
THE CONVEX POSITIVSTELLENSATZ IN A FREE ALGEBRA

J. WILLIAM HELTON1, IGOR KLEP2, AND SCOTT MCCULLOUGH3

Abstract. Given a monic linear pencil L in g variables, let PL = (PL(n))n∈N where

PL(n) :=
{
X ∈ Sgn | L(X) � 0

}
,

and Sgn is the set of g-tuples of symmetric n × n matrices. Because L is a monic linear

pencil, each PL(n) is convex with interior, and conversely it is known that convex bounded

noncommutative semialgebraic sets with interior are all of the form PL. The main result of

this paper establishes a perfect noncommutative Nichtnegativstellensatz on a convex semial-

gebraic set. Namely, a noncommutative matrix-valued polynomial p is positive semidefinite

on PL if and only if it has a weighted sum of squares representation with optimal degree

bounds:

p = s∗s +

finite∑
j

f∗j Lfj ,

where s, fj are matrices of noncommutative polynomials of degree no greater than deg(p)
2 .

This noncommutative result contrasts sharply with the commutative setting, where there is

no control on the degrees of s, fj and assuming only p nonnegative, as opposed to p strictly

positive, yields a clean Positivstellensatz so seldom that such cases are noteworthy.

1. Introduction

A Positivstellensatz is an algebraic certificate for a given polynomial p to have a specific

positivity property and such theorems date back in some form for over one hundred years for

conventional (commutative) polynomials, cf. [BCR98, Las10, Lau09, Mar08, PD01, Sce09].

Positivstellensätze for polynomials in noncommuting variables are creatures of this century -

Date: June 12, 2012.

2010 Mathematics Subject Classification. Primary 14P10, 46L07; Secondary 46N10, 13J30, 47A57.
Key words and phrases. free convexity, linear matrix inequality, Positivstellensatz, free real algebraic

geometry, moment problem, free positivity.
1Research supported by NSF grants DMS-0700758, DMS-0757212, and the Ford Motor Co.
2Research supported by the Slovenian Research Agency grants J1-3608 and P1-0222. Partly supported

by the Mathematisches Forschungsinstitut Oberwolfach Research in Pairs RiP program. Partly supported

by the program “free spaces for creativity” at the University of Konstanz. The author thanks Markus

Schweighofer for valuable discussions.
3Research supported by NSF grants DMS-0758306 and DMS-1101137.

1



2 HELTON, KLEP, AND MCCULLOUGH

see [HKM12, HM04a, KS07, PNA10, DLTW08]; for software equipped to dealing with posi-

tive noncommutative polynomials we refer to [HOSM+, CKP11]. Often in the noncommu-

tative setting such theorems have cleaner statements than their commutative counterparts.

For instance, a multivariate (commutative) polynomial on Rg which is pointwise nonnegative

need not be a sum of squares, but a noncommutative polynomial which is nonnegative (in a

sense made precise below) is a sum of squares - a result of the first author [Hel02].

Classical commutative Positivstellensätze generally require p to be strictly positive - the

cases where nonnegative suffices are few and noteworthy, cf. [Sce09], and the degrees of the

polynomials appearing in the representation of p as a weighted sum of squares are typically

very high compared to that of p. Furthermore, the semialgebraic set under consideration is

often assumed to be bounded [Smü91, Put93].

The main result of [HM04a] gave a Positivstellensatz for matrix-valued noncommutative

polynomials which was an exact extension, warts and all (the strict positivity assumption,

possibility of high degree weights, and boundedness), of the commutative Putinar Positivstel-

lensatz [Put93]. While gratifying, it was not, as in retrospect we have come to expect in the

free algebra setting, cleaner than its commutative counterpart. What we find in this paper

for noncommutative polynomials is that when the underlying semialgebraic set is defined by

a concave matrix-valued noncommutative polynomial q, a “perfect” Positivstellensatz holds;

namely, a representation

p =
finite∑
j

s∗jsj +
finite∑
j

f ∗j qfj

where sj, fj are noncommutative matrix-valued polynomials of degree no greater than deg(p)+2
2

holds for any p which is “nonnegative” on the set Pq where q is “nonnegative,” irrespective of

the boundedness of the semialgebraic set Pq defined by q. Indeed this result is a Nichtnega-

tivstellensatz, as p is only assumed to be nonnegative on Pq. Thus, compared with the main

result of [HM04a], the hypothesis that q is concave has been added, but the boundedness (or

archimedean) hypothesis as well as the strict positivity hypothesis have been dropped, and

the resulting weighted sum of squares representation is improved by giving optimal degree

bounds. As a corollary, when q = 1 and Pq is everything, we recover the result mentioned

in the first paragraph: nonnegative noncommutative polynomials are sums of squares.

In the remainder of this introduction, we state our main result after providing the needed

background and definitions. Then we give some examples.
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1.1. Words and NC polynomials. Given positive integers n and g, let (Rn×n)g denote

the set of g-tuples of real n× n matrices. A natural norm on (Rn×n)g is given by

‖X‖2 =

g∑
‖Xj‖2

for X = (X1, . . . , Xg) ∈ (Rn×n)g. We use Sn to denote real symmetric n× n matrices.

We write 〈x〉 for the monoid freely generated by x = (x1, . . . , xg), i.e., 〈x〉 consists

of words in the g noncommuting letters x1, . . . , xg (including the empty word ∅ which

plays the role of the identity). Let R〈x〉 denote the associative R-algebra freely generated

by x, i.e., the elements of R〈x〉 are polynomials in the noncommuting variables x with

coefficients in R. Its elements are called (nc) polynomials. An element of the form aw

where 0 6= a ∈ R and w ∈ 〈x〉 is called a monomial and a its coefficient. Hence words

are monomials whose coefficient is 1. Endow R〈x〉 with the natural involution ∗ which

fixes R ∪ {x} pointwise, reverses the order of words, and acts linearly on polynomials. For

example, (2−3x2
1x2x3)∗ = 2−3x3x2x

2
1. Polynomials invariant with respect to this involution

are symmetric. The length of the longest word in a noncommutative polynomial f ∈ R〈x〉
is the degree of f and is denoted by deg(f). The set of all words of degree at most k is

〈x〉k, and R〈x〉k is the vector space of all noncommutative polynomials of degree at most k.

