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Abstract. Farkas’ lemma is a fundamental result from linear programming

providing linear certificates for infeasibility of systems of linear inequalities. In
semidefinite programming, such linear certificates only exist for strongly infea-

sible linear matrix inequalities. We provide nonlinear algebraic certificates for

all infeasible linear matrix inequalities in the spirit of real algebraic geometry.
More precisely, we show that a linear matrix inequality L(x) � 0 is infeasible

if and only if −1 lies in the quadratic module associated to L. We prove expo-

nential degree bounds for the corresponding algebraic certificate. In order to
get a polynomial size certificate, we use a more involved algebraic certificate

motivated by the real radical and Prestel’s theory of semiorderings. Com-

pletely different methods, namely complete positivity from operator algebras,
are employed to consider linear matrix inequality domination.

A linear matrix inequality (LMI) is a condition of the form

L(x) = A0 +

n∑
i=1

xiAi � 0 (x ∈ Rn)

where the Ai are symmetric matrices of the same size and one is interested in the
solutions x ∈ Rn making L(x) � 0, i.e., making L(x) into a positive semidefinite
matrix. The solution set to such an inequality is a closed convex semialgebraic
subset of Rn called a spectrahedron. Optimization of linear objective functions
over spectrahedra is called semidefinite programming (SDP) [BV, To, WSV]. In
this article, we are mainly concerned with the important SDP feasibility problem:
When is an LMI feasible; i.e., when is there an x ∈ Rn such that L(x) � 0?

Note that a diagonal LMI (all Ai diagonal matrices) is just a (finite) system of
(non-strict) linear inequalities. The solution set of such a linear system is a (closed
convex) polyhedron. Optimization of linear objective functions over polyhedra is
called linear programming (LP). The ellipsoid method developed by Shor, Yudin,
Nemirovskii and Khachiyan showed at the end of the 1970s for the first time that
the LP feasibility problem (and actually the problem of solving LPs) can be solved
in (deterministically) polynomial time (in the bit model of computation assuming
rational coefficients) [Sr, Chapter 13]. Another breakthrough came in the 1980s
with the introduction of the more practical interior point methods by Karmarkar
and their theoretical underpinning by Nesterov and Nemirovskii [NN, Ne].

The motivation to replace the prefix “poly” by “spectra” is to replace “many”
values of linear polynomials (the diagonal values of L(x)) by the “spectrum” of
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L(x) (i.e., the set of its eigenvalues, all of which are real since L(x) is symmet-
ric). The advantage of LMIs over systems of linear inequalities (or of spectrahedra
over polyhedra, and SDP over LP, respectively) is a considerable gain of expres-
siveness which makes LMIs an important tool in many areas of applied and pure
mathematics. Many problems in control theory, system identification and signal
processing can be formulated using LMIs [BEFB, Par, SIG]. Combinatorial opti-
mization problems can often be modeled or approximated by SDPs [Go]. LMIs also
find application in real algebraic geometry for finding sums of squares decompo-
sitions of polynomials [Las, Ma]. Strongly related to this, there is a hierarchy of
SDP approximations to polynomial optimization problems [Lau] consisting of the
so-called Lasserre moment relaxations. This hierarchy and related methods recast
the field of polynomial optimization (where the word “polynomial” stands for poly-
nomial objective and polynomial constraints). In this article, rather than trying
to solve polynomial optimization problems by using SDPs, we borrow ideas and
techniques from real algebraic geometry and polynomial optimization in order to
get new results in the theory of semidefinite programming.

The price to pay for the increased expressivity of SDPs is that they enjoy some
less good properties. The complexity of solving general SDPs is a very subtle
issue which is often downplayed. For applications in combinatorial optimization, it
follows typically from the general theory of the ellipsoid method [Sr] or interior point
methods [NN] that the translation into SDPs yields a polynomial time algorithm
(see for instance [dK, Section 1.9] for exact statements). However the complexity
status of the LMI feasibility problem (the problem of deciding whether a given LMI
with rational coefficients has a solution) is largely unknown. What is known is
essentially only that (in the bit model) LMI feasibility lies either in NP ∩ co-NP
or outside NP ∪ co-NP. This will also follow from our work below, but has been
already proved by Ramana [Ra] in 1997. The standard (Lagrange-Slater) dual of
a semidefinite program works well when the feasible set is full-dimensional (e.g.
if there is x ∈ Rn with L(x) � 0). However, in general strong duality can fail
badly which is a serious problem since there is no easy way of reducing to the
full-dimensional case (cf. the LMI feasibility problem mentioned above). Even the
corresponding version of Farkas’ lemma fails for SDP.

Ramana’s as well as our proof relies on a extension of the standard (Lagrange-
Slater) dual of an SDP which can be produced in polynomial time from the primal
and for which strong duality (more precisely zero gap and dual attainment) always
holds. Ramana’s extension is an encoding of the standard dual of a regularized
primal SDP in the sense of Borwein and Wolkowicz [BW]. Our dual, although
having some superficial similarity to Ramana’s, relies on completely different ideas,
namely sums of squares certificates of nonnegativity. The ideas for this sums of
squares dual come from real algebraic geometry, more precisely from sums of squares
representations and the Real Nullstellensatz [Ma, PD, Sc]. We believe that this new
connection will lead to further insights in the future.

The paper is organized as follows: We fix terminology and notation in Section
1. Our first line of results is given in Section 2, where we give an algebraic charac-
terization of infeasible LMIs (see Theorem 2.2.5 and Corollary 2.3.3) involving the
quadratic module associated to an LMI. Our characterization allows us to construct
a new LMI whose feasibility is equivalent to the infeasibility of the original LMI.
This new LMI is canonical from the viewpoint of positive polynomials. However
its size is exponential in the size of the primal, so in Section 3 we use real algebraic
geometry to construct a polynomial size LMI whose feasibility is equivalent to the
infeasibility of the original LMI, cf. Theorem 3.5.2. At the same time Theorem
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3.5.2 gives a new type of a linear Positivstellensatz characterizing linear polynomi-
als nonnegative on a spectrahedron. The article concludes with Section 4, where we
revisit the [HKM] noncommutative (matricial) relaxation of an LMI and investigate
how our duality theory of SDP pertains to (completely) positive maps.

1. Notation and terminology

We write N := {1,2, . . . }, Q, and R for the sets of natural, rational, and real
numbers, respectively. For any matrix A, we denote by A∗ its transpose.

1.1. Sums of squares. Let R be a (commutative unital) ring. Then SRm×m :=
{A ∈ Rm×m | A = A∗} denotes the set of all symmetric m×m matrices. Examples
of these include hermitian squares, i.e., elements of the form A∗A for some A ∈
Rm×m.

Recall that a matrix A ∈ Rm×m is called positive semidefinite (positive definite)
if it is symmetric and v∗Av ≥ 0 for all (column) vectors v ∈ Rm, A is positive
definite if it is positive semidefinite and invertible. For real matrices A and B of
the same size, we write A � B (respectively A ≺ B) to express that B − A is
positive semidefinite (respectively positive definite). We denote by SRm×m�0 and

SRm×m�0 the convex cone of all positive semidefinite and positive definite matrices
of size m, respectively.

Let X = (X1, . . . ,Xn) be an n-tuple of commuting variables and R[X] the poly-
nomial ring. With R[X]k we denote the vector space of all polynomials of degree
≤ k, and

∑
R[X]2 is the convex cone of all sums of squares (sos-polynomials), i.e.,∑

R[X]2 =
{ r∑
i=1

p2i | r ∈ N, pi ∈ R[X]
}
.

A (real) matrix polynomial is a matrix whose entries are polynomials from R[X].
It is linear or quadratic if its entries are from R[X]1 or R[X]2, respectively. A
matrix polynomial is called symmetric if it coincides with its transpose. An example
of symmetric matrix polynomials that are of special interest to us are sums of
hermitian squares in R[X]m×m. They are called sos-matrices. More explicitly,
S ∈ R[X]m×m is an sos-matrix if the following equivalent conditions hold:

(i) S = P ∗P for some s ∈ N and some P ∈ R[X]s×m;
(ii) S =

∑r
i=1Q

∗
iQi for some r ∈ N and Qi ∈ R[X]m×m;

(iii) S =
∑s
i=1 viv

∗
i for some s ∈ N and vi ∈ R[X]m.

Note that an sos-matrix S ∈ R[X]m×m is positive semidefinite on Rn but not vice-
versa, since e.g. a polynomial nonnegative on Rn is not necessarily a sum of squares
of polynomials [Ma, PD].

For a comprehensive treatment of the theory of matrix polynomials we refer the
reader to the book [GLR] and the references therein.

1.2. Linear pencils, spectrahedra, and quadratic modules. We use the term
linear pencil as a synonym and abbreviation for symmetric linear matrix polyno-
mial.

Let R be a (commutative unital) ring. We recall that in real algebraic geometry
a subset M ⊆ R is called a quadratic module in R if it contains 1 and is closed
under addition and multiplication with squares, i.e.,

1 ∈M, M +M ⊆M and a2M ⊆M for all a ∈ R,
see for example [Ma]. A quadratic module M ⊆ R is called proper if −1 6∈ M .
Note that an improper quadratic module M in a ring R with 1

2 ∈ R equals R by
the identity

4a = (a+ 1)2 − (a− 1)2 for all a ∈ R. (1)



4 IGOR KLEP AND MARKUS SCHWEIGHOFER

An LMI L(x) � 0 can be seen as the infinite family of simultaneous linear in-
equalities u∗L(x)u ≥ 0 (u ∈ Rm). In optimization, when dealing with families of
linear inequalities, one often considers the convex cone generated by them (cf. CL
in the definition below). Real algebraic geometry handles arbitrary polynomial in-
equalities and uses the multiplicative structure of the polynomial ring. Thence one
considers more special types of convex cones like in our case quadratic modules
(ML from the next definition). One of the aims of this article is to show that it is
advantageous to consider quadratic modules for the study of LMIs. Since quadratic
modules are infinite-dimensional convex cones, we will later on also consider certain
finite-dimensional truncations of them, see Subsection 2.3.

Definition 1.2.1. Let L be a linear pencil of size m in the variables X. We
introduce

SL := {x ∈ Rn | L(x) � 0} ⊆ Rn,

CL :=
{
c+

∑
i

u∗iLui | c ∈ R≥0, ui ∈ Rm
}

=
{
c+ tr(LS) | c ∈ R≥0, S ∈ SRm×m�0

}
⊆ R[X]1,

ML :=
{
s+

∑
i

v∗i Lvi | s ∈
∑

R[X]2, vi ∈ R[X]m
}

=
{
s+ tr(LS) | s ∈ R[X] sos-polynomial, S ∈ R[X]m×m sos-matrix

}
⊆ R[X],

and call them the spectrahedron (or LMI set), the convex cone, and the quadratic
module associated to the linear pencil L, respectively. Call the linear matrix in-
equality (LMI)

L(x) � 0 (x ∈ Rn),

or simply L, infeasible if SL = ∅. In this case, call it strongly infeasible if

dist
(
{L(x) | x ∈ Rn}, SRm×m�0

)
> 0,

and weakly infeasible otherwise. Moreover, call L feasible if SL 6= ∅. We say L
is strongly feasible if there is an x ∈ Rn such that L(x) � 0 and weakly feasible
otherwise.

Note that for any linear pencil L, each element of ML is a polynomial nonneg-
ative on the spectrahedron SL. In general ML does not contain all polynomials
nonnegative on SL, e.g. when L is diagonal and dimSL ≥ 3 [Sc]. For diagonal
L, the quadratic module ML (and actually the convex cone CL) contains however
all linear polynomials nonnegative on the polyhedron SL by Farkas’ lemma. For
non-diagonal linear pencils L even this can fail, see Example 3.6.1 below. To certify
nonnegativity of a linear polynomial on a spectrahedron, we therefore employ more
involved algebraic certificates (motivated by the real radical), see Theorem 3.5.2.

