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Abstract. Most differential equations found in chemical reaction networks (CRNs) have the form:

dx

dt
= f(x) = Sv(x),

where x ≥ 0, that is, x lies in the nonnegative orthant Rd
≥0, where S is a real d × d′ matrix

(stoichiometric matrix) and v is a column vector consisting of d′ real-valued functions having a

special relationship to S. Our main interest will be in the Jacobian matrix, f ′(x), of f(x), in

particular in whether or not each entry f ′ij(x) has the same sign for all x in the orthant, i.e., the

Jacobian respects a sign pattern.

In [?] we gave necessary and sufficient conditions on the species-reaction graph naturally asso-

ciated to S which guarantee that the Jacobian of the associated CRN has a sign pattern. In this

paper, given S we give a construction which adds certain rows and columns to S, thereby producing

a stoichiometric matrix bS corresponding to a new CRN with some added species and reactions. The

Jacobian for this CRN based on bS has a sign pattern. The equilibria for the S and the bS based

CRN are in exact one to one correspondence with each equilibrium e for the original system gotten

from an equilibrium be for the new system by removing its added species. In our construction of a

new CRN we are allowed to choose rate constants for the added reactions and if we choose them

large enough the equilibrium be is locally stable if and only if the equilibrium e is locally stable.

Further properties of the construction are shown, such as those pertaining to conserved quantities

and to how the deficiencies of the two CRNs compare.

1. Introduction

In this paper we are concerned with polynomial systems of equations arising from systems of
ordinary differential equations (ODEs) which act on the nonnegative orthant Rd

≥0 in Rd:

(1.1)
dx

dt
= f(x),

where f : Rd
≥0 → Rd. The differential equations we address are of a special form found in chemical

reaction kinetics:

(1.2)
dx

dt
= Sv(x),

where S is a real d × d′ matrix and v is a column vector consisting of d′ real-valued functions.
We say that system (??) has reaction form provided it is represented as in (??) with v(x) =[
v1 · · · vd′

]t and

(1.3) vj depends exactly on variables xi for which Sij < 0.
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Call S the stoichiometric matrix and the entries of v(x) the fluxes. We always assume the
fluxes are continuously differentiable. Furthermore, in many situations all fluxes vj(x) are monotone

nondecreasing in each xi when the other variables are fixed, that is, v′(x) =
[

∂vi(x)
∂xj

]
ij

, the Jacobian

of v, has all entries nonnegative for all x ≥ 0. This happens in classical mass action kinetics or
for Michaelis-Menten-Hill type fluxes. See [?,?] for an exposition. We shall develop a few matrix
theoretic phenomena bearing on the properties of the Jacobian, f ′(x) = Sv′(x). For monotone
nondecreasing fluxes the reaction form property (??) is equivalent to

(1.4)
∂vj(x)
∂xi

6≡ 0 ⇔ ∂vj(x)
∂xi

≥ 0 and 6≡ 0 ⇔ Sij < 0.

and this is what we shall mostly be using.

1.1. Sign Pattern of AAt. Given this monotone property, we employ the language of signed
matrices [?]. Call a sign pattern a matrix A with entries which are ±aij or 0, where aij are free
variables. To a real matrix B we can associate its sign pattern A = SP(B) with ±aij or 0 in the
correct locations. Given a matrix with symbolic entries (i.e., polynomials) we might or might not
be able to associate a sign pattern. Here, we think of the free variables as being positive.

Example 1.1. If B =
[

0 6
−2 −5

]
, then A = SP(B) =

[
0 +a12

−a21 −a22

]
and

AAt =
[

a2
12 −a12a22

−a12a22 a2
21 + a2

22

]
.

Observe that AAt admits a sign pattern.

On the other hand, if B =
[
−1 6
−2 −5

]
, then A = SP(B) =

[
−a11 +a12

−a21 −a22

]
and

AAt =
[

a2
11 + a2

12 a11a21 − a12a22

a11a21 − a12a22 a2
21 + a2

22

]
does not admit a sign pattern. Namely, the off-diagonal entries of AAt are not positive linear
combinations of monomials in the ai. They may attain positive and negative values when evaluated
at appropriate positive values of the aij .

Theorem 1.2 (cf. [?, Theorem 5.1]). Let A be a sign pattern. The hermitian square AAt of A
admits a sign pattern if and only if A does not contain a 2× 2 submatrix whose rows and columns
can be permuted to obtain a matrix whose sign pattern agrees with the one of

(1.5)
[
+1 −1
−1 −1

]
or

[
−1 +1
+1 +1

]
.

Such 2× 2 matrices either contain 3 minus signs and 1 plus sign, or they contain 1 minus sign and
3 plus signs.

Proof of Theorem ??. Suppose the entry (AAt)ij of AAt fails to admit a sign. As

(AAt)ij =
∑

k

AikA
t
kj =

∑
k

AikAjk,
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this is equivalent to not all terms of the last sum having the same sign. Which is equivalent to
the existence of k, ` with signAik = signAjk 6= 0 and signAi` = − signAj` 6= 0. Hence the 2 × 2
submatrix [

Aik Ajk

Ai` Aj`

]
of A will (after a possible permutation of rows and columns) have the same sign pattern as one of
the matrices in (??).

1.2. Sign pattern for the Jacobian. In the language of chemical reaction networks this theorem
has an interpretation as follows:

Theorem 1.3. The Jacobian f ′(x) = Sv′(x) of the right hand side of a reaction form ODE (??)
with monotone nondecreasing fluxes admits a sign pattern in the positive orthant whenever S does
not have a 2× 2 submatrix whose rows and columns can be permuted to obtain a matrix whose sign
pattern agrees with the one of

(1.6)
[
+1 −1
−1 −1

]
.

Conversely, if f ′(x) = Sv′(x) fails to admit a sign pattern for a stoichiometric matrix S with a
reversible CRN and for all reversible matrices having the same sign pattern as S which are near to
it, then S contains such a submatrix.