Fix positive integers ν and `. Matrix-valued noncommutative polynomials – ele-

ments of R`×ν〈x〉 = R`×ν⊗R〈x〉; i.e., `×ν matrices with entries from R〈x〉 – will play a role

in what follows. Elements of R`×ν〈x〉 are conveniently represented using tensor products as

(1) P =
∑
w∈〈x〉

Bw ⊗ w ∈ R`×ν〈x〉,

where Bw ∈ R`×ν , and the sum is finite. Note that the involution ∗ extends to matrix-valued

polynomials by

P ∗ =
∑
w

B∗w ⊗ w∗ ∈ Rν×`〈x〉.

If ν = ` and P ∗ = P , we say P is symmetric.

In the sequel, the tensor product will be reserved to denote the (Kronecker) tensor prod-

uct of matrices. Thus we will omit the tensor product notation for matrix-valued polynomials

and instead of (1) write simply

P =
∑
w∈〈x〉

Bww ∈ R`×ν〈x〉.

1.1.1. Polynomial evaluations. If p ∈ R〈x〉 is a noncommutative polynomial and X ∈
(Rn×n)g, the evaluation p(X) ∈ Rn×n is defined in the natural way by replacing xi by

Xi and sending the empty word to the appropriately sized identity matrix.
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Most of our evaluations will be on tuples of symmetric matrices X ∈ Sgn; our involution

fixes the variables x elementwise, so only these evaluations give rise to ∗-representations of

noncommutative polynomials. Polynomial evaluations extend to matrix-valued polynomials

by evaluating entrywise. Note that if P ∈ R`×`〈x〉 is symmetric, and X ∈ Sgn, then P (X) ∈
R`n×`n is a symmetric matrix.

1.2. Linear and concave polynomials. If A1, . . . , Ag are symmetric `× ` matrices, then

(2) ΛA :=

g∑
j=1

Ajxj

is a (homogeneous) symmetric linear matrix-valued polynomial, also called a (homoge-

neous) linear pencil. To ΛA we associate the monic linear pencil

I − ΛA = I` −
g∑
j=1

Ajxj.

A symmetric q ∈ R`×`〈x〉 is concave provided

q
(
tX + (1− t)Y

)
� tq(X) + (1− t)q(Y ), 0 ≤ t ≤ 1

for all n ∈ N and X, Y ∈ Sgn. The main result in [HM04b] tells us that if q is scalar-valued

(i.e., ` = 1) and q(0) = I`, then q is concave if and only if it has the form

(3) q(x) = I` − Λ(x)− s∗(x)s(x)

for some homogeneous linear polynomial Λ ∈ R〈x〉 and homogeneous linear vector-valued

s ∈ R`×1〈x〉. This result remains true, with the obvious modifications, for q matrix-valued.

A proof is given in Subsection 2.1.

1.3. The Positivstellensatz. For f ∈ R`×ν〈x〉, an element of the form f ∗f ∈ Rν×ν〈x〉
will be called a (hermitian) square. Let Σν denote the cone of sums of squares of ν × ν
matrix-valued polynomials, and, given a nonnegative integer N , let Σν

N ⊆ Σν denote sums

of squares of polynomials of degree at most N . Thus elements of Σν
N have degree at most

2N , i.e., Σν
N ⊆ Rν×ν〈x〉2N . Conversely, since the highest order terms in a sum of squares

cannot cancel, we have Rν×ν〈x〉2N ∩ Σν = Σν
N .

Fix a symmetric q ∈ R`×`〈x〉. Let

Pq(n) := {X ∈ Sgn | q(X) � 0} and Pq :=
⋃
n∈N

Pq(n).
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Given α, β ∈ N, set

(4) Mν
α,β(q) := Σν

α +
{ finite∑

i

f ∗i qfi | fi ∈ R`×ν〈x〉β
}
⊆ Rν×ν〈x〉max{2α,2β+a},

where a = deg(q). Obviously, if f ∈Mν
α,β(q) then f |Pq � 0.

We call Mν
α,β(q) the truncated quadratic module and Pq the noncommutative

(nc) semialgebraic set defined by q. If q has degree one, then Pq is also called an LMI

(linear matrix inequality) domain. We often abbreviate Mν
α,β(q) to Mν

α,β. If q(0) = I (q

is monic), then Pq contains an nc neighborhood of 0; i.e., there exists ε > 0 such that

for each n ∈ N, if X ∈ Sgn and ‖X‖ < ε, then X ∈ Pq. Likewise Pq is called bounded

provided there is a number R for which all X ∈ Pq satisfy ‖X‖ < R.

The following is the free convex Positivstellensatz, the main result of this paper.

Theorem 1.1 (Convex Positivstellensatz). Suppose q ∈ R`×`〈x〉 and p ∈ Rν×ν〈x〉 are sym-

metric matrix-valued noncommutative polynomials.

(1) If q is concave and monic and deg(p) ≤ 2d+ 1, then

p(X) � 0 for all X ∈ Pq ⇐⇒ p ∈Mν
d+1,d(q).

(2) If q is a monic linear pencil and deg(p) ≤ 2d+ 1, then

p(X) � 0 for all X ∈ Pq ⇐⇒ p ∈Mν
d,d(q).

If, in addition, the set Pq is bounded, the right-hand side of (1) is equivalent to

p ∈
{ finite∑

j

f ∗j qfj | fj ∈ R`×ν〈x〉d+1

}
=: M̊ν

d+1(q),

while the right-hand side of (2) is equivalent to p ∈ M̊ν
d (q).