2. Spectrahedra and quadratic modules

In this section we establish algebraic certificates for infeasibility and bounded-
ness of a spectrahedron. They involve classical Positivstellensatz-like certificates
expressing −1 as a weighted sum of squares.

A quadratic module M ⊆ R[X] is said to be archimedean if

∀f ∈ R[X] ∃N ∈ N : N − f2 ∈M.

Equivalently, there is an N ∈ N with N ± Xi ∈ M for i = 1, . . . , n; see [Ma,
Corollary 5.2.4].
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2.1. Quadratic modules describing non-empty bounded spectrahedra. Ob-
viously, if ML is archimedean for a linear pencil L, then SL is bounded. In [HKM]
complete positivity was used to deduce that for strictly feasible linear pencils the
converse holds. Subsequently, a certain generalization of this result for projections
of spectrahedra has been proved by other techniques in [GN]. In this section we
will establish the result for arbitrary bounded SL. We begin with the relatively
easy case of non-empty SL (possibly with empty interior).

Lemma 2.1.1. Let L be a linear pencil with SL 6= ∅. Then

SL is bounded ⇐⇒ ML is archimedean.

Proof. The direction (⇐) is obvious as remarked above. Let us consider the con-
verse. We first establish the existence of finitely many linear polynomials in CL
certifying the boundedness of SL.

There is a ball B ⊆ Rn with SL ⊆ B and SL ∩ ∂B = ∅. For every x ∈ ∂B there
is a vector u ∈ Rn with

u∗L(x)u < 0. (2)

By continuity, (2) holds for all x in a neighborhood Ux of x. From {Ux | x ∈ ∂B}
we extract by compactness a finite subcovering {Ux1

, . . . , Uxr
} of ∂B. Let `i :=

u∗iLui ∈ R[X]1 and

S := {x ∈ Rn | `1(x) ≥ 0, . . . ,`r(x) ≥ 0}.
Clearly, SL ⊆ S and S ∩ ∂B = ∅. Since SL is non-empty by hypothesis and
contained in B, it follows that S contains a point of B. But then it follows from the
convexity of S together with S ∩ ∂B = ∅ that S ⊆ B. In particular, S is bounded.

Now every `i ∈ CL ⊆ ML. Hence the quadratic module M generated by the `i
is contained in ML. Choose N ∈ N with N ±Xi > 0 on S for all i. Fix an i and
δ ∈ {−1,1}. The system of linear inequalities

−N + δxi ≥ 0, `1(x) ≥ 0, . . . ,`r(x) ≥ 0

is infeasible. Hence by Farkas’ lemma [Fa], there are αj ∈ R≥0 satisfying

− 1 = α0(−N + δXi) + α1`1 + · · ·+ αr`r. (3)

Note α0 6= 0 since S 6= ∅. Rearranging terms in (3) yields N − δXi ∈ CL. Since i
and δ were arbitrary and CL ⊆ML, we conclude that ML is archimedean.

Surprisingly, establishing Lemma 2.1.1 for empty spectrahedra is more involved
and will occupy us in the next subsection.

2.2. Quadratic modules describing the empty spectrahedron. The follow-
ing is an extension of Farkas’ lemma from LP to SDP due to Sturm [St, Lemma
2.18]. We include its simple proof based on a Hahn-Banach separation argument.

Lemma 2.2.1 (Sturm). A linear pencil L is strongly infeasible if and only if −1 ∈
CL.

Proof. Suppose

L = A0 +

n∑
i=1

XiAi

is strongly infeasible, Ai ∈ SRm×m. Then the non-empty convex sets {L(x) | x ∈
Rn} and SRm×m�0 can be strictly separated by an affine hyperplane (since their
Minkowski sums with a small ball are still disjoint and can therefore be separated
[Ba2, Chapter III, Theorem 1.2]). This means that there is a non-zero linear form

` : SRm×m → R
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and α ∈ R with `(SRm×m�0 ) ⊆ R>α and `({L(x) | x ∈ Rn}) ⊆ R<α. Choose

B ∈ SRm×m such that
`(A) = tr(AB)

for all A ∈ SRm×m. Since `(SRm×m�0 ) is bounded from below, by the self-duality of
the convex cone of positive semidefinite matrices, 0 6= B � 0. Similarly, we obtain
`(Ai) = 0 for i ∈ {1, . . . ,n}. Note that α < 0 since 0 = `(0) ∈ R>α so we can
assume `(A0) = −1 by scaling. Writing B =

∑
i uiu

∗
i with ui ∈ Rm, we obtain

−1 = `(A0) = `(L(x)) = tr(L(x)
∑
i

uiu
∗
i ) =

∑
i

u∗iL(x)ui.

for all x ∈ Rn. Hence −1 =
∑
i u
∗
iLui ∈ CL.

Conversely, if −1 ∈ CL, i.e., −1 = c +
∑
i u
∗
iLui for some c ≥ 0 and ui ∈ Rm,

then with B :=
∑
i uiu

∗
i ∈ SR

m×m
�0 we obtain a linear form

` : SRm×m → R, A 7→ tr(AB)

satisfying `(SRm×m�0 ) ⊆ R≥0 and `({L(x) | x ∈ Rn}) = {−1 − c} ⊆ R≤−1. So L is
strongly infeasible.

Lemma 2.2.2. Let L be an infeasible linear pencil of size m. The following are
equivalent:

(i) L is weakly infeasible;
(ii) SL+εIm 6= ∅ for all ε > 0.

Proof. Since all norms on a finite-dimensional vector space are equivalent, we can
use the operator norm on Rm×m.

Suppose that (i) holds and ε > 0 is given. Choose A ∈ SRm×m�0 and x ∈ Rn with

‖A− L(x)‖ < ε. Then L(x) + εIm � 0, i.e., x ∈ SL+εIm .
Conversely, suppose that (ii) holds. To show that

dist
(
{L(x) | x ∈ Rn}, SRm×m�0 }

)
= 0,

we let ε > 0 be given and have to find A ∈ SRm×m�0 and x ∈ Rn with

‖L(x)−A‖ ≤ ε.
But this is easy: choose x ∈ Rn with L(x) + εIm � 0, and set A := L(x) + εIm.

The following lemma is due to Bohnenblust [Bo] (see also [Ba1, Theorem 4.2] for
an easier accessible reference). While Bohnenblust gave a non-trivial bound on the
number of terms that are really needed to test condition (i) below, we will not need
this improvement and therefore take the trivial bound m. Then the proof becomes
easy and we include it for the convenience of the reader.

Lemma 2.2.3 (Bohnenblust). For A1, . . . ,An ∈ SRm×m the following are equiva-
lent:

(i) Whenever u1, . . . ,um ∈ Rm with
∑m
i=1 u

∗
iAjui = 0 for all j ∈ {1, . . . ,n}, then

u1 = · · · = um = 0;
(ii) span(A1, . . . ,An) contains a positive definite matrix.

Proof. It is trivial that (ii) implies (i). To prove that (i) implies (ii), note that
SRm×m�0 = {

∑m
i=1 uiu

∗
i | u1, . . . ,um ∈ Rm} and

∑m
i=1 u

∗
iAui = tr(A

∑m
i=1 uiu

∗
i ) for

all u1, . . . ,um ∈ Rm. The hypotheses thus say exactly that, given any B ∈ SRm×m�0 ,
we have

tr(A1B) = · · · = tr(AnB) = 0 =⇒ B = 0. (4)

Now suppose that span(A1, . . . ,An) ∩ SRm×m�0 = ∅. By the standard separation
theorem for two non-empty disjoint convex sets (see for example [Ba2, Chapter III,
Theorem 1.2]), span(A1, . . . ,An) and SRm×m�0 can be separated by a hyperplane
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(the separating affine hyperplane must obviously contain the origin). Therefore
there is a non-zero linear form L : SRm×m → R with

L(SRm×m�0 ) ⊆ R≥0 and L(span(A1, . . . ,An)) ⊆ R≤0.

Then of course L(SRm×m�0 ) ⊆ R≥0 and L(span(A1, . . . ,An)) = {0}. Now choose

B ∈ SRm×m such that

L(A) = tr(AB) for all A ∈ SRm×m.
Then B 6= 0, B ∈ SRm×m�0 and tr(A1B) = · · · = tr(AnB) = 0, contradicting (4).

Lemma 2.2.4. Let L be a linear pencil of size m which is either weakly infeasible
or weakly feasible. Then there are k ≥ 1 and u1, . . . ,uk ∈ Rm r {0} such that∑k
i=1 u

∗
iLui = 0.

Proof. Assume that the conclusion is not true. By Lemma 2.2.3 there are hence
x0,x1, . . . ,xn ∈ R such that

x0A0 + x1A1 + · · ·+ xnAn � 0.

Of course it is impossible that x0 > 0 since otherwise L(0) � 0. Also x0 = 0
is excluded (since otherwise L(cx1, . . . ,cxn) � 0 for c > 0 large enough). Hence
without loss of generality x0 = −1, i.e., x1A1 + · · · + xnAn � A0. Choose ε > 0
such that

x1A1 + · · ·+ xnAn � A0 + 2εIm.

By Lemma 2.2.2, we can choose some y ∈ SL+εIm . But then

A0 + (x1 + 2y1)A1 + · · ·+ (xn + 2yn)An � 2(A0 + εIm + y1A1 + · · ·+ ynAn) � 0,

contradicting the hypotheses.

We come now to our first main theorem which is a version of Farkas’ lemma for
SDP which unlike Lemma 2.2.1 does not only work for strongly but also for weakly
infeasible linear pencils. The price we pay is that we have to replace the finite-
dimensional convex cone CL by the infinite-dimensional quadratic module ML. We
will spend most of the sequel to refine and tame this result, cf. Theorems 2.3.1 and
3.5.2 below.

Theorem 2.2.5. Let L be a linear pencil. Then

SL = ∅ ⇐⇒ −1 ∈ML.

Proof. One direction is trivial since ML contains only polynomials nonnegative on
SL. We show the nontrivial implication from left to right by induction on the
number n of variables appearing in L. In the case n = 0, we have L ∈ SRm×m and
therefore SL = ∅ ⇐⇒ L 6� 0 ⇐⇒ −1 ∈ML.

For the induction step suppose n ≥ 1 and the statement is already known for
linear pencils in less than n variables. The way we will later use the induction
hypothesis is explained by the following claims which are weakening of the theorem
itself.

Note that Claim 2 is just a special case of Claim 3’ which we formulate for
the sake of clarity. The proof of Claim 3’ is very conceptual and uses a tool of
real algebraic geometry, namely Prestel’s semiorderings [PD]. For readers that are
not familiar with this theory we prove a special case of it by an ad hoc technical
argument. This special case of Claim 3’ is stated in Claim 3 and suffices for our
subsequent application.

Claim 1. If SL = ∅ and 0 6= ` ∈ R[X]1, then −1 ∈ML + (`).
Explanation. After an affine linear variable transformation, we may assume

` = Xn. Set L′ := L(X1, . . . ,Xn−1,0). Then −1 ∈ ML + (Xn) is equivalent to
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−1 ∈ ML′ . By induction hypothesis, the latter follows if SL′ = ∅. But emptiness
of SL clearly implies the emptiness of SL′ . �

Claim 2. If SL = ∅ and 0 6= ` ∈ML ∩ −ML, then −1 ∈ML.
Explanation. This follows from Claim 1 using the fact that ML ∩ −ML is an

ideal in R[X] which follows from (1). �

Claim 3. If SL = ∅ and 0 6= ` ∈ R[X]1 such that −`2 ∈ML, then −1 ∈ML.
Explanation. By Claim 1, there is p ∈ML and q ∈ R[X] such that −1 = p+ q`.

