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Summary. One of the main applications of semidefinite programming lies in lin-

ear systems and control theory. Many problems in this subject, certainly the text-

book classics, have matrices as variables, and the formulas naturally contain non-

commutative polynomials in matrices. These polynomials depend only on the system

layout and do not change with the size of the matrices involved, hence such problems

are called “dimension-free”. Analyzing dimension-free problems has led to the devel-

opment recently of a non-commutative (nc) real algebraic geometry (RAG) which,

when combined with convexity, produces dimension-free Semidefinite Programming.

This article surveys what is known about convexity in the non-commutative set-

ting and nc SDP and includes a brief survey of nc RAG. Typically, the qualitative

properties of the non-commutative case are much cleaner than those of their scalar

counterparts - variables in Rg. Indeed we describe how relaxation of scalar variables

by matrix variables in several natural situations results in a beautiful structure.

1 Introduction

Given symmetric `×` symmetric matrices with real entries Aj , the expression
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L(x) = I` +

g∑
j=1

Ajxj � 0 (1)

is a linear matrix inequality (LMI). Here � 0 means positive definite, x =

(x1, . . . , xg) ∈ Rg and of interest is the set of solutions x. Taking advantage

of the Kronecker (tensor) product A⊗B of matrices, it is natural to consider,

for tuples of symmetric n × n matrices X = (X1, . . . , Xg) ∈ (SRn×n)g, the

inequality

L(X) = I` ⊗ In +

g∑
j=1

Aj ⊗Xj � 0. (2)

For reasons which will become apparent soon, we call expression (2) a non-

commutative LMI (nc LMI). Letting DL(n) denote the solutions X of size

n × n, note that DL(1) is the solution set of equation (1). In many areas of

mathematics and its applications, the inequality (2) is called the quantized

version of inequality (1).

Quantizing a polynomial inequality requires the notion of a non-commuta-

tive (free) polynomial which can loosely be thought of as a polynomial in

matrix unknowns. Section 1.2 below gives the details on these polynomails.

For now we limit the discussion to the example,

p(x, y) = 4− x− y − (2x2 + xy + yx+ 2y2). (3)

Of course, for symmetric n× n matrices X,Y ,

p(X,Y ) = 4In −X − Y − (2X2 +XY + Y X + 2Y 2). (4)

The set {(x, y) ∈ R2 : p(x, y) > 0} is a semi-algebraic set. By analogy, the set

{(X,Y ) : p(X,Y ) � 0} is a non-commutative semi-algebraic set.

nc LMIs, and more generally non-commutative semi-algebraic sets, arise

naturally in semidefinite programming (SDP) and in linear systems theory

problems determined by a signal-flow diagram. They are of course basic ob-

jects in the study of operator spaces and thus are related to problems like

Connes’ embedding conjecture [Con76, KS08a] and the Bessis-Moussa-Villani

(BMV) conjecture [BMV75] from quantum statistical mechanics [KS08b]. As

is seen in Theorem 4 below, they even have something to say about their scalar

(commutative) counterparts. For some these non-commutative considerations

have their own intrinsic interest as a free analog to classical semi-algebraic

geometry.

Non-commutative will often be shortened to nc.
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1.1 The roadmap

The paper treats four areas of research concerning nc LMIs and nc polynomi-

als.

In the remainder of the introduction we first, in Subsection 1.2, give

additional background on a core object of our study, polynomials in non-

commuting variables. The initiated reader may wish to skip this subsection.

Subsections 1.3, 1.4, 1.5, and 1.6 give overviews of the four main topics of the

survey.

The body of the paper consists of six sections. The first four give further

detail on the main topics. Except for Section 3 which has its own motivation

subsection, motivation for our investigations is weaved into the discussion.

Convexity is a recurring theme. Section 6 offers a list of computer algebra

packages for work in a free ∗-algebra revolving around convexity and positivity.

1.2 Non-commutative polynomials

Let R〈x〉 denote the real algebra of polynomials in the non-commuting inde-

terminates x = (x1, . . . , xg). Elements of R〈x〉 are non-commutative poly-

nomials, abbreviated to nc polynomials or often just polynomials. Thus,

a non-commutative polynomial p is a finite sum,

p =
∑

pww, (5)

where each w is a word in (x1, . . . , xg) and the coefficients pw ∈ R. The

polynomial p of equation (3) is a non-commutative polynomial of degree two

in two variables. The polynomial

q = x1x
3
2 + x3

2x1 + x3x1x2 + x2x1x3 (6)

is an non-commutative polynomial of degree four in three variables.

Involution

There is a natural involution ∗ on R〈x〉 given by

p∗ =
∑

pww
∗, (7)

where, for a word w,

w = xj1xj2 · · ·xjn 7→ w∗ = xjn · · ·xj2xj1 . (8)

A polynomial p is symmetric if p∗ = p. For example, the polynomials of

equation (3) is symmetric, whereas the q of equation (6) is not. In particu-

lar, x∗j = xj and for this reason the variables are sometimes referred to as

symmetric non-commuting variables.

Denote, by R〈x〉d, the polynomials in R〈x〉 of (total) degree d or less.
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Substituting Matrices for Indeterminates

Let (SRn×n)g denote the set of g-tuples X = (X1, . . . , Xg) of real symmetric

n × n matrices. A polynomial p(x) = p(x1, . . . , xg) ∈ R〈x〉 can naturally be

evaluated at a tuple X ∈ (SRn×n)g resulting in an n × n matrix. Equations

(3) and (4) are illustrative. In particular, the constant term p∅ of p(x) be-

comes p∅In; i.e., the empty word evaluates to In. Often we write p(0) for p∅
interpreting the 0 as 0 ∈ Rg. As a further example, for the polynomial q from

equation (6),

q(X) = X1X
3
2 +X3

2X1 +X3X1X2 +X2X1X3.

The involution on R〈x〉 that was introduced earlier is compatible with

evaluation at X and matrix transposition, i.e.,

p∗(X) = p(X)∗,

where p(X)∗ denotes the transpose of the matrix p(X). Note, if p is symmetric,

then so is p(X).

Matrix-Valued Polynomials

Let R〈x〉δ×δ′ denote the δ× δ′ matrices with entries from R〈x〉. In particular,

if p ∈ R〈x〉δ×δ′ , then

p =
∑

pww, (9)

where the sum is finite and each pw is a real δ×δ′ matrix. Denote, by R〈x〉δ×δ
′

d ,

the subset of R〈x〉δ×δ′ whose polynomial entries have degree d or less.

Evaluation at X ∈ (SRn×n)g naturally extends to p ∈ R〈x〉δ×δ′ via the

Kronecker tensor product, with the result, p(X), a δ × δ′ block matrix with

n× n entries. The involution ∗ naturally extends to R〈x〉δ×δ by

p =
∑

p∗ww
∗, (10)

for p given by equation (9). A polynomial p ∈ R〈x〉δ×δ is symmetric if p∗ = p

and in this case p(X) = p(X)∗.