Proof. The proof of (1) and (2) is laid out in Subsection 2.3. The last fact is an immediate

consequence of (1) and (2) and Proposition 4.2; see Subsection 4.1 for details.

Remark 1.2. It is easy to see that given k, ν ∈ N there exists a positive integer t so that

for a symmetric p ∈ Rν×ν〈x〉k, we have p(X) � 0 for all X ∈ Pq if and only if p(X) � 0 for

all X ∈ Pq(t). The smallest such t is called the (k, ν)-test rank of Pq. Routine arguments

show that this (k, ν)-test rank is at most νσ#

(
dk

2
e
)
, where

σ#(d) := dimR〈x〉d =
d∑
j=0

gj,

and dre denotes the smallest integer not less than r.
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There is also a bound on the number of summands in a certificate of the form p ∈
Mν

d+1,d(q) or p ∈ Mν
d,d(q), coming from Caratheodory’s theorem [Ba02, Theorem I.2.3] on

convex subsets of finite dimensional spaces. For example, in case (1) of Theorem 1.1 it is

1 + dim
(
Rν×ν〈x〉2d+1

)
= 1 + ν2σ#(2d+ 1).

Remark 1.3. The main result of [HM+] says that if q is symmetric, matrix-valued, monic,

and the connected component, Dq, of 0 of

P̊q :=
⋃
n∈N

{
X ∈ Sgn | q(X) � 0

}
is bounded and convex, then there is a monic linear pencil L such that the closure of Dq is

of the form PL. In particular, if P̊q is itself convex, then its closure is PL for some L. In

this sense,

Theorem 1.1 establishes a perfect Positivstellensatz on a convex nc semialgebraic set.

Remark 1.4. In [HKM+] we studied LMI domains and their inclusions. The linear Posi-

tivstellensatz there [HKM+, Theorem 1.1] states the following: If q, r are two monic linear

pencils with Pq bounded and r is of size ν × ν, then Pq ⊆ Pr if and only if r ∈ M̊ν
0 (q). So

this is a very special case of Theorem 1.1. Furthermore, [HKM+, Theorem 5.1] is a very

weak form of Theorem 1.1. The techniques of proof in [HKM+] are completely different than

those here. We give further details and discuss the connection to complete positivity in Sub-

section 4.1. Intriguing is the fact that the special case of Theorem 1.1 where p is affine linear

implies a version of the Arveson Extension Theorem and the Stinespring Representation for

matrices (as opposed to operators).

The conclusion of Theorem 1.1 may fail if q is not assumed to be monic as the following

examples show.

Example 1.5. Let

q =

[
x 1

1 0

]
∈ R2×2〈x〉1.

Then Pq = ∅, so p := −1 ∈ R1×1〈x〉0 satisfies −1|Pq � 0, but −1 6∈M1
0,0. However, for

u :=
[
1 −1− x

2

]∗
,

we have

−1 =
1

2
u∗qu,

showing that −1 ∈ M̊1
1 .

For details and more on the study of empty LMI domains we refer the reader to [KS11].

One of the main results there states that Pq is empty (for a nonhomogeneous linear pencil
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q) if and only if the truncated quadratic module M1
α,α(q) (in the ring R[x] of polynomials in

commuting variables) contains −1 for some (explicitly computable) α ∈ N.

Example 1.6. For another example consider

q =

[
1 x

x 0

]
.

Then Pq = {0}. Hence obviously x � 0 on Pq. But it is easy to see that x 6∈ M1
α,β(q) for

any α, β ∈ N; cf. [Zal+, Example 2].

1.4. Guide to the rest of the paper. Given α, β ∈ N, let a = deg(q) and

κ = max{2α, 2β + a}.

In view of Theorem 1.1, we say that the truncated quadratic module Mν
α,β(q) has the θ-

PosSs-property if, for a symmetric polynomial p ∈ Rν×ν〈x〉θ, the property p(X) � 0 for all

X ∈ Pq implies p ∈Mν
α,β(q) (the converse being automatic). Note that Mν

α,β(q) ⊆ Rν×ν〈x〉θ
and thus the definition is sensible only for θ ≤ κ.

The difficult part in proving Theorem 1.1 is showing that Mν
d+1,d(q) has the (2d + 1)-

PosSs-property in the case that q is a monic linear pencil. The argument occupies the bulk

of this article. The reduction to this case and other preliminaries are in the following section,

Section 2. The passages from q linear to q concave and from Mν
d+1,d(q) to Mν

d,d(q) are rather

simple and the details are found in Subsections 2.2 and 2.3. Section 2 ends with a brief

discussion of connections to Hankel matrices and free noncommutative moment problems.

The proof of Theorem 1.1 culminates in Subsection 3.3, using the results on positive linear

functionals from Subsection 2.4.

In the last section we discuss connections to LMI domination and complete positivity

(Subsection 4.1), and outline in Subsection 4.2 an improvement of the results of [HMP07]

obtained by the approach here in the absence of concavity of q (or convexity of the underlying

semialgebraic set).

2. Reductions and preliminaries

In this section we make first steps towards the proof of Theorem 1.1. We start by

giving preliminaries on concave polynomials needed for two reductions in the subsequent

subsections.

2.1. Concave polynomials. The structure of symmetric concave matrix-valued polynomi-

als is quite rigid.
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Proposition 2.1. If q is a symmetric concave matrix-valued polynomial with q(0) = I,

then there exists a homogeneous linear pencil Λ and a homogeneous linear matrix-valued

polynomial s such that

q = I − Λ− s∗s.

Proof. Suppose q is an ` × ` matrix-valued symmetric polynomial. Thus, using the tensor

product notation,

q =
∑
w∈〈x〉

Qw ⊗ w,

for some `×` matrices Qw with Q∗w = Qw∗ . By hypothesis Q∅ = q(0) = I`, the `×` identity.

