . . , `, is a vector of height gj+1 whose entries are mono-

mials of degree j in the x variables and degree one in the h variables. The h

always appears to the left. In particular, V (x)[h] is a vector of height gσ(`),

where as in (2.11),

σ(`) = 1 + g + · · ·+ g` .

(3) Zij = Zij(x), is a matrix of size gi+1 × gj+1 whose entries are polynomials in

the noncommuting variables x1, . . . , xg of degree ≤ `− (i + j). In particular,

Zi,`−i = Zi,`−i(x) is a constant matrix for i = 0, . . . , `.



36 HELTON, KLEP, AND MCCULLOUGH

(4) Zᵀij = Zji.

Usually the entries of the vectors Vj are ordered lexicographically.

We note that the vector of monomials, V (x)[h], might contain monomials that

are not required in the representation of the nc quadratic q. Therefore, we can omit

all monomials from the border vector that are not required. This gives us a minimal

length border vector and prevents extraneous zeros from occurring in the middle

matrix. The matrix Z in the representation (4.7) will be referred to as the middle

matrix (MM) of the polynomial q(x)[h] and the vectors Vj = Vj(x)[h] with monomials

as entries will be referred to as border vectors (BV). It is easy to check that a minimal

length border vector contains distinct monomials and once the ordering of entries of

V is set the MM for a given q is unique, see Lemma 4.7 below.

Example 4.6. Returning to Example 4.2, we have for the MM representation of q

that

V0 =

[
h1

h2

]
, V1 =

[
h2x1

h1x2

]
, V2 =

[
h1x2x1

h2x1x2

]
and, for instance,

Z00 =

[
0 2x2x1

2x1x2 0

]
, Z01 =

[
2x2 0

0 2x1

]
, Z02 =

[
0 2

2 0

]
.

Note that generically for a polynomial q in two variables the Vj have additional terms.

For instance, usually V1 is the column
h1x1

h1x2

h2x1

h2x2

 .
Likewise generically V2 has eight terms. As for the Zij, for instance Z01 is generically

2× 4. �

Lemma 4.7. The entries in the middle matrix Z(x) are uniquely determined by the

polynomial q(x)[h] and the border vector V (x)[h].

Proof. Note every monomial in q(x)[h] has the form

mLhimMhjmR.

Define

Rj := {hjm : mLhimMhjm is a term in q(x)[h]}.
Given the representation V ᵀZV for q, let EV denote the monomials in V . Then it

is clear that each monomial in EV must occur in some term of q, so it appears in
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Rj for some j. Conversely, each term hjm in Rj corresponds to at least one term

mLhimMhjm of q, so it must be in EV .

Exercise 4.4. Prove the degree bound on the Zij in (3).

Hint: Read Example 4.8 first.

Example 4.8. If p(x) is a symmetric polynomial of degree d = 4 in g noncommuting

variables, then the middle matrix Z(x) in the representation of the Hessian p′′(x)[h]

is

Z(x) =

Z00(x) Z01(x) Z02(x)

Z10(x) Z11(x) 0

Z20(x) 0 0

 ,
where the block entries Zij = Zij(x) have the following structure:

Z00 is a g × g matrix with nc polynomial entries of degree ≤ 2,

Z01 is a g × g2 matrix with with nc polynomial entries of degree ≤ 1,

Z02 is a g × g3 matrix with constant entries.

All of these are proved merely by keeping track of the degrees. For example, the

contribution of Z02 to p′′ is V ᵀ0 Z02V2 whose degree is

deg(V ᵀ0 ) + deg(Z02) + deg(V2) = 1 + deg(Z02) + 3 ≤ 4,

so deg(Z02) = 0. �

4.3. The Middle Matrix of p′′. The middle matrix Z(x) of the Hessian p′′(x)[h]

of an nc symmetric polynomial p(x) plays a key role. These middle matrices have a

very rigid structure similar to that in Example 4.4. We illustrate with an example

and then with exercises.

Example 4.9. As a warm up we first illustrate that Z02(X) = 0 if and only if

Z11(X) = 0 for Example 4.2. To this end, observe that the contribution of the MM’s

extreme outer diagonal element Z02 to q is as follows

1

2
V0(x)[h]ᵀZ02(x)V2(x)[h] =

[
h1

h2

]ᵀ [
0 2

2 0

] [
h1x2x1

h2x1x2

]
= 2h1h2x1x2 + 2h2h1x2x1.

Substitute hj  xj and get 2x1x2x1x2 + 2x2x1x2x1 which is 2p(x). That is,

p(x) =
1

2
V0(x)[x]ᵀZ02(x)V2(x)[x],

where Vk(x)[h] is the homogeneous, in x, of degree k part of the border vector V .

Obviously, Z02 = 0 implies p = 0. �
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Exercise 4.5. Show p(x) can also be obtained from Z11 in a similar fashion; i.e.,

p(x) =
1

2
V1(x)[x]ᵀZ11(x)V1(x)[x].

Exercise 4.6. Suppose p is homogeneous of degree d and its Hessian q has the border

vector middle matrix representation q(x)[h] = V (x)[h]ᵀZ(x)V (x)[h].

(a) Show,

p =
1

2
V0(x)[x]ᵀZ0`V`(x)[x]

with ` = d− 2. Prove this formula for d = 2, d = 4.

(b) Show that likewise,

p =
1

2
V1(x)[x]ᵀZ1,`−1(x)V`−1(x)[x]

Do not cheat and look this up in [DGHM09], but do compare with Exercise 4.4.

Exercise 4.7. Let Z denote the middle matrix for the Hessian of a nc polynomial p.

Show, if i+ j = i′ + j′, then Zij = 0 if and only if Zi′j′ = 0.

4.4. Positivity of the Middle Matrix and the demise of nc convexity. This

section focuses on positivity of the middle matrix of a Hessian.

Why should we focus on the case where Z(x) is positive semidefinite? In [HMe98]

it was shown that a polynomial p ∈ R<x> is matrix convex if and only if its Hessian

p′′(x)[h] is positive (see Exercise 2.10). Moreover, if Z(x) is positive, then the degree of

p(x) is at most two [HM04a]. The proof of this degree constraint given in Proposition

4.10 below using the more manageable bookkeeping scheme in this paper, begins with

the following exercise.

Exercise 4.8. Show that [
A B

Bᵀ 0

]
,

is positive semidefinite if and only if A � 0 and B = 0. More refined versions of this

fact appear as exercises later, see Exercise 4.11.

As we shall see we need not require our favorite functions be positive everywhere.

It is possible to work locally, namely on an open set.

Proposition 4.10. Let p = p(x) be a symmetric polynomial of degree d in g nc

variables and let Z(x) denote the middle matrix (MM) in the BV-MM representation

of the Hessian p′′(x)[h]. If Z(X) � 0 for all X in some nonempty nc basic open

semialgebraic set O, then d is at most two.
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Proof. Arguing by contradiction, suppose d ≥ 3, then p′′(x)[h] is of degree ` = d−2 ≥
1 in x and its middle matrix is of the form

Z =

Z00 · · · Z0`
... . . .

...

Z`0 · · · 0

 .
Therefore, Z(X) is of the form

Z(X) =

[
A B

Bᵀ 0

]
,

where A = Aᵀ and Bᵀ =
[
Z0`(X) 0 · · · 0

]
. From Exercise 4.6, pd, the homoge-

neous of degree d part of p, can be reconstructed from Z0`. Now there is an X ∈ O
such that pd(X) is nonzero, as otherwise pd vanishes on a basic open semialgebraic

set and is equal to 0. It follows that there is an X ∈ O such that Z0`(X) is not zero.

Hence B(X) is not zero which implies, by Exercise 4.8, the contradiction that Z(X)

is not positive semidefinite.

We have now reached our goal of showing that convex polynomials have degree

≤ 2.