Since, it is brief we review why this is true. Write S = S+ − S− for real matrices S+, S− with
nonnegative entries satisfying the complimentarity property (S+)ij(S−)ij = 0. If the (i, j)th entry
of f ′(x) = Sv′(x) does not have a sign pattern, then (S+v

′(x))ij 6= 0 and (S−v′(x))ij 6= 0. As

(S+v
′(x))ij =

∑
k

(S+)ikv
′
kj(x),

(S+v
′(x))ij 6= 0 if and only if for some k, Sik > 0 and v′kj(x) 6≡ 0, so from the reaction form

property (??), we get Sjk < 0. To summarize: Sik > 0 and Sjk < 0. Similarly, (S−v′(x))ij 6= 0
if and only if there is some ` with (S−)i` 6= 0 and v′`j(x) 6≡ 0, so we get Sj` < 0. To summarize:
Si` < 0 and Sj` < 0. Taken together this implies that the 2 × 2 submatrix of S given by rows
i, j and columns k, ` has the same sign pattern as the matrix (??), up to a permutation of rows
and columns. The converse reverses this line of reasoning, with the hypothesis requiring robustness
under small perturbations of S ruling out fluke cancellations.

See [?, §3.1] for details and extensions.

That many CRNs have Jacobians with sign patterns can be found in the work of Sontag [?,?],
and many subsequent publications. Typically Sontag and collaborators assume this and something
considerably stronger to obtain results on globally stable equilibria.

This paper concerns CRNs whose Jacobians do not have a sign pattern and describes a method
for transforming such a system of ODEs into a system of ODEs whose Jacobian does have a sign
pattern, and for which the equilibria of both systems remain “the same” (see §?? for a precise
formulation). We shall refer to this as the sign fixing algorithm.
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2. Fixing the sign pattern for the Jacobian

In the first part of of this section, §??, we describe our sign fixing algorithm. In subsequent
subsections we show that the algorithm has several (pleasant) properties. The next section §??
shows how the classical notion of deficiency behaves with respect to our algorithm.

2.1. An algorithm for eliminating non-signed entries of f ′. Let S be a stoichiometric matrix
associated to a chemical network with a submatrix whose sign pattern coincides with that of
(??). Let A,B be the species representing the two rows of S corresponding to the bad submatrix.
Furthermore, consider the two columns of S belonging to this bad submatrix.

A

B

−p1

p2

−p3

−p4

(??) (??)

S =

These yield two reactions in the network of the following form:

p1A+ C1 → p2B + C2(2.1)

p3A+ p4B + C3 → C4,(2.2)

where pi ∈ N and Ci are some (possibly empty) positive linear combinations of species (avoiding A
in B).

We will construct a new network from S to eliminate this “bad” submatrix. Consider the
following network, where each reaction of the original system remains the same except that we add
a new species B′, reaction (??) is replaced by

(2.3) p1A+ C1 → B′ + C2,

and we create an additional reaction

(2.4) B′ → p2B.

Notice that the stoichiometric matrix Š associated to this new chemical network will not have the
bad submatrix we started with. Also, no new bad submatrices have been added in this process.
Thus we have reduced the number of bad submatrices.

Š =
A

B

B′

−p1

−p4

−p3

p2

(??) (??) (??)

1

0

−10 0 0

0

0

0
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We continue applying the same procedure (on this new network) to eliminate any other existing
bad 2× 2 submatrices.

In matrix terms, each time we apply this procedure to eliminate a bad submatrix, we change
one column (e.g. changing reaction (??) into (??)) of S and we append one additional row (e.g. for
the “species” B′) and column (e.g. for the reaction (??)) to S. We will call this procedure the sign
fixing algorithm.

Definition 2.1. Let S be a stoichiometric matrix corresponding to a chemical network, and suppose
S has bad submatrices. We write Ŝ for a new stoichiometric matrix with no bad submatrices
obtained by the sign fixing algorithm applied to each bad submatrix as explained above. Ŝ is called
a sign fixing matrix of S.

Example 2.2. Suppose we are given the stoichiometric matrix

S =

−1 −2 −1
−2 2 3
−4 5 0

 .
Notice that S has three bad submatrices. For instance, eliminating the bad submatrix

[−1 −2
−2 +2

]
yields

Š =


−1 −2 −1 0
−2 0 3 2
−4 5 0 0
0 1 0 −1

 .
A quick calculation shows that a sign fixing matrix of S is

Ŝ =


−1 −2 −1 0 0 0
−2 0 0 2 3 0
−4 0 0 0 0 5
0 1 0 −1 0 0
0 0 1 0 −1 0
0 1 0 0 0 −1

 .

The above definition implies that if S has no bad submatrices, then S = Ŝ is the sign fixing
matrix of itself. If S has multiple bad submatrices, we obtain Ŝ by a finite number of applications
of the sign fixing algorithm.

2.2. Uniqueness of the sign fixing matrix. Suppose we have a CRN with stoichiometric matrix
S. The sign fixing matrix Ŝ of S is non-unique, since it depends on the indexing of the bad
submatrices of S. It turns out that this non-uniqueness is easy to classify. One finds that any
two sign fixing matrices for S can be gotten from the other by “conjugation” with a permutation
matrix in a certain class which we shall describe completely.

Suppose B = {b1, . . . , bn} are the bad submatrices of S. Then Ŝ is determined by the finite
sequence S = S0, S1, . . . , Sn−1, Sn = Ŝ, where Sj is the sign fixing matrix of Sj−1 with respect to bj .
Another problem arises if bi and bj share the same positive entry in S. Namely, in this case, Sj will
equal Sj−1 by construction, if i < j. To resolve this problem, we introduce an equivalence relation
on B: bi ∼ bj if and only if bi and bj share a positive entry of S. This is an equivalence relation
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by construction. We will use B to denote the set of all equivalence classes of bad submatrices of
S, and from now on, we identify each bad submatrix of S with its equivalence class. Thus, the
number of new columns and rows in Ŝ is precisely card(B).