Now

−1 = −2 + 1 = (2p+ 2q`) + ((1 + q`)2 − 2q`+ q2(−`2))

= 2p+ q2(−`2) + (1 + q`)2 ∈ML,

as desired. �

Claim 3’. If SL = ∅, k ≥ 1 and `1, . . . ,`k ∈ R[X]1 such that 0 6= `1 · · · `k ∈
ML ∩ −ML, then −1 ∈ML.

Explanation. Assume −1 /∈ ML. Then there is a semiordering S of R[X] such
that ML ⊆ S. The advantage of S over ML is that S ∩−S is always a prime ideal.
Hence `i ∈ S∩−S for some i ∈ {1, . . . ,k}. But this shows that −1 /∈ML+(`i) (even
though (`i) might not be contained in ML ∩ −ML). Hence SL 6= ∅ by Claim 1. �

Now we are prepared to do the induction step. Suppose SL = ∅. If L is strongly
infeasible, then −1 ∈ CL ⊆ML by Lemma 2.2.1. Therefore we assume from now on
that L is weakly infeasible. By Lemma 2.2.4, one of the following two cases applies:

Case 1. There is u ∈ Rm r {0} with u∗Lu = 0.
Of course, we can assume that L has no zero column since otherwise we can

remove it together with the corresponding row without altering SL and ML. Write
L = (`ij)1≤i,j≤m. By changing coordinates on Rm, we can assume that u is the
first standard basis vector, i.e., `11 = 0. Moreover, we may assume `12 6= 0. Then

2pq`12 + q2`22 ∈ML

for all p,q ∈ R[X]. In particular, `212(`22 + 2p) ∈ML for all p ∈ R[X] and therefore
−`212 ∈ML. Now we conclude by Claim 3 or 3’ that −1 ∈ML.

Case 2. Case 1 does not apply but there are k ≥ 2 and u1, . . . ,uk ∈ Rm r {0}
such that

∑k
i=1 u

∗
iLui = 0.

In this case,

` := u∗1Lu1 = −
k∑
i=2

u∗iLui ∈ CL ∩ −CL ⊆ML ∩ −ML

and we are done by Claim 2, since ` = u∗1Lu1 6= 0.

Corollary 2.2.6. Let L be a linear pencil. Then

SL is bounded ⇐⇒ ML is archimedean.

Proof. If SL 6= ∅, then this is Lemma 2.1.1. If SL = ∅, then −1 ∈ML by Theorem
2.2.5, so ML is archimedean.

Remark 2.2.7. Note that the above corollary is a strong variant of Schmüdgen’s
characterization [Sm] of bounded basic closed semialgebraic sets as being exactly
those whose describing finitely generated preorderings are archimedean. Preorder-
ings have the tendency of being much larger than quadratic modules. In general,
a finitely generated quadratic module might describe a bounded or even an empty
set without being archimedean, see [PD, Example 6.3.1] and [Ma, Example 7.3.2].
Corollary 2.2.6 says that quadratic modules associated to linear pencils behave very
well in this respect.
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We conclude this section with a version of Putinar’s Positivstellensatz [Pu] for
bounded spectrahedra:

Corollary 2.2.8. Let L be a linear pencil and assume that SL is bounded. If
f ∈ R[X] satisfies f |SL

> 0, then f ∈ML.

Proof. By Corollary 2.2.6, ML is archimedean. Now apply (a slight generalization
of) Putinar’s Positivstellensatz [Ma, Theorem 5.6.1].

Remark 2.2.9. Let L be a linear pencil with bounded SL.

(1) In the case L is strongly feasible, Corollary 2.2.8 has already been proved in
[HKM, §7] by completely different techniques, namely complete positivity from
operator algebras. Note however that the more involved case in our approach
occurs when L is infeasible.

(2) From Corollary 8 it is easy to see that the quadratic module in the sense of rings
with involution (see [KS]) associated to a linear pencil L of size m in the ring of
s×s matrix polynomials is archimedean (in the sense of [KS, Subsection 3.1] or
[HKM, §6, §7]) if the spectrahedron SL defined by L is bounded (cf. [HKM, §7]).
Among other consequences, this implies a suitable generalization of Corollary
2.2.8 for matrix polynomials positive definite on the bounded spectrahedron SL
(cf. [HS, Corollary 1], [KS, Theorem 3.7] and [HKM, Theorem 7.1]).

2.3. Degree Bounds. Given a linear pencil L of size m and k ∈ N0, let

M
(k)
L :=

{∑
i

p2i +
∑
j

v∗jLvj | pi ∈ R[X]k, vj ∈ R[X]mk

}
=
{
s+ tr(LS) | s ∈ R[X]2k sos-polynomial, S ∈ R[X]m×m2k sos-matrix

}
⊆ R[X]2k+1,

be the truncated quadratic module with degree restriction k associated to L. Note

that M
(0)
L = CL.

By a closer inspection of the proof of Theorem 2.2.5 we can obtain exponential
degree bounds for the infeasibility certificate.

Theorem 2.3.1. Let L be an infeasible linear pencil in n variables. Then

−1 ∈M (2n−1)
L .

Proof. We shall prove this by induction on n. The statement is clear for n = 0.
Given n ∈ N and

L = A0 +

n∑
i=1

XiAi,

we assume the statement has been established for all infeasible linear pencils with
n− 1 variables.

By Lemma 2.2.4, there is an u ∈ Rm2 r {0} with u∗(Im ⊗L)u = 0. Replacing L

by Im⊗L changes neither M
(k)
L nor SL = ∅. Without loss of generality, we assume

therefore that there is u ∈ Rm r {0} with u∗Lu = 0. Writing L = (`ij)1≤i,j≤m and
performing a linear coordinate change on Rm, we can moreover assume `11 = 0.
Furthermore, without loss of generality, `12 6= 0. As in Case 1 of the proof of
Theorem 2.2.5 above, we deduce

− `212 ∈M
(1)
L . (5)

If `12 ∈ R, we are done. Otherwise after possibly performing an affine linear change
of variables on Rn, we may assume `12 = Xn.
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Now L′ := L(X1, . . . ,Xn−1,0) is an infeasible linear pencil in n− 1 variables. By

our induction hypothesis, −1 ∈M (2n−1−1)
L′ . In particular, there are

pi ∈ R[X]2n−1−1 and vj ∈ R[X]m2n−1−1

satisfying

−1 =
∑
i

p2i +
∑
j

v∗jL
′vj .

Let q :=
∑
j v
∗
jAnvj ∈ R[X]2n−2. Then

−1 = 2
∑
i

p2i + 2
∑
j

v∗jL
′vj + 1

= 2
∑
i

p2i + 2
∑
j

v∗jLvj − 2qXn + 1

= 2
∑
i

p2i + 2
∑
j

v∗jLvj + (1− qXn)2 + q2(−X2
n).

(6)

Since deg q ≤ 2n − 2, we have q2(−Xn) ∈ M
(2n−1)
L by (5). Taken together with

(1− qXn)2 ∈M (2n−1)
L , (6) implies −1 ∈M (2n−1)

L .

Similarly as in Theorem 2.3.1, one can obtain a bound on k in a certificate of

the form −1 ∈M (k)
L that depends exponentially on the size m of L.

Theorem 2.3.2. Let L be an infeasible linear pencil of size m. Then

−1 ∈M (2m−1−1)
L .

Proof. We prove this by induction on m. The statement is clear for m = 1. Given

L = A0 +

n∑
i=1

XiAi ∈ SR[X]m×m

of size m ≥ 2, we assume the statement has been established for all infeasible linear

pencils of size m− 1. If L is strongly infeasible, then −1 ∈ CL = M
(0)
L by Lemma

2.2.1. So we may assume L is weakly infeasible.

Claim. There is an affine linear change of variables after which L assumes the
form

L =

[
b0 b∗

b L′

]
,

where b0 ∈ R[X]1, b =
[
b1 · · · bm−1

]∗ ∈ R[X]m−11 , L′ is a linear pencil of size
m− 1, and bj ∈ R[X]1 satisfy

− b2j ∈M
(1)
L for j = 0, . . . ,m− 1. (7)

Furthermore, b0 can be chosen to be either 0 or X1.
Explanation. By Lemma 2.2.4, there is k ∈ N and u1, . . . ,uk ∈ Rm r {0} with∑k
i=1 u

∗
iLui = 0. We distinguish two cases.

Case 1. There is u ∈ Rm r {0} with u∗Lu = 0.
Write L = (`ij)1≤i,j≤m. By changing coordinates on Rm, we can assume that u

is the first standard basis vector, i.e., `11 = 0. Hence

L =

[
0 b∗

b L′

]
,

where b =
[
b1 · · · bm−1

]∗ ∈ R[X]m−11 and L′ is a linear pencil of size m− 1. As

in the proof of Theorem 2.3.1, we deduce −b2j ∈M
(1)
L for all j = 1, . . . ,m− 1.
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Case 2. Case 1 does not apply but there are k ≥ 2 and u1, . . . ,uk ∈ Rm r {0}
such that

∑k
i=1 u

∗
iLui = 0.

In this case,

`11 := u∗1Lu1 = −
k∑
i=2

u∗iLui ∈ CL ∩ −CL = M
(0)
L ∩ −M (0)

L .

Since Case 1 does not apply, `11 6= 0. Furthermore, since L is assumed to be weakly
infeasible, `11 6∈ R. Hence after an affine linear change of variables on Rn, we can
assume `11 = X1. Thus

L =

[
X1 b∗

b L′

]
,

where b =
[
b1 · · · bm−1

]∗ ∈ R[X]m−11 and L′ is a linear pencil of size m − 1.
Note that

−4X2
1 = (1−X1)2X1 + (1 +X1)2(−X1)

shows that −X2
1 ∈ M

(1)
L . Using this, one gets similarly as above that also each of

the entries bj of b satisfies −b2j ∈M
(1)
L . This proves our claim. �

If one of the bj ∈ Rr {0}, we are done by (7). Otherwise we consider two cases.

Case a. If the linear system b0(x) = 0, b(x) = 0 is infeasible, then we proceed
as follows. There are α0, . . . ,αm−1 ∈ R satisfying

m−1∑
j=0

αjbj = 1. (8)

For each j = 0, . . . ,m− 1 and δ ∈ R we have

1 + δbj =
(

1 +
δ

2
bj

)2
+
δ2

4
(−b2j ) ∈M

(1)
L

by (7). Hence (8) implies

−1 = 1− 2 = 1− 2

m−1∑
j=0

αjbj =

m−1∑
j=0

( 1

m
− 2αjbj

)
∈M (1)

L .

Case b. Suppose the linear system b0(x) = b(x) = 0 is feasible. Then we
perform an affine linear change of variables on Rn to ensure

{x ∈ Rn | b0(x) = 0, b(x) = 0} = {0}r × Rn−r

for some r ∈ N. Moreover, we may assume X1, . . . ,Xr are among the entries bj ,
j = 0, . . . ,m− 1.

Now L′′ := L′(0, . . . ,0,Xr+1, . . . , Xn) is an infeasible linear pencil of size m− 1.

By our induction hypothesis, −1 ∈M (2m−2−1)
L′′ . In particular, there are s ∈

∑
R[X]2

with deg s ≤ 2m−1 − 2, and vi ∈ R[X]m−12m−2−1 satisfying

−1 = s+
∑
i

v∗i L
′′vi.