A simple method of constructing new matrix valued polynomials from old

ones is by direct sum. For instance, if pj ∈ R〈x〉δj×δj for j = 1, 2, then

p1 ⊕ p2 =

[
p1 0

0 p2

]
∈ R〈x〉(δ1+δ2)×(δ1+δ2).
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Linear Matrix Inequalities (LMIs)

Given symmetric `× ` matrices A0, A1, . . . , Ag, the expression

L(x) = A0 +

g∑
j=1

Ajxj (11)

is an affine linear nc matrix polynomial, better known as a linear (or affine

linear) pencil. In the case that A0 = 0, L is a truly linear pencil; and when

A0 = I, we say L is a monic linear pencil.

The inequality L(x) � 0 for x ∈ Rg is a linear matrix inequality

(LMI). LMIs are ubiquitous in science and engineering. Evaluation of L at

X ∈ (SRn×n)g is most easily described using tensor products as in equation

(2) and the expression L(X) � 0 is a non-commutative LMI, or nc LMI

for short.

1.3 LMI Domination and Complete Positivity

This section discusses the nc LMI versions of two natural LMI domination

questions. To fix notation, let

L(x) = A0 +

g∑
j=1

Ajxj ,

be a given linear pencil (thus Aj are symmetric ` × ` matrices). For a fixed

n the solution set of all X ∈ (SRn×n)g satisfying L(X) � 0 is denoted DL(n)

and the sequence (graded set) (DL(n))n∈N is written DL. Note that DL(1) is

the solution set of the classical (commutative) LMI, L(x) � 0.

Given linear matrix inequalities (LMIs) L1 and L2 it is natural to ask:

(Q1) when does one dominate the other, that is, when is DL1
(1) ⊆ DL2

(1)?

(Q2) when are they mutually dominant, that is, DL1
(1) = DL2

(2)?

While such problems can be NP-hard, their nc relaxations have elegant an-

swers. Indeed, they reduce to constructible semidefinite programs. We chose

to begin with this topic because it offers the most gentle introduction to our

matrix subject.

To describe a sample result, assume there is an x ∈ Rg such that both

L1(x) and L2(x) are both positive definite, and suppose DL1
(1) is bounded.

If DL1(n) ⊆ DL2(n) for every n, then there exist matrices Vj such that

L2(x) = V ∗1 L1(x)V1 + · · ·+ V ∗µL1(x)Vµ. (A1)
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The converse is of course immediate. As for (Q2) we show that L1 and L2

are mutually dominant (DL1(n) = DL2(n) for all n) if and only if, up to

certain redundancies described in detail in Section 2, L1 and L2 are unitarily

equivalent.

It turns out that our matrix variable LMI domination problem is equivalent

to the classical problem of determining if a linear map τ from one subspace of

matrices to another is “completely positive”. Complete positivity is one of the

main techniques of modern operator theory and the theory of operator alge-

bras. On one hand it provides tools for studying LMIs and on the other hand,

since completely positive maps are not so far from representations and gen-

erally are more tractable than their merely positive counterparts, the theory

of completely positive maps provides perspective on the difficulties in solving

LMI domination problems. nc LMI domination is the topic of Section 2.

1.4 Non-commutative Convex Sets and LMI Representations

Section 1.3 dealt with the (matricial) solution set of a Linear Matrix Inequality

DL = {X : L(X) � 0}.

The set DL is convex in the sense that each DL(n) is convex. It is also a non-

commutative basic open semi-algebraic set (in a sense we soon define). The

main theorem of this section is the converse, a result which has implications

for both semidefinite programming and systems engineering.

Let p ∈ R〈x〉δ×δ be a given symmetric non-commutative δ × δ-valued

matrix polynomial. Assuming that p(0) � 0, the positivity set Dp(n) of a

non-commutative symmetric polynomial p in dimension n is the component

of 0 of the set

{X ∈ (SRn×n)g : p(X) � 0}.

The positivity set, Dp, is the sequence of sets (Dp(n)), which is the type

of set we call a non-commutative basic open semi-algebraic set. The

non-commutative set Dp is called convex if, for each n, Dp(n) is convex. A

set is said to have a Linear Matrix Inequality Representation if it is

the set of all solutions to some LMI, that is, it has the form DL for some

L(x) = I +
∑
j Ajxj .

The main theorem of Section 3 says: if p(0) � 0 and Dp is bounded, then

Dp has an LMI representation if and only if Dp is convex.

1.5 Non-commutative Convex Polynomials have Degree Two

We turn now from non-commutative convex sets to non-commutative convex

polynomials. The previous section exposed the rigid the structure of sets which
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are both convex and the sublevel set of a non-commutative polynomial. Of

course if p is concave (−p is convex), then its sublevel sets are convex. But

more is true.

A symmetric polynomial p is matrix convex, if for each positive integer n,

each pair of tuples of symmetric matrices X ∈ (SRn×n)g and Y ∈ (SRn×n)g,

and each 0 ≤ t ≤ 1,

p
(
tX + (1− t)Y

)
� tp(X) + (1− t)p(Y ).

The main result on convex polynomials, given in Section 4, is that every

symmetric non-commutative polynomial which is matrix convex has degree

two or less.

1.6 Algebraic certificates of non-commutative positivity:

Positivstellensätze

An algebraic certificate for positivity of a polynomial p on a semi-algebraic set

S is a Positivstellensatz. The familiar fact that a polynomial p in one-variable

which is positive on S = R is a sum of squares is an example.

The theory of Positivstellensätze - a pillar of the field of semi-algebraic ge-

ometry - underlies the main approach currently used for global optimization

of polynomials. See [Par00, Las01] for a beautiful treatment of this, and other,

applications of commutative semi-algebraic geometry. Further, because con-

vexity of a polynomial p on a set S is equivalent to positivity of the Hessian of

p on S, this theory also provides a link between convexity and semi-algebraic

geometry. Indeed, this link in the non-commutative setting ultimately leads to

the conclusion the a matrix convex non-commutative polynomial has degree

at most two.

Polynomial optimization problems involving non-commuting variables also

arise naturally in many areas of quantum physics, see [PNA10, NPA].

Positivstellensätze in various incarnations appear throughout this survey

as they arise naturally in connection with the previous topics. Section 5 con-

tains a brief list of algebraic certificates for positivity like conditions for non-

commutative polynomials in both symmetric and non-symmetric nc variables,

Thus, this section provides an overview of non-commutative semi-algebraic ge-

ometry with the theme being that nc Positivstellensätze are cleaner and more

rigid than there commutative counterparts.

2 LMI Domination and Complete Positivity

In this section we expand upon the discussion of nc LMI domination of Sub-

section 1.3. Recall, a monic linear pencil is an expression of the form
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L(x) = I +

g∑
j=1

Ajxj ,

where, for some `, the Aj are symmetric `× ` matrices with real entries and

I is the `× ` identity. For a given positive integer n,

DL(n) = {X ∈ (SRn×n)g : L(X) � 0}

and let DL denote the sequence of sets (DL(n))n∈N. Thus DL is the solution

set of the nc LMI L(X) � 0 and DL(1) is the solution set of the traditional

LMI L(x) � 0 (x ∈ Rg). We call DL an nc LMI.

2.1 Certificates for LMI Domination

This subsection contains precise algebraic characterizations of nc LMI domi-

nation. Algorithms, the connection to complete positivity, examples, and the

application to a new commutative Positivstellensatz follow in succeeding sub-

sections.

