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Abstract. The free singularity locus of a noncommutative polynomial f is defined to

be the sequence of hypersurfaces Zn(f) = {X ∈ Mn(k)g : det f(X) = 0}. The main

theorem of this article shows that f is irreducible if and only if Zn(f) is eventually

irreducible. A key step in the proof is an irreducibility result for linear pencils. Arising

from this is a free singularity locus Nullstellensatz for noncommutative polynomials.

Apart from consequences to factorization in a free algebra, the paper also discusses its

applications to invariant subspaces in perturbation theory and linear matrix inequalities

in real algebraic geometry.

1. Introduction

Algebraic sets, as zero sets of commutative polynomials are called, are basic objects

in algebraic geometry and commutative algebra. One of the most fundamental results is

Hilbert’s Nullstellensatz, describing polynomials vanishing on an algebraic set. A simple

special case of it is the following: if a polynomial h vanishes on a hypersurface given

as the zero set of an irreducible polynomial f , then f divides h. Various far-reaching

noncommutative versions of algebraic sets and corresponding Nullstellensätze have been

introduced and studied by several authors [Ami57, vOV81, RV07, Scm09]. Heavily reliant

on these ideas and results are emerging areas of free real algebraic geometry [dOHMP09,

HKN14] and free analysis [MS13, K-VV14, AM16, KŠ17]. In the free context there are

several natural choices for the “zero set” of a noncommutative polynomial f . For instance,

Amitsur proved a Nullstellensatz for the set of tuples of matrices X satisfying f(X) = 0

[Ami57], and a conclusion for pairs (X, v) of matrix tuples X and nonzero vectors v

such that f(X)v = 0 was given by Bergman [HM04]. In contrast with the successes in the

preceding two setups, a Nullstellensatz-type analysis for the set of matrix tuples X making

f(X) singular (not invertible), which we call the free singularity locus of f (free locus for

short), is much less developed. In this paper we rectify this. One of our main results
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connects free loci with factorization in free algebra [Coh06, BS15, ARJ15, BHL17, Scr] in

the sense of the special case of Hilbert’s Nullstellensatz mentioned above.

A key intermediate step for studying components of free loci is an irreducibility theorem

for determinants of linear pencils. To adapt this result for noncommutative polynomials

we use a linearization process: given a noncommutative polynomial f , one can “decouple”

products of variables using Schur complements to produce a linear matrix pencil L with

the same free locus as f . The most effective way of obtaining such an L is via realizations

originating in control theory [BGM05] and automata theory [BR11].

The last objective of this paper is to derive consequences of our irreducibility theorem

for hermitian pencils. They appear prominently across real algebraic geometry, see e.g.

determinantal representations [Brä11, KPV15], the solution of the Lax conjecture [HV07,

LPR04] and the solution of the Kadison-Singer paving conjecture [MSS15]. Furthermore,

hermitian pencils give rise to linear matrix inequalities (LMIs), the cornerstone of systems

engineering [SIG97] and semidefinite optimization [WSV12], and a principal research focus

in free convexity [EW97, BPT13, HKM13, DD-OSS17]. Our irreducibility theorem enables

us to analyze of the boundary of a free spectrahedron, also known as an LMI domain,

associated to a hermitian pencil L. We characterize the smooth points as those X which

make kerL(X) one-dimensional, and then prove the density of these points in the LMI

boundary under mild hypotheses.

This paper is of possible interest to functional analysts (especially in free analysis),

matrix theorists, those who study semidefinite programming, and to researchers in poly-

nomial identities and representation theory. For a different audience the paper could be

written using terminology from invariant theory as was explained to us by Špela Špenko

and Claudio Procesi; see [KV17, Appendix A] for a discussion.

Main results. Let k be an algebraically closed field of characteristic 0, x = (x1, . . . , xg)

a tuple of freely noncommuting variables and k<x> the free k-algebra over x. To a

noncommutative polynomial f ∈ k<x> we assign its free (singularity) locus

Z (f) =
⋃
n∈N

Zn(f), where Zn(f) = {X ∈ Mn(k)g : det f(X) = 0} .

If a noncommutative polynomial f factors as a product of two nonconstant polynomials,

f = f1f2, then Z (f) = Z (f1)∪Z (f2). It is easy to see that the free locus of a nonconstant

polynomial is nonempty, so the hypersurface Zn(f) has at least two components for large

enough n ∈ N. Our main result is the converse to this simple observation.

Theorem A. Let f ∈ k<x> satisfy f(kg) 6= {0}. Then f is irreducible if and only

if there exists n0 ∈ N such that Zn(f) ⊂ Mn(k)g is an irreducible hypersurface for all

n ≥ n0.

Note that in general we cannot take n0 = 1 in Theorem A; for example, the noncommu-

tative polynomial f = (1−x1)2−x2
2 is irreducible, but f(ω1, ω2) = (1−ω1−ω2)(1−ω1+ω2)

for commuting indeterminates ω1, ω2. Theorem A is a corollary of the more general The-

orem 4.3 below, which certifies the inclusion of free loci of noncommutative polynomials.

For example, consider irreducible polynomials f1 = 1 + x1x2 and f2 = 1 + x2x1. It is

well-known that for square matrices A and B of equal size, the eigenvalues of AB and BA
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coincide, so Z (f1) = Z (f2) holds. On the other hand, this equality also follows from(
1 x1

0 1

)(
1 + x1x2 0

0 1

)(
1 0

−x2 1

)
=

(
0 1

−1 −x2

)(
1 + x2x1 0

0 1

)(
0 −1

1 x1

)
.

Such an algebraic condition, called stable associativity of (irreducible) polynomials f1 and

f2, is necessary for Z (f1) = Z (f2) to hold. More precisely, we obtain the following free

locus Nullstellensatz for polynomials:

Theorem B. Let f1, f2 ∈ k<x> satisfy fi(k
g) 6= {0}. Then Z (f1) ⊆ Z (f2) if and only

if each irreducible factor of f1 is (up to stable associativity) an irreducible factor of f2.

Theorems A and B are special cases of Theorem 4.3 below, and both hold for matrix

polynomials. The proof of Theorem 4.3 consists of two ingredients. The first one is

Cohn’s factorization theory for semifirs [Coh06], which deals with the ring-theoretic side

of factorization. The second one is Theorem C, an irreducibility result about evaluations

of linear matrix pencils, which we discuss next.

Given a monic linear pencil L = Id−A1x1−· · ·−Agxg with Aj ∈ Md(k), its evaluation

at X ∈ Mn(k)g is defined as

L(X) = Idn − A1 ⊗X1 − · · · − Ag ⊗Xg ∈ Mdn(k),

where ⊗ is the Kronecker product. We say that a monic pencil is irreducible if its coeffi-

cients generate the whole matrix algebra, or equivalently, they do not admit a non-trivial

common invariant subspace. For k = 1, . . . , g let Ω
(n)
k be an n× n generic matrix, i.e., a

matrix of n2 independent commuting variables ωkij for 1 ≤ i, j ≤ n.

Theorem C. Let L be an irreducible monic pencil. Then there exists n0 ∈ N such that

detL(Ω
(n)
1 , . . . ,Ω

(n)
g ) is an irreducible polynomial for all n ≥ n0.

See Theorem 3.4 for the proof, which combines in a novel way invariant theory for the

action of GLn(k) on Mn(k)g by simultaneous conjugation and free analysis techniques for

transitioning between different sizes of generic matrices. Given a linear pencil L we define

its free locus analogously as in the preceding setting of noncommutative polynomials:

Z (L) =
⋃
n∈N

Zn(L), where Zn(L) = {X ∈ Mn(k)g : detL(X) = 0} .

Theorem A is then deduced from Theorem C using a linearization process [Coh06, Section

5.8], which to every noncommutative polynomial f assigns a linear pencil L with Z (f) =

Z (L).

In the second part of the paper we thus turn our attention to monic pencils L with

polynomial free loci, i.e., Z (L) = Z (f) for some f ∈ k<x>. We apply noncommutative

Fornasini-Marchesini state space realizations [BV05, BGM05] to prove that the coefficients

of such pencils L are of the form Nj +Ej, where Nj are jointly nilpotent matrices and Ej
are rank-one matrices with coinciding kernels (Corollary 5.5). By connecting this result

with Theorem A and minimal factorizations in the sense of realization theory we obtain a

curious statement about invariant subspaces. Given a tuple of matrices A = (A1, . . . , Ag)

and A′ = (A′1, . . . , A
′
g) we say that A′ is a non-degenerate right rank-one perturbation of

A if A′j − Aj = bjc
t for some vectors bj and c such that {b1, . . . , bg} is not contained in a

proper invariant subspace for A1, . . . , Ag and c does not lie in a proper invariant subspace

for At
1, . . . , A

t
g. The following is a consequence of Theorem 5.1.
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Theorem D. Let A be a tuple of jointly nilpotent matrices. If a non-degenerate right

rank-one perturbation of A has an invariant subspace S, then there exists a subspace S×
that is complementary to S and invariant under A.

Lastly we consider consequences of Theorem C in real algebraic geometry. A monic

pencil L is hermitian if its coefficients are hermitian matrices. Its free spectrahedron or

LMI domain is defined as

D(L) =
⋃
n∈N

Dn(L), where Dn(L) = {X ∈ Hn(C)g : L(X) � 0} .

Here Hn(C) denotes n × n hermitian matrices and M � 0 means that M is positive

semidefinite. Then Dn(L) ⊆ Hn(C)g is a convex set and its boundary is contained in

Zn(L). For n ∈ N denote

∂1Dn(L) = {X ∈ Dn(L) : dim kerL(X) = 1} .

The points in ∂1Dn(L) are often precisely the smooth points of the boundary of Dn(L)

[Ren06]. The unique-null-vector property makes them vital for optimization [Ren06],

Positivstellensätze in free real algebraic geometry [HKN14] and the study of free analytic

maps between LMI domains [AHKM+]. Unfortunately, given a fixed n ∈ N it can happen

that ∂1Dn(L) = ∅ even for irreducible hermitian pencils, as a consequence of the failure

of Kippenhahn’s conjecture [Laf83]. However, we show that this cannot happen for every

n ∈ N if L is LMI-minimal, i.e., of minimal size among all hermitian pencils whose LMI

domain equals D(L).

Theorem E. Let L be an LMI-minimal hermitian pencil. Then there exists n0 ∈ N such

that ∂1Dn(L) is Zariski dense in Zn(L) for all n ≥ n0.

Theorem E can be viewed as a quantitative solution of the quantum Kippenhahn con-

jecture and is proved as Corollary 8.5 below.

Acknowledgments. We wish to thank Claudio Procesi, who read an early version of

the manuscript, for his comments. The second named author also thanks Špela Špenko

for patiently sharing her expertise in invariant theory.