Theorem 4.11. If p ∈ R<x> is a symmetric polynomial which is convex on a

nonempty nc basic open semialgebraic set O, then it has degree at most two.

There is a version of the theorem for free variables; i.e., with p ∈ R<x, xᵀ>.

Proof. The convexity of p on O is equivalent to p′′(X)[H] being positive semidefinite

for all X in O, see Exercise 2.10. By the QuadratischePositivstellensatz the middle

matrix Z(x) for p′′(x)[h] is positive onO; that is, Z(X) � 0 for allX ∈ O. Proposition

4.10 implies degree p is at most 2.

4.5. The signature of the middle matrix. This section introduces the notion of

the signature µ±(Z(x)) of Z(x), the middle matrix of a Hessian, or more generally a

polynomial q(x)[h] which is homogeneous of degree two in h.

The signature of a symmetric matrix M is a triple of integers:(
µ−(M), µ0(M), µ+(M)

)
,

where µ−(M) is the number of negative eigenvalues (counted with multiplicity);

µ+(M) is the number of positive eigenvalues; and µ0(M) is the dimension of the

null space of M .
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Lemma 4.12. A nc symmetric polynomial q(x)[h] homogeneous of degree two in h

has middle matrix Z of the form in (4.7) and Z being positive semidefinite implies Z

is of the form 

Z00 Z01 · · · Z0,b `
2
c 0 · · ·

Z10 Z11 · · · Z1,b `
2
c 0 · · ·

...
... . . . ...

... . . .

Zb `
2
c,0 Zb `

2
c,1 · · · Zb `

2
c,b `

2
c 0 . . .

0 0 · · · 0 0 . . .

...
... . . . . . . . . .


.

This lemma follows immediately from a much more general lemma.

Lemma 4.13. If

E =

 A B C

Bᵀ D 0

Cᵀ 0 0


is a real symmetric matrix, then

µ±(E) ≥ µ±(D) + rankC.

This can be proved using the LDLᵀ decomposition which we shall not do here

but suggest the reader apply the LDLᵀ hammer to the following simpler exercise.

4.6. Exercises.

Exercise 4.9. True of False? If pd is homogeneous of degree d and we let Z denote

the middle matrix of the Hessian p′′(x)[h], then for each k ≤ d−2 the degree of Zi,k−i
is independent of i.

Exercise 4.10. Redo Exercise 2.10 for convexity on a nc basic open semialgebraic

set.

Exercise 4.11. If F =

[
A C

Cᵀ 0

]
, then µ±(F ) ≥ rankC. (If you cannot do the

general case, assume A is invertible.)

Exercise 4.12. If p(x) is a symmetric polynomial of degree d = 2 in g noncommuting

variables, then the middle matrix Z(x) in the representation of the Hessian p′′(x)[h]

is equal to the g × g constant matrix Z00. Substituting X ∈ (Sn×n)g for x gives

µ±(Z(X)) ≥ µ±(Z00)
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Exercise 4.13. Let f ∈ R<x>2d and let V ∈ <x>σ(d)
d be a vector consisting of all

words in x of degree ≤ d. Prove:

(a) there is a matrix G ∈ Rσ(d)×σ(d) with f = V ᵀGV (any such G is called a Gram

matrix for f);

(b) if f is symmetric, then there is a symmetric Gram matrix for f .

Exercise 4.14. Find all Gram matrices for

(a) f = x4
1 + x2

1x2 − x1x
2
2 + x2x

2
1 − x2

2x1 + x2
1 − x2

2 + 2x1 − x2 + 4;

(b) f = c(x1, x2)2.

Exercise 4.15. Show: if f ∈ R<x> is homogeneous of degree 2d, then it has a

unique Gram matrix G ∈ Rσ(d)×σ(d).

5. Der QuadratischePositivstellensatz

In this section we present the proof of the QuadratischePositivstellensatz, (Theo-

rem 4.5) which is based on the fact that local linear dependence of nc rationals (or nc

polynomials) implies global linear dependence, a fact itself based on the forthcoming

CHSY Lemma [CHSY03].

5.1. The Camino, Helton, Skelton, Ye (CHSY) Lemma. At the root of the

CHSY Lemma [CHSY03] is the following linear algebra fact:

Lemma 5.1. Fix n > d. If {z1, . . . , zd} is a linearly independent set in Rn, then the

codimension of 

Hz1

Hz2
...

Hzd

 : H ∈ Sn×n

 ⊆ Rnd

is d(d−1)
2

. Especially important is, this codimension is independent of n.

The following exercise is a variant of the Lemma 5.1 which is easier to prove.

Thus we suggest attempting it before launching into the proof of the lemma.

Exercise 5.1. Prove if {z1, . . . , zd} is a linearly independent set in Rn, then

Hz1

Hz2
...

Hzd

 : H ∈ Rn×n

 = Rnd
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Hint: it goes like the proof of (4.6).

Proof of Lemma 5.1. Consider the mapping Φ : Sn×n → Rnd given by

H 7→


Hz1

Hz2
...

Hzd

 .
Since the span of {z1, . . . , zd} has dimension d, it follows that the kernel of Φ has

dimension κ = (n−d)(n−d+1)
2

and hence the range has dimension n(n+1)
2
− κ. To

see this assertion, it suffices to assume that the span of {z1, . . . , zd} is the span of

{e1, . . . , ed} ⊆ Rn (the first d standard basis vectors in Rn). In this case (since H is

symmetric) Hzj = 0 for all j if and only if

H =

[
0 0

0 H ′

]
,

where H ′ is a symmetric matrix of size (n− d)× (n− d); in other words, this is the

kernel of Φ.

From this we conclude that the codimension of the range of Φ is

nd−
(n(n+ 1)

2
− κ
)

=
d(d− 1)

2
.

Next is a straightforward extension of Lemma 5.1.

Lemma 5.2 ([CHSY03]). If n > d and {z1, . . . , zd} is a linearly independent subset

of Rn, then the codimension of

{
⊕gj=1


Hjz1

Hjz2
...

Hjzd

 : H = (H1, . . . , Hg) ∈ (Sn×n)g
}
⊆ Rgnd

is g d(d−1)
2

and is independent of n.

Proof. See Exercise 5.2.

Finally, the form in which we generally apply the lemma is the following.

Lemma 5.3. Let v ∈ Rn, X ∈ (Sn×n)g. If the set {m(X)v : m ∈ <x>d} is linearly

independent, then the codimension of

{V (X)[H]v : H ∈ (Sn×n)g}
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is g κ(κ−1)
2

, where κ = σ(d) =
∑d

j=0 g
j and where

V =

g⊕
i=1

⊕
m∈<x>d

Him

is the border vector associated to <x>d. Again, this codimension is independent of n

as it only depends upon the number of variables g and the degree d of the polynomial.

Proof. Let zm = m(X)v for m ∈ <x>d. There are at most κ of these. Now apply the

previous lemma.

5.2. Linear Dependence of Symbolic Functions. The main result in this section,

Theorem 5.11 says roughly that if each evaluation of a set G1, . . . G` of rational

functions produces linearly dependent matrices, then they satisfy a universal linear

dependence relation. We begin with a clean and easily stated consequence of Theorem

5.11.

In Section 2.1.2 we defined nc basic open semialgebraic sets. Here we define a nc

basic semialgebraic set. Given matrix-valued symmetric nc polynomials ρ and ρ̃, let

Dρ+(n) = {X ∈ (Sn×n)g : ρ(X) � 0},

and

Dρ̃(n) = {X ∈ (Sn×n)g : ρ̃(X) � 0}.
Then D is a nc basic semialgebraic set if there exists ρ1, . . . , ρk and ρ̃1, . . . , ρ̃k̃ such

that D = (D(n))n∈N where

D(n) =
(⋂

j

Dρj0 (n)
)
∩
(⋂

j

Dρ̃j̃(n)
)
.