Theorem 1 (Linear Positivstellensatz [HKMb]). Let Lj ∈ SRdj×dj 〈x〉,
j = 1, 2, be monic linear pencils and assume DL1(1) is bounded. Then DL1 ⊆
DL2

if and only if there is a µ ∈ N and an isometry V ∈ Rµd1×d2 such that

L2(x) = V ∗
(
Iµ ⊗ L1(x)

)
V =

µ∑
j=1

V ∗j L1(x)Vj . (1)

Suppose L ∈ SRd×d〈x〉,

L = I +

g∑
j=1

Ajxj

is a monic linear pencil. A subspace H ⊆ Rd is reducing for L if H reduces

each Aj ; i.e., if AjH ⊆ H. Since each Aj is symmetric, it also follows that

AjH⊥ ⊆ H⊥. Hence, with respect to the decomposition Rd = H⊕H⊥, L can

be written as the direct sum,

L = L̃⊕ L̃⊥ =

[
L̃ 0

0 L̃⊥

]
where L̃ = I +

g∑
j=1

Ãjxj ,

and Ãj is the restriction of Aj to H. (The pencil L̃⊥ is defined similarly.) If H
has dimension `, then by identifying H with R`, the pencil L̃ is a monic linear

pencil of size `. We say that L̃ is a subpencil of L. If moreover, DL = DL̃,

then L̃ is a defining subpencil and if no proper subpencil of L̃ is a defining

subpencil for DL, then L̃ is a minimal defining (sub)pencil.
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Theorem 2 (Linear Gleichstellensatz [HKMb]). Suppose L1, L2 are

monic linear pencils with DL1(1) bounded. Then DL1 = DL2 if and only if

minimal defining pencils L̃1 and L̃2 for DL1
and DL2

respectively, are unitar-

ily equivalent. That is, there is a unitary matrix U such that

L̃2(x) = U∗L̃1(x)U. (2)

2.2 Algorithms for LMIs

Of widespread interest is determining if

DL1
(1) ⊆ DL2

(1), (3)

or if DL1(1) = DL2(1). For example, the paper of Ben-Tal and Nemirovski

[BTN02] exhibits simple cases where determining this is NP-hard. While we

do not give details here we guide the reader to [HKMb, Section 4] where we

prove that DL1 ⊆ DL2 is equivalent to the feasibility of a certain semidefinite

program which we construct explicitly in [HKMb, Section 4.1]. Of course, if

DL1
⊆ DL2

, then DL1
(1) ⊆ DL2

(1). Thus our algorithm is a type of relaxation

of the problem (3).

Also in [HKMb] is an algorithm (Section 4.2) easily adapted from the

first to determine if DL is bounded, and what its “radius” is. By [HKMb,

Proposition 2.4],DL is bounded if and only ifDL(1) is bounded. Our algorithm

thus yields an upper bound of the radius of DL(1). In [HKMb, Section 4.3]

we solve a matricial relaxation of the classical matrix cube problem, finding

the biggest matrix cube contained in DL. Finally, given a matricial LMI set

DL, [HKMb, Section 4.4] gives an algorithm to compute the linear pencil

L̃ ∈ SRd×d〈x〉 with smallest possible d satisfying DL = DL̃.

2.3 Complete Positivity and LMI Inclusion

To monic linear pencils L1 and L2,

Lj(x) = I +

g∑
`=1

Aj,`x` ∈ SRdj×dj 〈x〉, j = 1, 2 (4)

are the naturally associated subspaces of dj × dj (j = 1, 2) matrices

Sj = span{I, Aj,` : ` = 1, . . . , g} = span{Lj(X) : X ∈ Rg} ⊆ SRdj×dj . (5)

We shall soon see that the condition L2 dominates L1, equivalently DL1 ⊂
DL2

, is equivalent to a property called complete positivity, defined below, of

the unital linear mapping τ : S1 → S2 determined by
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τ(A1,`) = A2,`. (6)

A recurring theme in the non-commutative setting, such as that of a sub-

space of C∗-algebra [Arv69, Arv72, Arv08] or in free probability [Voi04, Voi05]

to give two of many examples, is the need to consider the complete matrix

structure afforded by tensoring with n×n matrices (over positive integers n).

The resulting theory of operator algebras, systems, spaces and matrix convex

sets has matured to the point that there are now several excellent books on

the subject including [BLM04, Pau02, Pis03].

Let Tj ⊆ Rdj×dj be unital linear subspaces closed under the transpose,

and φ : T1 → T2 a unital linear ∗-map. For n ∈ N, φ induces the map

φn = In ⊗ φ : Rn×n ⊗ T1 = T n×n1 → T n×n2 , M ⊗A 7→M ⊗ φ(A),

called an ampliation of φ. Equivalently,

φn


T11 · · · T1n

...
. . .

...

Tn1 · · · Tnn


 =

φ(T11) · · · φ(T1n)
...

. . .
...

φ(Tn1) · · · φ(Tnn)


for Tij ∈ T1. We say that φ is k-positive if φk is a positive map. If φ is

k-positive for every k ∈ N, then φ is completely positive.

2.4 The Map τ is Completely Positive

A basic observation is that n-positivity of τ is equivalent to the inclusion

DL1(n) ⊆ DL2(n). Hence DL1 ⊆ DL2 is equivalent to complete positivity of

τ, an observation whcih ultimately leads to the algebraic characterization of

Theorem 1.

Theorem 3. Consider the monic linear pencils of equation (4) and assume

that DL1
(1) is bounded. Let τ : S1 → S2 be the unital linear map of equation

(6).

(1) τ is n-positive if and only if DL1
(n) ⊆ DL2

(n);

(2) τ is completely positive if and only if DL1 ⊆ DL2 .

Conversely, supposeD is a unital ∗-subspace of SRd×d and τ : D → SRd′×d′

is completely positive. Given a basis {I, A1, . . . , Ag} for D, let Bj = τ(Aj).

Let

L1(x) = I +
∑

Ajxj , L2(x) = I +
∑

Bjxj .

The complete positivity of τ implies, if L1(X) � 0, then L2(X) � 0 and hence

DL1
⊆ DL2

. Hence the completely positive map τ (together with a choice of

basis) gives rise to an LMI domination.
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2.5 An Example

The following example illustrates the constructs of the previous two subsec-

tions. Let

L1(x1, x2) = I +

0 1 0

1 0 0

0 0 0

x1 +

0 0 1

0 0 0

1 0 0

x2 =

 1 x1 x2

x1 1 0

x2 0 1

 ∈ SR3×3〈x〉

and

L2(x1, x2) = I +

[
1 0

0 −1

]
x1 +

[
0 1

1 0

]
y2 =

[
1 + x1 x2

x2 1− x1

]
∈ SR2×2〈x〉.

Then

DL1 = {(X1, X2) : 1−X2
1 −X2

2 � 0},
DL1

(1) = {(X1, X2) ∈ R2 : X2
1 +X2

2 < 1},
DL2

(1) = {(X1, X2) ∈ R2 : X2
1 +X2

2 < 1}.

Thus DL1
(1) = DL2

(1). On one hand,([
1
2 0

0 0

]
,

[
0 3

4
3
4 0

])
∈ DL1

rDL2
,

so L1(X1, X2) � 0 does not imply L2(X1, X2) � 0.

