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Abstract—Given linear matrix inequalities (LMIs) L1 and L2

in the same number of variables it is natural to ask:
(Q1) does one dominate the other, that is, does L1(X) � 0 imply

L2(X) � 0?
(Q2) are they mutually dominant, that is, do they have the same

solution set?
Such problems can be NP-hard. We describe a natural relaxation
of an LMI, based on substituting matrices for the variables xj .
With this relaxation, the domination questions (Q1) and (Q2) have
elegant answers, indeed reduce to semidefinite programs (SDP)
which we show how to construct. For our “matrix variable”
relaxation a positive answer to (Q1) is equivalent to the existence
of matrices Vj such that

L2(x) = V ∗
1 L1(x)V1 + · · ·+ V ∗

µ L1(x)Vµ. (A1)

As for (Q2) we show that L1 and L2 are mutually dominant if
and only if, up to certain redundancies described in the paper,
L1 and L2 are unitarily equivalent.

An observation at the core of the paper is that the relaxed
LMI domination problem is equivalent to a classical problem.
Namely, the problem of determining if a linear map τ from a
subspace of matrices to a matrix algebra is “completely positive”.

I. INTRODUCTION

Semidefinite Programming, SDP, is one of the main tech-
niques in studying linear control systems, cf. [16]. It is even
used with nonlinear systems to find Lyapunov functions via
sums of squares and in Linear Parameter Varying situations
[17]. Less directly, SDP impacts systems and control through
its importance in combinatorial optimization and application
to statistical problems; [11] contains an excellent introduction.
SDP is based on LMIs and this article surveys LMI results
based on “matrix variable” relaxations.

For symmetric matrices A0, A1, . . . , Ag ∈ SRd×d, the
expression

L(x) = A0 +

g∑
j=1

Ajxj ∈ SRd×d〈x〉 (I.1)

in variables x = (x1, . . . , xg) is a linear pencil. If A0 = I ,
then L is monic. If A0 = 0, then L is a truly linear pencil.
Call d the size of the pencil. An LMI is an inequality of the
form L(X) � 0 for X ∈ Rg .

First observe that given such an LMI or equivalently a
linear pencil L, it is mathematically natural to substitute
symmetric matrices Xj for the variables. Formally, given
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X = col(X1, . . . , Xg) ∈ (SRn×n)g, the evaluation L(X)
is defined as

L(X) = A0 ⊗ In +
∑

Aj ⊗Xj ∈ SRdn×dn. (I.2)

The tensor product in this expression is the usual (Kronecker)
tensor product of matrices. For example, if A =

[
aij
]d
i,j=1

and X ∈ Rn×n then

A⊗X =

a11X · · · a1dX
...

. . .
...

ad1X · · · addX

 ∈ Rdn×dn.

Thus for each dimension n we have the set

DL(n) = {X ∈ (SRn×n)g | L(X) � 0}

of all matricial solutions X to an LMI. While one’s main
concern might be n = 1, using n = 2 or n = 3, etc gives
a natural relaxation. Indeed the supreme relaxation of the
solution set to an LMI, we call the matricial linear matrix
inequality (LMI) set and it is

DL :=
⋃
n∈N
DL(n). (I.3)

The set DL(1) ⊆ Rg is the feasibility set of the semidefinite
program L(X) � 0 and is called a spectrahedron by algebraic
geometers.
LMI domination problem: Given monic pencils L1, L2,

is DL1
(1) ⊆ DL2

(1)?
The relaxed problem asks: is DL1 ⊆ DL2?

A very similar problem is the LMI mutual domination prob-
lem: is DL1

(1) = DL2
(1)? Also of interest is its relaxation:

is DL1 = DL2?
There are various problems which are not LMIs but have

relaxations which are LMIs. Indeed, they have a chain of
LMI relaxations that give finer and finer approximations
(cf. Lasserre [8]). Whether this chain of relaxations becomes
stationary is equivalent to an LMI mutual domination problem.
See also [14].

A very special case of LMI domination (for n = 1) is
the matrix cube problem of Ben-Tal and Nemirovski [10],
[2], where DL1(1) is a cube. Its most fundamental application
is to the Lyapunov stability analysis for uncertain dynamical
systems. Also, maximizing a positive definite quadratic form
over the unit cube can be formulated as a matrix cube problem.
This implies the LMI domination for n = 1 is numerically
NP-hard.

While the LMI domination problem algebraically has no
clean answer, as we shall see the relaxed problem behaves



completely “perfectly”. How closely the relaxed is to the
unrelaxed has not been seriously explored.