Theorem 5.4. Suppose G1, . . . , G` are rational expressions and D is a nonempty

nc basic semialgebraic set on which each Gj is defined. If, for each X ∈ D(n) and

vector v ∈ Rn the set {Gj(X)v : j = 1, 2, . . . , `} is linearly dependent, then the set

{Gj(X) : j = 1, 2, . . . , `} is linearly dependent on D, i.e. there exists a nonzero λ ∈ R`

such that

0 =
∑̀
j=1

λjGj(X) for all X ∈ D.

If, in addition, D contains an ε-neighborhood of 0 for some ε > 0, then there exists a

nonzero λ ∈ R` such that

0 =
∑̀
j=1

λjGj.
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Corollary 5.5. Suppose G1, . . . , G` are rational expressions. If, for each n ∈ N, X ∈
(Sn×n)g, and vector v ∈ Rn the set {Gj(X)v : j = 1, 2, . . . , `} is linearly dependent,

then the set {Gj : j = 1, 2, . . . , `} is linearly dependent, i.e., there exists a nonzero

λ ∈ R` such that ∑̀
j=1

λjGj = 0.

Corollary 5.6. Suppose G1, . . . , G` are rational expressions. If, for each n ∈ N
and X ∈ (Sn×n)g, the set {Gj(X) : j = 1, 2, . . . , `} is linearly dependent, then the set

{Gj : j = 1, 2, . . . , `} is linearly dependent.

The point is that the λj are independent of X. Before proving Theorem 5.4 we

shall introduce some terminology pursuant to our more general result.

5.2.1. Direct Sums. We present some definitions about direct sum and sets which

respect direct sums, since they are important tools.

Definition 5.7. Our definition of the direct sum is the usual one. Given pairs (X1, v1)

and (X2, v2) where Xj are nj × nj matrices and vj ∈ Rnj ,

(X1, v1)⊕ (X2, v2) = (X1 ⊕X2, v1 ⊕ v2)

where

X1 ⊕X2 :=

[
X1 0

0 X2

]
v1 ⊕ v2 :=

[
v1

v2

]
.

We extend this definition to µ terms, (X1, v1), . . . , (Xµ, vµ) in the expected way.

In the definition below, we consider a set B which is the sequence

B := (B(n))n,

where each B(n) is a set whose members are pairs (X, v) where X is in (Sn×n)g and

v ∈ Rn.

Definition 5.8. The set B is said to respect direct sums if (Xj, vj) with Xj ∈
(Snj×nj)g and vj ∈ Rnj for j = 1, . . . , µ is contained in the set B (B(nj)) implies

that the direct sum

(X1 ⊕ . . .⊕Xµ, v1 ⊕ . . .⊕ vµ) = (⊕µj=1X
j,⊕µj=1v

j)

is also contained in B (B(
∑
nj)).
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Definition 5.9. By a natural map G on B, we mean a sequence of functions G(n) :

B(n) → Rn, which respects direct sums in the sense that, if (Xj, vj) ∈ B(nj) for

j = 1, 2, . . . , µ, then

G(

µ∑
1

nj)(⊕Xj,⊕vj) = ⊕µ1G(nj)(X
j, vj).

Typically we omit the argument n, writing G(X) instead of G(n)(X).

Examples of sets which respect direct sums and of natural maps are provided by

the following example.

Example 5.10. Let ρ be a rational expression.

(1) The set Bρ = {(X, v) : X ∈ Dρ ∩ (Sn×n)g, v ∈ Rn, n ∈ N} respects direct sums.

(2) If G is a matrix-valued nc rational expression whose domain contains Dρ, then G

determines a natural map on B(ρ) by G(n)(X, v) = G(X)v. In particular, every

nc polynomial determines a natural map on every nc basic semialgebraic set B.

�

5.2.2. Main Result on Linear Dependence.

Theorem 5.11. Suppose B is a set which respects direct sums and G1, . . . , G` are

natural maps on B. If for each (X, v) ∈ B the set {G1(X, v), . . . , G`(X, v)} is linearly

dependent, then there exists a nonzero λ ∈ R` so that

0 =
∑̀
j=1

λjGj(X, v)

for every (X, v) ∈ B. We emphasize that λ is independent of (X, v).

Before proving 5.11, we use it to prove an important earlier theorem.

Proof of Theorem 5.4. Let B be given by

B(n) = {(X, v) : X ∈ Dρ ∩ (Sn×n)g and v ∈ Rn}.

Let Gj denote the natural maps, Gj(X, v) = Gj(X)v. Then B and G1, . . . , G` satisfy

the hypothesis of Theorem 5.11 and so the first conclusion of Theorem 5.4 follows.

The last conclusion follows because an nc rational function r vanishing on an nc

basic open semialgebraic set is 0 on all dom(r) and hence is zero, cf. Exercise 2.17.
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5.2.3. Proof of Theorem 5.11. We start with a finitary version of Theorem 5.11:

Lemma 5.12. Let B and Gi be as in Theorem 5.11. If S is a finite subset of B, then

there exists a nonzero λ(S) ∈ R` such that

∑̀
j=1

λ(S)jGj(X)v = 0,

for every (X, v) ∈ S.

Proof. The proof relies on taking direct sums of matrices. Write the set S as

S =
{

(X1, v1), . . . , (Xµ, vµ)
}
,

where each (X i, vi) ∈ B. Since B respects direct sums,

(X, v) = (⊕µν=1X
ν ,⊕µν=1v

ν) ∈ B.

Hence, there exists a nonzero λ(S) ∈ R` such that

0 =
∑̀
j=1

λ(S)jGj(X, v).

Since each Gj respects direct sums, the desired conclusion follows.

Proof of Theorem 5.11. The proof is essentially a compactness argument, based on

Lemma 5.12. Let B denote the unit sphere in R`.

To (X, v) ∈ B associate the set

Ω(X,v) =
{
λ ∈ B : λ ·G(X)v =

∑
j

λjGj(X, v) = 0
}
.

Since (X, v) ∈ B, the hypothesis on B says Ω(X,v) is nonempty. It is evident that

Ω(X,v) is a closed subset of B and is thus compact.

Let Ω := {Ω(X,v) : (X, v) ∈ B}. Any finite sub-collection from Ω has the form

{Ω(X,v) : (X, v) ∈ S} for some finite subset S of B, and so by Lemma 5.12 has a

nonempty intersection. In other words, Ω has the finite intersection property. The

compactness of B implies that there is a λ ∈ B which is in every Ω(X,v). This is the

desired conclusion of the theorem.
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5.3. Proof of the QuadratischePositivstellensatz. We are now ready to give the

proof of Theorem 4.5. Accordingly, let O be a given basic open semialgebraic set.

Suppose

q(x)[h] = V (x)[h]ᵀ Z(x)V (x)[h], (5.1)

where V is the border vector and Z is the middle matrix; cf. (4.7). Clearly, if Z is

matrix-positive on O, then q(X)[H] is positive semidefinite for each n, each X ∈ O(n)

and H ∈ (Sn×n)g.

The converse is less trivial and requires the CHSY Lemma plus our main result

on linear dependence of nc rational functions. Let ` denote the degree of q(x)[h] in

the variable x. In particular, the border vector in the representation of q(x)[h] itself

has degree ` in x. Recall σ` from Exercise 2.12.

Suppose for some s and g-tuple of symmetric matrices X̃ = (X̃1, . . . , X̃g) ∈ O(s),

the matrix Z(X̃) is not positive semidefinite. By Lemma 5.3 and Theorem 5.4, there is

an t, a Y ∈ O(t), and a vector η so that {m(Y )η : m ∈ <x>`} is linearly independent.

Let X = X̃ ⊕ Y and γ = 0 ⊕ η ∈ Rs+t. Then Z(X) is not positive semidefinite and

{m(X)γ : m ∈ <x>`} is linearly independent.

Let N = g κ(κ−1)
2

+ 1, where κ is given in Lemma 5.3 and let n = (s + t)N .