Introducing

qt :=
∑
i

v∗iAtvi ∈ R[X]2m−1−2 and wi :=

[
0
vi

]
∈ R[X]m2m−2−1
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we have

−1 =
(
2s+ 2

∑
i

v∗i L
′′vi
)

+ 1

=
(
2s+ 2

∑
i

v∗i L
′vi −

r∑
t=1

2qtXt

)
+

r∑
t=1

(( 1√
r
−
√
rqtXt

)2
+ 2qtXt + rq2t (−X2

t )
)

= 2s+ 2
∑
i

w∗iLwi +

r∑
t=1

( 1√
r
−
√
rqtXt

)2
+

r∑
t=1

rq2t (−X2
t ).

(9)

Combining q2t (−X2
t ) ∈ M (2m−1−1)

L with ( 1√
r
−
√
rqtXt)

2 ∈ M (2m−1−1)
L , (9) implies

−1 ∈M (2m−1−1)
L .

Corollary 2.3.3. Let L be an infeasible linear pencil of size m in n variables. Then

−1 ∈M (2min{m−1,n}−1)
L .

Proof. This is immediate from Theorems 2.3.1 and 2.3.2.

2.4. Examples. The standard textbook example [St, WSV] of a weakly infeasible
linear pencil seems to be

L :=

[
X 1
1 0

]
.

Then −1 6∈ CL, but −1 ∈M (1)
L . Indeed, for

u :=
[
1 −1− X

2

]∗
,

we have

−1 =
1

2
u∗Lu.

Example 2.4.1. Let

L :=

 0 X1 0
X1 X2 1
0 1 X1

 .
Then L is weakly infeasible and −1 6∈M (1)

L .
Assume otherwise, and let

− 1 = s+
∑
j

v∗jLvj , (10)

where vj ∈ R[X]31 and s ∈
∑

R[X]2 with deg s ≤ 2. We shall carefully analyze the
terms v∗jLvj . Write

vj =
[
q1j q2j q3j

]∗
, and qij = aij + bijX1 + cijX2

with aij ,bij ,cij ∈ R. Then the X3
2 coefficient of v∗jLvj equals c22j , so c2j = 0 for

all j. Next, by considering the X1X
2
2 terms, we deduce c3j = 0. Now the only

terms possibly contributing to X2
2 come from s, so s ∈ R[X1]2. The coefficient of

X2 in v∗jLvj is a square, so a2j = 0. But now v∗jLvj does not have a constant term
anymore, leading to a contradiction with (10).

From Theorem 2.2.5 it follows that −1 ∈M (3)
L . In fact, −1 ∈M (2)

L since

−2 = u∗Lu

for u =
[
1
2 + X2

2 +
X2

2

8 −1 1 + X2

2

]∗
∈ R[X]32.
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3. Polynomial size certificates for infeasibility

Theorem 2.3.1 (or Corollary 2.3.3) enables us to reformulate the feasibility of
a linear pencil as the infeasibility of an LMI. Indeed, let a linear pencil L in n
variables of size m be given. Then L is infeasible if and only if there exists an
sos-polynomial s ∈ R[X] and an sos-matrix S ∈ R[X]m×m both of degree at most
2n+1 − 2 such that

− 1 = s+ tr(LS). (11)

By comparing coefficients, the polynomial equation (11) can of course be written as
a system of linear equations in the coefficients of s and S. Now (the coefficient tuples
of) sos-polynomials in R[X] of bounded degree form a projection of a spectrahedron.
In other words, the condition of being (the coefficient tuple) of an sos-polynomial
in R[X] of bounded degree can be expressed within an LMI by means of additional
variables. This is the well known Gram matrix method [Lau, Ma]. As noted by
Kojima [Ko] and nicely described by Hol and Scherer [HS], the Gram matrix method
extends easily to sos-matrices.

Hence the existence of s and S in (11) is indeed equivalent to the feasibility of
an LMI which we will not write down explicitly. The drawback of this LMI is that
it will be large since our degree bounds for the sos-polynomial and the sos-matrix
are exponential.

This problem is overcome in this section, where for a given linear pencil L, we
construct an LMI whose feasibility is equivalent to the infeasibility of the given
linear pencil L and which can be written down in polynomial time (and hence has
polynomial size) in the bit size of L if L has rational coefficients. Each feasible point
of the new LMI gives rise to a certificate of infeasibility for L which is however more
involved than the one using the quadratic module ML. In addition to the quadratic
module, we will now use another notion from real algebraic geometry, namely the
real radical ideal.

But actually we will not only characterize infeasibility of LMIs but even give a
new duality theory for SDP where strong duality always holds in contrast to the
standard duality theory. We will call our dual the sums of squares dual of an SDP.
For a given (primal) SDP with rational coefficients the sums of squares dual can be
written down in polynomial time in the bit size of the primal.

3.1. Review of standard SDP duality. We first recall briefly the standard du-
ality theory of SDP. We present it from the view point of a real algebraic geometer,
i.e., we use the language of polynomials in the formulation of the primal-dual pair of
SDPs and in the proof of strong duality. This is necessary for a good understanding
of the sums of squares dual which we will give later.

A semidefinite program (P) and its standard dual (D) is given by a linear pencil
L ∈ R[X]m×m and a linear polynomial ` ∈ R[X] as follows:

(P ) minimize `(x)
subject to x ∈ Rn

L(x) � 0

(D) maximize a
subject to S ∈ SRm×m, a ∈ R

S � 0
`− a = tr(LS)

To see that this corresponds (up to some minor technicalities) to the formulation
in the literature, just write the polynomial constraint `− a = tr(LS) of the dual as
n+ 1 linear equations by comparing coefficients.

The optimal values of (P ) and (D) are defined to be

P ∗ := inf{`(x) | x ∈ Rn, L(x) � 0} ∈ R ∪ {±∞} and

D∗ := sup{a | S ∈ SRm×m�0 , a ∈ R, `− a = tr(LS)} ∈ R ∪ {±∞},
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respectively, where the infimum and the supremum is taken in the ordered set
{−∞} ∪ R ∪ {∞} (where inf ∅ =∞ and sup∅ = −∞).

By weak duality, we mean that P ∗ ≥ D∗ or equivalently that the objective value
of (P ) at any of its feasible points is greater or equal to the objective value of (D)
at any of its feasible points.

Fix a linear pencil L. It is easy to see that weak duality holds for all primal
objectives ` if and only if

f ∈ CL =⇒ f ≥ 0 on SL

holds for all f ∈ R[X]1, which is of course true. By strong duality, we mean that
P ∗ = D∗ (zero duality gap) and that (the objective of) (D) attains this common
optimal value in case this is finite. It is a little exercise to see that strong duality
for all primal objectives ` is equivalent to

f ≥ 0 on SL ⇐⇒ f ∈ CL
for all f ∈ R[X]1.

As we have seen in Subsection 2.4, this fails in general. It is however well-known
that it is true when the feasible set SL of the primal (P) has non-empty interior
(e.g. if L is strongly feasible). For convenience of the reader, we include a proof
which has a bit of a flavor of real algebraic geometry.

Proposition 3.1.1 (Standard SDP duality). Let L ∈ SR[X]m×m be a linear pencil
such that SL has non-empty interior. Then

f ≥ 0 on SL ⇐⇒ f ∈ CL
for all f ∈ R[X]1.

Proof. In a preliminary step, we show that the convex cone CL is closed in R[X]1.
To this end, consider the linear subspace U := {u ∈ Rm | Lu = 0} ⊆ Rm. The map

ϕ : R× (Rm/U)m → CL, (a,ū1, . . . ,ūm)→ a2 +

m∑
i=1

u∗iLui

is well-defined and surjective.
Suppose ϕ maps (a,ū1, . . . ,ūm) ∈ (Rm/U)m to 0. Fix i ∈ {1, . . . ,m}. Then

u∗iL(x)ui = 0 for all x ∈ SL. Since L(x) � 0, this implies L(x)ui = 0 for all x ∈ SL.
Using the hypothesis that SL has non-empty interior, we conclude that Lui = 0,
i.e., ui ∈ U . Since i was arbitrary and a = 0, this yields (a,ū1, . . . ,ūm) = 0.

This shows ϕ−1(0) = {0}. Together with the fact that ϕ is a (quadratically)
homogeneous map, this implies that ϕ is proper (see for example [PS, Lemma 2.7]).
In particular, CL = imϕ is closed.

Suppose now that f /∈ R[X]1rCL. The task is to find x ∈ SL such that f(x) < 0.
Being a closed convex cone, CL is the intersection of all closed half-spaces containing
it. Therefore we find a linear map ψ : R[X]1 → R such that ψ(CL) ⊆ R≥0 and
ψ(f) < 0. We can assume ψ(1) > 0 since otherwise ψ(1) = 0 and we can replace
ψ by ψ + ε evy for some small ε > 0 where y ∈ SL is chosen arbitrarily. Hereby
evx : R[X]1 → R denotes the evaluation in x ∈ Rn. Finally, after a suitable scaling
we can even assume ψ(1) = 1.

Now setting x := (ψ(X1), . . . ,ψ(Xn)) ∈ Rn, we have ψ = evx. So ψ(CL) ⊆ R≥0
means exactly that L(x) � 0, i.e., x ∈ SL. At the same time f(x) = ψ(f) < 0 as
desired.

3.2. Certificates for low-dimensionality of spectrahedra. As mentioned above,
the problems with the standard duality theory for SDP arise when one deals with
spectrahedra having empty interior. Every convex set with empty interior is con-
tained in an affine hyperplane. The basic idea is now to code the search for such
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an affine hyperplane into the dual SDP and to replace equality in the constraint
f − a = tr(LS) of (D) by congruence modulo the linear polynomial ` defining the
affine hyperplane. This raises however several issues:

First, SL might have codimension bigger than one in Rn. This will be resolved
by iterating the search up to n times.

Second, we do not see any possibility to encode the search for the linear polyno-
mial ` directly into an SDP. What we can implement is the search for a non-zero
quadratic sos-polynomial q together with a certificate of SL ⊆ {q = 0}. Note that
{q = 0} is a proper affine subspace of Rn. It would be ideal to find q such that
{q = 0} is the affine hull of SL since then we could actually avoid the n-fold itera-
tion just mentioned. However it will follow from Example 3.2.2 below that this is
in general not possible.

Third, we have to think about how to implement congruence modulo linear
polynomials ` vanishing on {q = 0}. This will be dealt with by using the radical
ideal from real algebraic geometry in connection with Schur complements.

We begin with a result which ensures that a suitable quadratic sos-polynomial q
can always be found. In fact, the following proposition says that there exists such a
q which is actually a square. The statement is of interest in itself since it provides
certificates for low-dimensionality of spectrahedra. We need quadratic (i.e., degree
≤ 2) sos-matrices for this.

Proposition 3.2.1. For any linear pencil L ∈ SR[X]m×m, the following are equiv-
alent:

(i) SL has empty interior;
(ii) There exists a non-zero linear polynomial ` ∈ R[X]1 and a quadratic sos-

matrix S ∈ SR[X]m×m such that

− `2 = tr(LS). (12)

Proof. From (ii) it follows that −`2 ∈ ML and therefore −`2 ≥ 0 on SL, which
implies ` = 0 on SL. So it is trivial that (ii) implies (i).

For the converse, suppose that SL has empty interior. If there is u ∈ Rm r {0}
such that Lu = 0 then, by an orthogonal change of coordinates on Rm, we could
assume that u is the first unit vector e1. But then we delete the first column and
the first row from L. We can iterate this and therefore assume from now on that
there is no u ∈ Rm r {0} with Lu = 0.