On the other hand, L2(X1, X2) � 0 does imply L1(X1, X2) � 0. The map

τ : S2 → S1 in our example is given by[
1 0

0 1

]
7→

1 0 0

0 1 0

0 0 1

 , [
1 0

0 −1

]
7→

0 1 0

1 0 0

0 0 0

 , [
0 1

1 0

]
7→

0 0 1

0 0 0

1 0 0

 .
Consider the extension of τ to a unital linear ∗-map ψ : R2×2 → R3×3, defined

by

E11 7→
1

2

1 1 0

1 1 0

0 0 1

 , E12 7→
1

2

0 0 1

0 0 1

1 −1 0

 ,

E21 7→
1

2

0 0 1

0 0 −1

1 1 0

 , E22 7→
1

2

 1 −1 0

−1 1 0

0 0 1

 .
(Here Eij are the 2× 2 matrix units.) To show that ψ is completely positive

compute its Choi matrix defined as
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C =

[
ψ(E11) ψ(E12)

ψ(E21) ψ(E22)

]
. (7)

[Pau02, Theorem 3.14] says ψ is completely positive if and only if C � 0. The

Choi matrix is the key to computational algorithms in [HKMb, Section 4]. In

the present case, to see that C is positive semidefinite, note

C =
1

2
W ∗W for W =

[
1 1 0 0 0 1

0 0 1 1 −1 0

]
.

Now ψ has a very nice representation:

ψ(S) =
1

2
V ∗1 SV1 +

1

2
V ∗2 SV2 =

1

2

[
V1

V2

]∗ [
S 0

0 S

][
V1

V2

]
(8)

for all S ∈ R2×2. (Here V1 =

[
1 1 0

0 0 1

]
and V2 =

[
0 0 1

1 −1 0

]
, thus W =

[
V1 V2

]
.)

In particular,

2L1(x, y) = V ∗1 L2(x, y)V1 + V ∗2 L2(x, y)V2. (9)

Hence L2(X1, X2) � 0 implies L1(X1, X2) � 0, i.e., DL2
⊆ DL1

.

The computations leading up to equation (9) illustrate the proof of our

linear Positivstellensatz, Theorem 1. For the details see [HKMb, Section 3.1].

2.6 Positivstellensatz on a Spectrahedron

Our non-commutative techniques lead to a cleaner and more powerful com-

mutative Putinar-type Positivstellensatz [Put93] for p strictly positive on a

bounded spectrahedron DL(1) = {x ∈ Rg : L(x) � 0}. In the theorem which

follows, SRd×d[y] is the set of symmetric d×d matrices with entries from R[y],

the algebra of (commutative) polynomials with coefficients from R. Note that

an element of SRd×d[y] may be identified with a polynomial (in commuting

variables) with coefficients from SRd×d.

Theorem 4. Suppose L ∈ SRd×d[y] is a monic linear pencil and DL(1)

is bounded. Then for every symmetric matrix polynomial p ∈ R`×`[y] with

p|DL(1) � 0, there are Aj ∈ R`×`[y], and Bk ∈ Rd×`[y] satisfying

p =
∑
j

A∗jAj +
∑
k

B∗kLBk. (10)
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The Positivstellensatz, Theorem 4, has a non-commutative version for δ×δ
matrix valued symmetric polynomials p in non-commuting variables positive

on a nc LMI set DL, see [HKMb]. In the case this matrix valued polynomial

p is linear, this Positivstellensatz reduces to Theorem 1, which can thus be

regarded as a “Linear Positivstellensatz”. For perspective we mention that the

proofs of our Positivstellensätze actually rely on the linear Positivstellensatz.

For experts we point out that the key reason LMI sets behave better is that

the quadratic module associated to a monic linear pencil L with bounded DL
is archimedean.

We shall return to the topic of Positivstellensätze in Section 5.

3 Non-commutative Convex semi-algebraic Sets are LMI

Representable

The main result of this section is that a bounded convex non-commutative

basic open semi-algebraic set has a monic Linear Matrix Inequality represen-

tation. Applications and connections to semidefinite programming and linear

systems engineering are discussed in Section 3.4. The work is also of interest

in understanding a non-commutative (free) analog of convex semi-algebraic

sets [BCR98].

For perspective, in the commutative case of a basic open semi-algebraic

subset C of Rg, there is a stringent condition, called the “line test”, which,

in addition to convexity, is necessary for C to have an LMI representation.

In two dimensions the line test is necessary and sufficient, [HV07], a result

used by Lewis-Parrilo-Ramana [LPR05] to settle a 1958 conjecture of Peter

Lax on hyperbolic polynomials. Indeed LMI representations are closely tied

to properties of hyperbolic polynomials; see this volume, the survey of Helton

and Nie.

In summary, if a (commutative) bounded basic open semi-algebraic convex

set has an LMI representation, then it must pass the highly restrictive line

test; whereas a non-commutative bounded basic open semi-algebraic set has

an LMI representation if and only if it is convex.

A subset S of (SRn×n)g is closed under unitary conjugation if for ev-

ery X = (X1, . . . , Xg) ∈ S and U a n × n unitary, we have U∗XU =

(U∗X1U, . . . , U
∗XgU) ∈ S. The sequence C = (C(n))n∈N, where C(n) ⊆

(SRn×n)g, is a non-commutative set if it is closed under unitary conjuga-

tion and direct sums; i.e., if X = (X1, . . . , Xg) ∈ C(n) and Y = (Y1, . . . , Yg) ∈
C(m), then X ⊕ Y = (X1 ⊕ Y1, . . . , Xg ⊕ Yg) ∈ C(n + m). Such set C has an

LMI representation if there is a monic linear pencil L such that
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C = DL.

Of course, if C = DL, then the closure C of C has the representation

{X : L(X) � 0} and so we could also refer to C as having an LMI repre-

sentation.

Clearly, if C has an LMI representation, then C is a convex non-commutative

basic open semi-algebraic set. The main result of this section is the converse,

under the additional assumption that C is bounded.

Since we are dealing with matrix convex sets, it is not surprising that the

starting point for our analysis is the matricial version of the Hahn-Banach

Separation Theorem of Effros and Winkler [EW97] which says that given a

point x not inside a matrix convex set there is a (finite) LMI which separates

x from the set. For a general matrix convex set C, the conclusion is then that

there is a collection, likely infinite, of finite LMIs which cut out C.
In the case C is matrix convex and also semi-algebraic, the challenge is to

prove that there is actually a finite collection of (finite) LMIs which define C.
The techniques used to meet this challenge have little relation to previous work

on convex non-commutative basic semi-algebraic sets. In particular, they do

not involve non-commutative calculus and positivity. See [HM] for the details.

3.1 Non-commutative Basic Open Semi-Algebraic Sets

Suppose p ∈ R〈x〉δ×δ is symmetric. In particular, p(0) is a δ × δ symmetric

matrix. Assume that p(0) � 0. For each positive integer n, let

Ip(n) = {X ∈ (SRn×n)g : p(X) � 0},

and define Ip to be the sequence (graded set) (Ip(n))∞n=1. Let Dp(n) denote

the connected component of 0 of Ip(n) and Dp the sequence (graded set)

(Dp(n))∞n=1. We call Dp the positivity set of p. In analogy with classical

real algebraic geometry we call sets of the form Dp non-commutative basic

open semi-algebraic sets. (Note that it is not necessary to explicitly con-

sider intersections of non-commutative basic open semi-algebraic sets since

the intersection Dp ∩ Dq equals Dp⊕q.)