Consider W = X ⊗ IN = (X1 ⊗ IN , . . . , Xg ⊗ IN) and vector ω = γ ⊗ e, for any

nonzero vector e ∈ RN+1. The set {m(W )ω : m ∈ <x>`} is linearly independent

and thus by Lemma 5.3, the codimension of M = {V (W )[H]ω : H ∈ (Sn×n)g} is at

most N − 1. On the other hand, because Z(X) has a negative eigenvalue, the matrix

Z(W ) has an eigenspace E , corresponding to a negative eigenvalue, of dimension at

least N . It follows that E ∩M is nonempty; i.e., there is an H ∈ (Sn×n)g such that

V (W )[H]ω ∈ E . In particular, this together with (5.1) implies

〈q(W )[H]ω, ω〉 = 〈Z(W )V (W )[H]ω, V (W )ω〉 < 0

and thus, q(W )[H] is not positive semidefinite.

5.4. Exercises.

Exercise 5.2. Prove Lemma 5.2.

Exercise 5.3. Let A ∈ Rn×n be given. Show, if the rank of A is r, then the matrices

A,A2, . . . , Ar+1 are linearly dependent.

In the next exercise employ the Fock space (see Section 2.7) to prove a strength-

ening of Corollary 5.5 for nc polynomials.



48 HELTON, KLEP, AND MCCULLOUGH

Exercise 5.4. Suppose p1, . . . , p` ∈ R<x>k are nc polynomials. Show, if the set of

vectors

{p1(X)v, . . . , p`(X)v} (5.2)

is linearly dependent for every (X, v) ∈ (Sσ×σ)g×Rσ, where σ = σ(k) = dimR<x>k,

then {p1, . . . , p`} is linearly dependent.

Exercise 5.5. Redo Exercise 5.4 under the assumption that the vectors (5.2) are

linearly dependent for all (X, v) ∈ O × Rσ, where O ⊆ (Sσ×σ)g is a nonempty open

set.

For a more algebraic view of the linear dependence of nc polynomials we refer to

[BK+].

Exercise 5.6. Prove that f ∈ R<x> is a sum of squares if and only if it has a positive

semidefinite Gram matrix. Are then all of f ’s Gram matrices positive semidefinite?

6. NC varieties with positive curvature have degree two

This section looks at noncommutative varieties and their geometric properties.

We see a very strong rigidity when they have positive curvature which generalizes

what we have already seen about convex polynomials (their graph is a positively

curved variety) having degree two.

In the classical setting of a surface defined by the zero set

ν(p) = {x ∈ Rg : p(x) = 0}

of a polynomial p = p(x1, . . . , xg) in g commuting variables, the second fundamental

form at a smooth point x0 of ν(p) is the quadratic form,

h 7→ −〈(Hess p)(x0)h, h〉, (6.1)

where Hess p is the Hessian of p, and h ∈ Rg is in the tangent space to the surface

ν(p) at x0; i.e., ∇p(x0) · h = 0.3

We shall show that in the noncommutative setting that the zero set V(p) of

a noncommutative polynomial p (subject to appropriate irreducibility constraints)

3The choice of the minus sign in (6.1) is somewhat arbitrary. Classically the sign of the second

fundamental form is associated with the choice of a smoothly varying vector that is normal to ν(p).

The zero set ν(p) has positive curvature at x0 if the second fundamental form is either positive

semidefinite or negative semidefinite at x0. For example, if we define ν(p) using a concave function

p, then the second fundamental form is negative semidefinite, while for the same set ν(−p) the

second fundamental form is positive semidefinite.
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having positive curvature (even in a small neighborhood) implies that p is convex -

and thus, p has degree at most two - and V(p) has positive curvature everywhere; see

Theorem 6.4 for the precise statements.

In fact there is a natural notion of the signature C±(V(p)) of a variety V(p) and

the bound

deg(p) ≤ 2C±(V(p)) + 2

on the degree of p in terms of the signature C±(V(p)) was obtained in [DHM07b].

The convention that C+(V(p)) = 0 corresponds to positive curvature, since in our

examples, defining functions p are typically concave or quasiconcave. One could

consider characterizing p for which C±(V(p)) satisfies less restrictive hypothesis than

equal zero and this has been done to some extent in [DGHM09]; however, this higher

level of generality is beyond our focus here. Since our goal is to present the basic

ideas, we stick to positive curvature.

6.1. NC varieties and their curvature. We next define a number of basic geo-

metric objects associated to the nc variety determined by an nc polynomial p.

6.1.1. Varieties, tangent planes, and the second fundamental form. The variety (zero

set) of a p ∈ R<x> is

V(p) :=
⋃
n≥1

Vn(p),

where

Vn(p) :=
{

(X, v) ∈ (Sn×n)g × Rn : p(X)v = 0
}
.

The clamped tangent plane to V(p) at (X, v) ∈ Vn(p) is

Tp(X, v) := {H ∈ (Sn×n)g : p′(X)[H]v = 0}.

The clamped second fundamental form for V(p) at (X, v) ∈ Vn(p) is the quadratic

form

Tp(X, v)→ R, H 7→ −〈p′′(X)[H]v, v〉.
Note that

{X ∈ (Sn×n)g : (X, v) ∈ V(p) for some v 6= 0} = {X ∈ (Sn×n)g : det(p(X)) = 0}

is a variety in (Sn×n)g and typically has a true (commutative) tangent plane at many

points X, which of course has codimension one, whereas the clamped tangent plane

at a typical point (X, v) ∈ Vn(p) has codimension on the order of n and is contained

inside the true tangent plane.
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6.1.2. Full rank points. The point (X, v) ∈ V(p) is a full rank point of p if the mapping

(Sn×n)g → Rn, H 7→ p′(X)[H]v

is onto. The full rank condition is a nonsingularity condition which amounts to a

smoothness hypothesis. Such conditions play a major role in real algebraic geometry,

see [BCR98, §3.3].

As an example, consider the classical real algebraic geometry case of n = 1

(and thus X ∈ Rg) with the commutative polynomial p̌ (which can be taken to

be the commutative collapse of the polynomial p). In this case, a full rank point

(X, 1) ∈ Rg × R is a point at which the gradient of p̌ does not vanish. Thus, X is a

nonsingular point for the zero variety of p̌.

Some perspective for n > 1 is obtained by counting dimensions. If (X, v) ∈
(Sn×n)g ×Rn, then H 7→ p′(X)[H]v is a linear map from the g(n2 +n)/2 dimensional

space (Sn×n)g into the n dimensional space Rn. Therefore, the codimension of the

kernel of this map is no bigger than n. This codimension is n if and only if (X, v) is

a full rank point and in this case the clamped tangent plane has codimension n.

6.1.3. Positive curvature. As noted earlier, a notion of positive (really nonnegative)

curvature can be defined in terms of the clamped second fundamental form.

The variety V(p) has positive curvature at (X, v) ∈ V(p) if the clamped second

fundamental form is nonnegative at (X, v); i.e., if

−〈p′′(X)[H]v, v〉 ≥ 0 for every H ∈ Tp(X, v) .

6.1.4. Irreducibility: The minimum degree defining polynomial condition. While there

is no tradition of what is an effective notion of irreducibility for nc polynomials, there

is a notion of minimal degree nc polynomial which is appropriate for the present

context. In the commutative case the polynomial p̌ on Rg is a minimal degree defining

polynomial for ν(p̌) if there does not exist a polynomial q of lower degree such that

ν(p̌) = ν(q). This is a key feature of irreducible polynomials.

Definition 6.1. A symmetric nc polynomial p is a minimum degree defining poly-

nomial for a nonempty set S ⊆ V(p) if whenever q 6= 0 is another (not necessarily

symmetric) nc polynomial such that q(X)v = 0 for each (X, v) ∈ S, then

deg(q) ≥ deg(p).