We first treat the rather trivial case where L is strongly infeasible. By Lemma 2.2.1,
there are c ∈ R≥0 and ui ∈ Rm with −1 − c =

∑
i u
∗
iLui. By scaling the ui

we can assume c = 0. Setting S :=
∑
i uiu

∗
i ∈ SRm×m and ` := 1, we have

−`2 = −1 =
∑
i u
∗
iLui = tr(LS) for the constant sos-matrix S and the constant

non-zero linear polynomial `.
Now we assume that L is weakly infeasible or feasible. In case that L is feasible,

it is clearly weakly feasible since otherwise SL would have non-empty interior. Now
Lemma 2.2.4 justifies the following case distinction:

Case 1. There is u ∈ Rm r {0} with u∗Lu = 0.
Write L = (`ij)1≤i,j≤m. Again by an orthogonal change of coordinates on Rm,

we can assume that u = e1, i.e., `11 = 0. Moreover, we may assume ` := `12 6= 0
(since Le1 = Lu 6= 0). Setting `′ := 1

2 (−1 − `22), v := [`′ ` 0 . . . 0]∗ and S := vv∗,
we have

tr(LS) = v∗Lv = 2`′``12 + `2`22 = `2(`22 + 2`′) = −`2.

Case 2. Case 1 does not apply but there are k ≥ 2 and u1, . . . ,uk ∈ Rm r {0}
such that

∑k
i=1 u

∗
iLui = 0.
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Here we set ` := u∗1Lu1 6= 0 and write −` = `21−`22 where `1 := 1
2 (−`+1) ∈ R[X]1

and `2 := 1
2 (−`− 1) ∈ R[X]1. Then we can use the quadratic sos-matrix

S := `21u1u
∗
1 + `22

k∑
i=2

uiu
∗
i = `21u1u

∗
1 − `22u1u∗1 = −`u1u∗1

to get tr(LS) = −`u∗1Lu1 = −`2.

The certificate (12) of low-dimensionality exists for some but in general not
for every affine hyperplane containing the spectrahedron. We illustrate this by
the following example where the spectrahedron has codimension two and therefore
is contained in infinitely many affine hyperplanes only one of which allows for a
certificate (12).

Example 3.2.2. Let

L =

 0 X1 0
X1 X2 X3

0 X3 X1

 .
Then SL = {(0,x2,0) ∈ R3 | x2 ≥ 0} and the (affine) hyperplanes containing SL
are {X1 = 0} and {aX1 +X3 = 0} (a ∈ R). As is shown in Case 1 of the proof of
Proposition 3.2.1, the certificate of low-dimensionality (12) exists for the hyperplane
{X1 = 0}, i.e., there is a quadratic sos-matrix S such that −X2

1 = tr(LS). However,
none of the other hyperplanes containing SL allows for the certificate (12).

Otherwise assume that there is a ∈ R such that {aX1 +X3 = 0} has a also cor-
responding certificate. Combining it with the one for {X1 = 0}, we get a quadratic
sos-matrix S such that

−(2a2)X2
1 − 2(aX1 +X3)2 = tr(LS)

which implies

−X2
3 = (2aX1 +X3)2 + (−(2a2)X2

1 − 2(aX1 +X3)2) ∈M (1)
L .

Specializing X3 to 1, one gets the contradiction −1 ∈ M (1)
L′ where L′ is the linear

pencil from Example 2.4.1.

3.3. Iterating the search for an affine hyperplane. We now carry out the
slightly technical but easy iteration of Proposition 3.2.1 announced in Subsection
3.2 and combine it with Proposition 3.1.1. We get a new type of Positivstellensatz
for linear polynomials on spectrahedra with bounded degree complexity.

Theorem 3.3.1 (Positivstellensatz for linear polynomials on spectrahedra).
Let L ∈ SR[X]m×m be a linear pencil and f ∈ R[X]1. Then

f ≥ 0 on SL

if and only if there exist `1, . . . ,`n ∈ R[X]1, quadratic sos-matrices S1, . . . ,Sn ∈
SR[X]m×m, a matrix S ∈ SRm×m�0 and c ≥ 0 such that

`2i + tr(LSi) ∈ (`1, . . . ,`i−1) for i ∈ {1, . . . ,n}, and (13)

f − c− tr(LS) ∈ (`1, . . . ,`n). (14)

Proof. We first prove that f ≥ 0 on SL in the presence of (13) and (14).
The traces in (13) and (14) are elements of ML and therefore nonnegative on

SL. Hence it is clear that constraint (14) gives f ≥ 0 on SL if we show that `i
vanishes on SL for all i ∈ {1, . . . ,n}. Fix i ∈ {1, . . . ,n} and assume by induction
that `1, . . . ,`i−1 vanish on SL. Then (13) implies `2i + tr(LSi) vanishes on SL and
therefore also `i.
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Conversely, suppose now that f ≥ 0 on SL. We will obtain the data with
properties (13) and (14) by induction on the number of variables n ∈ N0.

To do the induction basis, suppose first that n = 0. Then f ≥ 0 on SL just means
that the real number f is nonnegative if L ∈ SRm×m is positive semidefinite. But
if f ≥ 0, then it suffices to choose c := f ≥ 0 and S := 0 to obtain (14) with
n = 0, and the other condition (13) is empty since n = 0. We now assume that
f < 0 and therefore L 6� 0. Then we choose u ∈ Rm with u∗Lu = f . Setting
S := uu∗ ∈ SRm×m�0 and c := 0, we have

f − c− tr(LS) = f − u∗Lu = f − f = 0,

as required.
For the induction step, we now suppose that n ∈ N and that we know already

how to find the required data for linear pencils in n − 1 variables. We distinguish
two cases and will use the induction hypothesis only in the second one.

Case 1. SL contains an interior point.
In this case, we set all `i and Si to zero so that (13) is trivially satisfied. Property

(14) can be fulfilled by Proposition 3.1.1.
Case 2. The interior of SL is empty.
In this case, we apply Proposition 3.2.1 to obtain 0 6= `1 ∈ R[X]1 and a quadratic

sos-matrix S1 ∈ SR[X]m×m with

`21 + tr(LS1) = 0. (15)

The case where `1 is constant is trivial. In fact, in this case we can choose all
remaining data being zero since (`1, . . . ,`i) = (`1) = R[X] for all i ∈ {1, . . . ,n}.

From now on we therefore assume `1 to be non-constant. But then the reader
easily checks that there is no harm carrying out an affine linear variable trans-
formation which allows us to assume `1 = Xn. We then apply the induction hy-
pothesis to the linear pencil L′ := L(X1, . . . ,Xn−1,0) and the linear polynomial
f ′ := f(X1, . . . ,Xn−1,0) in n − 1 variables to obtain `2, . . . ,`n ∈ R[X], quadratic
sos-matrices S2, . . . ,Sn ∈ SR[X]m×m, a matrix S ∈ SRm×m�0 and a constant c ≥ 0
such that

`2i + tr(L′Si) ∈ (`2, . . . ,`i−1) for i ∈ {2, . . . ,n} and (16)

f ′ − c− tr(L′S) ∈ (`2, . . . ,`n). (17)

Noting that both f − f ′ and tr(LSi) − tr(L′Si) = tr((L − L′)Si) are contained in
the ideal (Xn) = (`1), we see that (16) together with (15) implies (13). In the same
manner, (17) yields (14).

3.4. The real radical and Schur complements. Let L ∈ SR[X]m×m be a linear
pencil and q ∈ R[X] a (quadratic) sos-polynomial such that −q = tr(LS) for some
(quadratic) sos-matrix S like in (12) above. In order to resolve the third issue
mentioned in Subsection 3.2, we would like to get our hands on (cubic) polynomials
vanishing on {q = 0}. In other words, we want to implement the ideals appearing
in (13) and (14) in an SDP.

Recall that for any ideal I ⊆ R[X], its radical
√
I and its real radical r√I are

the ideals defined by
√
I := {p ∈ R[X] | ∃k ∈ N : fk ∈ I} and

r√I := {p ∈ R[X] | ∃k ∈ N : ∃s ∈
∑

R[X]2 : f2k + s ∈ I}.

An ideal I ⊆ R[X] is called radical if I =
√
I and real radical if I = r√I.

By the Real Nullstellensatz [BCR, Ma, PD], each polynomial vanishing on the

real zero set {q = 0} of q lies in r√(q). This gives a strategy of how to find the
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cubic polynomials vanishing on {q = 0}, cf. Proposition 3.4.1 and Lemma 3.4.2
below. The Real Nullstellensatz plays only a motivating role for us. We will only
use its trivial converse: Each element of r√(q) vanishes on {q = 0}.

The question is now how to model the search for elements in the real radical
ideal by SDP. The key to this will be to represent polynomials by matrices as it is
done in the Gram matrix method mentioned at the beginning of Section 3. For this
we have to introduce notation.

For each d ∈ N0, let s(d) := dimR[X]d =
(
d+n
n

)
denote the number of monomials

of degree at most d in n variables and
#   „

[X]d ∈ R[X]s(d) the column vector

#   „

[X]d :=
[
1 X1 X2 . . . Xn X2

1 X1X2 . . . . . . Xd
n

]∗
consisting of these monomials ordered first with respect to the degree and then
lexicographic.

The following proposition shows how to find elements of degree at most d + e
(represented by a matrix W ) in the real radical I := r√(q) of the ideal generated
by a polynomial q ∈ R[X]2d (represented by a symmetric matrix U , i.e., q =
#   „

[X]d
∗
U

#   „

[X]d). We will later use it with d = 1 and e = 2 since q will be quadratic and
we will need cubic elements in I. Note that

U �W ∗W ⇐⇒
[
I W
W ∗ U

]
� 0

by the method of Schur complements.

Proposition 3.4.1. Let d,e ∈ N0, I a real radical ideal of R[X] and U ∈ SRs(d)×s(d)
such that

#   „

[X]d
∗
U

#   „

[X]d ∈ I. Suppose W ∈ Rs(e)×s(d) with U � W ∗W . Then
#   „

[X]e
∗
W

#   „

[X]d ∈ I.

Proof. Since U −W ∗W is positive semidefinite, we find B ∈ Rs(d)×s(d) with U −
W ∗W = B∗B. Now let pi ∈ R[X] denote the i-th entry of W

#   „

[X]d and qj the j-th
entry of B

#   „

[X]d. From

p21 + · · ·+ p2s(e) + q21 + · · ·+ q2s(d) = (W
#   „

[X]d)
∗W

#   „

[X]d + (B
#   „

[X]d)
∗B

#   „

[X]d

=
#   „

[X]d
∗
(W ∗W +B∗B)

#   „

[X]d =
#   „

[X]d
∗
U

#   „

[X]d ∈ I

it follows that p1, . . . ,ps(e) ∈ I since I is real radical. Now

#   „

[X]e
∗
W

#   „

[X]d =
#   „

[X]e
∗
[p1 . . . ps(e)]

∗ = [p1 . . . ps(e)]
#   „

[X]e ∈ I

since I is an ideal.

The following lemma is a weak converse to Proposition 3.4.1. Its proof relies
heavily on the fact that only linear and quadratic polynomials are involved.

Lemma 3.4.2. Suppose `1, . . . ,`t ∈ R[X]1 and q1, . . . ,qt ∈ R[X]2. Let U ∈
SRs(1)×s(1) be such that

#   „

[X]1
∗
U

#   „

[X]1 = `21 + · · ·+ `2t .

Then there exists λ > 0 and W ∈ Rs(2)×s(1) such that λU �W ∗W and
#   „

[X]2
∗
W

#   „

[X]1 = `1q1 + · · ·+ `tqt.