This note treats relaxation of LMI domination and LMI
mutual domination, giving precise algebraic characterizations
§II and numerical algorithms for computation §IV. In [6] we
prove that DL1

⊆ DL2
is equivalent to the feasibility of a

certain semidefinite program which we construct explicitly in
§IV-A. We also have an algorithm (§IV-B) to determine if
DL is bounded and, if so, its “radius.” Our algorithm thus
yields an upper bound of the radius of DL(1). Finally, given a
matricial LMI set DL, §IV-C gives an algorithm to compute the
linear pencil L̃ ∈ SRd×d〈x〉 with smallest possible d satisfying
DL = DL̃.

A by-product of this investigation is a very clean character-
ization of polynomials which are positive on a spectrahedron
- a Putinar type Positivstellensatz §V.

Example I.1. Let L1(x1, x2) =

I +

0 1 0
1 0 0
0 0 0

x1 +
0 0 1
0 0 0
1 0 0

x2 =

 1 x1 x2
x1 1 0
x2 0 1


which is in SR3×3〈x〉 and let L2(x1, x2) =

I +

[
1 0
0 −1

]
x1 +

[
0 1
1 0

]
x2 =

[
1 + x1 x2
x2 1− x1

]
which is in SR2×2〈x〉. Then

DL1
= {(X1, X2) | 1−X2

1 −X2
2 � 0},

DL1
(1) = {(X1, X2) ∈ R2 | X2

1 +X2
2 ≤ 1},

DL2
(1) = {(X1, X2) ∈ R2 | X2

1 +X2
2 ≤ 1}.

Thus DL1(1) = DL2(1). On one hand,([
1
2 0
0 0

]
,

[
0 3

4
3
4 0

])
∈ DL1

\ DL2
,

so L1(X1, X2) � 0 does not imply L2(X1, X2) � 0. On the
other hand, L2(X1, X2) � 0 does imply L1(X1, X2) � 0. We
shall explain this later below, see Ex. III.3. �

The relaxed LMI domination problem is equivalent to the
classical problem of determining if a linear map τ from
a subspace of matrices to a matrix algebra is “completely
positive”, see §III. Complete positivity is one of the main
techniques of modern operator theory and the theory of
operator algebras. On one hand it provides tools for studying
LMIs and on the other hand, since completely positive maps
are not so far from representations and generally are much
more tractable than their merely positive counterparts, the
theory of completely positive maps provides perspective on
the difficulties in solving LMI domination problems.

We shall focus on statement of results, algorithms and
examples. For proofs and details see [6] on which this note is
based.

II. ALGEBRAIC CHARACTERIZATION OF DOMINATION

Here we state our main theorems giving precise character-
izations of LMI domination.

We call DL bounded if there is an N ∈ N with ‖X‖ ≤ N
for all X ∈ DL. It turns out (see [6, Proposition 2.4]) that DL
is bounded if and only if DL(1) is bounded.

Theorem II.1 (Linear Positivstellensatz). Let Lj , j = 1, 2,
be monic dj × dj linear pencils and assume DL1

is bounded.
Then DL1

⊆ DL2
if and only if there is a µ ∈ N and an

isometry V ∈ Rµd1×d2 such that

L2(x) = V ∗
(
Iµ ⊗ L1(x)

)
V =

µ∑
j=1

V ∗j L1(x)Vj . (II.1)

This is an algebraic statement in that we are thinking of the
xj in the pencil as noncommuting variables.

Now we turn to mutual domination. Suppose L ∈
SRd×d〈x〉,

L = I +

g∑
j=1

Ajxj

is a monic linear pencil. A subspace H ⊆ Rd is reducing for
L if H reduces each Aj ; i.e., if AjH ⊆ H. Since each Aj
is symmetric, it also follows that AjH⊥ ⊆ H⊥. Hence, with
respect to the decomposition Rd = H⊕H⊥, L can be written
as the direct sum,

L = L̃⊕ L̃⊥ =

[
L̃ 0

0 L̃⊥

]
, where L̃ = I +

g∑
j=1

Ãjxj ,

and Ãj is the restriction of Aj to H. (The pencil L̃⊥ is defined
similarly.) If H has dimension `, then by identifying H with
R`, the pencil L̃ is a monic linear pencil of size `. We say
that L̃ is a subpencil of L. If moreover, DL = DL̃, then L̃ is a
defining subpencil and if no proper subpencil of L̃ is defining
subpencil for DL, then L̃ is a minimal defining (sub)pencil.