Remark 1. By a simple affine linear change of variable the point 0 can be

replaced by λ ∈ Rg. Replacing 0 by a fixed Λ ∈ (SRn×n)g would require an

extension of the theory.

3.2 Convex Semi-Algebraic Sets

To say that Dp is convex means that each Dp(n) is convex (in the usual sense)

and in this case we say Dp is a convex non-commutative basic open
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semi-algebraic set. In addition, we generally assume that Dp is bounded;

i.e., there is a constant K such for each n and each X ∈ Dp(n), we have

‖X‖ =
∑
‖Xj‖ ≤ K. Thus the following list of conditions summarizes our

usual assumptions on p.

Assumption 1 Fix p a δ × δ symmetric matrix of polynomials in g non-

commuting variables of degree d. Our standard assumptions are:

(1) p(0) is positive definite;

(2) Dp is bounded; and

(3) Dp is convex.

3.3 The Result

Our main theorem of this section is

Theorem 5 ([HM]). Every convex non-commutative bounded basic open

semi-algebraic set (as in Assumption 1) has an LMI representation.

The proof of Theorem 5 yields estimates on the size of the representing

LMI.

Theorem 6. Suppose p satisfies the conditions of Assumption 1. Thus p is

a symmetric δ × δ-matrix polynomial of degree d in g variables. Let ν =

δ
∑d
j=0 g

j.

(1) There is a µ ≤ ν(ν+1)
2 and a monic linear pencil L ∈ SRµ×µ〈x〉 such that

Dp = DL.

(2) In the case that p(0) = Iδ, the estimate on the size of the matrices in L

reduces to ν̆(ν̆+1)
2 , where ν̆ = δ

∑d d
2 e

j=0 g
j.

As usual,
⌈
d
2

⌉
stands for the smallest integer ≥ d

2 . Of course⌈
d

2

⌉
=
d

2
when d is even and

⌈
d

2

⌉
=
d+ 1

2
when d is odd.

The results above hold even if sets more general than Dp are used. Suppose

p(0) is invertible and define Ip to be the component of {X : p(X) is invertible}
containing 0. Then if Ip is bounded and convex, the theorems above still hold

for Ip; it has an LMI representation.

An unexpected consequence of Theorem 5 is that projections of non-

commutative semi-algebraic sets may not be semi-algebraic. For details and

proofs see [HM].
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3.4 Motivation

One of the main advances in systems engineering in the 1990’s was the con-

version of a set of problems to LMIs, since LMIs, up to modest size, can be

solved numerically by semidefinite programs [SIG98]. A large class of linear

systems problems are described in terms of a signal-flow diagram Σ plus L2

constraints (such as energy dissipation). Routine methods convert such prob-

lems into a non-commutative polynomial inequalities of the form p(X) � 0 or

p(X) � 0.

Instantiating specific systems of linear differential equations for the “boxes”

in the system flow diagram amounts to substituting their coefficient matrices

for variables in the polynomial p. Any property asserted to be true must hold

when matrices of any size are substituted into p. Such problems are referred

to as dimension free. We emphasize, the polynomial p itself is determined by

the signal-flow diagram Σ.

Engineers vigorously seek convexity, since optima are global and convex-

ity lends itself to numerics. Indeed, there are over a thousand papers trying

to convert linear systems problems to convex ones and the only known tech-

nique is the rather blunt trial and error instrument of trying to guess an LMI.

Since having an LMI is seemingly more restrictive than convexity, there has

been the hope, indeed expectation, that some practical class of convex situa-

tions has been missed. The problem solved here (though not operating at full

engineering generality, see [HHLM08]) is a paradigm for the type of algebra

occurring in systems problems governed by signal-flow diagrams; such physi-

cal problems directly present non-commutative semi-algebraic sets. Theorem

5 gives compelling evidence that all such convex situations are associated to

some LMI. Thus we think the implications of our results here are negative for

linear systems engineering; for dimension free problems there is no convexity

beyond LMIs.

A basic question regarding the range of applicability of SDP is: which

sets have an LMI representation? Theorem 5 settles, to a reasonable extent,

the case where the variables are non-commutative (effectively dimension free

matrices).

4 Convex Polynomials

We turn now from non-commutative convex sets to non-commutative convex

polynomials. If p is concave (−p is convex) and monic, then the set S = {X :

p(X) � 0} is a convex non-commutative basic open . If it is also bounded,

then, by the results of the previous section, it has an LMI representation.
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However, much more is true and the analysis turns on a nc version of the

Hessian and connects with nc semi-algebraic geometry.

A symmetric polynomial p is matrix convex, or simply convex for short,

if for each positive integer n, each pair of tuples X ∈ (SRn×n)g and Y ∈
(SRn×n)g, and each 0 ≤ t ≤ 1,

p(tX + (1− t)Y ) � tp(X) + (1− t)p(Y ). (1)

Even in one-variable, convexity in the non-commutative setting differs from

convexity in the commuting case because here Y need not commute with X.

For example, to see that the polynomial p = x4 is not matrix convex, let

X =

[
4 2

2 2

]
and Y =

[
2 0

0 0

]
and compute

1

2
X4 +

1

2
Y 4 −

(
1

2
X +

1

2
Y

)4

=

[
164 120

120 84

]

which is not positive semidefinite. On the other hand, to verify that x2 is a

matrix convex polynomial, observe that

tX2 + (1− t)Y 2 − (tX + (1− t)Y )2 = t(1− t)(X − Y )2 � 0.

It is possible to automate checking for convexity, rather than depend-

ing upon lucky choices of X and Y as was done above. The theory de-

scribed in [CHSY03], leads to and validates a symbolic algorithm for de-

termining regions of convexity of non-commutative polynomials and even

of non-commutative rational functions (for non-commutative rationals see

[KVV09, HMV06]) which is implemented in NCAlgebra.

Let us illustrate it on the example p(x) = x4. The NCAlgebra command

is

NCConvexityRegion[Function F , {Variables x}].

In[1]:= SetNonCommutative[x];

In[2]:= NCConvexityRegion[ x**x**x**x, {x} ]

Out[2]:= { {2, 0, 0}, {0, 2}, {0, -2} }

which we interpret as saying that p(x) = x4 is convex on the set of matrices

X for which the the 3× 3 block matrix valued non-commutative function

ρ(X) =

2 0 0

0 0 2

0 −2 0

 (2)



18 J. William Helton, Igor Klep, and Scott McCullough

is positive semidefinite. Since ρ(X) is constant and never positive semidefinite,

we conclude that p is nowhere convex.

This example is a simple special case of the following theorem.

Theorem 7 ([HM03]). Every convex symmetric polynomial in the free algebra

R〈x〉 has degree two or less.

4.1 The Proof of Theorem 7 and its Ingredients

Just as in the commutative case, convexity of a symmetric p ∈ R〈x〉 is equiva-

lent to positivity of its Hessian q(x)[h] which is a polynomial in the 2g variables

x = (x1, . . . , xg) and h = (h1, . . . , hg). Unlike the commutative case, a pos-

itive non-commutative polynomial is a sum of squares. Thus, if p is convex,

then its Hessian q(x)[h] is a sum of squares. Combinatorial considerations say

that a Hessian which is also a sum of squares must come from a polynomial

of degree two. In the remainder of this section we flesh out this argument,

introducing the needed definitions, techniques, and results.