Proof. Suppose that at least one qi 6= 0 (otherwise take W = 0). Choose column
vectors ci ∈ Rs(2) such that c∗i

#   „

[X]2 = qi. Now let W ∈ Rs(2)×s(1) be the matrix

defined by W
#   „

[X]1 =
∑t
i=1 `ici so that

#   „

[X]2
∗
W

#   „

[X]1 =

t∑
i=1

`i
#   „

[X]2
∗
ci =

t∑
i=1

`ic
∗
i

#   „

[X]2 =

t∑
i=1

`iqi.
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Moreover, we get

#   „

[X]1
∗
W ∗W

#   „

[X]1 = (W
#   „

[X]1)∗W
#   „

[X]1 =

t∑
i,j=1

(`ici)
∗(`jcj)

and therefore for all x ∈ Rn

[
1 x1 . . . xn

]
W ∗W


1
x1
...
xn

 =

t∑
i,j=1

(`i(x)ci)
∗(`j(x)cj)

≤ 1

2

t∑
i,j=1

((`i(x)ci)
∗(`i(x)ci) + (`j(x)cj)

∗(`j(x)cj))

≤ t
t∑
i=1

(`i(x)ci)
∗(`i(x)ci) ≤ λ

t∑
i=1

`i(x)2,

where we set λ := t
∑t
i=1 c

∗
i ci > 0. Therefore[

1 x1 . . . xn
]

(λU −W ∗W )
[
1 x1 . . . xn

]∗ ≥ 0

for all x ∈ Rn. By homogeneity and continuity this implies y∗(λU −W ∗W )y ≥ 0
for all y ∈ Rs(1), i.e., λU �W ∗W .

3.5. The sums of squares dual of an SDP. Given an SDP of the form (P)
described in Subsection 3.1, the following is what we call its sums of squares dual :

maximize a
subject to S ∈ SRm×m, S � 0, a ∈ R

S1, . . . ,Sn ∈ SR[X]m×m quadratic sos-matrices
U1, . . . ,Un ∈ SRs(1)×s(1)
W1, . . . ,Wn ∈ Rs(2)×s(1)
#   „

[X]1
∗
Ui

#   „

[X]1 +
#   „

[X]2
∗
Wi−1

#   „

[X]1 + tr(LSi) = 0 (i ∈ {1, . . . ,n})
Ui �W ∗i Wi (i ∈ {1, . . . ,n})
`− a+

#   „

[X]2
∗
Wn

#   „

[X]1 − tr(LS) = 0.

Just like Ramana’s extended Lagrange-Slater dual [Ra] it can be written down
in polynomial time (and hence has polynomial size) in the bit size of the primal
(assuming the latter has rational coefficients) and it guarantees that strong duality
(i.e., weak duality, zero gap and dual attainment, see Subsection 3.1) always holds.
Similarly, the facial reduction [BW, TW] gives rise to a good duality theory of SDP.
We refer the reader to [Pat] for a unified treatment of these two constructions.

As mentioned at the beginning of Section 3, the quadratic sos-matrices can easily
be modeled by SDP constraints using the Gram matrix method, and the polynomial
identities can be written as linear equations by comparing coefficients.

The Si serve to produce negated quadratic sos-polynomials vanishing on SL
(cf. Proposition 3.2.1) which are captured by the matrices Ui. From this, cubics
vanishing on SL are produced (cf. Subsection 3.4) and represented by the matrices
Wi. These cubics serve to implement the congruence modulo the ideals from (13)
and (14). The whole procedure is iterated n times.

Just as Proposition 3.1.1 corresponds to the standard SDP duality, Theorem
3.5.2 translates into the strong duality for the sums of squares dual. Before we
come to it, we need a folk lemma which is well-known (e.g. from the theory of
Gröbner bases) and which we prove for the convenience of the reader.
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Lemma 3.5.1. Suppose d ∈ N, f ∈ R[X]d and `1, . . . ,`t ∈ R[X]1 are non-constant
linear polynomials such that f ∈ (`1, . . . ,`t). Then there exist p1, . . . ,pt ∈ R[X]d−1
such that f = p1`1 + · · ·+ pt`t.

Proof. We proceed by induction on t ∈ N0. For t = 0, there is nothing to show.
Now let t ∈ N and suppose the lemma is already proved with t replaced by t − 1.
We may assume that `1 = X1 − ` with ` ∈ R[X2, . . . ,Xn] (otherwise permute the
variables appropriately and scale `1). Write f =

∑
|α|≤d aαX

α with aα ∈ R. Setting

g := f(`,X2, . . . ,Xn), we have

f − g =
∑
|α|≤d
1≤α1

aα(Xα1
1 − `α1)Xα2

2 · · ·Xαn
n = p1(X1 − `) = p1`1

where p1 :=
∑
|α|≤d
1≤α1

aα

(∑α1−1
i=0 Xi

1`
α1−1−i

)
Xα2

2 · · ·Xαn
n ∈ R[X]d−1. Moreover,

g ∈ (`2, . . . ,`t) and therefore g = p2`2 + · · ·+ pt`t for some p2, . . . ,pt ∈ R[X]d−1 by
induction hypothesis. Now

f = (f − g) + g = p1`1 + · · ·+ pt`t.

Theorem 3.5.2 (Sums of squares SDP duality). Let L ∈ SR[X]m×m be a linear
pencil and f ∈ R[X]1. Then

f ≥ 0 on SL

if and only if there exist quadratic sos-matrices S1, . . . ,Sn ∈ SR[X]m×m, matrices
U1, . . . ,Un ∈ SRs(1)×s(1), W1, . . . ,Wn ∈ Rs(2)×s(1), S ∈ SRm×m�0 and c ∈ R≥0 such
that

#   „

[X]1
∗
Ui

#   „

[X]1 +
#   „

[X]2
∗
Wi−1

#   „

[X]1 + tr(LSi) = 0 (i ∈ {1, . . . ,n}), (18)

Ui �W ∗i Wi (i ∈ {1, . . . ,n}), (19)

f − c+
#   „

[X]2
∗
Wn

#   „

[X]1 − tr(LS) = 0, (20)

where W0 := 0.

Proof. We first prove that existence of the above data implies f ≥ 0 on SL. All we
will use about the traces appearing in (18) and (20) is that they are polynomials
nonnegative on SL. Let I denote the real radical ideal of all polynomials vanishing
on SL. It is clear that (20) gives f ≥ 0 on SL if we show that

#   „

[X]2Wn
#   „

[X]1 ∈ I. In
fact, we prove by induction that

#   „

[X]2
∗
Wi

#   „

[X]1 ∈ I for all i ∈ {0, . . . ,n}.
The case i = 0 is trivial since W0 = 0 by definition. Let i ∈ {1, . . . ,n} be given

and suppose that
#   „

[X]2
∗
Wi−1

#   „

[X]1 ∈ I. Then (18) shows
#   „

[X]1
∗
Ui

#   „

[X]1 ≤ 0 on SL. On
the other hand (19) implies in particular Ui � 0 and therefore

#   „

[X]1
∗
Ui

#   „

[X]1 ≥ 0 on SL.
Combining both,

#   „

[X]1
∗
Ui

#   „

[X]1 ∈ I. Now Proposition 3.4.1 implies
#   „

[X]2
∗
Wi

#   „

[X]1 ∈ I
by (19). This ends the induction and shows f ≥ 0 on SL as claimed.

Conversely, suppose now that L is infeasible. By Theorem 3.3.1 and Lemma
3.5.1, we can choose `1, . . . ,`n ∈ R[X]1, quadratic sos-matrices S′1, . . . ,S

′
n ∈ SR[X]m×m,

S ∈ SRm×m�0 and qij ∈ R[X]2 (1 ≤ j ≤ i ≤ n) such that

`21 + · · ·+ `2i + tr(LS′i) =

i−1∑
j=1

q(i−1)j`j (i ∈ {1, . . . ,n}) and (21)

f − c− tr(LS) =

n∑
j=1

qnj`j . (22)

There are two little arguments involved in this: First, (13) can trivially be rewritten
as `21 + · · ·+ `2i + tr(LS′i) ∈ (`1, . . . ,`i−1) for i ∈ {1, . . . ,n}. Second, in Lemma 3.5.1
the `i are assumed to be non-constant but can be allowed to equal zero. But if
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some `i 6= 0 is constant, then we may set `i+1 = · · · = `n = 0 and S′i+1 = · · · =
S′n = S = 0.

Now define U ′i ∈ SRs(1)×s(1) by
#   „

[X]1
∗
U ′i

#   „

[X]1 = `21 + · · · + `2i for i ∈ {1, . . . ,n}.
Using Lemma 3.4.2, we can then choose λ > 0 and W ′1, . . . ,W

′
n ∈ Rs(2)×s(1) such

that
λU ′i �W ′∗i W ′i (23)

and
#   „

[X]2
∗
W ′i

#   „

[X]1 = −
∑i
j=1 qij`j for i ∈ {1, . . . ,n}. Setting Wn := W ′n, equation

(22) becomes (20). Moreover, (21) can be rewritten as
#   „

[X]1
∗
U ′i

#   „

[X]1 +
#   „

[X]2
∗
W ′i−1

#   „

[X]1 + tr(LS′i) = 0 (i ∈ {1, . . . ,n}) (24)

To cope with the problem that λ might be larger than 1 in (23), we look for
λ1, . . . ,λn ∈ R>0 such that Ui �W ∗i Wi for all i ∈ {1, . . . ,n} if we define Ui := λiU

′
i

and Wi−1 := λiW
′
i−1 for all i ∈ {1, . . . ,n} (in particular W0 = W ′0 = 0). With

this choice, the desired linear matrix inequality (19) is now equivalent to λiU
′
i �

λ2i+1W
′∗
i W

′
i for i ∈ {1, . . . ,n − 1} and λnU

′
n � W ′2n . Looking at (23), we therefore

see that any choice of the λi satisfying λi ≥ λλ2i+1 for i ∈ {1, . . . ,n−1} and λn ≥ λ
ensures (19). Such a choice is clearly possible. Finally, equation (24) multiplied by
λi yields (18) by setting Si := λiS

′
i for i ∈ {1, . . . ,n}.

3.6. The real radical and the quadratic module. Let L be a linear pencil. In
Definition 1.2.1, we have introduced the convex cone CL ⊆ R[X]1 and the quadratic
module ML ⊆ R[X] associated to L consisting of polynomials which are obviously
nonnegative of the spectrahedron SL. In Theorem 2.2.5, we have shown that the
quadratic module ML can be used to certify infeasibility of L, in the sense that
SL = ∅ implies −1 ∈ ML. On the contrary, we have seen in Subsection 2.4, that
the convex cone CL is in general too small to detect infeasibility of L in this way.

In this subsection, we turn over to the more general question of certifying non-
negativity of arbitrary linear polynomials on SL (as opposed to just the constant
polynomial −1). The following example shows that ML (and henceforth its subset
CL) does not, in general, contain all linear polynomials nonnegative on SL.

Example 3.6.1. Consider

L =

[
1 X
X 0

]
.

Then SL = {0}. Hence obviously X ≥ 0 on SL. But it is easy to see that X 6∈ML

[Za, Example 2].

Despite this example, Theorem 3.3.1 and its SDP-implementable version Theo-
rem 3.5.2 do on the other hand yield algebraic certificates of linear polynomials non-
negative on SL. These two theorems have the advantage of being very well-behaved
with respect to complexity issues but have the drawback of their statements being
somewhat technical. Leaving complexity issues aside, one can however come back
to a nice algebraic characterization of linear polynomials nonnegative on SL.