Theorem II.2 (Linear Gleichstellensatz). Let Lj ∈ SRd×d〈x〉,
j = 1, 2, be monic linear pencils with DL1

bounded. Then
DL1 = DL2 if and only if minimal defining pencils L̃1 and L̃2

for DL1 and DL2 respectively, are unitarily equivalent. That
is, there is a unitary matrix U such that

L̃2(x) = U∗L̃1(x)U. (II.2)

III. COMPLETE POSITIVITY BY EXAMPLE

This section describes the map between domination and
complete positivity and concludes with an example.

Given L1 and L2 monic linear pencils

Lj(x) = I +

g∑
`=1

Aj,`x` ∈ SRdj×dj 〈x〉, j = 1, 2, (III.1)

we introduce subspaces to be used in our considerations:

Sj = span{I, Aj,` | ` = 1, . . . , g}
= span{Lj(X) | X ∈ Rg} ⊆ SRdj×dj .

(III.2)



The key tool in studying LMI domination is the mapping τ
we now define.

Definition III.1. Let L1, L2 be monic linear pencils as in
(III.1). If {I, A1,` | ` = 1, . . . , g} is linearly independent
(e.g. DL1

is bounded), we define the linear map

τ : S1 → S2, A1,` 7→ A2,`, I 7→ I. (III.3)

It turns out that the inclusion DL1
⊆ DL2

is equivalent
to the complete positivity of τ , a notion we now introduce.
Let Sj ⊆ Rdj×dj be linear subspaces of matrices containing
the identity matrix and invariant under the transpose, and φ :
S1 → S2 a unital (i.e., φ(I) = I) linear ∗-map. For n ∈ N, φ
induces the map

φn = In ⊗ φ : Rn×n ⊗ S1 = Sn×n1 → Sn×n2 ,

M ⊗A 7→M ⊗ φ(A),

called an ampliation of φ. Equivalently,

φn


T11 · · · T1n

...
. . .

...
Tn1 · · · Tnn


 =

φ(T11) · · · φ(T1n)
...

. . .
...

φ(Tn1) · · · φ(Tnn)


for Tij ∈ S1. We say that φ is k-positive if φk is a positive
map. If φ is k-positive for every k ∈ N, then φ is completely
positive.

Theorem III.2. Let L1, L2 be linear pencils as in (III.1) with
L1 of size d1 × d1. Assume the matricial LMI set DL1 is
bounded. Let τ : S1 → S2 be the unital linear map A1,` 7→
A2,` as in (III.3).
(1) τ is n-positive if and only if DL1(n) ⊆ DL2(n);
(2) τ is completely positive if and only if DL1

⊆ DL2
;

(3) DL1
⊆ DL2

if and only if DL1
(d1) ⊆ DL2

(d1) .

The proof is in [6].

Example III.3 (Example I.1 revisited). The unital linear map
τ : S2 → S1 in our example is given by[

1 0
0 −1

]
7→

0 1 0
1 0 0
0 0 0

 , [
0 1
1 0

]
7→

0 0 1
0 0 0
1 0 0

 .
Consider the extension of τ to a unital linear ∗-map ψ :
R2×2 → R3×3, defined by

E11 7→
1

2

1 1 0
1 1 0
0 0 1

 , E12 7→
1

2

0 0 1
0 0 1
1 −1 0

 ,
E21 7→

1

2

0 0 1
0 0 −1
1 1 0

 , E22 7→
1

2

 1 −1 0
−1 1 0
0 0 1

 .
(Here Eij are the 2× 2 matrix units.) Now we show the map
ψ is completely positive. To do this, we use its Choi matrix
defined as

C =

[
ψ(E11) ψ(E12)
ψ(E21) ψ(E22)

]
. (III.4)

[13, Theorem 3.14] says ψ is completely positive if and
only if C � 0. We will use the Choi matrix again in
§IV for computational algorithms. To see that C is positive
semidefinite, note

C =
1

2
W ∗W for W =

[
1 1 0 0 0 1
0 0 1 1 −1 0

]
.

Now ψ has a very nice representation:

ψ(S) =
1

2
V ∗1 SV1 +

1

2
V ∗2 SV2 =

1

2

[
V1
V2

]∗ [
S 0
0 S

] [
V1
V2

]
(III.5)

for all S ∈ R2×2. Here

V1 =

[
1 1 0
0 0 1

]
and V2 =

[
0 0 1
1 −1 0

]
,

thus W =
[
V1 V2

]
. In particular,

2L1(x, y) = V ∗1 L2(x, y)V1 + V ∗2 L2(x, y)V2. (III.6)

Hence L2(X1, X2) � 0 implies L1(X1, X2) � 0, i.e., DL2
⊆

DL1 .
The formula (III.6) illustrates our linear Positivstellensatz

(Theorem II.1). The construction of the formula in this exam-
ple is a concrete implementation of the theory leading up to
the general result, see [6]. �

The proof of the Gleichstellensatz (Theorem II.2) is more
involved and uses Arveson’s theory of the noncommutative
Choquet boundary from operator algebras [1].