Suppose B = {b1, . . . , bn}. Let Symn be the symmetric group on {1, 2, . . . , n}, i.e., the set of
all permutations of n elements. Every σ ∈ Symn determines a sign fixing matrix Ŝσ of S by the
finite sequence S, Sσ,1, . . . , Sσ,n−1, Sσ,n = Ŝσ, where Sσ,1 is the sign fixing matrix of S with respect
to bσ(1), and Sσ,j is the sign fixing matrix of Sσ,j−1 with respect to bσ(j). Clearly, each sign fixing
matrix of S is determined by a permutation of B, and hence by an element in Symn. We thus
identify the set of all sign fixing matrices of S with the elements of Symn.

Our result in this subsection gives a map from one sign fixing matrix to another.

Theorem 2.3. Suppose S is a d×d′ stoichiometric matrix corresponding to a CRN with n pairwise
nonequivalent bad submatrices. If σ, τ ∈ Symn then

Ŝσ =
[
Id 0
0 P

]
Ŝτ

[
Id′ 0
0 P

]t

,

where P is the n× n permutation matrix associated to τ−1σ ∈ Symn.

Let C be the matrix obtained by substituting each of the n positive entries of S corresponding
to the n bad submatrices by 0. By construction, each sign fixing matrix of S will have the form

Sσ =
[
C Mσ

Nσ −In

]
,

where Nσ is a n×d′ matrix whose rows correspond to the bad submatrices in the order determined
by σ, and Mσ is a d × n matrix whose columns correspond to the bad submatrices in the order
determined by σ. More precisely, the ith row of Nσ is the unit vector e′j of length d′ if the bad
submatrix bσ(i) has a positive entry in column j of S. Similarly, the ith column of Mσ is a multiple
of the unit vector ej of length d if the bad submatrix bσ(i) has a positive entry in row j of S. The
multiple is the value of S at this positive entry.

Proof of Theorem ??. Note that[
I 0
0 P

]
Ŝτ

[
I 0
0 P

]t

=
[
C MτP

t

PNτ −In

]
,

so we only need to prove MτP
t = Mσ and PNτ = Nσ for the given P .

Suppose B = {b1, . . . , bn}, and ε ∈ Symn is the identity permutation. With the notation above,
let

Nε =

α1
...
αn

 and Mε =
[
β1 · · · βn

]
,

where αi, i = 1, . . . , n are the rows of Nε, and βi, i = 1, . . . , n are the columns of Mε. Given
σ ∈ Symn, we have

Nσ =

ασ(1)
...

ασ(n)

 and Mσ =
[
βσ(1) · · · βσ(n)

]
.
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The n× n permutation matrix associated to τ−1σ is

P =

e(τ−1σ)(1)
...

e(τ−1σ)(n)

 ,
where ei denotes the unit vector of length n with a one in the ith coordinate and 0’s elsewhere. By
construction, PNτ is a matrix whose ith row is the (τ−1σ)(i)th row of Nτ , so the ith row of PNτ

is ατ((τ−1σ)(i)) = ασ(i). Hence Nσ = PNτ as desired.

To conclude the proof let us verify Mσ = MτP
t. Notice that MτP

t is a matrix whose ith column
is the (τ−1σ)(i)th column of Mτ , so the ith column of MτP

t is βτ((τ−1σ)(i)) = βσ(i). This implies
Mσ = MτP

t.

2.3. Linear algebra associated to sign fixing. Our next goal is to analyze how equilibria for
the original CRN compare to equilibria for a sign fixed CRN. We shall find that the equilibria are
in close correspondence. The key to this fact is the following proposition on the nullspace of S
vs. the nullspace of Š and the range of S vs. the range of Š.

Proposition 2.4. Let S be a stoichiometric matrix with a bad submatrix. Let Š be obtained from
S by applying the sign fixing algorithm to eliminate this bad submatrix. Then dim kerS = dim ker Š
and dim kerSt = dim ker Št.

Indeed, there is a precise correspondence: given v ∈ kerS there exists a unique v∞ ∈ R with
v̌ =

[
vt v∞

]t ∈ ker Š. Conversely, for v̌ =
[
vt v∞

]t ∈ ker Š, one has v ∈ kerS. A similar
statement holds for the left kernels.

Proof. Let p and q be the rows of S, and let k and ` be the columns of S corresponding to the bad
submatrix. Without loss of generality assume that the bad submatrix has the same sign pattern
as

[−1 −1
−1 +1

]
. For the sake of exposition, here is a picture:

p

q

k `

Sq,`

S = ⇒ Š =
p

q

d+ 1

k ` d′ + 1

0

1 −1

Sq,`

0 0 0

0

0

0

Suppose S ∈ Rd×d′ and let v ∈ kerS. Then clearly v̌ =
[
vt v`

]t ∈ ker Š. Moreover, if v ∈ Rd′
>0,

then v̌ ∈ Rd′+1
>0 . Conversely, every v̌ =

[
vt v∞

]t ∈ ker Š satisfies v̌` = v∞ and so gives rise to
v ∈ kerS. Again, positivity is preserved. The corresponding analogous statements and proofs for
the left kernel are left as an exercise for the reader.

Remark 2.5. After applying one step of the sign fixing algorithm the number of bad submatrices
decreases. More precisely, let S be a stoichiometric matrix with a bad submatrix. Let Š be obtained
from S by applying the sign fixing algorithm to eliminate this bad submatrix. Then the number of
bad submatrices in Š is less than the number of those in S.
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Indeed, the form of Š, because the added row and column have all entries but two equal to zero,
guarantees Š does not contain the one bad submatrix under attack, and at the same time no bad
submatrices have been added. Thus we have reduced the number of bad submatrices by at least
one.

Remark 2.6. The sign fixing algorithm for the situation of the hermitian square AAt of a sign
pattern A, goes just as in §?? with A replacing S in the picture in the proof of Proposition ??.

Details are left as an exercise for the interested reader.