Note this contrasts with [DHM07a], where minimal degree meant a slightly weaker

inequality holds.
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The reader who is so inclined can simply choose S = V(p) or S equal to the full

rank points of V(p).

Now we give an example to illustrate these ideas.

6.2. A very simple example. In the following example, the null space

T = Tp(X, v) = {H ∈ (Sn×n)g : p′(X)[H]v = 0}

is computed for certain choices of p, X, and v. Recall that if p(X)v = 0, then the

subspace T is the clamped tangent plane introduced in Subsection 6.1.1.

Example 6.2. Let X ∈ Sn×n, v ∈ Rn, v 6= 0, let p(x) = xk for some integer k ≥ 1.

Suppose that (X, v) ∈ V(p), that is, Xkv = 0. Then, since

Xkv = 0⇐⇒ Xv = 0 when X ∈ Sn×n,

it follows that p is a minimum degree defining polynomial for V(p) if and only if k = 1.

It is readily checked that

(X, v) ∈ V(p) =⇒ p′(X)[H]v = Xk−1Hv,

and hence that X is a full rank point for p if and only if X is invertible.

Now suppose k ≥ 2. Then,

〈p′′(X)[H]v, v〉 = 2〈HXk−2Hv, v〉.

Therefore, if k > 2

(X, v) ∈ V(p) and p′(X)[H]v = 0 =⇒ XHv = 0, and so

〈p′′(X)[H]v, v〉 = 0.

To count the dimension of T we can suppose without loss of generality that

X =

[
0 0

0 Y

]
and v =

[
1 0 · · · 0

]ᵀ
,

where Y ∈ S(n−1)×(n−1) is invertible. Then, for the simple case under consideration,

T = {H ∈ Sn×n : h21, . . . , hn1 = 0},

where hij denotes the ij entry of H. Thus,

dim T =
n2 + n

2
− (n− 1), i.e., codim T = n− 1.

�
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Remark 6.3. We remark that

Xkv = 0 and 〈p′′(X)[H]v, v〉 = 0 =⇒ p′(X)[H]v = 0 if k = 2t ≥ 4,

as follows easily from the formula

〈p′′(X)[H]v, v〉 = 2〈X t−1Hv,X t−1Hv〉.

Exercise 6.1. Let A ∈ Sn×n and let U be a maximal strictly negative subspace of

Rn with respect to the quadratic form 〈Au, u〉. Prove: there exists a complementary

subspace V of U in Rn such that 〈Av, v〉 ≥ 0 for every v ∈ V .

6.3. Main Result: Positive curvature and the degree of p.

Theorem 6.4. Let p be a symmetric nc polynomial in g symmetric variables, let O
be a nc basic open semialgebraic set and let S denote the full rank points of p in

V(p) ∩ O. If

(1) S is nonempty;

(2) V(p) has positive curvature at each point of S; and

(3) p is a minimum degree defining polynomial for S,

then deg(p) is at most two and p is concave.

6.4. Ideas and proofs. Our aim is to give the idea behind the proof of Theorem

6.4 under much stronger hypotheses. We saw earlier the positivity of a quadratic on

a nc basic open set O imparts positivity to its MM there. The following shows this

happens for thin sets (nc varieties) too. Thus, the following theorem generalizes the

QuadratischePositivstellensatz, Theorem 4.5.

Theorem 6.5. Let p,O,S be as in Theorem 6.4. Let q(x)[h] be a polynomial which

is quadratic in h having MM representation q = V ᵀZV for which deg(V ) ≤ deg(p).

If

vᵀq(X)[H]v ≥ 0 for all (X, v) ∈ S and all H, (6.2)

then Z(X) is positive semidefinite for all X with (X, v) ∈ S.

Proof. The proof of this theorem follows the proof of the QuadratischePositivstellen-

satz, modified to take into account the set S.

Suppose for each (X, v) ∈ S there is a linear combination G(X,v)(x) of the words

{m(x) : deg(m) < deg(p)} with G(X,v)(X)v = 0 for all (X, v) ∈ S. Then by Theorem

5.11 (note that S is closed under direct sums), there is a linear combination G ∈
R<x>deg(p)−1 with G(X)v = 0. However, this is absurd by the minimality of p. Hence

there is an (Y, v) ∈ S such that {m(Y )v : deg(m) < deg(p)} is linearly independent.
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Assume for some g-tuple of symmetric matrices X̃ = (X̃1, . . . , X̃g), there is a

vector ṽ such that (X̃, ṽ) ∈ S, and the matrix Z(X̃) is not positive semidefinite. Let

X = X̃ ⊕ Y and γ = ṽ ⊕ v. Then (X, γ) ∈ S(`) for some `; the matrix Z(X) is not

positive semidefinite; and {m(X)γ : deg(m) < deg(p)} is linearly independent.

Let N = g κ(κ−1)
2

+ 1, where κ is given in Lemma 5.3 and let n = `N . Consider

W = X ⊗ IN = (X1 ⊗ IN , . . . , Xg ⊗ IN) and vector ω = γ ⊗ e, where e ∈ RN is the

vector with each entry equal to 1. Then, (W,ω) ∈ S(n), and the set {m(W )ω : m ∈
<x>`} is linearly independent and thus by Lemma 5.3, the codimension of M =

{V (W )[H]ω : H ∈ (Sn×n)g} is at most N − 1. On the other hand, because Z(X)

has a negative eigenvalue, the matrix Z(W ) has an eigenspace E , corresponding to a

negative eigenvalue, of dimension at least N . It follows that E ∩M is nonempty; i.e.,

there is an H ∈ (Sn×n)g such that V (W )[H]ω ∈ E . In particular,

〈q(W )[H]ω, ω〉 = 〈Z(W )V (W )[H]ω, V (W )ω〉 < 0

and thus, q(W )[H] is not positive semidefinite.

6.4.1. The modified Hessian. Our main tool for analyzing the curvature of noncom-

mutative varieties is a variant of the Hessian for symmetric nc polynomials p. The

curvature of V(p) is defined in terms of Hess (p) compressed to tangent planes, for

each dimension n. This compression of the Hessian is awkward to work with directly,

and so we associate to it a quadratic polynomial q(x)[h] carrying all of the informa-

tion of p′′ compressed to the tangent plane, but having the key property (6.2). We

shall call this q we construct the relaxed Hessian. The first step in constructing the

relaxed Hessian is to consider the simpler modified Hessian

p′′λ,0(x)[h] := p′′(x)[h] + λ p′(x)[h]ᵀp′(x)[h].

which captures the conceptual idea. Suppose X ∈ (Sn×n)g and v ∈ Rn. We say that

the modified Hessian is negative at (X, v) if there is a λ0 < 0, so that for all λ ≤ λ0,

0 ≤ −〈p′′λ,0(X)[H]v, v〉

for all H ∈ (Sn×n)g. Given a subset S = (S(n))∞n=1, with S(n) ⊆ (Sn×n)g × Rn, we

say that the modified Hessian is negative on S if it is negative at each (X, v) ∈ S.

Now we turn to motivation.

Example 6.6. The classical n = 1 case. Suppose that p is strictly smoothly quasi-

concave, meaning that all superlevel sets of p are strictly convex with strictly pos-

itively curved smooth boundary. Suppose that the gradient ∇p (written as a row

vector) never vanishes on Rg. Then G = ∇p(∇p)ᵀ is strictly positive, at each point
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X in Rg. Fix such an X; the modified Hessian can be decomposed as a block ma-

trix subordinate to the tangent plane to the level set at X, denoted TX , and to its

orthogonal complement (the gradient direction):

TX ⊕ {λ∇p : λ ∈ R}.

In this decomposition the modified Hessian has the form

R =

[
A B

Bᵀ D + λG

]
.