Non-commutative Derivatives

For practical purposes, the kth-directional derivative of a nc polynomial p

is given by

p(k)(x)[h] =
dk

dtk
p(x+ th)

∣∣∣
t=0

.

Note that p(k)(x)[h] is homogeneous of degree k in h and moreover, if p is

symmetric so is pk(x)[h]. For X,H ∈ (SRn×n)g observe that

p′(X)[H] = lim
t→0

p(X + tH)− p(X)

t
.

Example 1. The one variable p(x) = x4 has first derivative

p′(x)[h] = hxxx+ xhxx+ xxhx+ xxxh.

Note each term is linear in h and h replaces each occurrence of x once and

only once. The Hessian, or second derivative, of p is

p′′(x)[h] = 2hhxx+ 2hxhx+ 2hxxh+ 2xhhx+ 2xhxh+ 2xxhh.

Note each term is degree two in h and h replaces each pair of x’s exactly once.

Theorem 8 ([HP07]). Every symmetric polynomial p ∈ R〈x〉 whose kth

derivative is a matrix positive polynomial has degree k or less.

Proof. See [HP07] for the full proof or [HM03] for case of k = 2. The very

intuitive proof based upon a little non-commutative semi-algebraic geometry

is sketched in the next subsection.
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A Little Non-Commutative Semi-Algebraic Geometry

The proof of Theorem 7 employs the most fundamental of all non-commutative

Positivstellensätze.

A symmetric non-commutative polynomial p is matrix positive or sim-

ply positive provided p(X1, . . . , Xg) is positive semidefinite for every X ∈
(SRn×n)g (and every n). An example of a matrix positive polynomial is a

Sum of Squares of polynomials, meaning an expression of the form

p(x) =

c∑
j=1

hj(x)∗hj(x).

Substituting X ∈ (SRn×n)g gives p(X) =
∑c
j=1 hj(X)∗hj(X) � 0. Thus p is

positive. Remarkably these are the only positive non-commutative polynomi-

als.

Theorem 9 ([Hel02]). Every matrix positive polynomial is a sum of squares.

This theorem is just a sample of the structure of non-commutative semi-

algebraic geometry, the topic of Section 5.

Suppose p ∈ R〈x〉 is (symmetric and) convex and Z,H ∈ (SRn×n)g and

t ∈ R are given. In the definition of convex, choosing X = Z + tH and

Y = Z − tH, it follows that

0 � p(Z + tH) + p(Z − tH)− 2p(Z),

and therefore

0 � lim
t→0

p(X + tH) + p(X − tH)− 2p(X)

t2
= p′′(X)[H].

Thus the Hessian of p is matrix positive and since, in the non-commutative

setting, positive polynomials are sums of squares we obtain the following the-

orem.

Proposition 1. If p is matrix convex, then its Hessian p′′(x)[h] is a sum of

squares.

Proof of Theorem 7 by example

Here we illustrate the proof of Theorem 7 based upon Proposition 1 by showing

that p(x) = x4 is not matrix convex. Indeed, if p(x) is matrix convex, then

p′′(x)[h] is matrix positive and therefore, by Proposition 1, there exists a `

and polynomials f1(x, h), . . . , f`(x, h) such that
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1

2
p′′(x)[h] = hhxx+ hxhx+ hxxh+ xhhx+ xhxh+ xxhh

= f1(x, h)∗f1(x, h) + · · ·+ f`(x, h)∗f`(x, h).
span

One can show that each fj(x, h) is linear in h. On the other hand, some term

f∗i fi contains hhxx and thus fi contains hx2. Let m denote the largest ` such

that some fj contains the term hx`. Then m ≥ 1 and for such j, the product

f∗j fj contains the term hx2mh which cannot be cancelled out, a contradiction.

The proof of the more general, order k derivative, is similar, see [HP07].

4.2 Non-commutative Rational and Analytic Functions

A class of functions bigger than nc polynomials is given by nc analytic func-

tions, see e.g. Voiculescu [Voi04, Voi] or the forthcoming paper of Kaliuzhnyi-

Verbovetskyi and Vinnikov for an introduction. The rigidity of nc bianalytic

maps is investigated by Popescu [Pop10]; see also [HKMS09, HKMa, HKMc].

For other properties of nc analytic functions, a very interesting body of work,

e.g. by Popescu [Pop09] can be used as a gateway.

The articles [BGM06, KVV09, HMV06] deal with non-commutative ratio-

nal functions. For instance, [HMV06] shows that if a non-commutative rational

function is convex in an open set, then it is the Schur Complement of some

monic linear pencil.

5 Algebraic Certificates of Positivity

In this section we give a brief overview of various free ∗-algebra analogs to

the classical Positivstellensätze, i.e., theorems characterizing polynomial in-

equalities in a purely algebraic way. Here it is of benefit to consider free non-

symmetric variables. That is, let x = (x1, . . . , xg) be non-commuting variables

and x∗ = (x∗1, . . . , x
∗
g) another set of non-commuting variables. Then R〈x, x∗〉

is the free ∗-algebra of polynomials in the non-commuting indeterminates

x, x∗.

There is a natural involution ∗ on R〈x, x∗〉 induced by xi 7→ x∗i and x∗j 7→
xj . As before, p ∈ R〈x, x∗〉 is symmetric if p = p∗. An element of the form p∗p

is a square, and Σ2 denotes the convex cone of all sums of squares. Given a

matrix polynomial p =
∑
w pww ∈ R〈x, x∗〉δ×δ′ and X ∈ (Rn×n)g, we define

the evaluation p(X,X∗) by analogy with evaluation in the symmetric variable

case.
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5.1 Positivstellensätze

This subsection gives an indication of various free ∗-algebra analogs to the

classical theorems characterizing polynomial inequalities in a purely algebraic

way. We will start by sketching a proof of the following refinement of Theorem

9.

Theorem 10 ([Hel02]). Let p ∈ R〈x, x∗〉d be a non-commutative polyno-

mial. If p(M,M∗) � 0 for all g-tuples of linear operators M acting on a

Hilbert space of dimension at most N(k) := dimR〈x, x∗〉k with 2k ≥ d + 2,

then p ∈ Σ2.

Proof. Note that a polynomial p satisfying the hypothesis automatically satis-

fies p = p∗. The only necessary technical result we need is the closedness of the

cone Σ2
k in the Euclidean topology of the finite dimensional space R〈x, x∗〉k.

This is done as in the commutative case, using Carathéodory’s convex hull

theorem, more exactly, every polynomial of Σ2
k is a convex combination of

at most dimR〈x, x∗〉k + 1 squares (of polynomials). On the other hand the

positive functionals on Σ2
k separate the points of R〈x, x∗〉k. See for details

[HMP04].

Assume that p /∈ Σ2 and let k ≥ (d + 2)/2, so that p ∈ R〈x, x∗〉2k−2.

Once we know that Σ2
2k is a closed cone, we can invoke Minkowski separation

theorem and find a symmetric functional L ∈ R〈x, x∗〉′2k providing the strict

separation:

L(p) < 0 ≤ L(f), f ∈ Σ2
2k.