2.4. Behavior of equilibria and steady states in mass action kinetics under sign fixing.
This subsection uses the linear algebra result of the previous subsection to show that the equilibria
of a CRN and of its sign fixed CRN are in perfect correspondence. We shall show this for mass
action kinetics, although as one will see from the arguments here it works for a much more general
class of CRNs.

We now review mass action kinetics with the primary aim of introducing our notation. The
postulate of mass action kinetics is “the reaction rate is proportional to reactant concentrations”.
For instance, for the chemical reaction

2A+B → 4C

the reaction rate is k2A+B→4Cx
2
AxB, where x denotes the concentration of a species and k2A+B→4C >

0 is the rate constant. The corresponding ODE isẋA

ẋB

ẋC

 =

−2k2A+B→4Cx
2
AxB

−k2A+B→4Cx
2
AxB

4k2A+B→4Cx
2
AxB.

 =

−2
−1
4

 [
k2A+B→4Cx

2
AxB

]
.

In general, for S ∈ Rd×d′ the flux vector v(x) is given by

v(x)i = ki

d∏
j=1

x
min{0,Sji}
j , i = 1, . . . , d′.

(Here ki > 0 is the rate constant associated to the ith reaction and xj is the concentration of the
jth species.)

If the ODE (??) admits a positive vector in the left kernel (i.e., there exists m ∈ Rd
>0 with

m · ẋ = m · f(x) = 0), then the ODE is called conserving. This reflects quantities (like the mass
or the number of carbon atoms) being conserved. An obvious sufficient condition for ODEs of the
form (??) is kerSt ∩ Rd

>0 6= {0}. If this is satisfied, we say that S is conserving. By Proposition
?? this condition is preserved under the sign fixing algorithm.

Corollary 2.7. Let S be a stoichiometric matrix, and suppose S has a bad submatrix. Let Š
be obtained from S by applying the sign fixing algorithm to eliminate this bad submatrix. If S is
conserving, then so is Š. Moreover, the reaction form differential equations (??) associated under
mass action kinetics to S and to Š, respectively, have the same equilibria in the following sense.

Suppose S ∈ Rd×d′. If x̌ =
[
xt x∞

]t ∈ Rd+1
>0 satisfies Šv̌(x̌) = 0, then Sv(x) = 0. Conversely, if

x ∈ Rd
>0 satisfies Sv(x) = 0, then there exists a unique x∞ ∈ R>0 with Šv̌(x̌) = 0 for x̌ =

[
xt x∞

]t.
(Here v̌ will be used to denote the flux vector associated under mass action kinetics to Š.)
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Proof. This is essentially a consequence of Proposition ?? and the figure contained in its proof
describes the notation we now use. Let p and q be the rows of S, and let k and ` be the columns
of S corresponding to the bad submatrix, and assume without loss of generality Sq` > 0.

If v̌(x̌) ∈ ker Š ∩ Rd′+1
>0 and x̌ =

[
xt x∞

]t, then (by construction) the first d′ entries of v̌(x̌)
coincide with v(x), that is,

v̌(x̌)i = v(x)i, i = 1, . . . , d′.

Additionally,

(2.5) 0 = ˙̌xd+1 = v̌(x̌)` − v̌(x̌)d′+1

so we obtain

(2.6) v̌(x̌)d′+1 = v̌(x̌)` = v(x)`.

Note that by construction, v̌(x̌)d′+1 depends only on x∞ and thus we can solve (??) for x∞ uniquely.
Hence

0 = ˙̌xq =
d′+1∑
i=1

Šqiv̌(x̌)i =
d′∑

i=1
i6=`

Sqiv(x)i + Sq`v̌(x̌)d′+1

=
d′∑

i=1
i6=`

Sqiv(x)i + Sq`v(x)` =
d′∑

i=1

Sqiv(x)i.

For s 6= q,

0 = ˙̌xs =
d′+1∑
i=1

Šsiv̌(x̌)i =
d′∑

i=1

Ssiv(x)i

proving Sv(x) = 0. (Alternatively, the conclusion can be reached by the proof of Proposition ??.)
The calculation above reverses to show that converses of these implications hold as well.

Theorem 2.8. Let S be a stoichiometric matrix corresponding to a chemical reaction network.
Then the reaction form differential equations corresponding to S and to its sign fixing matrix Ŝ
under mass action kinetics have the equilibria which are equivalent under the correspondence in
Corollary ??.

Proof. This follows easily from Corollary ?? and Remark ?? by an induction on the number of bad
submatrices of S.

Remark 2.9. Theorem ?? and Corollary ?? extend to more general, reaction form ODEs (??) with
monotone fluxes. In one step of the algorithm the key is to add a reaction consuming exactly one
(new) species (variable) x∞. Since this is an artificial reaction we can specify a flux v̌(x̌)d′+1 and
the key is to pick it to be monotone and surjective, e.g. it depends only on x∞ and is linear. This
ensures the solvability of (??) for x∞. The uniqueness of x∞ is then guaranteed by the monotone
property. Under these assumptions both proofs work verbatim as the interested reader will have
no problem verifying.
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2.5. Local stability is preserved by sign fixing. In the previous subsection we showed that
the equilibria of the original CRN sit in a perfect correspondence with those of the sign fixed
CRN. An important question is whether or not stability of an equilibrium of the original CRN
implies stability of the corresponding equilibrium of the sign fixed CRN. This question is open to
interpretation because the sign fixing CRN contains a rate constant which we are allowed to define.
Let us call this rate constant k. A natural version of the question would be: is there an a priori
choice of k such that the equilibrium of the original CRN is stable if and only if the corresponding
equilibrium is stable for the sign fixed CRN. While we have not analyzed global stability, we have
analyzed and answered the question for local stability. We found that if we choose k large enough,
then one of the eigenvalues of the sign fixed Jacobian will be very negative, and all the others will
be close to the eigenvalues of the Jacobian of the original CRN. Recall that a matrix is said to be
stable if all its eigenvalues have negative real part. An equilibrium x0 ∈ Rd

≥0 of an ODE of the
form (??) is locally stable if the matrix f ′(x0) is stable.