Here, in the case of λ = 0, R is the Hessian and the second fundamental form is A or

−A, depending on convention and the rather arbitrary choice of inward or outward

normal to ν. If we select our normal direction to be ∇p, then −A is the classical

second fundamental form as is consistent with the choice of sign in our definition in

Subsection 6.1.3. (All this concern with the sign is unimportant to the content of this

chapter and can be ignored by the reader.)

Next, in view of the presumed strict positive curvature of each level set ν, the

matrix A at each point of ν is negative definite but the Hessian could have a negative

eigenvalue. However, by standard Schur complement arguments, R will be negative

definite if

D + λG−BᵀA−1B ≺ 0

on this region. Thus, strict convexity assumptions on the sublevel sets of p make the

modified Hessian negative definite for negative enough λ. One can make this negative

definiteness uniform in X in various neighborhoods under modest assumptions. �

Very unfortunately in the noncommutative case, Remark 6.8 [DHM+] implies

that if n is large enough, then the second fundamental form will have a nonzero

null space, thus strict negative definiteness of the A part of the modified Hessian is

impossible.

Our trick, to deal with the likely reality that A is only positive semidefinite,

and obtain a negative definite R, is to add another negative term, say δI, with

arbitrarily small δ < 0. After adding such δ, the argument based on choosing −λ
large succeeds as before. This δ term plus the λ term produces the “relaxed Hessian”,

to be introduced next, and proper selection of these terms make it negative definite.

6.4.2. The relaxed Hessian. Recall Let Vk(x)[h] denotes the vector of polynomials

with entries hjw(x), where w ∈ <x> runs through the set of gk words of length

k, j = 1, . . . , g. Although the order of the entries is fixed in some of our earlier
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applications (see e.g. [DHM07b, (2.3)]) it is irrelevant for the moment. Thus, Vk =

Vk(x)[h] is a vector of height gk+1, and the vectors

V (x)[h] = col(V0, . . . , Vd−2) and Ṽ (x)[h] = col(V0, . . . , Vd−1)

are vectors of height gσ(d− 2) and gσ(d− 1) respectively. Note that

Ṽ (x)[h]ᵀṼ (x)[h] =

g∑
j=1

∑
deg(w)≤d−1

w(x)ᵀh2
jw(x).

The relaxed Hessian of the symmetric nc polynomial p of degree d is defined to

be

p′′λ,δ(x)[h] := p′′λ,0(x)[h] + δ Ṽ (x)[h]ᵀṼ (x)[h] ∈ R<x>[h].

Suppose X ∈ (Sn×n)g and v ∈ Rn. We say that the relaxed Hessian is negative at

(X, v) if for each δ < 0 there is a λδ < 0, so that for all λ ≤ λδ,

0 ≤ −〈p′′λ,δ(X)[H]v, v〉

for all H ∈ (Sn×n)g. Given a S = (S(n))∞n=1, with S(n) ⊆ (Sn×n)g × Rn, we say that

the relaxed Hessian is positive (resp., negative) on S if it is positive (resp., negative)

at each (X, v) ∈ S.

The following theorem provides a link between the signature of the clamped

second fundamental form with that of the relaxed Hessian.

Theorem 6.7. Suppose p is a symmetric nc polynomial of degree d in g symmetric

variables and (X, v) ∈ (Sn×n)g×Rn. If V(p) has positive curvature at (X, v) ∈ Vn(p),

i.e., if

〈p′′(X)[H]v, v〉 ≤ 0 for every H ∈ Tp(X, v),

then for every δ < 0 there exists a λδ < 0 such that for all λ ≤ λδ,

〈p′′λ,δ(X)[H]v, v〉 ≤ 0 for every H ∈ (Sn×n)g;

i.e., the relaxed Hessian of p is negative at (X, v).

We leave the proof of Theorem 6.7 to the reader.

The basic idea of the proof of Theorem 6.4, is to obtain a negative relaxed Hessian

q from Theorem 6.7 and then apply Theorem 6.5. We begin with the following lemma.

Lemma 6.8. Suppose R and T are operators on a finite dimensional Hilbert space

H = K⊕L. Suppose further that, with respect to this decomposition of H, the operator

R = CCᵀ for

C =

[
r

c

]
: L→ K ⊕ L and T =

[
T0 0

0 0

]
.
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If c is invertible and if for every δ > 0 there is a η > 0 such that for all λ > η,

T + δI + λR � 0,

then T � 0.

Proof. Write

T + δI + λR =

[
T0 + δI + λrrᵀ λrcᵀ

λcrᵀ δ + λccᵀ

]
.

From Schur complements it follows that

T0 + δI + r(λ− λ2cᵀ(δ + λccᵀ)−1c)rᵀ � 0.

Now

r(λ− λ2cᵀ(δ + λccᵀ)−1c)rᵀ = λrcᵀ((ccᵀ)−1 − λ(δ + λccᵀ)−1)crᵀ

= λrcᵀδ(ccᵀ)−1(δ + λ(ccᵀ))−1crᵀ

� δr(ccᵀ)−1rᵀ.

Hence,

T0 + δI + δr(ccᵀ)−1rᵀ � 0.

Since the above inequality holds for all δ > 0, it follows that T0 � 0.

We now have enough machinery developed to prove Theorem 6.4.

Proof of Theorem 6.4. Fix λ, δ > 0 and consider q(x)[h] = −p′′λ,δ(x)[h]. We are led to

investigate the middle matrix Zλ,δ of q(x)[h], whose border vector V (x)[h] includes

all monomials of the form hjm, where m is a word in x only of length at most d− 1;

here d is the degree of p. Indeed,

Zλ,δ = Z + δI + λW,

where Z is the middle matrix for−p′′(x)[h], andW is the middle matrix for p′(x)[h]ᵀp′(x)[h].

With an appropriate choice of ordering for the border vector V , we have, W = CCᵀ,

where

C(x) =

[
w(x)

c

]
,

for a nonzero vector c; and at the same time,

Z(x) =

[
Z0,0(x) 0

0 0

]
.
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By the curvature hypothesis at a given X with (X, v) ∈ S, Theorem 6.7 implies

for every δ > 0 there is an η > 0 such that if λ > η

〈q(X)[H]v, v〉 ≥ 0 for all (X, v) ∈ S and all H.

Hence, by Theorem 6.5, the middle matrix, Zλ,δ(X) for q(x)[h] is positive semidefinite.

We are in the setting of Lemma 6.8 from which we obtain Z0,0(X) � 0. If this held for

X in a nc basic open semi-algebraic set, then Theorem 4.11 forces p to have degree no

greater than 2. The proof of that theorem applies easily here to finish this proof.

6.5. Exercises.

Exercise 6.2. Compute the BV-MM representation for the relaxed Hessian of x3 and

x4.

7. Convex semialgebraic nc sets

In this section we will give a brief overview of convex semialgebraic nc sets and

positivity of nc polynomials on them. We shall see that their structure is much more

rigid than that of their commutative counterparts. For example, roughly speaking,

each convex semialgebraic nc set is a spectrahedron; i.e., a solution set of a linear

matrix inequality (cf. Section 7.1 below). Similarly, every nc polynomial nonnegative

on a spectrahedron admits a sum of squares representation with weights and optimal

degree bounds (see Section 7.2 for details and precise statements).

7.1. nc Spectrahedra. Let L be an affine linear pencil. Then the solution set of

the linear matrix inequality (LMI) L(x) � 0 is

DL =
⋃
n∈N

{
X ∈ (Sn×n)g : L(X) � 0

}
,

and is called a nc spectrahedron. The set DL is convex in the sense that each

DL(n) :=
{
X ∈ (Sn×n)g : L(X) � 0

}
is convex. It is also a noncommutative basic open semialgebraic set as defined in

Section 2.1.2 above. The main theorem of this section is the converse, a result which

has implications for both semidefinite programming and systems engineering.