2. Preliminaries

In this section we gather results about free loci and polynomial invariants for the general

linear group acting on matrix tuples by conjugation that will be used in the sequel.

Let k be algebraically closed field of characteristic 0. Throughout the paper we use the

following convention. If S (n) is a statement depending on n ∈ N, then “S (n) holds for

large n” means “there exists n0 ∈ N such that S (n) holds for all n ≥ n0”.

2.1. Free loci of matrix pencils. For g ∈ N let x = (x1, . . . , xg) be a tuple of freely

noncommuting variables. If A1, . . . , Ag ∈ Md(k), then

L = Id −
g∑
j=1

Ajxj
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is a monic linear pencil of size d. For X ∈ Mn(k)g let

L(X) = Idn −
∑
j

Agj=1 ⊗Xj ∈ Mdn(k),

where ⊗ denotes the Kronecker product. Let Mg =
⋃
n∈N Mn(k)g. The set

Z (L) =
⋃
n∈N

Zn(L) ⊂Mg, where Zn(L) = {X ∈ Mn(k)g : detL(X) = 0} ,

is the free locus of L. We review some terminology and facts about free loci from [KV17]

that will be frequently used throughout the paper.

(1) Z (L) = ∅ if and only if A1, . . . , Ag are jointly nilpotent by [KV17, Corollary 3.4].

(2) If A1, . . . , Ag generate Md(k) as a k-algebra, we say that L is an irreducible

pencil. If L1 and L2 are irreducible and Z (L1) ⊆ Z (L2), then Z (L1) = Z (L2)

(follows from [KV17, Theorem 3.6] because a surjective homomorphism from a

simple algebra is an isomorphism) and moreover L1 and L2 are similar, i.e., they

differ only by a basis change on Cd, by [KV17, Theorem 3.11].

(3) A free locus is irreducible if it is not a union of smaller free loci. By [KV17,

Proposition 3.12], a free locus is irreducible if and only if it is a free locus of some

irreducible pencil.

(4) By applying Burnside’s theorem [Bre14, Corollary 5.23] on the existence of invari-

ant subspaces of the k-algebra generated by A1, . . . , Ag it follows that every monic

pencil L is similar to a pencil of the form

(2.1)


L1 ? · · · ?

0
. . . . . .

...
...

. . . . . . ?

0 · · · 0 L`

 ,

where for every k, Lk = I or Lk is an irreducible pencil.

(5) Finally, we say that L 6= I is FL-minimal (free locus minimal) if it is of minimal

size among pencils L′ with Z (L′) = Z (L). An L of the form (2.1) is FL-minimal

if and only if the Lk are pairwise non-similar irreducible pencils. Furthermore, the

diagonal blocks of an FL-minimal pencil of the form (2.1) are unique up to a basis

change by [KV17, Theorem 3.11].

2.2. Simultaneous conjugation of matrices. Consider the action of GLn(k) on the

space Mn(k)g given by

(2.2) σ · (X1, . . . , Xg) = (σX1σ
−1, . . . , σXgσ

−1), σ ∈ GLn(k).

The coordinate ring of Mn(k)g is the polynomial ring k[ω] in gn2 commuting variables

ωjı for 1 ≤ j ≤ g and 1 ≤ ı,  ≤ n. For 1 ≤ j ≤ g let Ω
(n)
j = (ωjı)ı, be an n× n generic

matrix and write Ω(n) = (Ω
(n)
1 , . . . ,Ω

(n)
g ). Viewing p ∈ k[ω] as a polynomial in the entries

of Ω(n), the action (2.2) induces an action of GLn(k) on k[ω] defined by

(2.3) σ · p = p(σ−1 · Ω(n)), σ ∈ GLn(k), p ∈ k[ω].

The subring of k[ω] of invariants for this action is denoted k[ω]GLn(k). By [Pro76, Theorem

1.3] it is generated by tr(w(Ω(n))) for w ∈ <x> \{1}. Here tr denotes the usual trace,
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and <x> is the free monoid generated by the freely noncommuting variables x1, . . . , xg.

The elements of k[ω]GLn(k) are therefore called pure trace polynomials. For example,

2− tr(Ω
(n)
1 ) tr(Ω

(n)
2 ) + tr(Ω

(n)2
1 Ω

(n)3
2 Ω

(n)
1 Ω

(n)
2 ) is a pure trace polynomial.

In the next section we require the following two lemmas. While they are known to

specialists, we provide their proofs to keep the presentation self-contained.

Lemma 2.1. Every factor of a GLn(k)-invariant polynomial is GLn(k)-invariant.

Proof. Let q be an irreducible factor of p ∈ k[ω]GLn(k). Let σ ∈ GLn(k); since σ · p = p

and σ · q is irreducible, we see that σ · q is again an irreducible factor of p. Let S be

the set of all nonzero scalar multiples of irreducible factors of p. Then S with the Zariski

topology is homeomorphic to a disjoint union of copies of k∗ = k \ {0}. The algebraic

group GLn(k) is irreducible, and the map

f : GLn(k)→ S, σ 7→ σ · q

is regular and f(id) = q. Therefore the image of f lies in the irreducible component of S
containing q, so for every σ ∈ GLn(k) we have σ · q = λσq for some λσ ∈ k

∗. Next we

observe that the map

λ : GLn(k)→ k
∗, σ 7→ λσ

is a group homomorphism. Note that λ(k∗I) = {1} by the nature of our action; also

λ(SLn(k)) = {1} because SLn(k) is generated by multiplicative commutators. Since

GLn(k) is a semidirect product of SLn(k) and k
∗, we conclude that λ is constantly equal

to 1, so q is a GLn(k)-invariant. �

Lemma 2.2. Let X ∈ Mn(k)g and X ′ ∈ (kn
′×n)g. If p is GLn+n′(k)-invariant, then

p

(
0 X ′

0 X

)
= p

(
0 0

0 X

)
.

Proof. For every w ∈ <x> \{1} we clearly have

w

(
0 X ′

0 X

)
=

(
0 Yw
0 w(X)

)
for some Yw ∈ k

n′×n and hence

tr

(
w

(
0 X ′

0 X

))
= tr

(
0 Yw
0 w(X)

)
= tr(w(X)) = tr

(
w

(
0 0

0 X

))
.

The statement now follows because k[ω]GLn+n′ (k) is generated by tr(w(Ω(n+n′))). �

3. Determinant of an irreducible pencil

Let L be a monic pencil and let Ω(n) be a g-tuple of n×n generic matrices. In Subsection

3.2 we prove our first main result, Theorem 3.4. which states that for an irreducible pencil

L, the commutative polynomial detL(Ω(n)) is irreducible for large n. The consequences

for the locus Zn(L) are given in Subsection 3.3.
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3.1. Degree growth. Let GMn(g) ⊆ Mn(k[ω]) be the ring of n × n generic matrices,

i.e., the unital k-algebra generated by Ω
(n)
1 , . . . ,Ω

(n)
g [For84, Section 5]. Furthermore, let

UDn(g) ⊆ Mn(k(ω)) be the universal division algebra of degree n, which is the ring of

central quotients of GMn(g).

Lemma 3.1. Let L be a monic pencil of size d and

fn = detL
(
Ω(n)

)
∈ k[ω]

for n ∈ N. Then there exists dL ≤ d such that deg fn = dLn for all n ≥ d2 − 1.

Proof. The case d = 1 is clear, so assume d ≥ 2. Let Λ = I − L and define a non-monic

matrix pencil L̃ of size d2 as

L̃ =


0 −Λ 0 · · ·
... I

. . .
...

. . . −Λ 0

I −Λ

Λ · · · 0 I

 .

It is easy to check that

(3.1)


I Λ · · · Λd−1

. . . . . .
...

. . . Λ

I

 · L̃ =


Λd

Λd−1 I
...

. . .

Λ I

 .

Next we make a few simple observations. Firstly, if A is an a× a matrix over a (commu-

tative) field F , then the degree of the univariate polynomial det(I− tA) ∈ F [t] equals the

rank of Aa over F . Secondly, if B is a b× b matrix over a skew field, then the rank of Bb1

equals the rank of Bb for every b1 ≥ b; here the rank of a matrix over a skew field equals

the dimension of its range as a linear operator over the skew field. Finally, if C is a c× c
matrix over UDn(g) of rank r, then it is equivalent to I⊕r ⊕ 0⊕(c−r) over UDn(g), so C is

of rank rn as a cn× cn matrix over k(ω).

Let n ∈ N be arbitrary. Viewing Λ(Ω(n)) as a d× d matrix over UDn(g), the preceding

observations and (3.1) imply

deg fn = degt
(
I − tΛ

(
Ω(n)

))
= rkk(ω) Λ

(
Ω(n)

)dn
=

1

n
rkUDn(g) Λ

(
Ω(n)

)dn
=

1

n
rkUDn(g) Λ

(
Ω(n)

)d
= rkk(ω) Λ

(
Ω(n)

)d
= rkk(ω) L̃

(
Ω(n)

)
− (d− 1)dn.

By the proof of [DM17, Proposition 2.10], there is d′ ∈ N such that rkk(ω) L̃(Ω(n)) = d′n

for all n ≥ d2 − 1. Hence dL = d′ − (d− 1)d. �
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Example 3.2. Let

A1 =

1 0 0

1 1 0

0 0 0

 , A2 =

0 0 1

0 0 1

0 1 0

 .

One can check that A1 and A2 generate M3(k). If L = I −A1x1−A2x2, then using Schur

complements we see that

detL
(
Ω(n)

)
= det

(
I − Ω

(n)
1 −(Ω

(n)
2 )2

−Ω
(n)
1 I − Ω

(n)
1 − (Ω

(n)
2 )2

)
= det

(
(I − Ω

(n)
1 )2 − (Ω

(n)
2 )2

)
is of degree 2n for every n ∈ N. Therefore dL = 2 < 3.

3.2. Eventual irreducibility. Let Υ(n) be an n × n generic matrix whose entries are

independent of the entries in Ω
(n)
j (that is, we introduce n2 new variables to form Υ(n)).

The following lemma is a key technical tool for proving Theorem 3.4 below.

Lemma 3.3. Let L = I −
∑g

j=1Ajxj be of size d and n0 ≥ d2− 1. Fix 1 ≤ j′, j′′ ≤ g and

assume that

det
(
L
(
Ω(n)

)
− Aj′Aj′′ ⊗Υ(n)

)
is an irreducible polynomial (in (g + 1)n2 variables) for every n ≥ n0. Then detL

(
Ω(n)

)
is an irreducible polynomial (in gn2 variables) for every n ≥ 2n0.

Proof. For n ≥ n0 denote

fn = detL
(
Ω(n)

)
, f̂n = det

(
L
(
Ω(n)

)
− Aj′Aj′′ ⊗Υ(n)

)
.