IV. COMPUTATIONAL ALGORITHMS

In this section we present numerical algorithms using
semidefinite programming (SDP) [18] based on the theory
explained in the preceding section. Given L1 and L2 monic
linear pencils

Lj(x) = I +

g∑
`=1

Aj,`x` ∈ SRdj×dj 〈x〉, j = 1, 2, (IV.1)

with bounded matricial LMI set DL1
, we present an algorithm

to test whether DL1
⊆ DL2

; see §IV-A. Of course this
numerical test yields a sufficient condition for containment
of the spectrahedra DL1(1) ⊆ DL2(1). We refer the reader
to §IV-B for a test of boundedness of LMI sets, which works
both for commutative LMIs and matricial LMIs, and computes
the radius of a matricial LMI set. We then in §IV-C discuss
give a (generically successful) algorithm for computation of
a minimal representing pencil. In [6, §4.3] we also give a
matricial version of the classical matrix cube problem of Ben-
Tal and Nemirovski [2].

A. Checking inclusion of matricial LMI sets

By Theorem III.2, L2 dominates L1 if and only if there is
a completely positive unital map

τ : Rd1×d1 → Rd2×d2 (IV.2)

satisfying

τ(A1,`) = A2,` for ` = 1, . . . , g. (IV.3)



To determine the existence of such a map, consider the Choi
matrix C =

(
τ(Eij)

)d1
i,j=1

∈ (Rd2×d2)d1×d1 of τ . (Here, Eij
are the d1× d1 matrix units.) For convenience of notation we
consider C to be a d1 × d1 matrix with d2 × d2 entries cij . It
is well-known that τ is completely positive if and only if C
is positive semidefinite [13, Theorem 3.14].

Let α`p,q denote the (p, q) entry of A1,`, that is, A1,` =∑
p,q α

`
pqEpq . Note

τ(A1,`) =
∑
p,q

α`pqτ(Epq) =
∑
p,q

α`pqcpq.

The inclusion algorithm

Solve the following (feasibility) SDP:

(cpq)
d1
p,q=1 := C � 0,

∑
p

cpp = Id2 , (IV.4)

∀` = 1, . . . , g :
∑
p,q

α`pqcpq = A2,`,

for the unknown C. This can be, in practice, done numerically
with standard SDP solvers. The matrix C of unknown vari-
ables is of size d1d2 × d1d2 and there are (1 + g)d22 (scalar)
linear constraints.

Clearly, DL1
⊆ DL2

if and only if the SDP (IV.4) is feasible,
i.e., has a solution, since if a solution C has been obtained,
then a Positivstellensatz-type certificate for the inclusion of the
matricial LMI sets DL1

⊆ DL2
can be obtained; cf. Example

III.3.

B. Computing the radius of matricial LMI sets

Let L be a monic linear pencil,

L(x) = I +

g∑
`=1

A`x` ∈ SRd×d〈x〉. (IV.5)

We present an algorithm based on semidefinite programming
to compute the radius of a matricial LMI set DL (and at the
same time check whether it is bounded). The idea is simply
to use the test in §IV-A to check if DL is contained in the ball
of radius N . The smallest such N will be the matricial radius,
and also an upper bound on the radius of the spectrahedron
DL(1).

Consider the monic linear pencil

JN (x) =
1

N

[
N x∗

x NIg

]
= I +

1

N

∑
(E′1,j+1 + E′j+1,1)xj ,

JN (x) ∈ SR(g+1)×(g+1)〈x〉.

Then DL is bounded if and only if there is an N such that
DJN ⊇ DL (and in this case its radius is at most N ). As in
the previous subsection, we need to determine whether there
is a completely positive unital map τ : Rd×d → R(g+1)×(g+1)

satisfying

τ(Aj) =
1

N
(E′1,j+1 + E′j+1,1)

for some N .
The Choi matrix here is

C = (τ(Eij))i,j ∈ (R(g+1)×(g+1))d×d.

Let A` =
∑
r,s α

`
rsErs. Then the linear constraints we need

to consider say that

τ(A`) =
∑
r,s

α`rscrs

has all entries 0 except for the (1, `+1) and (`+1, 1) entries
which are the same; indeed they are all equal to 1

N . Thus we
arrive at a feasibility SDP.