Given a vector γ ∈ R`, the scalar-valued polynomial

qγ =
∑
〈Qwγ, γ〉w

is concave. By the main result in [HM04b], qγ has degree at most two. Thus, Qw = 0

whenever w has length three or more. Hence, there is a linear pencil Λ and a polynomial Σ

homogeneous of degree two such that

q = I − Λ− Σ.

Let Σi,j = Σxixj . From the concavity hypothesis, for any n, pair X, Y ∈ Sgn, and

0 ≤ t ≤ 1,

0 � +
∑

Σi,j ⊗
(
t2XiXj + t(1− t)(XiYj + YiXj) + (1− t)2YiYj

)
− t
∑

Σi,j ⊗XiXj − (1− t)
∑

Σi,j ⊗ Yi, Yj

= t(1− t)
∑

Σi,j ⊗ (Xi − Yi)(Xj − Yj)

= t(1− t)Σ(Z),

where Z = X − Y . It follows that for each Z ∈ Sgn we have Σ(Z) � 0. Since a nonnegative

polynomial which is homogeneous of degree two has the form s∗s, for some (not necessarily

square) homogeneous linear matrix-valued s (see e.g. [McC01]), the conclusion follows.

2.2. From linear to concave. The following lemma reduces the proof of Theorem 1.1 for

q concave to the case of q linear.

Lemma 2.2. If Mν
d+1,d(q) has the (2d + 1)-PosSs-property whenever q is a monic linear

pencil, then Mν
d+1,d(q) has the (2d+ 1)-PosSs-property whenever q is concave and monic.
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Proof. By Proposition 2.1, it may be assumed that q ∈ R`×`〈x〉 is described by equation (3)

for some linear pencil ΛA ∈ R`×`〈x〉 and linear s ∈ R`′×`〈x〉. Let

Q =

[
I`′ s

s∗ I − ΛA

]
∈ R(`+`′)×(`+`′)〈x〉1.

Hence Q is a monic linear pencil and, as is easily checked using Schur complements, Pq = PQ.

Thus, a given symmetric p ∈ Rν×ν〈x〉 is positive semidefinite on Pq if and only if it is positive

semidefinite on PQ.

Let Q = LDL∗ be the LDU decomposition of Q, that is

L =

[
I 0

s∗ I

]
and D =

[
I 0

0 I − Λ− s∗s

]
.

By hypothesis, Mν
d+1,d(Q) has the (2d+1)-PosSs-property and we are to show that Mν

d+1,d(q)

does too. To this end suppose p ∈ Rν×ν〈x〉 has degree at most 2d + 1 and is positive

semidefinite on Pq = PQ. Hence p has a representation as

p = G+
∑
j

[
f ∗j g∗j

]
Q

[
fj
gj

]
,

with gj ∈ R`×ν〈x〉d, fj ∈ R`′×ν〈x〉d and G ∈ Σν
d+1 a sum of squares of matrix-valued polyno-

mials of degree at most d+ 1. Since

L∗

[
fj
gj

]
=

[
fj + sgj
gj

]
,

it follows that

(5) p = G+
∑

(fj + sgj)
∗(fj + sgj) +

∑
g∗j (1− Λ− s∗s)gj.

Observing that fj +sgj has degree at most d+1, (5) shows that p ∈Mν
d+1,d(q) and completes

the proof.

2.3. From Md+1,d to Md,d. It turns out that in the case q is monic linear, Mν
d+1,d(q) has the

(2d+ 1)-PosSs-property if and only if Mν
d,d(q) does.

Lemma 2.3. Suppose q is a monic linear pencil. If p ∈ Rν×ν〈x〉 has degree at most 2d + 1

and p ∈Mν
d+1,d(q), then p ∈Mν

d,d(q).

Proof. If p ∈Mν
d+1,d(q) then

p =
∑

g∗j gj +
∑

f ∗j qfj,

for matrix-valued polynomials gj of degree at most d + 1 and fj of degree at most d. Any

degree 2d+2 terms in
∑
g∗j gj appear as (positively weighted) squares and can not be canceled
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by terms in
∑
f ∗j qfj, since the latter have degree at most 2d+ 1. Hence each gj must have

degree at most 2d.

By the results of Subsections 2.2 and 2.3, Theorem 1.1 follows from the following a priori

weaker statement.

Proposition 2.4. If q is a monic linear pencil, then Mν
d+1,d(q) has the (2d + 1)-PosSs-

property. Its (κ, ν)-test rank is no greater than νσ#(d+ 1).

The proof of Proposition 2.4 will be given in Section 3 below after subsections on pos-

itive linear functionals on matrix-valued polynomials and on Hankel matrices and the free

noncommutative moment problem.

2.4. Positive linear functionals and the GNS construction. Proposition 2.5 below,

embodies the well known connection, through the Gelfand-Naimark-Segal (GNS) construc-

tion, between operators and positive linear functionals.

Given a Hilbert space X and a positive integer ν, let X⊕ν denote the orthogonal direct

sum of X with itself ν times. Let A be a g-tuple of symmetric `× ` matrices, set q = 1−ΛA

with ΛA of the form (2), and abbreviate

Mν
k+1 = Mν

k+1,k(q).

Proposition 2.5. If λ : Rν×ν〈x〉2k+2 → R is a linear functional which is nonnegative on

Σν
k+1 and positive on Σν

k \ {0}, then there exists a tuple X = (X1, . . . , Xg) of symmetric

operators on a Hilbert space X of dimension at most νσ#(k) = ν dimR〈x〉k and a vector

γ ∈ X⊕ν such that

(6) λ(f) = 〈f(X)γ, γ〉

for all f ∈ Rν×ν〈x〉2k+1, where 〈 , 〉 is the inner product on X . Further, if λ is nonnegative

on Mν
k+1, then X ∈ Pq.