Suppose that f2n = pq for some nonconstant polynomials p and q. By Lemma 2.1, p and q

are GL2n(k)-invariant. Let Ω
′(n)
j ,Ω

′′(n)
j be independent n× n generic matrices and denote

p̃ = p̃(Ω′(n),Ω′′(n)) := p(Ω′(n) ⊕ Ω′′(n)), q̃ = q̃(Ω′(n),Ω′′(n)) := q(Ω′(n) ⊕ Ω′′(n)).

Note that

(3.2) p̃(Ω(n), 0) = p̃(0,Ω(n)), q̃(Ω(n), 0) = q̃(0,Ω(n))

since p and q are GL2n(k)-invariant. Consider

(3.3) fn(Ω′(n))fn(Ω′′(n)) = f2n(Ω′(n) ⊕ Ω′′(n)) = p̃q̃.

By Lemma 3.1, the left-hand side of (3.3) has degree 2dLn. Since p and q have degree

strictly less than 2dLn, we conclude that p̃ and q̃ are nonconstant. Moreover, since the

left-hand side of (3.3) is a product of two polynomials in disjoint sets of variables, we

conclude that

p̃ = p̃1(Ω′(n))p̃2(Ω′′(n)), q̃ = q̃1(Ω′(n))q̃2(Ω′′(n))

for some polynomials p̃1, p̃2, q̃1, q̃2. If p̃1 were constant, then p̃2 would be constant by (3.2),

contradicting that p̃ is nonconstant. Hence we conclude that p̃1, p̃2, q̃1, q̃2 are nonconstant

and consequently

p

(
0 0

0 Ω(n)

)
= p̃(0,Ω(n)), q

(
0 0

0 Ω(n)

)
= q̃(0,Ω(n))

are nonconstant.
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Since

det
(
L
(
Ω(n)

)
− Aj′Aj′′ ⊗Υ(n)

)
= det

(
I Aj′′ ⊗ I

Aj′ ⊗Υ(n) L
(
Ω(n)

)) ,
we see that

f̂n = f2n(Z),

where

Zj =

(
0 0

0 Ω
(n)
j

)
for j /∈ {j′, j′′}, and

Zj′ =

(
0 0

Υ(n) Ω
(n)
j′

)
, Zj′′ =

(
0 I

0 Ω
(n)
j′′

)
if j′ 6= j′′ and

Zj′ =

(
0 I

Υ(n) Ω
(n)
j′

)
if j′ = j′′. Since Z|Υ(n)=0 is a tuple of block upper triangular matrices, Lemma 2.2 implies

p(Z)|Υ(n)=0 = p

(
0 0

0 Ω(n)

)
, q(Z)|Υ(n)=0 = q

(
0 0

0 Ω(n)

)
.

In particular, p(Z) and q(Z) are nonconstant and

f̂n = p(Z)q(Z),

a contradiction.

Hence we have proven the statement for every even n ≥ 2n0. If n ≥ 2n0 is odd, then

n − 1 ≥ 2n0. If fn = pq, then irreducibility of fn−1 implies that p(0 ⊕ Ω(n−1)) = 1 and

q(0⊕ Ω(n−1)) = fn−1 (or vice versa). Therefore q is of degree at least (n− 1)dL, so 1− p
is of degree at most dL, is a pure trace identity for Mn−1(k) but not for Mn(k). However,

this cannot happen by [Pro76, Theorem 4.5] since n− 1 ≥ 2n0 ≥ dL. �

We are now ready to prove the first of our main results, which was announced in [Vol+].

After being informed of Theorem 3.4, Kriel [Kri] independently proved it for hermitian

pencils.

Theorem 3.4. If L is an irreducible pencil, then detL
(
Ω(n)

)
is an irreducible polynomial

for large n.

Proof. Let L = I −
∑

j Ajxj; then A1, . . . , Ag ∈ Md(k) generate Md(k) as a k-algebra by

assumption. If

Ag =

g−1∑
j=1

αjAj,

then A1, . . . , Ag−1 generate Md(k) and

detL
(
Ω(n)

)
= det

(
I −

g−1∑
j=1

Aj ⊗
(

Ω
(n)
j + αjΩ

(n)
g

))
,

so irreducibility of det
(
I −

∑
j<g Aj ⊗ Ω

(n)
j

)
implies irreducibility of detL

(
Ω(n)

)
. There-

fore we can without loss of generality assume that A1, . . . , Ag are linearly independent.
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Let wı ∈ <x> for 1 ≤ ı,  ≤ d be such that

(3.4) {x1, . . . , xg} ⊆ {wı : 1 ≤ ı,  ≤ d}, span {wı(A) : 1 ≤ ı,  ≤ d} = Md(k).

For 1 ≤ ı,  ≤ d let Eı ∈ Md(k) be the standard matrix units. If Ω
(n)
ı for 1 ≤ ı,  ≤ d are

n× n generic matrices, then ∑
ı,

Eı ⊗ Ω(n)
ı

is a (dn)× (dn) generic matrix, so its determinant is irreducible for every n ∈ N [GW09,

Lemma B.2.10]. The polynomial

(3.5) det

(
I −

∑
ı,

wı(A)⊗ Ω(n)
ı

)
is a composition of the determinant of a generic matrix and an affine map on variables

(this map is invertible by (3.4)), and therefore irreducible. Starting with polynomial (3.5)

we N =
∑

ı, |wı| − g times recursively apply Lemma 3.3 to get rid of wı(A) for |wı| > 1

and conclude that detL
(
Ω(n)

)
is an irreducible polynomial for every n ≥ (d2− 1)2N . �

Remark 3.5. From the proof of Theorem 3.4 one can derive a deterministic bound on n

for checking the irreducibility of detL
(
Ω(n)

)
that is exponential in the size of L.

3.3. Irreducible free loci. Recall that a free locus is irreducible if it is not a union of

smaller free loci. If Z is a free locus, than Zn is either an empty set or a hypersurface

for every n ∈ N.

Corollary 3.6. If Z is an irreducible free locus, then Zn is an irreducible hypersurface

for large n.

Proof. Every irreducible free locus is a free locus of an irreducible pencil, so Theorem 3.4

applies. �

Example 3.7. Let A1, A2 ∈ M3(k) be as in Example 3.2. Note that

det(I − ω1A1 − ω2A2) = (1− ω1 + ω2)(1− ω1 − ω2).

Hence L = I−A1x1−A2x2 is an irreducible pencil and Z1(L) is a union of two lines. On

the other hand one can check that Z2(L) is irreducible.

Together with the block form (2.1) of a monic pencil L, Corollary 3.6 shows that

components of Zn(L) for large n arise from the global decomposition of Z (L).

Corollary 3.8. Let L be a monic pencil and let L1, . . . , Lk be pairwise non-similar irre-

ducible pencils appearing in (2.1). For large n,

Zn(L) = Zn(L1) ∪ · · · ∪Zn(Lk)

is the decomposition of Zn(L) into distinct irreducible hypersurfaces.

Remark 3.9. Let L be an FL-minimal pencil. Let L1, . . . , L` be pairwise non-similar

irreducible pencils appearing in the decomposition of L as in (2.1). Since Z (Li) 6= Z (Li′)
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for i 6= i′, Theorem 3.4 implies that detLi(Ω
(n)) are distinct irreducible polynomials for

large n. Therefore

detL(Ω(n)) =
∏̀
i=1

detLi(Ω
(n))

is square-free for large n. Hence detL(Ω(n)) is a minimum degree defining polynomial for

Zn(L) and it generates the vanishing (radical) ideal of Zn(L).

4. Irreducibility of matrices over a free algebra

In this section we extend Theorem 3.4 to matrices over a free algebra. Let k<x> be

the free k-algebra generated by x = (x1, . . . , xg). Its elements are noncommutative

polynomials. For f ∈ Md(k<x>) let

Z (f) =
⋃
n∈N

Zn(f) ⊆Mg, where Zn(f) = {X ∈ Mn(k)g : det f(X) = 0} ,

be the free locus of f . In Theorem 4.3 below we prove that if f does not factor in

Md(k<x>), then Zn(f) is an irreducible hypersurface for large n.

A fundamental finding of Cohn is that k<x> is a free ideal ring, abbreviated fir, and

that even rings with the weaker “semifir” property exhibit excellent behavior when it

comes to factorizations. We list few definitions and facts about factorization of matrices

over semifirs extracted from [Coh06, Chapter 3].

(1) If f ∈ GLd(k<x>), then det f(0) 6= 0; moreover, det f(Ωn) is a polynomial with-

out zeros and hence constant, so det f(X) = det f(0)n for every X ∈ Mn(k)g. In

particular, irreducible monic pencils are non-invertible by [KV17, Corollary 3.4].

(2) A matrix f ∈ Md(k<x>) is regular if f is not a zero divisor in Md(k<x>). In

particular, if f(0) = I, then f is regular. A regular non-invertible matrix is an

atom [Coh06, Section 3.2] if it is not a product of two non-invertible matrices in

Md(k<x>). In the special case d = 1, a nonconstant noncommutative polynomial

is an atom if it is not a product of two nonconstant noncommutative polynomials.

We use this terminology to avoid confusion with the notion of irreducibility for

monic pencils.

(3) We say that f1 ∈ Md1(k<x>) and f2 ∈ Md2(k<x>) are stably associated if

there exist e1, e2 ∈ N with d1 + e1 = d2 + e2 and P,Q ∈ GLd1+e1(k<x>) such that

f1 ⊕ Ie1 = P (f2 ⊕ Ie2)Q.

Stable associativity is clearly an equivalence relation for regular (square) matrices

over k<x>. By [Coh06, Corollary 0.5.5], f1 and f2 are stably associated if and

only if

k<x>d1/f1 · k<x>d1 ∼= k<x>d2/f2 · k<x>d2

as right k<x>-modules.

(4) Let f ∈ Md(k<x>) be regular. By the definition of torsion modules [Coh06,

Section 3.2] and their relations to factorization [Coh06, Propositions 0.5.2 and

3.2.1], it follows that f is an atom if and only if k<x>d /f · k<x>d has no non-

trivial torsion submodules. In particular, if regular matrices f1 and f2 are stably

associated, then f1 is an atom if and only if f2 is an atom.
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Remark 4.1. If h1, h2 ∈ k<x> are homogeneous and stably associated, then there exists

λ ∈ k
∗ = k \ {0} such that h2 = λh1. We now prove this. Let d ∈ N be such that

(4.1) P (h1 ⊕ I) = (h2 ⊕ I)Q

for some P,Q ∈ GLd(k<x>). Then it is easy to see that h1 and h2 are of the same degree

δ. Let Pi and Qi be homogeneous parts of P and Q, respectively, of degree i. By looking

at the constant part of (4.1) we obtain P0(0 ⊕ I) = (0 ⊕ I)Q0, so the first row of P0

equals (α 0 . . . 0) for some α ∈ k and the first column of Q0 equals (β 0 . . . 0)t for some

β ∈ k. Moreover, α, β ∈ k
∗ since P0, Q0 ∈ GLd(k). Next, the homogeneous part of (4.1)

of degree δ equals

P0(h1 ⊕ 0) + Pδ(0⊕ I) = (h2 ⊕ 0)Q0 + (0⊕ I)Qδ.