As before, we assume mass action kinetics although this assumption can be weakened to reaction
form ODEs (??) with monotone surjective fluxes.

Theorem 2.10. Let S be a d × d′ stoichiometric matrix with a bad submatrix. Let Š be obtained
from S by applying the sign fixing algorithm to eliminate this bad submatrix. Write J(x) = Sv′(x)
and J̌k(x̌) = Šv̌′(x̌). Here k denotes the rate constant assigned to the additional reaction created
in the sign fixing algorithm. Fix a point x̌ ∈ Rd+1

≥0 and let x ∈ Rd
≥0 denote its first d components.

Furthermore, let J = J(x) and J̌k = J̌k(x̌).

Then d of the eigenvalues of the (d + 1) × (d + 1) Jacobian matrix J̌k (counting multiplicity)
converge (as k →∞) to the d eigenvalues of J and the remaining eigenvalue is real and converges
to −∞.

Without loss of generality, we may assume the bad submatrix in S is the 2×2 bottom right block
and Sd,d′ > 0. Then the relationship between the d× d matrix J = Sv′(x) and the (d+1)× (d+1)
matrix J̌k = Šv̌′(x̌) is as follows:

J̌k =


0

J 0
0

0 0 0 0

 +


0
0

−Sd,d′

1

[
∂vd′ (x)

∂x1
· · · ∂vd′ (x)

∂xd
−k

]

=


J1,1 · · · J1,d 0
...

. . .
...

...
Jd−1,1 · · · Jd−1,d 0

Jd,1 − Sd,d′
∂vd′
∂x1

· · · Jd,d − Sd,d′
∂vd′
∂xd

kSd,d′

∂vd′
∂x1

· · · ∂vd′
∂xd

−k

 .

Let c(λ) = det(J − λId) ∈ R[λ] and ck(λ) = det(J̌k − λId+1) ∈ R[λ] denote the characteristic
polynomials of J and J̌k, respectively.

Lemma 2.11. The degree d+1 polynomials 1
kck converge uniformly on compact subsets of C to the

degree d polynomial −c.
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Proof. Let us consider J̌k−λ and its determinant. For notational convenience let us write s = Sd,d′

and vd′,j = ∂vd′
∂xj

. Then

ck = det(J̌k − λ) = det


J1,1 − λ · · · J1,d 0

...
. . .

...
...

Jd−1,1 · · · Jd−1,d 0
Jd,1 − svd′,1 · · · Jd,d − svd′,d − λ ks

vd′,1 · · · vd′,d −k − λ



= det


J1,1 − λ · · · J1,d 0

...
. . .

...
...

Jd−1,1 · · · Jd−1,d 0
Jd,1 · · · Jd,d − λ −sλ
vd′,1 · · · vd′,d −k − λ



= (−k − λ)c+ sλdet


J1,1 − λ · · · J1,d−1 J1,d

...
. . .

...
...

Jd−1,1 · · · Jd−1,d−1 − λ Jd−1,d

vd′,1 · · · vd′,d−1 vd′,d


=: (−k − λ)c+ sλh.

Note h ∈ R[λ] is a polynomial of degree ≤ d− 1 and does not contain k. Thus

1
k
ck =

−k − λ

k
c− 1

k
sλh

k→∞−−−→ −c

uniformly on compact subsets of C.

In fact, the polynomial h from the proof of Lemma ?? is of degree ≤ d− 2. Since the ODEs are
in reaction form, Sd,d′ > 0 implies vd′,d = ∂vd′

∂xd
= 0, cf. (??).

Proof of Theorem ??. Let xk
j ,m

k
j denote the zeroes of ck together with their multiplicities and

xj ,mj denote the zeroes of c. Certainly ck is analytic in the complex variable λ, thus d zeroes of ck
(counting multiplicity) converge to the zeroes of c. This is a standard consequence of the argument
principle, since we can put a small circle Cε around a zero of xj and for large enough k the winding
number (with respect to 0) of 1

kck on Cε equals that of c. Thus c and ck have the same number of
zeroes inside Cε.

Similarly, to analyze the point at infinity, one can draw a circle CR of arbitrarily large radius R
containing all zeroes of c. The winding number (with respect to 0) of c around R is d, so for large
enough k the winding number of 1

kck is also d, thus one zero of ck, without loss of generality denote
it xk

d+1 lies outside of CR. Hence the sequence xk
d+1 diverges to infinity. Since all coefficients of the

polynomial ck are real, its zeroes are either real or occur in conjugate pairs. So xk
d+1 must be real,

since if not ck would have two zeroes outside of CR.

Let us retain the notation from the proof of Lemma ??. Then

ck = (−k − λ)c+ sλh ∈ R[λ],

where c ∈ R[λ] is of degree d, h ∈ R[λ] is of degree ≤ d− 1, and s ∈ R. Thus for λ > 0 big enough,
−λc dominates sλh. For such λ > 0 the sign of ck(λ) will equal the sign of −c(λ) for any k > 0.
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This shows that with R big, the zero xk
d+1 of ck outside of CR must be negative, thereby concluding

the proof.

Theorem 2.12. Let S be a stoichiometric matrix corresponding to a CRN and let Ŝ be one of its
sign fixing matrices. Then there exists a choice of rate constants for the added reactions such that
the equilibria of the reaction form ODEs corresponding to S are locally stable if and only if the
same holds for the equilibria of the reaction form ODEs corresponding to Ŝ.

Proof. This follows easily from Theorem ?? by an induction on the number of bad submatrices in
S.