Conversely, if X = (X1, . . . , Xg) is a tuple of symmetric operators on a Hilbert space X
of dimension N , the vector γ ∈ X⊕ν , and k is a positive integer, then the linear functional

λ : Rν×ν〈x〉2k+2 → R defined by

λ(f) = 〈f(X)γ, γ〉
is nonnegative on Σν

k+1. Further, if X ∈ Pq, then λ is nonnegative also on Mν
k+1.

Proof. First suppose that λ : Rν×ν〈x〉2k+2 → R is nonnegative on Σν
k+1 and positive on

Σν
k \{0}. Consider the symmetric bilinear form, defined on the vector space K = Rν×1〈x〉k+1

(row vectors of length ν whose entries are polynomials of degree at most k + 1) by

(7) 〈f, h〉 = λ(h∗f).
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From the hypotheses, this form is positive semidefinite.

A standard use of Cauchy-Schwarz inequality shows that the set of null vectors

N := {f ∈ K | 〈f, f〉 = 0}

is a vector subspace of K. Whence one can endow the quotient X̃ := K/N with the induced

positive definite bilinear form making it a Hilbert space. Further, because the form (7) is

positive definite on the subspace X = Rν×1〈x〉k, each equivalence class in that set has a

unique representative which is a ν-row of polynomials of degree at most k. Hence we can

consider X as a subspace of X̃ with dimension νσ#(k).

Each xj determines a multiplication operator on X . For f =
[
f1 · · · fν

]
∈ X , let

xjf =
[
xjf1 · · · xjfν

]
∈ X̃

and define Xj : X → X by

Xjf = Pxjf, f ∈ X , 1 ≤ j ≤ g,

where P is the orthogonal projection from X̃ onto X (which is only needed on the degree

k + 1 part of xjf). From the positive definiteness of the bilinear form (7) on X , one easily

sees that each Xj is well defined and

〈Xjp, r〉 = 〈xjp, r〉 = 〈p, xjr〉 = 〈p,Xjr〉

for all p, r ∈ X . In particular, each Xj is symmetric.

Let γ ∈ X⊕ν denote the vector whose j-th entry, γj has the empty word (the monomial

1) in the j-th entry and zeros elsewhere. Finally, given words vs,t ∈ 〈x〉k+1 and ws,t ∈ 〈x〉k
for 1 ≤ s, t ≤ ν, choose f ∈ Rν×ν〈x〉 to have (s, t)-entry w∗s,tvs,t. In particular, with e1, . . . , eν
denoting the standard orthonormal basis for Rν , we have

f =
ν∑

s,t=1

w∗s,tvs,tese
∗
t .

Thus,

〈f(X)γ, γ〉 =
∑
〈fs,t(X)γt, γs〉 =

∑
〈w∗s,t(X)vs,t(X)γt, γs〉 =

∑
〈vs,t(X)γt, ws,t(X)γs〉

=
∑
〈P (vs,te

∗
t ), ws,te

∗
s〉 =

∑
〈vs,te∗t , Pws,te∗s〉 =

∑
〈vs,te∗t , ws,te∗s〉

=
∑

λ(w∗s,tvs,tese
∗
t ) = λ

(∑
(w∗s,tvs,tese

∗
t )
)

= λ(f).

Since any f ∈ Rν×ν〈x〉2k+1 can be written as a linear combination of words of the form w∗v

with w ∈ 〈x〉k+1 and v ∈ 〈x〉k as was done above, equation (6) is established.
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To prove the further statement, suppose λ is nonnegative on Mν
k+1. Given

p =

p1

...

p`

 ∈ X⊕`,
note that

〈(I − ΛA(X))p, p〉 = 〈p−
∑

AjPxjp, p〉 = 〈p−
∑

Ajxjp, p〉 =
〈
(I −

∑
Ajxj)p, p

〉
= λ

(
p∗(I − ΛA(x))p

)
≥ 0.

(8)

Hence, q(X) = I − ΛA(X) � 0.

The proof of the converse is routine and is not used in the sequel.

Remark 2.6. The proof of Proposition 2.5 follows somewhat the line of a similar result in

[McC01, §2]. However, some subtle points are dealt with very explicitly here, since they are

critical to our perfect Positivstellensatz. One such point worth emphasizing is that we move

from a functional λ, later chosen as a separating linear functional, via the tuple (X, γ), to a

new linear functional λ′ : Rν×ν〈x〉 → R defined by

(9) λ′(f) = 〈f(X)γ, γ〉.

Now λ′ agrees with the original λ on Rν×ν〈x〉2k+1, but they need not agree on monomials of

degree 2k + 2.

Equation (8) is the only place where we used that ΛA has degree one in the context of p

having degree k. Then f = p∗(I−ΛA)p has degree at most 2k+1 and hence, in the notation

of Remark 2.6, λ′(f) = λ(f). The delicate gap between 2k+ 2 in the hypotheses and 2k+ 1

in the conclusion of the theorem is what permits us to obtain a perfect Positivstellensatz for

q of degree 1. Proposition 2.5 and the concomitant careful choice of the quadratic module

are key ingredients in the proof of Theorem 1.1.

2.5. Hankel matrices and moment problems. This section is designed to give per-

spective on Proposition 2.5 and does not contain results essential to the rest of the paper.

Proposition 2.5 can be interpreted - and proved - in terms of flat extensions of free non-

commutative Hankel matrices.

We say that a linear functional on Rν×ν〈x〉2k is positive (nonnegative) if it is positive

(nonnegative) on Σν
k \ {0}. If µ : Rν×ν〈x〉2k → R is a linear functional, then the function

H : 〈x〉k × 〈x〉k → Rν×ν , H(u, v) = µ(v∗u)

depends only on the product v∗u and is called a free noncommutative Hankel matrix. Further,

µ is positive if and only ifH is positive definite in the sense that for any nonzero f : 〈x〉k → Rν
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we have, ∑
u,v

f(v)∗H(u, v)f(u) > 0.