Note that the first column of Pδ(0 ⊕ I) and the first row of (0 ⊕ I)Qδ are zero. Since

the (1, 1)-entries of P0(h1 ⊕ 0) and (h2 ⊕ 0)Q0 are αh1 and βh2, respectively, we can take

λ = αβ−1.

Lemma 4.2. Let f ∈ Md(k<x>) and f(0) = I. If f is an atom, then f is stably

associated to an irreducible monic pencil L.

Proof. By linearization, also known as Higman’s trick [Coh06, Section 8.5], we have

(4.2)

(
1 a1

0 1

)(
a0 + a1a2 0

0 1

)(
1 0

−a2 1

)
=

(
a0 a1

−a2 1

)
for all square matrices a0, a1, a2 of equal sizes. Using (4.2) we can step-by-step “decouple”

products appearing in f to obtain

(4.3) P (f ⊕ I)Q = L

for some monic linear pencil L of size d′ and P,Q ∈ GLd′(k<x>). We remark that P

(resp. Q) is upper (resp. lower) unitriangular. Hence f and L are stably associated, so L

is an atom in Md′(k<x>). As in (2.1), there exists U ∈ GLd′(k) such that

(4.4) ULU−1 =


L1 ? · · · ?

. . . . . .
...

. . . ?

L`

 ,

where each Lk is either I or an irreducible monic pencil. Since f is not invertible, at least

one of Lk is irreducible (i.e., Lk 6= I); let `0 be the largest such k. By multiplying ULU−1

on the left-hand side with an appropriate invertible matrix (note that the block, which is

below and to the right of L`0 , is invertible) we see that L (and thus f) is stably associated

to

L′ =

L1 · · · ?
. . .

...

L`0

 .

If Lk 6= I for some k < `0, then

L′ =

I . . .

L`0


L1 · · · ?

. . .
...

I
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would be a product of non-invertible matrices, contradicting that L′ is an atom. Therefore

L′ =

I · · · ?
. . .

...

L`0

 =

I . . .

L`0


I · · · ?

. . .
...

I

 ,

so L′ (and thus f) is stably associated to L`0 . �

Let f ∈ Md(k<x>) be regular. Then f admits a factorization f = f1 · · · f` into atoms

fi ∈ Md(k<x>) that are unique up to stable associativity by [Coh06, Proposition 3.2.9],

and thus

Z (f) = Z (f1) ∪ · · · ∪Z (f`).

If we change the order of atomic factors in a factorization of f , we possibly obtain a differ-

ent noncommutative polynomial with the same free locus as f . Also, if an atomic factor

is replaced by a (power of a) stably associated element in Md(k<x>), the polynomial can

change but its free locus still equals Z (f).

We are now ready for our main result. Recall that Ω(n) is a g-tuple of n × n generic

matrices.

Theorem 4.3 (Polynomial Singularitätstellensatz). For i ∈ {1, 2} let fi ∈ Mdi(k<x>)

satisfy fi(0) = I.

(1) If f1 is an atom, then det f1(Ω(n)) is an irreducible polynomial for large n.

(2) If f1 and f2 are atoms and Z (f1) = Z (f2), then f1 and f2 are stably associated.

(3) Z (f1) ⊆ Z (f2) if and only if each atomic factor of f1 is up to stable associativity

an atomic factor of f2.

Proof. (1) This is a direct consequence of Lemma 4.2 and Theorem 3.4.

(2) By Lemma 4.2, fi is stably associated to an irreducible pencil Li for i = 1, 2. Since

Z (L1) = Z (L2), L1 and L2 are similar, so f1 and f2 are stably associated.

(3) Follows by (2) and a factorization of fi into atoms. �

Remark 4.4. The conclusions of Theorem 4.3 hold more generally for f ∈ Md(k<x>)

satisfying f(kg)∩GLd(k) 6= ∅, which readily follows from translating x by a scalar point

and multiplying f with an invertible matrix.

For scalar noncommutative polynomials and linear matrix pencils we also give an ef-

fective converse to Theorem 4.3(1).

Proposition 4.5. For δ > 1 and d > 1 set

n1 =

⌈
δ

2

⌉
, n2 =

 1 d = 2,⌈
(d− 1)

√
2(d−1)2

d−2
+ 1

4
+ d−1

2
− 2

⌉
d ≥ 3.

(1) Let f ∈ k<x> be of degree δ and f(0) = 1. If det f(Ω(n)) is irreducible for some

n ≥ n1, then f is an atom.

(2) Let L be a monic pencil of size d. If detL(Ω(n)) is irreducible for some n ≥ n2,

then L is an atom.
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Proof. (1) If f = f1f2 for non-constant f1, f2 ∈ k<x>, then deg fi ≤ δ − 1, so it suffices

to show that det fi(Ω
(n)) is not constant for i = 1, 2. Suppose det fi(Ω

(n)) = 1. By the

Cayley-Hamilton theorem we have

(4.5) f1(Ω(n)) adj f1(Ω(n)) = 1,

where adjM denotes the adjugate of a square matrix M [MN88, Section 1.9]. Note that

f1(Ω(n)) and adj f1(Ω(n)) both belong to the trace ring of n×n matrices, a unital k-algebra

R generated by Ω
(n)
j and tr(w(Ω(n))) for w ∈ <x>. By [For84, Section 5], R is a graded

domain, where the grading is imposed by the total degree in Mn(k[ω]). Therefore (4.5)

implies deg f1(Ω(n)) = 0 and so f1(Ω(n)) = 1. Hence 1 − f1 is a polynomial identity for

n× n matrices of degree at most δ − 1, which contradicts 2n > δ − 1.

(2) If L is not an atom, then detL(Ω(n)) = detL1(Ω(n)) detL2(Ω(n)) for monic pencils

Li of size at most d− 1 whose coefficients are not jointly nilpotent. Then detLi(Ω
(n)) is

not constant for i = 1, 2 by [KV17, Proposition 3.3]. �

5. Pencils with polynomial free locus and matrix perturbations

The purpose of this section is twofold. In Subsection 5.3 we characterize monic pencils

whose free locus is the free locus of a noncommutative polynomial using state space

realization theory. This leads to an efficient algorithm for checking the equality of free loci

presented in Subsection 6.1. Using properties of minimal factorizations of realizations we

then obtain an intriguing statement about invariant subspaces of rank-one perturbations

of jointly nilpotent matrices (Theorem 5.1).

5.1. Perturbations and invariant subspaces. While perturbations of matrices is a

classical theory [Kat95], our path takes a different direction than the classical ones. Given

a g-tuple A = (A1, . . . , Ag) of matrices in Md(k) we shall consider perturbations called

right rank-one perturbations, namely, ones of the form

Aj + bjc
t j = 1, . . . , g

for bj, c ∈ k
d. The perturbation is called non-degenerate if

(i) {b1, . . . , bg} is not contained in a non-trivial invariant subspace for A,

(ii) c does not lie in a non-trivial invariant subspace for At.

One consequence of Theorem 4.3 relates invariant subspaces for a matrix tuple to

invariant subspaces for its right rank-one perturbations.

Theorem 5.1. Let A ∈ Md(k)g be a tuple of jointly nilpotent matrices. If S is an

invariant subspace of a non-degenerate right rank-one perturbation of A, then there is a

complementary space S×, kd = S u S×, which is invariant under A.

To prove this we shall use state space systems realizations, a technique closely related

to the “linearizations” introduced in the proof of Lemma 4.2. The proof of Theorem 5.1

concludes in Subsection 5.4.1.
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5.2. State space realizations. Next we introduce some essential background. Let

k (<x )> be the free skew field [Coh06] and k (<x )>0 ⊂ k (<x )> the subring of noncommuta-

tive rational functions that are regular at the origin [K-VV09, Vol18]. Each r ∈ k (<x )>0

admits a noncommutative Fornasini–Marchesini state space realization (shortly

an FM-realization)

(5.1) r = δ + ctL−1b,

where δ ∈ k, c ∈ k
d, b =

∑
j bjxj for bj ∈ k

d and L = I −
∑

j Ajxj for Aj ∈ Md(k); see

e.g. [BGM05, Section 2.1]. Here d ∈ N is the size of realization (5.1).

For future use we recall some well-known facts about minimal FM-realizations.

(1) We say that the realization (5.1) is controllable if

span {w(A)bj : w ∈ <x>, 1 ≤ j ≤ g} = k
d

and observable if

span
{
w(A)tc : w ∈ <x>

}
= k

d.

By [BGM05, Theorem 9.1], the realization (5.1) is minimal if and only if it is

observable and controllable.

(2) A minimal realization of r is unique up to similarity [BGM05, Theorem 8.2].

(3) The domain of r is precisely the complement of Z (L) if (5.1) is minimal by

[K-VV09, Theorem 3.1] and [Vol17, Theorem 3.10].

(4) Lastly, if r(0) = δ 6= 0 (equivalently, r−1 ∈ k (<x )>0), then by [BGM05, Theorem

4.3] we have an FM-realization

(5.2) r
−1 = δ−1 + (−δ−1ct)

(
L×
)−1

(δ−1b),

of r−1, where L× = I −
∑

j A
×
j xj and

(5.3) A×j = Aj − δ−1bjc
t.

Because the realizations (5.1) and (5.2) are of the same size, we see that (5.1) is

minimal for r if and only if (5.2) is minimal for r−1.

Remark 5.2. The linearization trick (4.3) when inverted gives a type of a realization: if

et = (1, 0, . . . , 0), then

f−1 = et
(
f−1 ⊕ I

)
e = etQ−1L−1P−1e = etL−1e

using that P−1 (resp. Q−1) is upper (resp. lower) unitriangular. Recall that L is a monic

linear pencil. This is often called a descriptor realization of f−1.

To convert to an FM-realization we use the assumption f(0) = 1 which makes δ = 1.

Then

etL−1e− 1 = etL−1(I − L)e,

so f−1 has an FM-realization with L = I −
∑

j Ajxj, c = e, bj = Aje and δ = 1. Most

importantly, the representing pencils for the FM and descriptor realizations are the same.