Most of the time we will focus on monic linear pencils. An affine linear pencil L

is called monic if L(0) = I, i.e., L(x) = I + A1x1 + · · · + Agxg. Since we are mostly

interested in the set DL, there is no harm in reducing to this case whenever DL 6= ∅;
see Exercise 7.1.
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Let p ∈ Rδ×δ<x> be a given symmetric noncommutative δ × δ-valued matrix

polynomial. Assuming that p(0) � 0, the positivity set Dp(n) of a noncommutative

symmetric polynomial p in dimension n is the component of 0 of the set

{X ∈ (Sn×n)g : p(X) � 0}.

The positivity set, Dp, is the sequence of sets (Dp(n))n∈N. The noncommutative set

Dp is called convex if, for each n, Dp(n) is convex.

Theorem 7.1 (Helton-McCullough [HM+]). Fix p a δ× δ symmetric matrix of poly-

nomials in noncommuting variables. Assume

(1) p(0) is positive definite;

(2) Dp is bounded; and

(3) Dp is convex.

Then there is a monic linear pencil L such that

DL = Dp.

Here we shall confine ourselves to a few words about the techniques involved in

the proof, and refer the reader to [HM+] for the full proof. Since we are dealing

with matrix convex sets, it is not surprising that the starting point for our analysis is

the matricial version of the Hahn-Banach Separation theorem of Effros and Winkler

[EW97] which (itself a part of the theory of operator spaces and completely positive

maps [BL04, Pa02, Pi03]) says that given a point x not inside a matrix convex set

there is a (finite) linear matrix inequality which separates x from the set. For a

general matrix convex set C, the conclusion is then that there is a collection, likely

infinite, of finite LMIs which cut out C.
In the case C is matrix convex and also semialgebraic, the challenge is to prove

that there is actually a finite collection of (finite) LMIs which define C. The techniques

used to meet this challenge have little relation to the methods of noncommutative

calculus and positivity in the previous sections. Indeed a basic tool (of independent

interest) is a degree bounded type of free Zariski closure of a single point (X, v) ∈
(Sn×n)g × Rn,

Zd(X, v) :=
⋃
m

{(Y,w) ∈ (Sm×m)g × Rm : q(Y )w = 0 if q(X)v = 0, q ∈ R<x>d}.

Chief among a pleasant list of natural properties is the fact that there is an (X, v)

with X ∈ ∂Dp and p(X)v = 0 for which Zd(X, v) contains all pairs (Y,w) such that

Y ∈ ∂Dp and p(Y )w = 0. Combining this with the Effros-Winkler Theorem and
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battling degeneracies is a bit tricky, but voila separation prevails in the end. See

[HM+] for the details.

An unexpected consequence of Theorem 7.1 is that projections of noncommuta-

tive semialgebraic sets may not be semialgebraic, see Exercise 7.2. For perspective,

in the commutative case of a basic open semialgebraic subset C of Rg, there is a strin-

gent condition, called the “line test”, which, in addition to convexity, is necessary for

C to be a spectrahedron. In two dimensions the line test is necessary and sufficient

[HV07], a result used by Lewis-Parrilo-Ramana [LPR05] to settle a 1958 conjecture

of Peter Lax on hyperbolic polynomials.

In summary, if a (commutative) bounded basic open semialgebraic convex set is

a spectrahedron, then it must pass the highly restrictive line test; whereas a nc basic

open semialgebraic set is a spectrahedron if and only if it is convex.

7.2. Noncommutative Positivstellensätze under convexity assumptions. An

algebraic certificate for positivity of a polynomial p on a semialgebraic set S is a

Positivstellensatz. The familiar fact that a polynomial p in one-variable which is

positive on R is a sum of squares is an example.

The theory of Positivstellensätze - a pillar of the field of real algebraic geometry

- underlies the main approach currently used for global optimization of polynomials.

See [Las10] or Chapter ?? of Parrilo for a beautiful treatment of this, and other,

applications of commutative real algebraic geometry. Further, because convexity of a

polynomial p on a set S is equivalent to positivity of the Hessian of p on S, this theory

also provides a link between convexity and semialgebraic geometry. Indeed, this link

in the noncommutative setting ultimately lead to the conclusion the a matrix convex

noncommutative polynomial has degree at most two, cf. Section 4.4.

In this section we give a result of opposite type. We present a noncommutative

Positivstellensatz for a polynomial to be nonnegative on a convex semialgebraic nc

set (i.e., on a spectrahedron). Again, this result is cleaner and more rigid than the

commutative counterparts (cf. Theorem 2.6).

Theorem 7.2 ([HKM++]). Suppose L is a monic linear pencil. Then a noncommu-

tative polynomial p is positive semidefinite on DL if and only if it has a weighted sum

of squares representation with optimal degree bounds. Namely,

p = sᵀs+
finite∑
j

fᵀj Lfj, (7.1)

where s, fj are vectors of noncommutative polynomials of degree no greater than deg(p)
2

.
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The main ingredient of the proof is an analysis of rank preserving extensions of

truncated noncommutative Hankel matrices; see [HKM++] for details. We point out

that with L = 1, Theorem 7.2 recovers Theorem 2.6.

Theorem 7.2 contrasts sharply with the commutative setting, where the degrees

of s, fj are vastly greater than deg(p) and assuming only p nonnegative yields a clean

Positivstellensatz so seldom that the cases are noteworthy.

7.3. Exercises.

Exercise 7.1. Suppose L is an affine linear pencil such that 0 ∈ DL(1). Show that

there is a monic linear pencil Ľ with DL = DĽ.

Exercise 7.2. Chapters ?? and ?? discuss sets D ⊆ Rg which have a semidefinite

representation as a strict generalization of a spectrahedron. For instance, consider

the TV screen (cf. Section 2.1.2)

ncTV(1) = {X ∈ R2 : 1−X4
1 −X4

2 > 0} ⊆ R2

and the monic pencil

L(x, y) =

[
1 x1

x1 y1

]
⊕
[

1 x2

x2 y2

]
⊕
[
1 + y1 y2

y2 1− y1

]
.

It is readily verified that ncTV(1) is the projection, onto the first two (the x) coordi-

nates of the set DL(1); i.e.,

ncTV(1) = {X ∈ R2 : ∃Y ∈ R2 L(X, Y ) � 0}.

(1) Show that ncTV(1) is not a spectrahedron. (Hint: How often is LTV(tX, tY ) for

t ∈ R singular?)

(2) Show that ncTV is not the projection of the nc spectrahedron DL.

(3) Show that ncTV is not the projection of any nc spectrahedron.

(4) Is ncTV(2) a projection of a spectrahedron? (Feel free to use the results about

ncTV and LMI representable sets (spectrahedra), stated without proofs, from

Section 2.1.2 and Section 7.1.)

Exercise 7.3. Suppose f ∈ R[x] is a real univariate polynomial nonnegative on R.

Prove that there are g, h ∈ R[x] with f = g2 + h2.

Exercise 7.4. If q is a symmetric concave matrix-valued polynomial with q(0) = I,

then there exists a linear pencil L and a matrix-valued linear polynomial Λ such that

q = I − L− ΛᵀΛ.
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Exercise 7.5. Consider the monic linear pencil

M(x) =

[
1 x

x 1

]
.

(1) Determine DM .

(2) Show that 1 + x is positive semidefinite on DM .

(3) Construct a representation for 1 + x of the form (7.1).

Exercise 7.6. Consider the univariate affine linear pencil

L(x) =

[
1 x

x 0

]
.

(1) Determine DL.

(2) Show that x is positive semidefinite on DL.

(3) Does x admit a representation of the form (7.1)?

Exercise 7.7. Let L be an affine linear pencil. Prove that:

(1) DL is bounded if and only if DL(1) is bounded;

(2) DL = ∅ if and only if DL(1) = ∅.

Exercise 7.8. Let L = I + A1x1 + · · · + Agxg be a monic linear pencil and assume

that DL(1) is bounded. Show that I, A1, . . . , Ag are linearly independent.