The converse is also easily verified; i.e., if the ν × ν-block matrix H = (H(u, v))u,v∈〈x〉k is

positive definite and its entries H(u, v) depend only on v∗u, then the linear functional

µ : Rν×ν〈x〉2k → R, µ(E ⊗ v∗u) := tr(EH(u, v))

for words u, v ∈ 〈x〉k and E ∈ Rν×ν , is positive. Furthermore, µ is nonnegative if and only

if H is positive semidefinite.

In the case that the restriction σ of µ : Rν×ν〈x〉2k+1 → R to Rν×ν〈x〉2k → R is positive

definite, it is easy to check that there is a positive definite λ : Rν×ν〈x〉2k+2 → R which

extends µ. The tuple X and vector γ in X generated by Proposition 2.5 then determine a

nonnegative λ′ : Rν×ν〈x〉 → R and Hankel matrix defined by

H(u, v) = λ′(v∗u) = 〈v∗u(X)γ, γ〉.

Further, this extension is flat in the sense that the rank of (the matrix of) H is the same as

that of the Hankel determined by σ and of course λ′ restricted to Rν×ν〈x〉2k → R is µ.

Finally, this process solves a noncommutative moment problem. Here the view is that

H = (H(u, v))u,v∈〈x〉k is a given positive definite Hankel matrix in which case the construction

just described produces an infinite positive semidefinite Hankel matrix H extending H.

The connection between linear functionals and Hankel matrices in this context parallels

the commutative case, cf. [CF96, CF98, Las10, Lau09], and was exploited in [McC01] where

it was used to represent a given positive definite (noncommutative) Hankel H indexed by

〈x〉k with a tuple X. Indeed there the tuple X is constructed by choosing some flat extension

H̃ of H to the index set 〈x〉k+1 and then constructing the tuple X along the lines of the

proof of Proposition 2.5.

A treatment of free noncommutative Hankel matrices is also presented in [Pop10]. There

the existence of flat extensions, with necessary hypothesis, of noncommutative Hankel matri-

ces which are merely positive semidefinite, rather than positive definite is established. This

article also contains generalizations of the notions of flat extensions to path algebras and

connects flat extensions to sums of squares.

3. Proof of Theorem 1.1

As explained above in Subsection 2.3 the proof of Theorem 1.1 will be finished once we

prove its weaker variant, Proposition 2.4. Thus, throughout q = I − ΛA and d are fixed,

δ = d+ 1, and ` is the size of A; i.e., A is a g-tuple of symmetric `× ` matrices. Recall that

Mν
α,β = Mν

α,β(I − ΛA) is defined in equation (4).
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3.1. The truncated quadratic module is closed. Recall, given a natural number k,

R〈x〉k is the vector space of polynomials of degree at most k and its dimension is denoted by

σ#(k). Fix positive integers α, β and let κ = max{2α, 2β + 1}. In particular, the quadratic

module Mν
α,β of equation (4) is a cone in Rν×ν〈x〉κ (recall the degree of q = I − ΛA is one).

Given ε > 0, let

Bε(n) :=
{
X ∈ Sgn | ‖X‖ ≤ ε

}
and Bε :=

⋃
n∈N

Bε(n).

There is an ε > 0 such that for all n ∈ N, if X ∈ Sgn and ‖X‖ ≤ ε, then I`n − ΛA(X) � 1
2
.

In particular, Bε ⊆ PI−ΛA
. Using this ε we norm R`×ν〈x〉κ by

(10) ‖p‖ := max
{
‖p(X)‖ | X ∈ Bε

}
.

(Let us point out that on the right-hand side of (10) the maximum is attained. This follows

from the fact that the bounded nc semialgebraic set Bε is convex. We refer to [HM04a,

Section 2.3] for details). Note that if f ∈ R`×ν〈x〉β and if ‖f ∗(1 − ΛA(x))f‖ ≤ N2, then

‖f ∗f‖ ≤ 2N2.

Proposition 3.1. The truncated quadratic module Mν
α,β ⊆ Rν×ν〈x〉κ is closed.

Proof. This result is a consequence of Caratheodory’s theorem on convex hulls [Ba02, The-

orem I.2.3]. Suppose (pn) is a sequence from Mν
α,β which converges to some p ∈ Rν×ν〈x〉

of degree at most κ. By Caratheodory’s theorem, there is an M (at most the dimension of

Rν×ν〈x〉κ plus one) such that for each n there exist matrix-valued polynomials rn,i ∈ R`×ν〈x〉α
and tn,i ∈ R`×ν〈x〉β such that

pn =
M∑
i=1

r∗n,irn,i +
M∑
i=1

t∗n,i(I − ΛA(x))tn,i.

Since ‖pn‖ ≤ N2, it follows that ‖rn,i‖ ≤ N and likewise ‖t∗n,i(1−ΛA(x))tn,i‖ ≤ N2. In view

of the remarks preceding the proposition, we obtain ‖tn,i‖ ≤
√

2N for all i, n. Hence for each

i, the sequences (rn,i) and (tn,i) are bounded in n. They thus have convergent subsequences.

Tracking down these subsequential limits finishes the proof.

3.2. Existence of a positive linear functional. Let δ = d + 1 and write Mν
δ = Mν

d+1,d.

We call a linear functional on Rν×ν〈x〉2δ positive (nonnegative) if it is positive (nonnegative)

on Σν
δ \ {0}.

Lemma 3.2. There exists a positive linear functional λ̂ : Rν×ν〈x〉2δ → R which is nonnega-

tive on Mν
δ .
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Proof. As above, choose 1 ≥ ε > 0 satisfying Bε ⊆ PI−ΛA
. Select a countable dense subset

X(1), X(2), . . . of Bε(δ) (e.g. all tuples of matrices in Bε(δ) with rational entries), and define

λ̂ : Rν×ν〈x〉2δ → R as follows:

λ̂(p) :=
∞∑
i=1

1

2i
tr
(
p(X(i))

)
.