16 J. W. HELTON, I. KLEP, AND J. VOLČIČ

5.3. Flip-poly pencils. Next we define the pencils to which we shall associate polyno-

mial free loci. A monic pencil L = I −
∑

j Ajxj is flip-poly if Aj = Nj + Ej, where Nj

are jointly nilpotent matrices and codim(
⋂
j kerEj) ≤ 1.

Lemma 5.3. Let f ∈ k<x> and f(0) = 1. If L is a monic pencil appearing in a minimal

realization of f−1, then L is flip-poly, the intersection of kernels of its coefficients is trivial

and det f(Ω(n)) = detL(Ω(n)) for all n ∈ N.

Proof. Let f = 1 − ctL−1
0 b with L0 = I −

∑
j Njxj be a minimal realization. Since

dom f = Mg, L0 is invertible at every matrix point, so Z (L0) = ∅ and hence Nj are

jointly nilpotent matrices by [KV17, Corollary 3.4]. Since minimal realizations are unique

up to similarity, we can assume that L = I −
∑

j Ajxj where Aj = Nj + bjc
t. Then L is

flip-poly and f−1 = 1 + ctL−1b is a minimal realization by (5.2).

Since(
I 0

ctL−1
0 1

)(
L0 0

0 f

)(
I L−1

0 b

0 1

)
=

(
L0 b

ct 1

)
=

(
I b

0 1

)(
L 0

0 1

)(
I 0

ct 1

)
and Nj are jointly nilpotent, we have

det f(Ωn) = detL0(Ω(n)) det f(Ω(n)) = detL(Ω(n))

for all n ∈ N.

Lastly suppose there exists a nonzero v ∈
⋂
j kerAj. Since the realization 1 + ctL−1b is

observable, it follows that ctv 6= 0. Because Njv + (ctv)bj = Ajv = 0 holds for all j, we

conclude that

span {w(N)bj : w ∈ <x>, 1 ≤ j ≤ g} ⊆
∑
j

ranNj,

which contradicts controllability of 1− ctL−1
0 b. Hence

⋂
j kerAj = {0}. �

Proposition 5.4. For every flip-poly pencil L there exists a flip-poly pencil L0 such that

Z (L) = Z (L0) and L0 appears in a minimal realization of f−1 for some f ∈ k<x> with

f(0) = 1.

Proof. By assumption we have L = I −
∑

j(Nj − bjct)xj for some bj, c ∈ k
d and jointly

nilpotent Nj ∈ Md(k). Let

(5.4) f = 1 + ct

(
I −

∑
j

Njxj

)−1(∑
j

bjxj

)
.

Since Nj are jointly nilpotent, f is a noncommutative polynomial. By (5.2) we have

(5.5) f−1 = 1− ctL−1

(∑
j

bjxj

)
.

While the realization (5.5) is not necessarily minimal, it suffices to prove that its mini-

mization results in a realization with a flip-poly pencil L0 satisfying Z (L0) = Z (L).

Recall that the minimization algorithm comprises of two steps. A starting realiza-

tion ct(I −
∑

j AjxJ)−1b is first restricted to the invariant subspace span{w(A)bj}w,j.
The resulting realization c′t(I −

∑
j A
′
jxJ)−1b′ is then restricted to the invariant subspace

span{w(A′)tc′}w, which yields a minimal realization.
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Denote Aj = Nj − bjc
t and assume S1 = span{w(A)bj}w,j 6= k

d. Let S2 ⊂ k
d be a

complementary space of S1, i.e., S1uS2 = k
d. For i = 1, 2 let ιi : Si → k

d and πi : kd → Si
be the corresponding embeddings and projections, respectively. Then π1 ◦ L ◦ ι1 is the

pencil produced after the first step of minimization and

Z (L) = Z (π1 ◦ L ◦ ι1) ∪Z (π2 ◦ L ◦ ι2).

Since Ajv = Njv − (ctv)bj for every v ∈ k
d and bj ∈ S1, we see that S1 is also invariant

under Nj. Therefore π1◦L◦ι1 is a flip-poly pencil. On the other hand we have Ajv−Njv ∈
S1 for every v ∈ k

d, so π2 ◦ Aj ◦ ι2 are jointly nilpotent and hence Z (π2 ◦ L ◦ ι2) = ∅.
Analogous reasoning holds for the second step of minimization, so the pencil appearing

in a minimal realization of f−1 is flip-poly and its free locus equals Z (L). �

Corollary 5.5. The set of free loci of noncommutative polynomials coincides with the set

of free loci of flip-poly pencils.

Proof. Direct consequence of Lemma 5.3 and Proposition 5.4. �

Proposition 5.6. Let L be an irreducible pencil. If L is not flip-poly, then Z (L) 6= Z (f)

for all f ∈ k<x>.

Proof. Suppose Z (L) = Z (f) for some f ∈ k<x>. Since L is irreducible, we can assume

that f(0) = 1 and f is irreducible by Theorems 3.4 and 4.3. Let L′ be a monic pencil

appearing in the realization of f−1. By Lemma 5.3 we have

L(Ω(n)) = det f(Ω(n)) = detL′(Ω(n))

for all n ∈ N. Since the intersection of kernels of coefficients of L′ is trivial, we deduce

that L′ is irreducible by writing it in the form (2.1). Therefore L and L′ are similar and

hence L is flip-poly. �

Example 5.7. Assume A ∈ Md(k) has an eigenvalue λ 6= 0 with geometric multiplicity

at least 2 and let b, c ∈ k
d be arbitrary. Then an easy calculation shows that λ is also an

eigenvalue of A + bct, so A + bct is not nilpotent. Therefore a monic pencil having A as

one of its coefficients is not flip-poly.

In particular, if d ≥ 3, then there exist A1, A2 ∈ Md(k) such that A1 has a nonzero

eigenvalue with geometric multiplicity at least 2 and A1, A2 generate Md(k). For example,

one can choose A2 to be the permutation matrix corresponding to the cycle (1 2 . . . d)

and A1 = diag(1, . . . , 1,−1). Then L = I − A1x1 − A2x2 is an irreducible pencil that is

not flip-poly, so Z (L) 6= Z (f) for all f ∈ k<x> by Proposition 5.6.

Example 5.8. Let L = I −A1x1 −A2x2 for A,A2 ∈ M2(k); we claim Z (L) = Z (f) for

some f ∈ k<x> of degree at most 2.

Looking at the zeros of the polynomial det(ω1A1 + ω2A2) ∈ k[ω1, ω2] we see that there

exists a nonzero u ∈ k
2 such that A1u and A2u are linearly dependent. If A1u,A2u ∈ k ·u,

then A1 and A2 have a common eigenvector, so clearly Z (L) = Z (`1`2) for some affine

linear `i ∈ k<x>. Otherwise we have A1u,A2u ∈ k · v for some v ∈ k
2 \ k · u. With

respect to the basis {u, v} of k2 we have

Aj =

(
0 αj1
αj2 αj3

)
=

(
0 0

αj2 0

)
+

(
αj1
αj3

)(
0 1

)
,

so L is flip-poly and hence L = Z (f) for some f ∈ k<x> of degree at most 2 by (5.2).
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5.4. Minimal factorizations. A factorization r = r1r2 for r, r1, r2 ∈ k (<x )>0 is min-

imal if the size of the minimal realization of r equals the sum of the sizes of minimal

realizations of r1 and r2. That is, if ri = 1 + ct
iL
−1
i bi is a minimal realization for i = 1, 2,

then r = r1r2 is a minimal factorization if and only if

(5.6) r = 1 +
(
ct

1 ct
2

)(L1 b1c
t
2

0 L2

)−1(
b1

b2

)
is a minimal realization by [BGM05, Theorem 4.1].

Let r = δ+ ctL−1b be a minimal realization of size d and δ 6= 0. In [K-VV09, Section 4]

it is explained that by the multivariable noncommutative version of [BGKR08, Theorem

9.3], minimal factorizations of r are in one-to-one correspondence with pairs (S,S×) of

subspaces in k
d such that

(a) S is invariant under A1, . . . , Ag,

(b) S× is invariant under A×1 , . . . , A
×
g ,

(c) S u S× = k
d.

Proposition 5.9. Let f ∈ k<x> and f(0) 6= 0. Minimal factorizations of f are precisely

polynomial factorizations of f .

Proof. Let f = r
′
r
′′ be a minimal factorization. Then dom f = dom r

′ ∩ dom r
′′ by

[K-VV09, Theorem 4.2]. Consequently dom f = Mg implies dom r
′ = dom r

′′ = Mg, so

r
′, r′′ ∈ k<x> by [KV17, Theorem 4.2].

Let f = f ′f ′′ be a polynomial factorization; without loss of generality let f(0) = f ′(0) =

f ′′(0) = 1. As already mentioned in the proof of Lemma 5.3, the coefficients of the pencil

appearing in a minimal realization of a noncommutative polynomial are jointly nilpotent.

By (5.6) it thus suffices to prove the following: if

(5.7) 1 + c′t

(
I −

∑
j

N ′jxj

)−1(∑
j

b′jxj

)
, 1 + c′′t

(
I −

∑
j

N ′′j xj

)−1(∑
j

b′′jxj

)
are minimal realizations of size d′ and d′′, respectively, where N ′j are jointly nilpotent and

N ′′j are jointly nilpotent, then the “product realization”

(5.8) 1 + ct

(
I −

∑
j

Njxj

)−1(∑
j

bjxj

)
,

where

(5.9) c =

(
c′

c′′

)
, Nj =

(
N ′j b′jc

′′t

0 N ′′j

)
, bj =

(
b′j
b′′j

)
,

is minimal.

We now prove that the product system (5.8) is observable. Let w0 ∈ <x> and 1 ≤ j0 ≤
g be such that α = c′tw0(N ′)b′j0 6= 0 and c′tw(N ′)b′j = 0 for all |w| > |w0| and 1 ≤ j ≤ g.

Since span{w(N ′)b′j}w,j = k
d′ , it follows that c′tw(N ′) = 0 for all |w| > |w0|. Denote

w1 = w0xj0 . We claim that

(5.10) span

αw(N ′′)tc′′ +

|w1|−1∑
i=0

βi(w
i:
1w)(N ′′)tc′′ : w ∈ <x>

 = k
d′′



FREE LOCI AND FACTORIZATION OF NC POLYNOMIALS 19

for arbitrary choice of β1, . . . , β|w1| ∈ k. Here wi:1 is obtained by removing the first i letters

in w. Indeed, by induction on k = 1, . . . , d′′ we show that the sets of rowsαc′′tw(N ′′) +

|w1|−1∑
i=0

βic
′′t(wi:1w)(N ′′) : |w| ≥ d′′ − k

 ,
{
c′′tw(N ′′) : |w| ≥ d′′ − k

}
span the same subspace and then (5.10) follows by span{w(N ′′)tc′′ : w ∈ <x>} = k

d′′ ,

which holds by the minimality assumption.