Applying the Gelfand-Naimark-Segal construction to L yields a tuple M of

operators acting on a Hilbert space H of dimension N(k) and a vector ξ ∈ H,

such that

0 ≤ 〈p(M,M∗)ξ, ξ〉 = L(p) < 0,

a contradiction.

When compared to the commutative framework, this theorem is stronger

in the sense that it does not assume a strict positivity of p on a well chosen

“spectrum”. Variants with supports (for instance for spherical tuples M :

M∗1M1 + ...+M∗gMg � I) of the above result are discussed in [HMP04].

To draw a very general conclusion from the above computations: when

dealing with positivity in a free ∗-algebra, the standard point evaluations

(or more precisely prime or real spectrum evaluations) of the commutative

case are replaced by matrix evaluations of the free variables. The positivity

can be tailored to “evaluations in a supporting set”. The results pertaining

to the resulting algebraic decompositions are called Positivstellensätze, see
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[PD01] for details in the commutative setting. We state below an illustrative

and generic result, from [HM04], for sums of squares decompositions in a free

∗-algebra.

Theorem 11 ([HM04]). Let p = p∗ ∈ R〈x, x∗〉 and let q = {q1, ..., qk} ⊆
R〈x, x∗〉 be a set of symmetric polynomials, so that

QM(q) = co{f∗qif ; f ∈ R〈x, x∗〉, 0 ≤ i ≤ k}, q0 = 1,

contains 1−x∗1x1− ...−x∗gxg . If for all tuples of linear bounded Hilbert space

operators X = (X1, ..., Xg), we have

qi(X,X
∗) � 0, 1 ≤ i ≤ k ⇒ p(X,X∗) � 0, (1)

then p ∈ QM(q).

Henceforth, call QM(q) the quadratic module generated by the set of

polynomials q.

We omit the proof of Theorem 11, as it is very similar to the previous

proof. The only difference is in the separation theorem applied. For details,

see [HM04].

Some interpretation is needed in degenerate cases, such as those where no

bounded operators satisfy the relations qi(X,X
∗) � 0. Suppose for example,

if φ denotes the defining relations for the Weyl algebra and the qi include

−φ∗φ. In this case, we would say p(X,X∗) � 0, since there are no X satisfy-

ing q(X,X∗), and voila p ∈ QM(q) as the theorem says. A non-archimedean

Positivstellensatz for the Weyl algebra, which treats unbounded representa-

tions and eigenvalues of polynomial partial differential operators, is given in

[Sch05].

A paradigm practical question with matrix inequalities is:

Given a non-commutative symmetric polynomial p(a, x) and a n× n ma-

trix tuple A, find X � 0 if possible which makes p(A,X) � 0.

As a refinement of this problem, let q(a, x) be a given nc symmetric poly-

nomial. For a given A, find X if possible, such that both q(A,X) and p(A,X)

are positive semidefinite. The infeasibility of this latter problem is equivalent

to the statement, if q(A,X) � 0, then p(A,X) 6� 0. There is keen interest in

numerical solutios of such problems. The next theorem informs us that the

main issue is the matrix coefficients A, as it gives a “certificate of infeasibility”

for the problem in the absense of A.
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Theorem 12 (Nirgendsnegativsemidefinitheitsstellensatz [KS07]).

Let p = p∗ ∈ R〈x, x∗〉 and let q = {q1, ..., qk} ⊂ R〈x, x∗〉 be a set of symmetric

polynomials, so that QM(q) contains 1 − x∗1x1 − ... − x∗gxg . If for all tuples

of linear bounded Hilbert space operators X = (X1, ..., Xg), we have

qi(X,X
∗) � 0, 1 ≤ i ≤ k ⇒ p(X,X∗) 6� 0, (2)

then there exists an integer r and h1, . . . , hr ∈ R〈x, x∗〉 with
∑r
i=1 h

∗
i phi ∈

1 + QM(q).

Proof. By (2),

{X | qi(X,X∗) � 0, 1 ≤ i ≤ k, −p(X,X∗) � 0} = ∅.

Hence −1 ∈ QM(q,−p) by Theorem 11.

5.2 Quotient Algebras

The results from Section 5.1 allow a variety of specializations to quotient

algebras. In this subsection we consider a two sided ideal I of R〈x, x∗〉 which

need not be invariant under ∗. Then one can replace the quadratic module

QM in the statement of a Positivstellensatz with QM(q)+I, and apply similar

arguments as above. For instance, the next simple observation can be deduced.

Corollary 1. Assume, in the hypotheses of Theorem 11, that the relations (1)

include some relations of the form r(X,X∗) = 0, even with r not symmetric,

then

p ∈ QM(q) + Ir (3)

where Ir denotes the two sided ideal generated by r.

Proof. This follows immediately from p ∈ QM(q, −r∗r) which is a conse-

quence of Theorem 11 and the fact

QM(q, −r∗r) ⊂ QM(q) + Ir.

For instance, we can look at the situation where r is the commutator [xi, xj ]

as insisting on positivity of q(X) only on commuting tuples of operators, in

which case the ideal I generated by [x∗j , x
∗
i ], [xi, xj ] is added to QM(q). The

classical commuting case is captured by the corollary applied to the “com-

mutator ideal”: I[x∗j ,x
∗
i ], [xi,xj ], [xi,x∗j ] for i, j = 1, . . . , g which requires testing

only on commuting tuples of operators drawn from a commuting C∗-algebra.

The classical Spectral Theorem, then converts this to testing only on Cg,
cf. [HP07].

The situation where one tests for constrained positivity in the absence of

an archimedean property is thoroughly analyzed in [SS].
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5.3 A Nullstellensatz

With similar techniques (well chosen, separating, ∗-representations of the free

algebra) and a rather different “dilation type” of argument, one can prove a

series of Nullstellensätze.

We state for information one of them. For an early version see [HMP05].

Theorem 13. Let q1(x), ..., qm(x) ∈ R〈x〉 be polynomials not depending on

the x∗j variables and let p(x, x∗) ∈ R〈x, x∗〉. Assume that for every g tuple X

of linear operators acting on a finite dimensional Hilbert space H, and every

vector v ∈ H, we have:

(qj(X)v = 0, 1 ≤ j ≤ m) ⇒ (p(X,X∗)v = 0).

Then p belongs to the left ideal R〈x, x∗〉q1 + ...+ R〈x, x∗〉qm.

Again, this proposition is stronger than its commutative counterpart. For

instance there is no need of taking higher powers of p, or of adding a sum of

squares to p. Note that here R〈x〉 has a different meaning than earlier, since,

unlike previously, the variables are nonsymmetric.

We refer the reader to [HMP07] for the proof of Theorem 13. An earlier,

transpose-free Nullstellensatz due to Bergman was given in [HM04].

Here is a theorem which could be regarded as a very different type of

non-commutative Nullstellensatz.

Theorem 14 ([KS08a]). Let p = p∗ ∈ R〈x, x∗〉d be a non-commutative poly-

nomial satisfying tr p(M,M∗) = 0 for all g-tuples of linear operators M acting

on a Hilbert space of dimension at most d. Then p is a sum of commutators

of non-commutative polynomials.

We end this subsection with an example which goes against any intuition

we would carry from the commutative case, see [HM04].

Example 2. Let q = (x∗x+ xx∗)2 and p = x+ x∗ where x is a single variable.