2.6. The story in terms of graphs. To S one often associates a bipartite graph GS . One set of
nodes is columns Ci (reactions) the other set of nodes is rows Rj (chemical species). There is an
edge Eij joining Ci and Rj if and only if the ij entry of S is not 0. If Sij has a ± sign, then the
edge is labeled with a + or −, respectively, i.e., if and only if species j is consumed or produced in
reaction i, respectively. This graph is a simplified version of the species-reaction graph used in [?].
Theorem ?? (see also the paragraph following it) in this languages says

Theorem 2.13. The Jacobian f ′(x) = Sv′(x) of the right hand side of a reaction form ODE (??)
with monotone nondecreasing fluxes admits a sign pattern in the positive orthant whenever the
graph GS does not contain a cycle of length four with three minus edges and one plus edge. That
is, two reactions and two species, one reaction consumes both while the other consumes one and
produces the other.

The sign fixing algorithm takes a length four cycle C as in the theorem and “breaks it” by

(1) removing an edge from the cycle
(2) adding a node C∗ and node R∗ and two edges to the graph

thereby converting C to “harmless” a cycle of length six.

3. Deficiency vs. sign patterns

An important notion in chemical networks is that of deficiency. In this section we show that
sign fixing might increase the deficiency of a CRN by at the most the number of bad submatrices
for the stoichiometric matrix of the original CRN.

We follow the notation and terminology of Gunawardena [?] (or see [?,?]). Thus, we denote:

n := the number of complexes of the network,

` := the number of linkage classes of the network,

s := the rank of the stoichiometric matrix,

and the topological deficiency of the network is

δ := n− `− s.
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3.1. Zero deficiency vs. sign patterns. A natural question is whether the sign pattern of f ′(x) =
Sv′(x) has any correlation to the system having zero deficiency. The answer is no, and in this
subsection we give examples of

(1) chemical networks S with zero deficiency and no sign pattern for Sv′(x);
(2) chemical networks S with nonzero deficiency and a sign pattern for Sv′(x).

Example 3.1 (see [?, §4.3] for more details). Consider the reaction network

A→ B

B → C

C 
 A+B.

The deficiency of the system is easily seen to be zero. However,

S =

−1 0 −1 1
1 −1 −1 1
0 1 1 −1


so Sv′(x) will not admit a sign pattern (Theorem ??). It will have exactly one entry without a sign.
In order to obtain an example of a deficiency zero network with an arbitrary number of non-signed
entries in the Jacobian, one simply considers a network with the following stoichiometry:

S
S

. . .
S

 .
Conversely, having a sign pattern will not yield any information about the deficiency of the

network.

Example 3.2. Consider the chemical reaction network

B + C 
 A 
 B′ + C ′

B 
 B′ 
 C 
 C ′

with stoichiometric matrix

S =


−1 −1 0 0 0 1 1 0 0 0
1 0 −1 0 0 −1 0 1 0 0
0 1 1 −1 0 0 −1 −1 1 0
1 0 0 1 −1 −1 0 0 −1 1
0 1 0 0 1 0 −1 0 0 −1

 .
By Theorem ??, Sv′(x) admits an unambiguous sign pattern but the deficiency of the network is
one. To achieve arbitrary deficiency one can employ a block diagonal construction.

3.2. Deficiency and the sign fixing algorithm. In this subsection we consider how the defi-
ciency of a chemical reaction network changes after we apply the sign fixing algorithm to produce
a new chemical network.

Let S1 be the stoichiometric matrix for a chemical network, and let S2 be the sign fixing matrix
of S1 with respect to some bad submatrix. All variables with subscript 1 refer to the original
network and variables with subscript 2 refer to the new chemical network unless otherwise noted.
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Also, C denotes the set of all complexes of a network and L denotes the set of all linkage classes
of a network. We also denote ∆δ := δ2 − δ1, ∆n := n2 − n1, ∆` := `2 − `1, and ∆s = s2 − s1.
Assuming that S1 has a bad submatrix corresponding to the species A,B, then this network has 2
reactions of the form

p1A+ C1 → p2B + C2(3.1)

p3A+ p4B + C3 → C4,(3.2)

where p1, p2, p3, p4 ∈ N and C1, C2, C3, C4 are some (possibly empty) positive linear combination
of species. The only changes to the new network are we add a new species A′, reaction (??) is
replaced by

(3.3) p1A+ C1 → A′ + C2

and we create an additional reaction

(3.4) A′ → p2B.

By Proposition ??, we always have ∆s = 1. To get a better handle on the change of deficiency, we
proceed as follows.

Lemma 3.3. If S1 is the stoichiometric matrix of a network and S2 is its sign fixing matrix with
respect to a bad submatrix, then the following inequalities are sharp:

(3.5) ∆` ≤ 2 and 1 ≤ ∆n ≤ 3.

Proof. With the notation above, the only possible new complexes are A′ +C2, A
′, and p2B. Hence

∆n ≤ 3. Also, the only possibly new linkage classes are [A′ +C2]2 and [p2B]2, so ∆` ≤ 2. The fact
that ∆n ≥ 1 is obvious.

To show that the inequalities (??) are sharp, consider the following network:

A→ B + 2C → 5D

A+B → C.

This system has the stoichiometric matrix

S1 =


−1 −1 0
1 −1 −1
2 1 −2
0 0 5

 .
Hence n1 = 5 and `1 = 2. The sign fixing matrix for S1 (with respect to the species A,B) is

S2 =


−1 −1 0 0
0 −1 −1 1
2 1 −2 0
0 0 5 0
1 0 0 −1

 ,
and our new chemical network is

A→ 2C +A′, A+B → C

B + 2C → 5D,A′ → B.

We thus see that n2 = 8 and `2 = 4, so ∆n = 3 and ∆` = 2.
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We now need an efficient way to determine which complexes and reactions of the new system
affect ∆n and ∆`. We will now define functions which will precisely determine which complexes
and linkage classes in the new system increase ∆n and ∆`. Define φ : {A′ + C2, A

′, p2B} → {0, 1}
by

φ(A′ + C2) =

{
2 if C2 6= ∅ and p2B + C2 ∈ C2

1 otherwise

φ(p2B) =

{
1 if p2B 6∈ C1

0 otherwise
.