A routine computation next shows that for w = xj1 · · ·xj` we have

(5.11) w(N) =

(
w(N ′)

∑
w=uxjv

u(N ′)b′jc
′′tv(N ′′)

0 w(N ′′)

)
.

Hence

(5.12) ctw(N) =
(
c′tw(N ′) ?

)
holds for all w ∈ <x>. On the other hand, (5.11) also implies

(5.13) ct(w1w)(N) =
(

0 αc′′tw(N ′′) +
∑|w1|−1

i=0 βic
′′t(wi:1w)(N ′′)

)
for all w ∈ <x> \{1}, where βi ∈ k depend on w. Finally, since the first realization in

(5.7) is observable and (5.10) holds, (5.12) and (5.13) imply

span
{
w(N)tc : w ∈ <x>

}
= k

d′+d′′ ,

hence (5.7) is an observable realization. By an analogous argument we check controlla-

bility, so (5.7) is a minimal FM-realization. �

5.4.1. Proof of Theorem 5.1. Let Bj = Aj + bjc
t for j = 1, . . . , g and

L0 = I −
∑
j

Ajxj, L = I −
∑
j

Bjxj, b =
∑
j

bjxj.

In the language of FM-realizations, Aj being nilpotent and (Bj)j being a non-degenerate

perturbation of (Aj)j means that 1 − ctL−1
0 b is a minimal realization of a nonconstant

f ∈ k<x>. By (5.2), 1 + ctL−1b is a minimal realization of f−1.

If S is a non-trivial invariant subspace for the Bj, then L is similar to(
L′ ?

0 L′′

)
for monic pencils L′ and L′′. We claim that the coefficients of L′ and L′′ are not jointly

nilpotent. For this to hold we need to show that Bj|S are not jointly nilpotent and that

the induced operators B̃j : kd/S → k
d/S are not jointly nilpotent.

If Bj|S are jointly nilpotent, there exists v ∈ ∩j kerBj \ {0}. Since {w(B)tc}w = k
d,

we have ctv 6= 0. Then Ajv = Bjv − (ctv)bj implies bj ∈
∑

j ranAj, so

{w(A)bj}w,j ⊆
∑
j

ranAj 6= k
d

because Aj are jointly nilpotent, which contradicts minimality.
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If B̃j are jointly nilpotent, then
∑

j ran B̃j 6= k
d/S and hence

∑
j ranBj 6= k

d. Since Aj
are jointly nilpotent, there exists v ∈

⋂
j kerAj \{0} and ctv 6= 0 because {w(A)tc}w = k

d.

Therefore Bjv = (ctv)bj implies

{w(B)bj}w,j ⊆
∑
j

ranBj 6= k
d,

which contradicts minimality.

By Lemma 5.3 we have

det f(Ωn) = detL(Ω(n)) = detL′(Ω(n)) detL′′(Ω(n))

for all n ∈ N. This factorization is non-trivial for large n because the coefficients of L′

and L′′ are not jointly nilpotent. Therefore f is not an atom in k<x> by Theorem 4.3(1).

For a moment assume that S is an irreducible invariant subspace for Bj (that is, S does

not contain a smaller nonzero invariant subspace). If f = f` · · · f1 is a factorization of f

into atoms, then it is a minimal factorization by Proposition 5.9, so f−1 = f−1
1 · · · f−1

` is

also a minimal factorization. If f−1
i = 1 + ciL

−1
i bi is a minimal realization, then

(5.14) 1 +
(
c1 c2 · · · c`

)

L1 b1c

t
2 · · · b1c

t
`

L2 · · · b2c
t
`

. . .
...

L`


−1

b1

b2

...

b`


is a minimal realization of f−1 by (5.6). The block structure of (5.14) gives us a chain of

invariant subspaces for Bj

{0} = V0 ( V1 ( · · · ( V` = k
d

such that Vi+1/Vi are irreducible (for the action of linear maps on quotient spaces induced

by Bj). We claim that after a basis change preserving the structure of (5.14) we can as-

sume that S = V1. Indeed, if Vi−1 ( S ⊆ Vi, then Vi = Vi−1 u S and therefore bi′c
t
i = 0

for all i′ < i; applying the basis change corresponding to switching Vi−1 and S thus pre-

serves the structure of (5.14) and results in replacing V1 by S. Hence S determines a

minimal factorization f−1 = f−1
1 h−1, where f1 is an atom and h is a nonconstant polyno-

mial (since f is not an atom). Due to the correspondence between minimal factorizations

and pairs of invariant subspaces it follows that there exists an invariant subspace S× for

B×j = Bj − bjct = Aj that is complementary to S.

Now let S be an arbitrary non-trivial invariant subspace for Bj. Then we can find a

chain of invariant subspaces

0 = S0 ( S1 ( · · · ( Sm = S

such that Si+1/Si are irreducible. Inductively applying the reasoning from the previous

paragraph we see that the sequence of (quotient) spaces S1,S2/S1, . . . ,Sm/Sm−1 yields a

minimal factorization f−1 = f−1
1 · · · f−1

m h−1. Hence S determines a minimal factorization

f−1 = (fm · · · f1)−1h−1 and we obtain S× as in the previous paragraph. �

Remark 5.10. Observe that Theorem 4.3(1) (at least for scalar noncommutative poly-

nomials) can be deduced from Theorem 5.1 without using Cohn’s semifir factorization

theory. Indeed, let f ∈ k<x> satisfy f(0) = 1 and let f−1 = 1 + ctL−1b be a minimal

FM-realization. By Lemma 5.3 we have det f(Ω(n)) = detL(Ω(n)), so if det f(Ω(n)) is not
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irreducible for large n, the monic pencil L is not irreducible by Theorem 4.3. Therefore

the coefficients of L have a non-trivial invariant subspace S, so the assumptions of Theo-

rem 5.1 are met and from it we obtain an invariant subspace S× which yields a minimal

factorization of f . By Proposition 5.9, f is not an atom, so Theorem 4.3 holds.

5.5. A factorization result with missing variables. Let y = (y1, . . . , yh) be another

tuple of freely noncommuting variables. For every n ∈ N and 1 ≤ j ≤ h let Υ
(n)
j = (υjı)ı

be an n× n generic matrix. For every f ∈ k<x,y> we have det f(Ω(n),Υ(n)) ∈ k[ω,υ].

Proposition 5.11. Let f ∈ k<x,y> and f(0) = 1. If det f(Ω(n),Υ(n)) is independent

of Υ(n) for every n ∈ N, then f ∈ k<x>.

Proof. Without loss of generality let f be an atom. Let f−1 = 1 + ctL−1b be a minimal

FM-realization, where

b =

g∑
i=1

bixi +
h∑
j=1

b̃jyj, L = I −
g∑
i=1

Aixi −
h∑
j=1

Ãjyj

for c, bi, b̃j ∈ k
d and Ai, Ãj ∈ Md(k). Since f = 1− ct(L+ bct)−1b, it suffices to show that

Ãj = 0 and b̃j = 0 for j = 1, . . . , h.

By the assumption we have

detL(Ω(n),Υ(n)) = det f(Ω(n),Υ(n)) = det f(Ω(n), 0) = detL(Ω(n), 0)

for all n ∈ N. By [KV17, Proposition 3.3], Ã1, . . . , Ãh generate a nilpotent ideal in the

k-algebra generated by A1, . . . , Ag, Ã1, . . . , Ãh. Since f is an atom, L is irreducible by

Lemma 5.3 and Proposition 4.5. Then A1, . . . , Ag, Ã1, . . . , Ãh generate Md(k), which is a

simple algebra and therefore Ãj = 0 for all j.

To prove b̃j = 0 for a fixed 1 ≤ j ≤ h it therefore suffices to show that ctw(A)b̃j = 0

for all w ∈ <x>, which we prove by induction on |w|. Note that

A1 − b1c
t, . . . , Ag − bgct, b̃1c

t, . . . , b̃hc
t

are jointly nilpotent because 1−ct(L+bct)−1b is a minimal realization of a noncommutative

polynomial. Firstly, ctb̃j = tr(b̃jc
t) = 0 because b̃jc

t is nilpotent. Now suppose that

ctw(A)b̃j = 0 holds for all w with |w| ≤ `; then also ctw(A − bct)b̃j = 0 for all w with

|w| ≤ `. Hence for every i = 1, . . . , g and w ∈ ` we have

ct(xiw)(A)b̃j = ct(Ai − bict)w(A)b̃j

= ct(Ai − bict)w(A− bct)b̃j

= tr
(

(xiw)(A− bct)b̃jc
t
)

= 0

because (xiw)(A− bct)b̃jc
t is nilpotent. �

Corollary 5.12. Let f ∈ k<x,y> and f(0) 6= 0. If for large n, the polynomial

det f(Ω(n),Υ(n)) has a factor independent of Υ(n), then f has a factor in k<x>.

Proof. Immediate consequence of Theorem 4.3 and Proposition 5.11. �
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6. Algorithms

In this section we present algorithms based off the results presented above. In Subsec-

tion 6.1 we present a simple algorithm for comparing free loci, and in Subsection 6.2 we

give an algorithm for factorization of noncommutative polynomials.

6.1. Comparing polynomial free loci. While Theorem 4.3 characterizes the equality

of free loci, stable associativity seems evasive to check directly. Thus we now describe a

procedure that is more practical for checking equality Z (f1) = Z (f2) for noncommutative

polynomials f1 and f2.

Let f1, f2 ∈ k<x> be such that fi(0) 6= 0. Then we can test for Z (f1) = Z (f2)

as follows. First we compute minimal FM-realizations for f−1
1 and f−1

2 , which can be

effectively done using algorithms based on linear algebra [BGM05]. Let L1 and L2 be

the monic pencils appearing in these realizations. Since Z (f1) = Z (f2) is equivalent to

Z (L1) = Z (L2), it then suffices to compare irreducible blocks in the invariant subspace

decomposition for the coefficients of L1 and L2, which can be done using probabilistic

algorithms with polynomial complexity [Ebe91, CIW97].

Example 6.1. Let

f1 = 1 + x1 + x2 + x2
1x2,

f2 = 1 + x1 + x2 + x1x2x1,

f3 = 1 + x1 + x2 + x2x
2
1.

Since every affine linear polynomial clearly has an FM-realization of size 1 (note that b in

(5.1) is linear), we can use the constructions of FM-realizations associated with the sum,

product and inverse [BGM05, Section 4] to build FM-realizations for f−1
i of size 5. After

applying the minimization algorithm we obtain minimal realizations f−1
i = 1 + ctL−1

i bi,

where ct = (1, 0, 0) and

L1 =

1 + x1 + x2 x1 0

0 1 −x1

−x2 0 1

 , b1=

−x1 − x2

0

x2

 ,

L2 =

1 + x1 + x2 x1 0

0 1 −x2

−x1 0 1

 , b2=

−x1 − x2

0

x1

 ,

L3 =

1 + x1 + x2 x2 0

0 1 −x1

−x1 0 1

 , b3=

−x1 − x2

0

x1

 .