Clearly, λ̂(Mν
δ ) ⊆ R≥0. We claim that λ̂ is strictly positive on nonzero hermitian squares in

Σν
δ . Let r ∈ Rν×ν〈x〉δ be arbitrary. If λ̂(r∗r) = 0, then by density, r vanishes on Bε(δ), and

by nonexistence of low degree polynomial identities (see e.g. [Pro73, Row80]), r = 0.

3.3. Separation. The final ingredient in the proof of Proposition 2.4 is a Hahn-Banach

separation argument. Accordingly, let p ∈ Rν×ν〈x〉2d+1 be given with p(Y ) � 0 for all

Y ∈ Pq. We are to show p ∈Mν
δ .

If the conclusion is false, then by Proposition 3.1 and the Hahn-Banach theorem there is

a linear functional λ : Rν×ν〈x〉2δ → R that is nonnegative on Mν
δ and negative on p. Adding,

if necessary, a small positive multiple of the linear functional λ̂ produced by Lemma 3.2 to

λ, we can assume that λ is positive (not just nonnegative) on Σν
δ \ {0}, nonnegative on Mν

δ ,

and still negative on p. But now Proposition 2.5 with k = d applies: there is a tuple of

symmetric matrices X ∈ Pq acting on a finite-dimensional Hilbert space X and a vector γ

such that

λ(f) = 〈f(X)γ, γ〉
for all f ∈ Rν×ν〈x〉2d+1. In particular,

〈p(X)γ, γ〉 = λ(p) < 0,

so that p(X) is not positive semidefinite, contradicting p|Pq � 0 and the proof is complete.

This argument is like the classical one going back to Putinar [Put93] and its noncom-

mutative version in [HM04a], but with a consequential difference. Possibly the best way to

view this difference is in terms of the separating functional λ. What is new here amounts

to modifying λ to produce a new separating functional λ′, as in (9). It is this modified

functional that produces perfection. In other Positivstellensätze, e.g. [HM04a], the proof

does not do this modification of λ and produces a tuple X of bounded selfadjoint operators

which may act on an infinite-dimensional, rather than finite-dimensional, space and which

also requires p to be strictly positive on the underlying nc semialgebraic set.

4. Applications

We conclude this paper with applications of our main result and the techniques used

in its proof. First, in Subsection 4.1 we revisit the theme of our paper [HKM+], where we
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discussed how complete positivity is equivalent to LMI domination (i.e., inclusion of LMI

domains). Here we strengthen some of our previous results by relaxing the assumptions.

Second, in Subsection 4.2 we give a nonconvex variant of Theorem 1.1 which in turn extends

the directional Positivstellensatz of [HMP07].

4.1. Complete positivity and LMI domination. In this section we assume basic famil-

iarity with completely positive maps as presented e.g. in [BL04, Pau02, Pis03].

Suppose L and L′ are monic linear pencils in g variables of size ` and `′ respectively.

We say that L dominates L′ if PL ⊆ PL′ ., i.e., L′|PL
� 0. This situation is algebraically

characterized by our Theorem 1.1.

Corollary 4.1. L dominates L′ if and only if L′ ∈ M `′
0,0(L). Equivalently, L dominates L′

if and only if there are matrices Vj ∈ R`×`′ and a positive semidefinite S ∈ S`′ satisfying

(11) L′(x) = S +
∑
j

V ∗j L(x)Vj.

The following proposition eliminates the need for the positive semidefinite S in Corollary

4.1 and the (unweighted) sum of squares term in the representation (2) of Theorem 1.1 in the

case that PL is bounded. Further, combining this proposition with the argument of Lemma

2.2 eliminates the need for the (unweighted) sum of squares term in (1) of Theorem 1.1.

Proposition 4.2. If PL is bounded, then there are matrices Wj ∈ R`×`′ such that

I =
∑
j

W ∗
j L(x)Wj.

Corollary 4.3 (cf. [HKM+, Theorem 1.1]). Suppose PL is bounded. Then L dominates L′

if and only if there are matrices Vi ∈ R`×`′ satisfying

(12) L′(x) =
∑
i

V ∗i L(x)Vi.

Proof. Factoring S as S = C∗C gives, in the notation of Proposition 4.2,

S =
∑
j

(WjC)∗L(x)(WjC).

An application of Corollary 4.1 then completes the proof.

Proof of Proposition 4.2. Write L(x) = I −
∑g

j Ajxj with Aj ∈ R`×`. To show there are

finitely many, say m, nonzero vectors hk such that
∑

k〈hk, hk〉 = 1 and

m∑
k=1

〈Ajhk, hk〉 = 0
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for each j, let S` denote the unit sphere in R` and consider the mapping

S` → Rg, h 7→ (〈Ajh, h〉)j =
[
〈A1h, h〉 · · · 〈Agh, h〉

]∗
.

If 0 is not in the convex hull of the range of this map, then by the Hahn-Banach theorem

there is a linear functional λ : Rg → R such that

λ
(
(〈Ajh, h〉)j

)
> 0

for all h. Let λj = λ(ej), where e1, . . . , eg is the standard orthonormal basis for Rg. Then

L(tλ1, . . . , tλg) = I − t
∑
j

λjAj

satisfies

〈L(tλ1, . . . , tλg)h, h〉 = 〈h, h〉 − t
∑
j

λj〈Ajh, h〉 > 0

for all t ≤ 0 and all nonzero h, contradicting the boundedness of PL. Hence, 0 is in the

convex hull which says that the desired hk exist.

To complete the proof, let Vk,s = hke
∗
s, where e1, . . . , e`′ is the standard orthonormal

basis for R`′ . Thus, Vk,s is the `× `′ matrix expressed in terms of its columns as

Vk,s =
[
0 · · · 0 hk 0 · · · 0

]
(where the hk is in the s-th column). Now,∑

k,s

V ∗k,sL(x)Vk,s =
∑
k,s

esh
∗
k(I −

∑
j

Ajxj)hke
∗
s

=
∑
s

(∑
k

〈hk, hk〉 −
∑
k

(∑
j

〈Ajhk, hk〉
))
ese
∗
s

=
∑
s

ese
∗
s = I,

as desired.