Exercise 7.9. Let

∆(x1, x2) = I +

0 1 0

1 0 0

0 0 0

x1 +

0 0 1

0 0 0

1 0 0

x2 =

 1 x1 x2

x1 1 0

x2 0 1


and

Γ(x1, x2) = I +

[
1 0

0 −1

]
x1 +

[
0 1

1 0

]
x2 =

[
1 + x1 x2

x2 1− x1

]
be affine linear pencils. Show:

(1) D∆(1) = DΓ(1).

(2) DΓ(2) ( D∆(2).

(3) Is D∆ ⊆ DΓ? What about DΓ ⊆ D∆?

Exercise 7.10. Let L = A1x1 + · · · + Agxg ∈ Sd×d<x> be a (homogeneous) linear

pencil. Then the following are equivalent:

(i) DL(1) 6= ∅;
(ii) If u1, . . . , um ∈ Rd with

∑m
i=1 u

ᵀ
iL(x)ui = 0, then u1 = · · · = um = 0.
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[BK+] M. Brešar, I. Klep: A local-global principle for linear dependence of noncommutative

polynomials, to appear in the Israel J. Math., http://arxiv.org/abs/1103.1884 47

[CKP10] K. Cafuta, I. Klep, J. Povh: A note on the nonexistence of sum of squares certificates

for the Bessis-Moussa-Villani conjecture, J. math. phys. 51 (2010) 083521 7

[CKP11] K. Cafuta, I. Klep, J. Povh: NCSOStools: a computer algebra system for symbolic and

numerical computation with noncommutative polynomials, Optim. Methods Softw. 26

(2011) 363–380 29

[CHSY03] J.F. Camino, J.W. Helton, R.E. Skelton, J. Ye: Matrix inequalities: A symbolic pro-

cedure to determine convexity automatically, Integral Equations and Operator Theory

46 (2003) 399–454 28, 33, 41, 42

[Coh95] P.M. Cohn: Skew fields. Theory of general division rings, Cambridge University Press,

1995 18, 21, 26

[Coh06] P.M. Cohn: Free ideal rings and localization in general rings, Cambridge University

Press, 2006 18, 26

[DLTW08] A.C. Doherty, Y.-C. Liang, B. Toner, S. Wehner: The quantum moment problem and

bounds on entangled multi-prover games. In Twenty-Third Annual IEEE Conference

on Computational Complexity (2008) 199–210 7

[dOHMP09] M. de Oliviera, J.W. Helton, S. McCullough, M. Putinar: Engineering Systems and

Free Semi-Algebraic Geometry, In: Emerging Applications of Algebraic Geometry, 17–

62, IMA Vol. Math. Appl. 149, Springer-Verlag, 2009 2, 6, 8

[DGHM09] H. Dym, J.M. Greene, J.W. Helton, S. McCullough: Classification of all noncommu-

tative polynomials whose Hessian has negative signature one and a noncommutative

second fundamental form, J. Anal. Math. 108 (2009) 19–59 38, 48

[DHM07a] H. Dym, J.W. Helton, S. McCullough: Irreducible noncommutative defining polynomi-

als for convex sets have degree four or less, Indiana Univ. Math. J. 56 (2007) 1189–1232

11, 50

[DHM07b] H. Dym, J.W. Helton, S. McCullough: The Hessian of a Non-commutative Polynomial

has Numerous Negative Eigenvalues, J. Anal. Math. 102 (2007) 29–76 48, 54

[DHM+] H. Dym, J.W. Helton, S. McCullough: Noncommutative varieties with curvature having

bounded signature, to appear in the Illinois Math J. 54

[EW97] E.G. Effros, S. Winkler: Matrix convexity: operator analogues of the bipolar and

Hahn-Banach theorems, J. Funct. Anal. 144 (1997) 117–152 58

[GHV+] J.M. Greene, J.W. Helton, V. Vinnikov: Noncommutative Plurisubharmonic Polyno-

mials Part I: Global Assumptions, preprint http://arxiv.org/abs/1101.0107 26

[HHLM08] D.M. Hay, J.W. Helton, A. Lim, S. McCullough: Non-commutative partial matrix

convexity, Indiana Univ. Math. J. 57 (2008) 2815–2842 7

http://arxiv.org/abs/1103.1884
http://ncsostools.fis.unm.si/
http://arxiv.org/abs/1101.0107


FREE CONVEXITY 63

[Hel02] J.W. Helton: “Positive” noncommutative polynomials are sums of squares, Ann. of

Math. (2) 156 (2002) 675–694 1, 15

[HKM10a] J.W. Helton, I. Klep, S. McCullough: Analytic mappings between noncommutative

pencil balls, J. Math. Anal. Appl. 376 (2011) 407–428 1, 18

[HKM10b] J.W. Helton, I. Klep, S. McCullough: Proper Analytic Free Maps, J. Funct. Anal. 260

(2011) 1476–1490 1, 18

[HKM10c] J.W. Helton, I. Klep, S. McCullough: Relaxing LMI Domination Matricially, In 49th

IEEE Conference on Decision and Control (2010) 3331–3336 1

[HKM11] J.W. Helton, I. Klep, S. McCullough: Convexity and Semidefinite Programming in

dimension-free matrix unknowns, In: Handbook of Semidefinite, Cone and Polynomial

Optimization edited by M. Anjos and J. B. Lasserre, Springer-Verlag, 2011 8

[HKM+] J.W. Helton, I. Klep, S. McCullough: The matricial relaxation of a linear matrix

inequality, preprint http://arxiv.org/abs/1003.0908 1

[HKM++] J.W. Helton, I. Klep, S. McCullough: The convex Positivstellensatz in a free algebra,

preprint http://arxiv.org/abs/1102.4859 1, 59

[HKMS09] J.W. Helton, I. Klep, S. McCullough, N. Slinglend: Noncommutative ball maps, J.

Funct. Anal. 257 (2009) 47–87 1

[HMe98] J.W. Helton, O. Merino: Sufficient conditions for optimization of matrix functions. In

37th IEEE Conference on Decision and Control (1998) 3361–3365 38

[HM04a] J.W. Helton, S. McCullough: Convex noncommutative polynomials have degree two or

less, SIAM J. Matrix Anal. Appl. 25 (2004) 1124–1139 38

[HM04b] J.W. Helton, S. McCullough: A Positivstellensatz for noncommutative polynomials,

Trans. Amer. Math. Soc. 356 (2004) 3721–3737 7

[HM+] J.W. Helton, S. McCullough: Every free basic convex semialgebraic set has an LMI

representation, preprint http://arxiv.org/abs/0908.4352 1, 11, 57, 58

[HMP04] J.W. Helton, S. McCullough, M. Putinar: A non-commutative Positivstellensatz on

isometries, J. Reine Angew. Math. 568 (2004) 71–80 1

[HMPV09] J.W. Helton, S. McCullough, M. Putinar, V. Vinnikov: Convex matrix inequalities

versus linear matrix inequalities, IEEE Trans. Automat. Control 54 (2009) 952–964 8

[HMV06] J.W. Helton, S. McCullough, V. Vinnikov: Noncommutative convexity arises from

linear matrix inequalities, J. Funct. Anal. 240 (2006) 105–191 18, 21

[HOMS+] J.W. Helton, M. de Oliveira, R.L. Miller, M. Stankus: NCAlgebra: A Mathematica

package for doing non commuting algebra, available from

http://www.math.ucsd.edu/~ncalg/ 27

[HP07] J.W. Helton, M. Putinar: Positive Polynomials in Scalar and Matrix Variables, the

Spectral Theorem and Optimization, In: Operator theory, structured matrices, and

dilations, Theta Ser. Adv. Math., 7 (2007) 229–306 8

[HV07] J.W. Helton, V. Vinnikov: Linear matrix inequality representation of sets, Comm. Pure

Appl. Math. 60 (2007) 654–674 11, 58
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