It is easy to check that the coefficients of L1 generate M3(k), so L1 is irreducible. Next

we consider two homogeneous linear systems PL1 = L2P and PL1 = L3P , where P is a

3 × 3 matrix of scalar indeterminates. While the second system admits only the trivial

solution P = 0, the first system has a one-dimensional solution space which intersects

GL3(k). Therefore L1 and L3 are similar but L2 is not similar to L1. Consequently,

Z (f1) = Z (f3) 6= Z (f2).
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Alternatively, one can use a computer algebra system to check Zn(f1) \Zn(f2) 6= ∅ for a

fixed n. For example, we have((
1 −1

−1 0

)
,

(
1 1

1 0

))
∈ Z2(f1) \Z2(f2).

6.2. Factorization via state space realizations. We now describe an algorithm for

factorization of noncommutative polynomials based on their FM-realizations (cf. [Scr]).

As with comparing free loci, the only computational expenses of the algorithm arise from

construction and minimization of FM-realizations, and finding an invariant subspace of a

tuple of matrices.

Given f ∈ k<x> with f(0) = 1 we first find a minimal realization f−1 = 1 + ctL−1b;

note that det f(Ω(n)) = detL(Ω(n)) by Lemma 5.3.

(1) If the coefficients of L do not admit a non-trivial invariant subspace, L is an

irreducible pencil, so det f(Ω(n)) = detL(Ω(n)) is irreducible for large n and hence

f is an atom.

(2) If the coefficients of L admit a non-trivial invariant subspace, then we find an

irreducible one, S. With respect to it we have

(6.1) f−1 = 1 +
(
ct

1 ct
2

)(L1 ?

0 L2

)−1(
b1

b2

)
for monic pencils L1 and L2. Following the proof of Theorem 5.1 (Subsection

5.4.1), their coefficients are not jointly nilpotent, so f factors. Moreover, since S
is irreducible, the same reasoning as in Subsection 5.4.1 implies that the realization

(6.1) necessarily yields a minimal factorization f−1 = f−1
1 f−1

2 and from (5.6) we

read off f−1
i = 1 + ct

iL
−1
i bi. Therefore f = f2f1 is a polynomial factorization by

Proposition 5.9 and f1 is an atom.

Hence we obtain a factorization of f into atomic factors by repeating (2) until (1)

applies. Note that the obtained factorization depends on the choice of irreducible invariant

subspaces in (2).

Example 6.2. Let

f = 1 + 3
2
x1 + 1

2
x2 + 1

2
(x2

1 + x1x2 + x2x1) + 1
2
x1x2x1.

Then f−1 admits a minimal realization

(6.2) 1 +
(
1 0 0

)1 + 3
2
x1 + 1

2
x2 x1 −x1 + 1

2
x2

−3
2
x1 − 1

2
x2 1 −1

2
x2

−x1 0 1

−1−3
2
x1 − 1

2
x2

3
2
x1 + 1

2
x2

x1

 .

Let L be the monic pencil in (6.2). The coefficients of L have a common eigenvector

(−1, 3
2
, 1)t and one can check that (2) yields

f = (1 + 1
2
x1 + 1

2
x2 + 1

2
x1x2)(1 + x1).

However, the linear span of (1, 0, 1)t and (−1, 1, 0)t is also an irreducible invariant subspace

for the coefficients of L, and in this case (2) results in

f = (1 + x1)(1 + 1
2
x1 + 1

2
x2 + 1

2
x2x1).
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Let L× be the monic pencil appearing in the inverse of the realization (6.2). Its coefficients

generate the algebra of strictly upper triangular 3 × 3 matrices, so they admit exactly

two non-trivial invariant subspaces, namely span{(1, 0, 0)t} and span{(1, 0, 0)t, (0, 1, 0)t}.
From the perspective of Theorem 5.1, the first one is complementary to span{(−1, 3

2
, 1)t}

and the second one is complementary to span{(1, 0, 1)t, (−1, 1, 0)t}.

7. Smooth points on a free locus

Let L be a monic pencil. In this section we study the relation between smooth points

of the free locus Z (L) and one-dimensional kernels of evaluations of the pencil L. Let us

define

Z 1(L) =
⋃
n∈N

Z 1
n (L), Z 1

n (L) = {X ∈ Zn(L) : dim kerL(X) = 1} ,

Z 1a(L) =
⋃
n∈N

Z 1a
n (L), Z 1a

n (L) =
{
X ∈ Zn(L) : dim kerL(X)2 = 1

}
.

That is, X ∈ Z 1(L) if the geometric multiplicity of the zero eigenvalue in L(X) is 1

and X ∈ Z 1a(L) if the algebraic multiplicity of the zero eigenvalue in L(X) is 1. Note

that Z 1a
n (L) ⊆ Z 1

n (L) are Zariski open subsets of Zn(L) for every n ∈ N. However,

the set Z 1
n (L) can be empty for a fixed n even if L is an irreducible pencil; see Laffey’s

counterexample to Kippenhahn’s conjecture [Laf83].

Recall that Eı ∈ Mn(k) denote the standard matrix units.

Lemma 7.1. Let L = I −
∑

j Ajxj and X ∈ Zn(L).

(1) X /∈ Z 1
n (L) if and only if adjL(X) = 0.

(2) If detL(Ω(n)) is a minimum degree defining polynomial for Zn(L), then Zn(L) is

singular at X if and only if tr(adjL(X)(Aj ⊗ Eı)) = 0 for all 1 ≤ j ≤ g and

1 ≤ ı,  ≤ n.

(3) X /∈ Z 1a
n (L) if and only if tr(adjL(X)(

∑
j Aj ⊗Xj)) = 0.

Proof. Firstly, (1) is clear by the definition of the adjugate. Denote f = detL(Ω(n)) and

pX = detL(tX) for X ∈ Mn(k)g. Then Jacobi’s formula [MN88, Theorem 8.3.1] for the

derivative of a determinant implies

∇f = −
(

tr
(
adjL

(
Ω(n)

)
(Aj ⊗ Eı)

))
j,ı,

,

dpX
dt

= − tr

(
adjL(tX)

(∑
j

Aj ⊗Xj

))
.

Now (2) and (3) follow because Zn(L) is singular at X if and only if (∇f)(X) = 0, and

X /∈ Z 1a
n (L) if and only if dpX

dt
(1) = 0. �

Theorem 7.2. If L is an FL-minimal pencil, then

∅ 6= Z 1a
n (L) ⊆ {smooth points of Zn(L)} ⊆ Z 1

n (L)

for large n.
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Proof. By Remark 3.9, detL(Ω(n)) is a minimum degree defining polynomial for Zn(L)

for large n. Hence the inclusions hold by Lemma 7.1. Note that

d

dt
detL(tΩ(n)) = − tr

(
adjL(tΩ(n))

(∑
j

Aj ⊗ Ω
(n)
j

))
and hence

deg detL(Ω(n)) = degt detL(tΩ(n))

= 1 + degt
d

dt
detL(tΩ(n))

= 1 + degt tr

(
adjL(tΩ(n))

(∑
j

Aj ⊗ Ω
(n)
j

))

= deg tr

(
adjL(Ω(n))

(∑
j

Aj ⊗ Ω
(n)
j

))
.

Note that the constant terms of tr(adjL(Ω(n))(
∑

j Aj ⊗ Ω
(n)
j )) and detL(Ω(n)) equal 0

and 1, respectively. Since these two polynomials have the same degree, we conclude that

tr(adjL(Ω(n))(
∑

j Aj ⊗ Ω
(n)
j )) is not a multiple of detL(Ω(n)). Therefore Z 1a

n (L) 6= ∅ for

large n by Theorem 3.4 and Lemma 7.1(2). �

Example 7.3. Let L = I − A1x1 − A2x2 be as in Example 3.2 and

X =

((
1 0

0 1

)
,

(
0 0

−1 −1

))
, Y =

((
2 1

2

0 1

)
,

(
0 0

2 1

))
.

One can check that Z2(L) is singular at X ∈ Z 1
2 (L) and smooth at Y ∈ Z2(L)\Z 1a

2 (L).

Hence the inclusions in Proposition 7.4 are strict in general.

The next proposition describes the behavior of smooth points when moving between

different levels of a free locus.

Proposition 7.4. Let L be a monic pencil, X ∈ Z (L) and Y ∈ Mn(k)g.

(1) If Y ∈ Z (L), then Z (L) is singular at X ⊕ Y .

(2) If Y /∈ Z (L) and n is large enough, then Z (L) is smooth at X ⊕ Y if and only if

Z (L) is smooth at X.

Proof. Since the statement is about the free locus and not L directly, we can assume that

L is FL-minimal.

(1) If X, Y ∈ Z (L), then X ⊕ Y /∈ Z 1(L) and hence X ⊕ Y is not a smooth point of

Z (L) by Theorem 7.2.

(2) Observe that adj(M1 ⊕ M2) = (detM1 adjM2) ⊕ (detM2 adjM2) for arbitrary

M1,M2. Hence

adjL(X ⊕ Y ) = (detL(Y ) adjL(X))⊕ 0

and the equivalence follows by Lemma 7.1(2). �

The quasi-affine variety Z 1
n (L) comes equipped with a natural line bundle: to each

X ∈ Z 1(L) we assign the line kerL(X). Define π : kdn → k
d by setting π(v) = u1 for
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v =
∑n

i=1 ui ⊗ ei ∈ k
d ⊗ k

n. For a monic pencil L define

hair(L) =
⋃

X∈Z 1(L)

π (kerL(X)) ⊆ k
d.

Since Z 1
n (L) is closed under GLn(k)-conjugation, we have

hair(L) =
⋃

X∈Z 1(L)

{
ui ∈ k

d :
∑
i

ui ⊗ ei ∈ kerL(X)

}
.

Proposition 7.5. If L is irreducible of size d, then span hair(L) = k
d.

Proof. Let L = I−
∑

j Ajxj be irreducible and suppose span hair(L) 6= k
d. Let P ∈ Md(k)

be a projection onto span hair(L) and L′ = I −
∑

j AjPxj. Let X ∈ Z 1(L) be arbitrary.