We also define ψ : {[A′ + C2]2, [A′]2} → {0, 1} such that

ψ([A′ + C2]2) =

{
1 if p2B + C2 ∈ C2 and [A′ + C2]2

⋂
[p2B + C2]2 = ∅

0 otherwise

ψ([A′]2) =

{
1 if p2B 6∈ C1 and C2 6= ∅
0 otherwise

.

The advantage of this new notation is that we now have a succinct way to measure ∆n and ∆` :

∆n = φ(A′ + C2) + φ(p2B)(3.6)

∆` = ψ([A′ + c2]2) + ψ([A′]2).(3.7)

Equation (??) follows directly from the definition of ∆` and the construction of the new network.
However, (??) needs more justification.

Lemma 3.4. With the setup described above, (??) holds.

Proof. By construction, notice that we always have C1 ⊆ C2 or C1 \ {p2B + C2} ⊆ C2. Also,
{A′+C2, A

′, p2B} are the only possible new complexes that are not in C1. Observe that if p2B+C2 ∈
C2, then C2 = C1

⋃
{A′ + C2, A

′, p2B}, whence

∆n = card(C1 ∪ {A′ + C2, A
′, p2B})− card(C1)

=
(
card(C1 ∪ {A′ + C2, A

′})− card(C1)
)

+
(
card(C1 ∪ {p2B})− card(C1)

)
= card(C1 ∪ {A′ + C2, A

′})− card(C1) + φ(p2B),

where the last equality follows by the definition of φ. Also, if C2 = ∅, then

card(C1 ∪ {A′ + C2, A
′})− card(C1) = 1; otherwise, card(C1 ∪ {A′ + C2, A

′})− card(C1) = 2,

so φ(A′+C2) = card(C1∪{A′+C2, A
′})−card(C1) by construction. This implies ∆n = φ(A′+C2)+

φ(p2B), as desired. On the other hand, suppose p2B+C2 6∈ C2. If C2 = ∅, then p2B+C2 = p2B ∈ C2,
which is a contradiction. Thus we must have C2 6= ∅. A simple count shows

∆n = card(C1 \ {p2B + C2} ∪ {A′ + C2, A
′, p2B})− card(C1) =

{
2 if p2B 6∈ C1

1 otherwise

= φ(A′ + C2) + φ(p2B),

where the last equality follows directly from the definition of φ.
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Theorem 3.5. Let S1 be the stoichiometric matrix to a chemical network with a bad submatrix,
and let S2 be the sign fixing matrix with respect to this bad submatrix. Then 0 ≤ ∆δ ≤ 1, and this
inequality is sharp.

Proof. First, Lemma ?? shows ∆δ = ∆n − ∆` − 1 ≤ 3 − ∆` − 1 ≤ 2. Notice that if ∆δ = 2,
then ∆n = 3 and ∆` = 0, so φ(A′ + C2) = 2, φ(p2B) = 1 and ψ([A′ + C2]2) = ψ([A′]2) = 0.
However, φ(A′+C2) = 2 implies C2 6= ∅, and φ(p2B) = 1 implies p2B 6∈ C1 by construction. Hence
ψ([A′]2) = 1 by the definition of ψ and this is a contradiction. Thus, we cannot have ∆n = 3 and
∆` = 0. This proves ∆δ ≤ 1.

Now suppose ∆δ < 0 to derive a contradiction. By Lemma ??, ∆n = 2 and ∆` = 2, or ∆n = 1
and ∆` ≥ 1.

Case 1: Suppose ∆n = 2 and ∆` = 2. Notice if ∆` = 2 then ψ([A′ + C2]2) = ψ([A′]2) = 1 and
thus C2 6= ∅, p2B+C2 ∈ C2, and p2B 6∈ C1 by construction. Hence φ(p2B) = 1 and φ(p2B+C2) = 2
by construction, so ∆n = 2 + 1 = 3 by (??) and this is a contradiction.

Case 2: Suppose ∆n = 1 and ∆` ≥ 1. Notice, ∆n = 1 and (??) imply φ(p2B) = 0 and
p2B ∈ C1, so ψ([A′]2) = 0 and ψ([A′ + c2]2) = 1 since ∆` ≥ 1 implies p2B + C2 ∈ C2 and
[A′ + C2]2 ∩ [p2B + C2]2 = ∅. If C2 = ∅, then [A′ + C2]2 = [A′]2 = [p2B]2 = [p2B + C2]2. Hence
[A′ +C2]2 ∩ [p2B+C2]2 6= ∅ and this is a contradiction. Thus C2 6= ∅. But then φ(A′ +C2) = 2 by
construction, and ∆n ≥ 2 by (??); contradiction.

To show that these inequalities are sharp, consider the following network:

2A � 3B + C

A+B → C.

This system has the stoichiometric matrix

S1 =

−2 −1 2
3 −1 −3
1 1 −1

 .
Hence n1 = 4 and `1 = 2. The sign fixing matrix for S1 with respect to A,B is

S2 =


−2 −1 2 0
0 −1 −3 3
1 1 −1 0
1 0 0 −1

 ,
and our new chemical network is

3B + C → 2A→ A′ + C

A+B → C

A′ → 3B.

We thus see that n2 = 7 and `2 = 3. So ∆n = 3 and ∆` = 1. Thus, ∆δ = ∆n − ∆` − ∆s =
3− 1− 1 = 1.

Corollary 3.6. Suppose S is the stoichiometric matrix for some chemical network, and it contains
k bad submatrices. If Ŝ is its sign fixing matrix, then 0 ≤ ∆δ ≤ k.
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Proof. Recall that by definition, Ŝ is determined by a recursive sequence of at most k sign fixing
matrices, each with respect to a certain bad submatrix from the previous matrix in the sequence.
An application of Theorem ?? at each step yields our desired result.

In fact, the upper bound for ∆δ in Corollary ?? is the number of equivalence classes of bad
submatrices of S as defined in §??.