Given f ∈ R[X]1 with f ≥ 0 on SL, the certificates in Theorems 3.3.1 and 3.5.2
for being nonnegative on SL can actually be interpreted as certificates of f lying
in the convex cone CL +

√
suppML by means of Prestel’s theory of semiorderings.

Note that each element of CL +
√

suppML is of course nonnegative SL since the
elements of

√
suppML vanish on SL.

Finally, this will allow us to come back to the quadratic module ML. We will
show that it contains each linear polynomial nonnegative on SL after adding an
arbitrarily small positive constant, see Corollary 3.6.7.

In this subsection, basic familiarity with real algebraic geometry as presented
e.g. in [BCR, Ma, PD] is needed. The following proposition follows easily from Pres-
tel’s theory of semiorderings on a commutative ring, see for example [Sc, 1.4.6.1].
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Proposition 3.6.2. Let M be a quadratic module in R[X]. Then√
suppM = r√suppM =

⋂
{suppS | S semiordering of R[X],M ⊆ S}.

We explicitly extract the following consequence since this is exactly what is
needed in the sequel.

Lemma 3.6.3. Let M be a quadratic module in R[X]. Then

(
√

suppM −M) ∩M ⊆
√

suppM. (25)

Proof. To prove (25), suppose p ∈ M can be written p = g − q with g ∈
√

suppM
and q ∈ M . By Proposition 3.6.2, we have to show that p ∈ suppS for each
semiordering S of R[X] with M ⊆ S. But if such S is given, then g ∈ suppS and
therefore p = g − q ∈ −S as well as p ∈M ⊆ S. Hence p ∈ suppS.

Having this lemma at hand, we can now give a conceptual interpretation of
the certificates appearing in Theorem 3.3.1, disregarding the complexity of the
certificate.

Proposition 3.6.4. If L ∈ SR[X]m×m is a linear pencil, f,`1, . . . ,`n ∈ R[X]1,
S1, . . . ,Sn ∈ SR[X]m×m are quadratic sos-matrices, S ∈ SRm×m�0 and c ∈ R≥0 such

that (13) and (14) hold, then f ∈ CL +
√

suppML.

Proof. Set I :=
√

suppML. It is clear that (14) gives f ∈ CL + I if we prove
that `i ∈ I for all i ∈ {1, . . . ,n}. Fix i ∈ {1, . . . ,n} and assume by induction
that `1, . . . ,`i−1 ∈ I. Then (13) implies `2i + tr(LSi) ∈ I and therefore `2i ∈
(I −ML) ∩

∑
R[X]2 ⊆ (I −ML) ∩ML ⊆ I by (25).

We get the same interpretation for the certificates from Theorem 3.5.2.

Proposition 3.6.5. If L ∈ SR[X]m×m is a linear pencil, f ∈ R[X]1, S1, . . . ,Sn ∈
SR[X]m×m are quadratic sos-matrices, U1, . . . ,Un ∈ SRs(1)×s(1), W1, . . . ,Wn ∈
Rs(2)×s(1), S ∈ SRm×m�0 and c ∈ R≥0 such that (18), (19) and (19) hold, then

f ∈ CL +
√

suppML.

Proof. Set I :=
√

suppML. It is clear that constraint (20) gives f ∈ CL + I if we
show that

#   „

[X]2Wn
#   „

[X]1 ∈ I. In fact, we show by induction that
#   „

[X]2Wi
#   „

[X]1 ∈ I for
all i ∈ {0, . . . ,n}.

The case i = 0 is trivial since W0 = 0 by definition. Let i ∈ {1, . . . ,n} be
given and suppose that we know already

#   „

[X]2
∗
Wi−1

#   „

[X]1 ∈ I. Then (18) shows
#   „

[X]1
∗
Ui

#   „

[X]1 ∈ I −ML. On the other hand (19) implies in particular Ui � 0 and
therefore

#   „

[X]1
∗
Ui

#   „

[X]1 ∈
∑

R[X]2 ⊆ML. But then
#   „

[X]1
∗
Ui

#   „

[X]1 ∈ (I−ML)∩ML ⊆ I
by (25). Now (19) yields

#   „

[X]2
∗
Wi

#   „

[X]1 ∈ I by Proposition 3.4.1 since I is real radical
by Proposition 3.6.2. This ends the induction.

The following corollary is now a generalization of Proposition 3.1.1 working also
for low-dimensional SL (note that suppML = (0) if SL has non-empty interior).

Corollary 3.6.6. Let L ∈ SR[X]m×m be a linear pencil. Then

f ≥ 0 on SL ⇐⇒ f ∈ CL +
√

suppML

for all f ∈ R[X]1.

Proof. Combine either Theorem 3.3.1 with Proposition 3.6.4, or Theorem 3.5.2 with
Proposition 3.6.5.

Now we come back to the quadratic module where we cannot avoid to add ε > 0
in order to get a certificate as was shown in Example 3.6.1.
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Corollary 3.6.7. Let L ∈ SR[X]m×m be a linear pencil. Then

f ≥ 0 on SL ⇐⇒ ∀ε > 0 : f + ε ∈ML

for all f ∈ R[X]1.

Proof. To prove the non-trivial implication, let f ∈ R[X]1 with f ≥ 0 on SL be
given. It suffices to show f + ε ∈ML for the special case ε = 1 (otherwise replace f
by εf and divide by ε). By Corollary 3.6.6, there exists g ∈ CL, p ∈ R[X] and k ∈ N
such that f = g+ p and pk ∈ I := suppML. Now f + ε = f + 1 = g+ (f − g) + 1 =
g+ (p+ 1) and it is enough to show that p+ 1 ∈ML. This will follow from the fact
that the image of p + 1 is a square in the quotient ring R[X]/I. Indeed since the
image of p in R[X]/I is nilpotent (in fact the image of pk is zero), we can simply
write down a square root of this element using the finite Taylor expansion at 1 of
the square root function in 1 given by the binomial series:

p+ 1 ≡

(
k−1∑
i=0

( 1
2

i

)
pi

)2

mod I.

4. Matricial spectrahedra and complete positivity

In this section we revisit some of the main results from [HKM], where we con-
sidered noncommutative (matricial) relaxations of linear matrix inequalities under
the assumption of strict feasibility. The purpose of this section is twofold. First,
in Subsection 4.2 we explain which of the results from [HKM] generalize to weakly
feasible linear matrix inequalities. Second, in Subsection 4.3 we explain how our
results from Section 3 pertain to (completely) positive maps under the absence of
positive definite elements.

4.1. Matricial relaxations of LMIs. Suppose

L = A0 +

n∑
i=1

XiAi

is a linear pencil of size m. Given Z = col(Z1, . . . ,Zn) :=

Z1

...
Zn

 ∈ (SRd×d)n, the

evaluation L(Z) is defined as

L(Z) = Id ⊗A0 +

n∑
i=1

Zi ⊗Ai ∈ SRdm×dm.

The matricial spectrahedron of a linear pencil L is

SL :=
⋃
d∈N
{Z ∈ (SRd×d)n | L(Z) � 0}.

Let

SL(d) = {Z ∈ (SRd×d)n | L(Z) � 0} = SL ∩ (SRd×d)n.
for d ∈ N. The set SL(1) ⊆ Rn is the feasibility set of the linear matrix inequality
L(x) � 0 and coincides with SL as introduced above. We call SL bounded if there
is an N ∈ N with operator norm ‖Z‖ ≤ N for all Z ∈ SL.

Lemma 4.1.1. For matrices Z1, . . . ,Zn of the same size, we have

‖col(Z1, . . . ,Zn)‖2 =
∥∥∥ n∑
i=1

Z∗i Zi

∥∥∥.
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Proof. Suppose Zj ∈ Rd×d. Expand col(Z1, . . . ,Zn) ∈ Rdn×d to a dn × dn matrix

Ẑ by adding zero columns. Then

‖col(Z1, . . . ,Zn)‖2 = ‖Ẑ‖2 = ‖Ẑ∗Ẑ‖

=
∥∥∥

∑
i Z
∗
i Zi 0 · · · 0

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

∥∥∥ =
∥∥∑

i

Z∗i Zi
∥∥.

Given linear pencils L1 and L2,

Lj = Aj,0 +

n∑
i=1

XiAj,i ∈ SR[X]
mj×mj

1 , j = 1,2, (26)

we shall be interested in the following inclusion for matricial spectrahedra:

SL1 ⊆ SL2 . (27)

In this case we say that L1 matricially dominates L2. If L2 ∈ R[X]1 then (27) is
equivalent to SL1

⊆ SL2
:

Proposition 4.1.2. Let L be a linear pencil of size m and let ` ∈ R[X]1. Then

`|SL
≥ 0 ⇐⇒ `|SL

� 0.

Proof. The implication⇐ is obvious as SL ⊇ SL. For the converse assume `|SL
6� 0

and choose Z = (Z1, . . . ,Zn) ∈ SL with `(Z) 6� 0. Let v be an eigenvector of `(Z)
with negative eigenvalue. For v∗Zv = (v∗Z1v, . . . ,v

∗Znv) ∈ SL we have

L(v∗Zv) = (Im ⊗ v)∗L(Z)(Im ⊗ v) � 0,

and
0 > v∗`(Z)v = `(v∗Zv),

whence `|SL
6≥ 0.

Corollary 4.1.3. Let L be a linear pencil. Then

SL is bounded ⇐⇒ SL = SL(1) is bounded.

Corollary 4.1.4. For a linear pencil L, SL = ∅ if and only if SL = ∅.

Since empty spectrahedra were thoroughly analyzed in previous sections, in the
sequel we shall always assume SL 6= ∅. Moreover, we assume that there is Z ∈ SL

with L(Z) 6= 0. Then, by compressing and translating, we ensure

(Asmp) 0 6= A0 � 0.

If the interior of SL is non-empty, we could further reduce to strictly feasible linear
pencils (cf. [HKM, Proposition 2.1]), but this is not the case we are interested in
here.

Lemma 4.1.5. If SL is bounded, then A0, . . . ,An are linearly independent.

Proof. This is easy; or see [HKM, Proposition 2.6(2)].

We now introduce subspaces to be used in our considerations:

Sj = span{Aj,i | i = 0, . . . ,n} = span{Lj(z) | z ∈ Rn} ⊆ SRmj×mj .

We call Sj = S (Lj) the (nonunital) operator system associated to the linear pencil
Lj . Conversely, to each linear subspace S ⊆ SRm×m we can associate a linear
pencil L with S = S (L) by fixing a basis for S . We can even enforce additional
properties on L, see Proposition 4.3.2 below.

The key tool in studying inclusions of matricial spectrahedra as in (27) is the
linear map τ : S (L1)→ S (L2) we now define.
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Definition 4.1.6. Let L1,L2 be linear pencils as in (26). If A1,0, . . . ,A1,n are
linearly independent (e.g. SL1

is bounded), we define the linear map

τ : S1 → S2, A1,i 7→ A2,i (i = 0, . . . ,n).

We shall soon see that, assuming (27), τ has a property called complete positivity,
which we now introduce. Let Sj ⊆ SRmj×mj be linear subspaces and ϕ : S1 → S2

a linear map. For d ∈ N, φ induces the map

ϕd = Id ⊗ ϕ : Rd×d ⊗S1 = S d×d
1 → S d×d

2 , M ⊗A 7→M ⊗ ϕ(A),

called an ampliation of ϕ. Equivalently,

ϕd


T11 · · · T1d

...
. . .

...
Td1 · · · Tdd


 =

ϕ(T11) · · · ϕ(T1d)
...

. . .
...

ϕ(Td1) · · · ϕ(Tdd)


for Tij ∈ S1. We say that ϕ is d-positive if ϕd is a positive map, i.e., maps positive
semidefinite matrices into positive semidefinite matrices. If ϕ is d-positive for every
d ∈ N, then ϕ is completely positive.