Then, for every matrix X and vector v (belonging to the space where X acts),

q(X)v = 0 implies p(X)v = 0; however, there does not exist a positive integer

m and r, rj ∈ R〈x, x∗〉, so that

p2m +
∑

r∗j rj = qr + r∗q. (4)

Moreover, we can modify the example to add the condition q(X) is positive

semidefinite implies p(X) is positive semidefinite and still not obtain this

representation.
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5.4 Tracial Positivstellensatz

Another type of non-commutative positivity is given by the trace. A poly-

nomial p ∈ R〈x, x∗〉 is called trace-positive if tr p(X,X∗) ≥ 0 for all

X ∈ (Rn×n)g. The main motivation for studying these comes from two out-

standing open problems: Connes’ embedding conjecture [Con76] from operator

algebras [KS08a] and the Bessis-Moussa-Villani (BMV) conjecture [BMV75]

from quantum statistical mechanics [KS08b].

Clearly, a sum of a matrix positive (i.e., sum of hermitian squares by

Theorem 10) and a trace-zero (i.e., sum of commutators by Theorem 14)

polynomial is trace-positive. However, unlike in the matrix positive case, not

every trace-positive polynomial is of this form [KS08a, KS08b].

Example 3. Let x denote a single non-symmetric variable and

M0 := 3x4−3(xx∗)2−4x5x∗−2x3(x∗)3+2x2x∗x(x∗)2+2x2(x∗)2xx∗+2(xx∗)3.

Then the non-commutative Motzkin polynomial in non-symmetric variables

is

M := 1 +M0 +M∗0 ∈ R〈x, x∗〉.

It is trace-positive but is not a sum of hermitian squares and commutators.

Life is somewhat easier in the constrained, bounded case. For instance, in

the language of operator algebras we have:

Theorem 15 ([KS08a]). For f = f∗ ∈ R〈x, x∗〉 the following are equivalent:

(i) tr
(
f(a, a∗)

)
≥ 0 for all finite von Neumann algebras A and all tuples of

contractions a ∈ Ag;

(ii) for every ε ∈ R>0, f + ε is a sum of commutators and of an element

from

QM(1− x∗1x1, . . . , 1− x∗gxg).

The big open question [Con76, KS08a] is whether (i) or (ii) is equivalent to

(iii) tr
(
f(X,X∗)

)
≥ 0 for all n ∈ N and all tuples of contractions X ∈

(Rn×n)g.

An attempt at better understanding trace-positivity is made in [BK],

where the duality between trace-positive polynomials and the tracial moment

problem is exploited. The tracial moment problem is the following question:

For which sequences (yw) indexed by words w in x, x∗, does there exist n ∈ N,

and a positive Borel measure µ on (SRn×n)n satisfying
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yw =

∫
w(A) dµ(A) ? (5)

Such a sequence is a tracial moment sequence. If one is interested only in finite

sequences (yw), then this is the truncated tracial moment problem.

To a sequence y = (yw) one associated the (infinite) Hankel matrix M(y),

indexed by words, by M(y)u,v = yu∗v. One of the results in [BK] shows

that if M(y) is positive semidefinite and of finite rank, then y is a tracial

moment sequence. In the truncated case a condition called “flatness” governs

the existence of a representing measure, much like in the classical case. For

details and proofs see [BK].

For the free non-commutative moment problem we refer the reader to

[McC01].

6 Algebraic Software

This section briefly surveys existing software dealing with non-commutative

convexity (Section 6.1) and positivity (Section 6.2).

6.1 NCAlgebra under Mathematica

Here is a list of software running under NCAlgebra [HdOSM10] (which runs

under Mathematica) that implements and experiments on symbolic algorithms

pertaining to non-commutative Convexity and LMIs.

NCAlgebra is available from http://www.math.ucsd.edu/$\sim$ncalg

• Convexity Checker. Camino, Helton, Skelton, Ye [CHSY03] have an

(algebraic) algorithm for determining the region on which a rational ex-

pression is convex.

• Classical Production of LMIs. There are two Mathematica NCAlge-

bra notebooks by de Oliveira and Helton. The first is based on algorithms

for implementing the 1997 approach of Skelton, Iwasaki and Grigonidas

[SIG98] associating LMIs to more than a dozen control problems. The

second (requires C++ and NCGB) produces LMIs by symbolically imple-

menting the 1997 change of variables method of Scherer et al.

• Schur Complement Representations of a non-commutative ratio-

nal. This computes a linear pencil whose Schur complement is the given

nc rational function p using Shopple - Slinglend thesis algorithm. It is not

known if p convex near 0 always leads to a monic pencil via this algorithm,

but we never saw a counter example.
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• Determinantal Representations. Finds Determinantal Representa-

tions of a given polynomial p. Shopple - Slinglend implement Slinglend’s

thesis algorithm plus the [HMV06] algorithm. Requires NCAlgebra.

See http://www.math.ucsd.edu/~ncalg/surveydemo for occurences of

available demos.

6.2 NCSOStools under Matlab

NCSOStools [CKP] which runs under Matlab, implements and experiments

on numeric algorithms pertaining to non-commutative positivity and sums of

squares. Here is a sample of features available.

• Non-commuting variables. Basic symbolic computation with nc vari-

ables for Matlab has been implemented.

• Matrix-positivity. An nc polynomial p is matrix positive if and only if

it is a sum of squares. This can be easily tested using a variant of the

classical Gram matrix method. Indeed, p ∈ R〈x〉2d is a sum of squares

if and only if p = 〈x〉∗dG〈x〉d for a positive semidefinite G. (Here, 〈x〉d
denotes a (column) vector of all words in x of degree ≤ d.) This can be

easily formulated as a feasibility semidefinite program (SDP).

• Eigenvalue optimization. Again, using SDP we can compute the small-

est eigenvalue f? a symmetric f ∈ R〈x〉 can attain. That is,

f? = inf{〈f(A)v, v〉 : A a g-tuple of symmetric matrices, v a unit vector}.

Hence f? is the greatest lower bound on the eigenvalues f(A) can attain

for g-tuples of symmetric matrices A, i.e., (f − f?)(A) � 0 for all n-tuples

of symmetric matrices A, and f? is the largest real number with this

property. Given that a polynomial is matrix positive if and only if it is a

sum of squares we can compute f? efficiently with SDP:

f? = sup λ

s. t. f − λ ∈ Σ2.

• Minimizer extraction. Unlike in the commutative case, if f? is attained,

then minimizers (A, v) can always be computed. That is, A is a g-tuple of

symmetric matrices and v is a unit eigenvector for f(A) satisfying

f? = 〈f(A)v, v〉.

Of course, in general f will not be bounded from below. Another problem

is that even if f is bounded, the infimum f? need not be attained. The core

ingredient of this minimizer extraction is the nc moment problem governed

by a condition calles “flatness”, together with the GNS construction.
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• Commutators and Cyclic equivalence. Two polynomials are cyclically

equivalent if their difference is a sum of commutators. This is easy to check.

• Trace-positivity. The sufficient condition for trace-positivity (i.e., sum

of squares up to cyclic equivalence) is tested for using a variant of the

Gram matrix method applied to matrix positivity.

NCSOStools is extensively documented and available at

http://ncsostools.fis.unm.si
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