The above theorem with formulas (??) and (??) helps determining necessary conditions for
∆δ = 1 for a stoichiometric matrix and its sign fixing matrix with respect to a certain bad submatrix.
Notice that ∆δ = 1 implies ∆n = 2 and ∆` = 0 or ∆n = 3 and ∆` = 1. If C2 = ∅, then
p2B = p2B + C2 ∈ C1, so φ(p2B) = 0. Also, C2 = ∅ implies φ(A′ + C2) = 1 by construction, So
∆n = 1 by (??), and hence, ∆δ = 0 by Theorem ??. This observation yields the following:

Theorem 3.7. Let S be the stoichiometric matrix for a chemical network. Suppose that the column
corresponding to each bad submatrix of S with the positive entry has only one positive entry. Then
if Ŝ is the sign fixing matrix for S, we have ∆δ = 0.

Proof. By assumption, each bad submatrix of S corresponds to 2 reactions of the form:

p1A+ C1 → p2B(3.8)

p3A+ p4B + C2 → C3,(3.9)

where A,B are species, p1, p2, p3, p4 ∈ N and c1, c2, c3 are some (possibly empty) positive linear
combination of species. As already shown, the deficiency for the sign fixing matrix of S with respect
to this bad submatrix does not change. An inductive procedure yields our desired result.

4. An alternative sign fixing algorithm?

Given a stoichiometric matrix S with bad submatrices, there is an easier way of eliminating
these. Instead of performing the sign fixing algorithm for each submatrix separately and thus
adding a row and a column in every step, we can add only one row and column and eliminate all
bad submatrices in a single step. Unfortunately, this construction changes the dimension of kerS;
thus S and Ŝ yield reaction networks with very different equilibria structure. We illustrate this
with an example.

Example 4.1. Suppose

S =


−2 −1 4 4 −4
−12 4 4 0 0
4 −1 −2 0 0
10 −2 −6 −4 4

 .
Notice that S has several bad submatrices. We start by adding a row and column of zeros to S.
Pick a bad 2 × 2 submatrix of S. Replace the positive entry Sp` of S by 0, add +1 to the `th
entry of the new row and add Sp` to the pth entry of the new column. Repeat this for all the
bad submatrices. After all the bad submatrices have been eliminated, the bottom right entry is
changed into the negative sum of all the entries in the last row. We obtain a matrix S̃ with no bad
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submatrices. In our example this is

S̃ =


−2 −1 0 0 −4 8
−12 0 4 0 0 4
0 −1 −2 0 0 4
0 −2 −6 −4 0 14
1 1 1 1 1 −5

 .
We note that

kerS = span
{[

0 0 0 1 1
]t
,
[
1 2 1 0 0

]t
}

and
kerSt = span

{[
1 1 1 1

]t
}
.

The corresponding kernels for S̃ are:

ker S̃ = span
{[

2 0 4 1 3 2
]t

}
and

ker S̃t = {0}.

Given its kernel, the ODE ˙̃x = S̃ṽ(x̃) can have equilibria only on the boundary. In fact, each
solution to S̃ṽ(x̃) = 0 can be shown to satisfy ṽ(x̃) = 0.

Also, assuming mass action kinetics,

v(x) =
[
k1x

2
1x

12
2 k2x1x3x

2
4 k3x

2
3x

6
4 k4x

4
4 k5x

4
1

]t

so for every x2 ∈ R>0,

x1 =
k2

4
√
k4

2
√
k1

√
k3

4
√
k5x6

2

, x3 =
4k3/2

1

√
k3

4
√
k4x

18
2

k2
2

4
√
k5

, x4 =
k2

2
√
k1

√
k3x6

2

yields a positive solution to Sv(x) = 0.

Hence it is not possible to recover positive equilibria for the chemical reaction network described
by S from those obtained by S̃.

Also note that there is a nonnegative vector orthogonal to the range of S, thus the corresponding
reaction form dynamics has a conserved quantity. On the other hand S̃, is not conserving.

5. Software

The discovering of the results in this paper was considerably facilitated by computer experiments.
The programs we wrote to do this might be of value to a broad community, so we documented
them and provided tutorial examples. They are found on the web site

http://www.math.ucsd.edu/~chemcomp/

The Mathematica files provided contain software for dealing with equations that come from
chemical reaction networks; dx/dt = f(x) = Sv(x) as in (??). Some of our commands focus on the
the Jacobian, f ′, of f ; they do the following

(1) compute the Jacobian f ′ of f (given say the stoichiometric matrix S);
(2) check existence of a sign pattern for f ′(x) which remains unchanged for all x ≥ 0, using Theorem

?? in this paper;

 http://www.math.ucsd.edu/~chemcomp/
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(3) implement the sign fixing algorithm in §??;
(4) compute the Craciun-Feinberg (CF) determinant [?, ?,?] of f ′ (governs systems with outflows

for all species with outflow rate constants equal to one);
(5) compute the more general Helton-Klep-Gomez core determinant [?] of f ′ (governs systems with

any number of outflows).

The CF determinant and core determinants are used in tests to count the number of positive
steady states, namely x∗ > 0 such that f(x∗) = 0. (For more information, please look at the
papers [?] and [?] and the original Craciun, Feinberg et al. papers, [?, ?, ?].)

Another part of our Mathematica package deals with deficiency of reaction form differential
equations, as discussed in §??. This software allows us to compute the deficiency of a chemical
reaction network as well as conversion of representations as follows. One starts with the traditional
representation f(x) = Sv(x). Our program produces the representation

Sv(x) = Y Akψ(x)

where Ak is the Laplacian of the “complexes graph” of the chemical reaction network. Y is the
matrix whose columns are indexed by complexes and which contain nonzero entries corresponding
to chemical species which enter the complex. ψ is a list of monomials in the chemical concentrations.
For details see [?, ?,?].

Our commands also compute the components of the complexes graph. Capability to automati-
cally plot planar graphs is under development and should be available soon.
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