Remark 4.1.7. If S1 does not contain positive semidefinite matrices, then every
linear map out of S1 is completely positive. On the other hand, under the presence
of positive definite elements there is a well established theory of completely positive
maps, cf. [Pau]. In the absence of positive definite elements in S1 the structure
of completely positive maps out of S1 seems to be more complicated, and our
results from Section 3 describe (completely) positive maps S1 → R in this case; see
Subsection 4.3 below.

4.2. The map τ is completely positive: LMI matricial domination. The
main result of this section is the equivalence of d-positivity of the map τ from
Definition 4.1.6 with the inclusion SL1

(d) ⊆ SL2
(d). As a corollary, L1 matricially

dominates L2 if and only if τ is completely positive.

Theorem 4.2.1 (cf. [HKM, Theorem 3.5]). Let

Lj = Aj,0 +

n∑
i=1

XiAj,i ∈ SR[X]
dj×dj
1 , j = 1,2

be linear pencils (with 0 6= A1,0 � 0), and assume the spectrahedron SL1
is bounded.

Let τ be the linear map given in Definition 4.1.6.

(1) τ is d-positive if and only if SL1
(d) ⊆ SL2

(d);
(2) τ is completely positive if and only if SL1

⊆ SL2
.

We point out that in [HKM] this theorem has been given under an additional
assumption: the linear pencil L1 was assumed to be strictly feasible.

To prove the theorem we start with a lemma.

Lemma 4.2.2. Let L = A0 +
∑n
i=1XiAi be a linear pencil of size m with 0 6=

A0 � 0 defining a bounded spectrahedron SL. Then:

(1) if Λ ∈ Rd×d and Z ∈ (SRd×d)n, and if

S := Λ⊗A0 +

n∑
i=1

Zi ⊗Ai (28)

is symmetric, then Λ = Λ∗;
(2) if S � 0, then Λ � 0.
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Proof. To prove item (1), suppose S is symmetric. Then 0 = S−S∗ = (Λ−Λ∗)⊗A0.
Since A0 6= 0, Λ = Λ∗.

For (2), if Λ 6� 0, then there is a unit vector v such that v∗Λv < 0. Consider
the orthogonal projection P ∈ SRdm×dm from Rd ⊗ Rm onto Rv ⊗ Rm, and let
Y = ((v∗Ziv)Pv)

n
i=1 ∈ (SRd×d)n. Here Pv ∈ SRd×d is the orthogonal projection

from Rd onto Rv. Note that P = Pv ⊗ Im. Then the compression

PSP = P (Λ⊗A0 +

n∑
i=1

Zi ⊗Ai)P = (v∗Λv)Pv ⊗A0 +

n∑
i=1

Yi ⊗Ai � 0,

which says that 0 6=
∑n
i=1 Yi⊗Ai � 0 since 0 6= A0 � 0 and v∗Λv < 0. This implies

0 6= tY ∈ SL for all t > 0; contrary to SL being bounded.

Proof of Theorem 4.2.1. In both of the statements, the direction (⇒) is obvious.
We focus on the converses.

Fix d ∈ N. Suppose S ∈ S d×d
1 is positive semidefinite. Then it is of the form

(28) for some Λ ∈ Rd×d and Z ∈ (SRd×d)d:

S = Λ⊗A1,0 +

n∑
i=1

Zi ⊗A1,i � 0.

By Lemma 4.2.2, Γ � 0. If we replace Λ by Λ + εI for some ε > 0, the resulting
S = Sε is still in S d×d

1 , so without loss of generality we may assume Λ � 0. Hence,

(Λ−
1
2 ⊗ I)S(Λ−

1
2 ⊗ I) = I ⊗A1,0 +

n∑
i=1

(Λ−
1
2ZiΛ

− 1
2 )⊗A1,i � 0.

Since S1(d) ⊆ S2(d), this implies

I ⊗A2,0 +

n∑
i=1

(Λ−
1
2ZiΛ

− 1
2 )⊗A2,i � 0.

Multiplying on the left and right by Λ
1
2 ⊗ I shows

τ(Sε) = Λ⊗A2,0 +

n∑
i=1

Zi ⊗A2,i � 0.

An approximation argument now implies that if S � 0, then τ(S) � 0 and hence τ
is d-positive proving (1). Item (2) follows immediately.

We next use the complete positivity of τ under the assumption of LMI matri-
cial domination to give an algebraic characterization of linear pencils L1 and L2

producing an inclusion SL1
⊆ SL2

.

Corollary 4.2.3 (Linear Positivstellensatz, cf. [HKM, Theorem 1.1]). Let L1 and
L2 be linear pencils of sizes m1 and m2, respectively. Assume that SL1

is bounded
and S1 contains a positive definite matrix (e.g. L1 is strictly feasible). Then the
following are equivalent:

(i) SL1
⊆ SL2

;
(ii) there exist µ ∈ N and V ∈ Rµm1×m2 such that

L2 = V ∗
(
Iµ ⊗ L1

)
V. (29)

Before turning to the proof of the corollary, we pause for a remark.

Remark 4.2.4. Equation (29) can be equivalently written as

L2 =

µ∑
j=1

V ∗j L1Vj , (30)
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where Vj ∈ Rm1×m2 and V = col(V1, . . . ,Vµ). Moreover, µ can be uniformly
bounded by Choi’s characterization [Pau, Proposition 4.7] of completely positive
maps between matrix algebras. In fact, µ ≤ m1m2.

Proof of Corollary 4.2.3. The proof of the nontrivial implication (i)⇒ (ii) proceeds
as follows. First invoke Arveson’s extension theorem [Pau, Theorem 7.5] to extend
τ from Definition 4.1.6 to a completely positive map ψ : Rm1×m1 → Rm2×m2 .
(Caution: this is where the existence of a positive definite matrix in S1 is used.)
Then apply the Stinespring representation theorem [Pau, Theorem 4.1] to obtain

ψ(a) = V ∗π(a)V, a ∈ Rm1×m1 (31)

for some unital ∗-representation π : Rm1×m1 → Rm3×m3 and V : Rm1 → Rm3 . By
dissecting the proof (or see [HKM, pp. 12-14]) we see that π is (unitarily equivalent
to) a multiple of the identity representation, i.e., π(a) = Iµ⊗ a for some µ ∈ N and
all a ∈ Rm1×m1 . Hence (31) implies (29).

4.3. Examples and concluding remarks.

Example 4.3.1. Let us revisit Example 3.6.1 to show that the existence of a
positive definite matrix in S1 is needed for Corollary 4.2.3 to hold. Consider

L1 =

[
1 X
X 0

]
, L2 = X.

Then SL1
= {0} and SL1

= {0}. Hence obviously SL1
⊆ SL2

. However, L2 does
not admit a representation of the form (30). Indeed, such a certificate is equivalent
to X ∈ CL1 ; but it was already pointed out that X is not even a member of ML1 .

We finish this paper by showing how our Theorem 3.3.1 (cf. Theorem 3.5.2)
pertains to positive maps S → R for a linear subspace S ⊆ SRm×m. For this we
start by associating to S a linear pencil L with S (L) = S and bounded SL.

Proposition 4.3.2. Let S ⊆ SRm×m be a linear subspace of dimension n+ 1 ≥ 2
containing a nonzero positive semidefinite matrix. Then there exist A0,A1, . . . , An ∈
S such that

(1) A0 � 0;
(2) S = span{A0, . . . ,An};
(3) for the linear pencil L := A0 + X1A1 + · · · + XnAn the spectrahedron SL is

bounded.

Proof. We will use the trace inner product

(A,B) 7→ 〈A,B〉 := tr(AB)

on SRm×m.
Let A0 be a maximum rank positive semidefinite matrix in S . Without loss of

generality we may assume

A0 =

[
Is 0
0 0m−s

]
for some 1 ≤ s ≤ m.

Claim. If for some A1 =

[
A11 A12

A∗12 A22

]
∈ S with A11 ∈ SRs×s we have

〈A0, A1〉 = 0 and

A0 + λA1 =

[
Is + λA11 λA12

λA∗12 λA22

]
� 0 for all λ ∈ R≥0, (32)

then A1 = 0.
Explanation. Since 〈A0,A1〉 = 0, tr(A11) = 0. This means that either A11 = 0 or

A11 has both positive and negative eigenvalues. In the latter case, fix an eigenvalue



28 IGOR KLEP AND MARKUS SCHWEIGHOFER

µ < 0 of A11. Then for every λ ∈ R with λ > −µ−1 > 0, we have that Is+λA11 6� 0,
contradicting (32). So A11 = 0. If s = m we are done. Hence assume s < m.

Now

A0 + λA1 =

[
Is λA12

λA∗12 λA22

]
� 0 (33)

for all λ ∈ R≥0. Using Schur complements, (33) is equivalent to

λA22 − λ2A∗12A12 � 0.

Hence A22 − λA∗12A12 � 0 for all λ ∈ R≥0. Equivalently, A12 = 0 and A22 � 0. If
A22 6= 0, then 0 � A0 +A1 ∈ S , and

s = rank(A0) < rank(A0 +A1),

contradicting the maximality of the rank of A0. �

Take an arbitrary orthogonal basis A0,A1, . . . , An of S containing A0, and let
L := A0 +X1A1 + · · ·+XnAn. We claim that SL is bounded.

Assume otherwise. Then there exists a sequence (x(k))k in Rn such that ‖x(k)‖ =
1 for all k, and an increasing sequence tk ∈ R>0 tending to∞ such that L(tkx

(k)) �
0. By convexity this implies tkx

(r) ∈ SL for all r ≥ k. Without loss of generality we
assume the sequence (x(k))k converges to a vector x = (x1, . . . ,xn) ∈ Rn. Clearly,
‖x‖ = 1. For any t ∈ R≥0, tx(k) → tx, and for k big enough, tx(k) ∈ SL by
convexity. So x satisfies L(tx) � 0 for all t ∈ R≥0. In other words,

A0 + t(x1A1 + · · ·+ xnAn) ≥ 0

for all t ∈ R≥0. But now the claim implies x1A1 + · · · + xnAn = 0, contradicting
the linear independence of the Aj .

Lemma 4.3.3. Suppose S ⊆ SRm×m is a linear subspace and ϕ : S → R is a
positive map. Then ϕ is completely positive.

Proof. This is well-known and easy, cf. [Pau, Proposition 3.8 or Theorem 3.9].

As seen in Example 4.3.1 there does not exist a clean linear certificate for LMI
matricial domination (or, equivalently, complete positivity). However, our Theorem
3.3.1 yields a nonlinear algebraic certificate for LMI (matricial) domination SL ⊆ Sf
in the case f is a size 1 linear pencil, i.e., f ∈ R[X]1. Equivalently, Theorem 3.3.1
can be used to describe (completely) positive maps τ : S → R, where S ⊆ SRm×m
is a(ny) linear subspace.

Indeed, suppose S contains a nonzero positive semidefinite matrix (otherwise τ
is automatically completely positive) and apply Proposition 4.3.2 to obtain a basis
A0, . . . , An of S , and the linear pencil

L := A0 +X1A1 + · · ·+XnAn

of size m with bounded SL. Define

f := τ(A0) +X1τ(A1) + · · ·+Xnτ(An) ∈ R[X]1.

Then, by Theorem 4.2.1 (here is where the boundedness of SL is used), τ is com-
pletely positive if and only if SL ⊆ Sf . By Proposition 4.1.2 the latter is equivalent
to SL ⊆ Sf , i.e., f |SL

≥ 0, and this is a situation completely characterized by The-
orem 3.3.1.
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