If L(X)v = 0, then v = (P ⊗ I)v and

L′(X)v =

(
I −

∑
j

AjP ⊗Xj

)
v = v −

∑
j

(AjP ⊗Xj) v = v −
∑
j

(Aj ⊗Xj) v = 0,

so X ∈ Z (L′). Since Z 1
n (L) contains all the smooth points of Zn(L) for large n ∈ N

by Theorem 7.2 an is therefore dense in Zn(L), we conclude that Z (L) ⊆ Z (L′). By

[KV17, Theorem 3.6] there exists a surjective homomorphism A′ → Md(k) given by

AjP 7→ Aj, where A′ is the k-algebra generated by A1P, . . . , AgP . But A′ ( Md(k), a

contradiction. �

The above results can be also applied to free loci of more general matrices of noncom-

mutative polynomials. For example, we obtain the following.

Corollary 7.6. Let f ∈ Md(k<x>) be an atom with f(kg) ∩ GLd(k) 6= ∅. Then there

exists X ∈ Z (f) such that dim ker f(X) = 1.

Proof. By Remark 4.4 we can assume f(0) = I. By Lemma 4.2, f is stably associated to

an irreducible monic pencil L, so there exists X ∈ Z (L) satisfying dim kerL(X) = 1 by

Theorem 7.2. By the definition of stable associativity we then have dim ker f(X) = 1. �

8. Applications to real algebraic geometry

In this section we present two applications of our results to real and convex algebraic

geometry. In Corollary 8.5 we prove a density result for points X on the boundary of

a free spectrahedron determined by a hermitian pencil L, where the kernel of L(X) is

one-dimensional. As a consequence we obtain Corollary 8.7, which improves upon the

main result of [HKN14].

8.1. Boundaries of free spectrahedra. Let Hn(C) denote the R-space of n×n hermit-

ian matrices. A monic pencil L = I−
∑

j Ajxj is hermitian if Aj ∈ Hn(C) for 1 ≤ j ≤ g.

Its free spectrahedron (also called LMI domain) [HKM13] is the set

D(L) =
⋃
n∈N

Dn(L), Dn(L) = {X ∈ Hn(C)g : L(X) � 0} .
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Also denote

Z h(L) =
⋃
n∈N

Z h
n (L), Z h

n (L) = Zn(L) ∩ Hn(C)g,

∂D(L) =
⋃
n∈N

∂Dn(L), ∂Dn(L) = Dn(L) ∩Z h
n (L),

∂1D(L) =
⋃
n∈N

∂1Dn(L), ∂1Dn(L) = ∂Dn(L) ∩Z 1
n (L).

The set Z h(L) is the free real locus of L. A hermitian monic pencil L is LMI-minimal

if it is of minimal size among all hermitian pencils L′ satisfying D(L′) = D(L). Note that

if L1 and L2 are hermitian pencils, then Z (L1) = Z (L2) implies D(L1) = D(L2). Using

Burnside’s theorem and the hermitian structure of an LMI-minimal L it is then easy to

deduce that L is unitarily equivalent to L1 ⊕ · · · ⊕ L`, where Lk are pairwise non-similar

irreducible hermitian pencils. In particular, every LMI-minimal pencil is also FL-minimal.

Remark 8.1. Instead of hermitian monic pencils in hermitian variables x as above, one can

also consider hermitian monic pencils in non-hermitian variables x and x∗, i.e., pencils of

the form L = I −
∑

j Ajxj −
∑

j A
∗
jx
∗
j for Aj ∈ Md(C), with evaluations

L(X) = I −
∑
j

Aj ⊗Xj −
∑
j

A∗j ⊗X∗j

for X ∈ Mn(C)g. However, by introducing new hermitian variables yj = 1
2
(xj + x∗j) and

zj = 1
2i

(xj − x∗j) we observe that results about free real loci and LMI domains of pencils

in hermitian variables, for instance those in [KV17], readily translate into results about

free real loci and LMI domains of pencils in non-hermitian variables. More concretely, let

L′ = I −
∑
j

(Aj + A∗j)yj −
∑
j

i(Aj − A∗j)zj.

Involution-free properties are the same for L and L′; for example, L is irreducible if and

only if L′ is irreducible, and L(Ω(n) + iΥ(n),Ω(n) − iΥ(n)) is irreducible if and only if

L′(Ω(n),Υ(n)) is irreducible. Likewise, topological relations (e.g., density) among the sets

(8.1) ∂1D(L) ⊂ ∂D(L) ⊂ Z h(L) ⊂ Z (L)

are the same as those among

(8.2) ∂1D(L′) ⊂ ∂D(L′) ⊂ Z h(L′) ⊂ Z (L′)

because one passes between (8.1) and (8.2) via R-linear transformations. Using these two

observations it becomes clear that the following results (Lemma 8.2, Proposition 8.3, and

Corollaries 8.5 and 8.7) also hold in the (x,x∗) setup.

Lemma 8.2. Let L be an LMI-minimal hermitian pencil. Then ∂1Dn(L) are precisely

the smooth points of ∂Dn(L) for large n.

Proof. The polynomial detL(Ω(n)) is square-free for large n by Remark 3.9. Let us con-

sider Mn(C)g = Hn(C)g + iHn(C)g as the decomposition of the affine space Mn(C)g into

its real and imaginary part. Since L is hermitian, detL(Ω(n)) is a complex analytic poly-

nomial with real coefficients. Let F be the homogenization of detL(Ω(n)). Viewed as a

real polynomial, F is hyperbolic with respect to the direction of the homogenizing variable
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because L is a monic and hermitian. Since detL(Ω(n)) is square-free, F is also square-

free. Thus it follows by [Ren06, Lemma 7] that ∂1Dn(L) are precisely the smooth points

of ∂Dn(L) for large n. �

Given an LMI-minimal pencil L, smooth points of the boundary of the free spectra-

hedron of L are (at least for large sizes) characterized as the points where the kernel

of L attains minimal dimension. On the other hand, the points where L has maximal

kernel are (Euclidean) extreme points of the spectrahedron [RG95, EHKM+, DD-OSS17,

ANT+, Kri].

Proposition 8.3. Let L be an LMI-minimal hermitian pencil. Then ∂Dn(L) is Zariski

dense in Zn(L) for large n.

Proof. Let L = L1 ⊕ · · · ⊕ L`, where Lk are pairwise non-similar irreducible hermitian

pencils. Fix 1 ≤ k ≤ `. By the minimality of L we have

(8.3)
⋂
k′ 6=k

D(Lk′) 6⊆ D(Lk).

Since ⋃̀
k=1

(∂D(Lk) ∩ ∂D(L)) ⊆ ∂D(L) ⊆ Z (L) =
⋃̀
k=1

Z (Lk),

it suffices to prove that ∂Dn(Lk) ∩ ∂Dn(L) is Zariski dense in Zn(Lk) for large n.

Since the LMI domain of a hermitian monic pencil is a convex set with nonempty

interior, then by (8.3) for large n there exists X0 ∈ Hn(C)g such that Lk(X0) 6� 0 and

Lk′(X0) � 0 for k′ 6= k. Since this is an open condition in Euclidean topology, there exists

ε > 0 such that for every X ∈ B(X0, ε) we have Lk(X) 6� 0 and Lk′(X) � 0 for k′ 6= k,

where B(X0, ε) ⊂ Hn(C)g is the closed ball about X0 with radius ε in Euclidean norm. Let

C be the convex hull of the origin and B(X0, ε). By convexity we have C ⊂
⋂
k′ 6=kD(Lk′)

and thus

Z h
n (Lk) ∩ C ⊆ ∂Dn(Lk) ∩ ∂Dn(L).

Observe that for every X ∈ B(X0, ε) there exists t ∈ (0, 1) such that detLk(tX) = 0

by the choice of X0 and ε. Therefore Z h
n (Lk) ∩ C ⊆ Hn(C)g is a semialgebraic set of

(real) dimension gn2 − 1 by [BCR98, Theorem 2.8.8]. Therefore its Zariski closure in

Mn(C)g = Hn(C)g + iHn(C)g is a hypersurface by [BCR98, Proposition 2.8.2]. Since the

latter is contained in Zn(Lk), which is an irreducible hypersurface for large n, we conclude

that Z h
n (Lk) ∩ C is Zariski dense in Zn(Lk) and therefore ∂Dn(Lk) ∩ ∂Dn(L) is Zariski

dense in Zn(Lk) for large n. �

Remark 8.4. The essence of the last proof is that ∂1Dn(L) has a nonempty interior with

respect to the Euclidean topology on Z h
n (L) for large n if L is an irreducible hermitian

pencil.

The following statement is a spectrahedral version of the quantum Kippenhahn conjec-

ture (cf. [KV17, Corollary 5.7]).

Corollary 8.5. Let L be an LMI-minimal hermitian pencil. Then ∂1Dn(L) is Zariski

dense in Zn(L) for large n.
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Proof. For large n, Z 1
n (L) is Zariski dense and open in Zn(L) by Theorem 7.2 and ∂Dn(L)

is Zariski dense in Zn(L) by Proposition 8.3. Therefore ∂1Dn(L) is Zariski dense in Zn(L)

for large n. �

Remark 8.6. Let us consider the real symmetric setup, where the coefficients of a monic

pencil L are real symmetric matrices and we are only interested in evaluations of L on

tuples of real symmetric matrices. Then the analog of Corollary 8.5 fails in general.

For example, let L be a monic symmetric pencil of size 4d whose coefficients generate

the algebra of d × d matrices over quaternions; then L is irreducible over R and thus

LMI-minimal as a pencil over R. However, L is unitarily equivalent to L′ ⊕ L′ for an

irreducible hermitian pencil L′, so Z 1(L) = ∅. On the positive side, the real version of

quantum Kippenhahn’s conjecture holds: if L is a symmetric irreducible pencil over R,

then by [KV17, Corollary 5.8] there exists a tuple of symmetric matrices X such that

dim kerL(X) = 2.

8.2. Randstellensatz. An important result in free real algebraic geometry is the Rand-

stellensatz [HKN14, Theorem 1.1] which describes noncommutative polynomials defining

a given LMI domain and its boundary. It holds for monic pencils L satisfying the “zero

determining property” [HKN14, Subsection 5.2]. Without going into technical details we

assert that every LMI-minimal hermitian pencil L satisfies the zero determining property

because detL(Ω(n)) is a minimum degree defining polynomial for Zn(L) by Remark 3.9

and thus also for the Zariski closure of ∂1Dn(L) in Hn(C)g (which equals Z h
n (L)) by

Corollary 8.5. Thus we obtain the following improvement of [HKN14, Theorem 1.1].

Corollary 8.7. Let L be an LMI-minimal hermitian pencil of size d and f ∈ Md(C<x>).

Then

f |D(L) � 0 and kerL(X) ⊆ ker f(X) ∀X ∈ D(L)

if and only if

f = L

(∑
i

q∗i qi

)
L+

∑
j

(rjL+ Cj)
∗L(rjL+ Cj)

for qi ∈ C<x>d, rj ∈ Md(C<x>) and Cj ∈ Md(C) satisfying CjL = LCj.
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