Remark 4.4. Suppose L dominates L′. In case PL is not bounded, the positive S in a

certificate of the form (11) is needed in general. An expression of the form (12) can be

achieved for every L′ dominated by L if and only if such a representation exists for L′ = I.

As seen in the proof of Proposition 4.2, this is the case if and only if there are vectors hk,

not all zero, satisfying ∑
k

〈Ajhk, hk〉 = 0

for each j. By an old result of Bohnenblust (see [Bon48] for the original reference or [KS11,

§2.2] for an easier proof of a weaker statement sufficient for our purpose), this happens if

and only if span({A1, . . . , Ag}) does not contain a positive definite matrix.
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Writing L = I −
∑
Ajxj and L′ = I −

∑
A′jxj, let

S = span({I, A1, . . . , Ag}) ⊆ S`

be the operator system associated to the monic linear pencil L, and similarly for S ′. The

approach taken in [HKM+] was to view the inclusion PL ⊆ PL′ (under the assumption of

boundedness of PL) as saying that the unital mapping

τ : S → S ′

defined by τ(Aj) = A′j is (well-defined) completely positive and then applying the Arveson-

Stinespring representation theorem [BL04, Pau02, Pis03] for completely positive maps. Since

the approach in this paper avoids the complete positivity machinery, it is interesting to note

that Theorem 1.1 implies both the Arveson Extension Theorem and the Stinespring Theorem

for matrices (as opposed to operators). To see why, suppose S and S ′ are unital subspaces of

S` and S`′ respectively, and τ : S → S ′ is unital and completely positive. Choose A1, . . . , Ag
such that {I, A1, . . . , Ag} is a basis for S. By [KS11, Proposition 4.3.2] the matrices Aj can

be chosen to make PL bounded; here L denotes the pencil I −
∑
Ajxj. With A′j = τ(Aj),

the pencil L dominates the pencil L′ = I −
∑
A′jxj. Now invoke Theorem 1.1 (for bounded

domains) to get Arveson’s extension as well as Stinespring’s theorem. The non-uniqueness of

this construction is described by simultaneous invertible linear change of variables (on both

the domain PL and codomain PL′).

4.2. Beyond convexity: a harsher positivity test. The Positivstellensatz in [HM04a]

assumes the underlying semialgebraic set is bounded, whereas Theorem 1.1 assumes the set

is convex. In this section we consider a case which lies in between. For simplicity we take

our polynomials to be scalar-valued.

Given a finite set S of symmetric noncommutative polynomials whose degrees are at

most a, let Q = {1− s∗s | s ∈ S}. We will develop a positivity condition for a polynomial p

of degree at most 2d equivalent to p lying in the convex cone

Md+a,β(Q) = Σd+a +
{∑
q∈Q

finite∑
j

f ∗j,qqfj,q | fj,q ∈ R〈x〉β
}
.

(Here, and in the rest of this subsection, we omit the superscripts in the notation for quadratic

modules, since we are dealing only with scalar-valued polynomials.)

Let X be a finite-dimensional Hilbert space. Given a vector ζ ∈ X , natural number η,

and a tuple X of symmetric operators on X , let Oη
X,ζ denote the subspace

Oη
X,ζ := {f(X)ζ | f ∈ R〈x〉η}
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of X and P η
X,ζ be the orthogonal projection of X onto this space. Generically, the dimension

of Oη
X,ζ is σ#(η). The following is a free nonconvex Positivstellensatz with degree bounds.

Theorem 4.5 (Beyond convex). Let p ∈ R〈x〉2d be symmetric and fix an integer 0 ≤ β < d.

Assume that PQ contains a nontrivial nc neighborhood of 0. If for any Hilbert space X of

dimension σ#(d+ a− 1), any g-tuple of matrices X acting on X and vector ζ ∈ X ,

P β
X,ζ

(
1− s∗(X)s(X)

)
P β
X,ζ � 0 for all s ∈ S

implies

〈p(X)ζ, ζ〉 ≥ 0,

then p ∈Md+a,β(Q). (The converse is obviously true.)

In other words a clean Positivstellensatz holds without concavity of Q (the collection

S), provided we test positivity of p on a sufficiently large class of matrices and vectors.

Remark 4.6.

(1) If a = 1 and β = d, then generically dimension counting tells us Od
X,d is X , and we are

back in the setting of Theorem 1.1.

(2) The condition: 〈p(X)ζ, ζ〉 > 0 provided ζ∗(1−s∗(X)s(X))ζ ≥ 0 is a condition converted

to a Positivstellensatz in [HMP07]. The β = 0 case of Theorem 4.5 improves this, indeed

makes a perfect version.

Sketch of proof of Theorem 4.5. Abbreviate Md+a,β(Q) to Md+a,β. Suppose p has degree at

most 2d, but is not in Md+a,β. The Proposition 3.1 extends to show Md+a,β is closed, with

an easy generalization of the same argument. Then there is a positive linear functional

λ : R〈x〉2(d+a) → R that is nonnegative on Md+a,β but such that λ(p) < 0; see Lemma 3.2, a

variant of which is needed to see that such an λ can be chosen positive, not just nonnegative

on Σd+a \ {0}. Applying Proposition 2.5 produces a finite-dimensional Hilbert space X , a

tuple of matrices X on X and cyclic vector γ such that for any polynomial f of degree at

most 2(d+ a)− 1,

〈f(X)γ, γ〉 = λ(f).

In this context, the analog of the further part of Proposition 2.5 is the following. If f is of

degree at most d− 1 and s ∈ S, then〈
(I − s(X)∗s(X))f(X)γ, f(X)γ

〉
= λ(f ∗(I − ss∗)f) ≥ 0.

On the other hand,

〈p(X)γ, γ〉 = λ(p) < 0,

yielding a contradiction.
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