The matricial radius algorithm

Let α`r,s denote the (r, s) entry of A`, that is, A` =∑
r,s α

`
rsErs. Solve the SDP:

(RM1) (crs)
d
r,s=1 := C � 0,

(RM2)
d∑
r=1

crr = Ig+1,

(RM3) ∀` = 1, . . . , g, ∀p, q = 1, . . . , g + 1 :∑
r,s

α`rs(crs)p,q = 0 for

(p, q) 6∈ {(1, `+ 1), (`+ 1, 1)},

(RM4)
∑
r,s α

1
rs(crs)1,2 =

∑
r,s α

1
rs(crs)2,1

=
∑
r,s α

2
rs(crs)1,3 =

∑
r,s α

2
rs(crs)3,1 = · · ·

=
∑
r,s α

g
rs(crs)1,g+1 =

∑
r,s α

g
rs(crs)g+1,1

for the unknown C.
This SDP is always feasible (for b :=

∑
r,s α

1
rs(crs)1,2 =

0). Clearly, DL is bounded if and only if this SDP has a
positive solution. In fact, any value of b > 0 obtained gives an
upper bound of 1

b for the norm of an element in DL. The size
of the matrix of unknown variables is d(g+1)×d(g+1) and
there are g3+3g2+3g (scalar) linear constraints. To reduce the
number of unknowns, solve the linear system of g3 +2g2− g
equations given in (RM3).

If one is interested in the biggest norm of an X ∈ DL, then
one maximizes the linear objective function

∑
r,s α

1
rs(crs)1,2

over the spectrahedron given above. If its optimal value is
b ∈ R>0, then ‖X‖ ≤ 1

b for all X ∈ DL, and this bound is
sharp.

Checking boundedness of DL(1) is a classical, fairly basic
semidefinite programming problem. Indeed, given a monic lin-
ear pencil L, DL(1) is bounded (equivalently, DL is bounded)
if and only if the following SDP is feasible:

L(1)(X) � 0, tr
(
L(1)(X)

)
= 1.

(Here, L(1) denotes the truly linear part
∑g
j=1Ajxj of L.)

However, computing the radius of DL(1) is harder. Thus our
algorithm, yielding a convenient upper bound on the radius,
might be of broad interest, motivating us to spend more time
describing its implementation. The algorithm can be written
entirely in a matricial form which is both elegant and easy to
code in Matlab or Mathematica. The matricial component of



the algorithm is as follows. Let en denote the vector of length
n with all ones, let En = en ⊗ etn be the n× n matrix of all
ones. Then (RM2) is (using •H for the Hadamard product)(

eg+1 ⊗ Id
)t(

(Id ⊗Eg+1) •H C
)(
eg+1 ⊗ Id

)
= Ig+1,

while the left hand side of (RM3) can be presented as the
(p, q) entry of(

eg+1 ⊗ Id
)t(

(A` ⊗Eg+1) •H C
)(
eg+1 ⊗ Id

)
.

Equations (RM3) and (RM4) give constraints on these matri-
ces.

As an example we computed the matricial radius of an
ellipse. The corresponding Mathematica notebook is available
at http://srag.fmf.uni-lj.si.

C. Minimal pencils

This section describes an algorithm aimed at constructing
from a given pencil L a pencil L̃ of minimal size with DL =
DL̃.

Let L be a monic linear pencil,

L(x) = I +

g∑
`=1

A`x` ∈ SRd×d〈x〉 (IV.6)

with bounded DL. We present a probabilistic algorithm based
on semidefinite programming that computes a minimal pencil
L̃ with the same matricial LMI set. Our algorithm depends
on the decomposition of a semisimple algebra into a direct
sum of simple algebras, a classical technique in computational
algebra, cf. Friedl and Rońyal [4], Eberly and Giesbrecht
[3], or Murota, Kanno, Kojima, and Kojima [9] for a recent
treatment.

The two-step procedure goes as follows. In Step 1, we
applied the probabilistic method of [9] to find a unitary matrix
U ∈ Rd×d that simultaneously transforms the A` into block
diagonal form, that is,

U∗A`U = ⊕sj=1B
j
` for all `.

For each j, the set {I,Bj1, . . . , Bjg} generates a simple real
algebra. Define the monic linear pencils

Lj(x) = I +

g∑
`=1

Bj`x`, L′(x) = U∗L(x)U = ⊕sj=1L
j(x).

Given `, let L̃` = ⊕j 6=`Lj . If there is no ` such that

L`|DL̃`
� 0,

(this can be tested using SDP as explained in §IV-A) then the
pencil is minimal. If there is such an ` remove such the (one)
corresponding block from L′ to obtain a new pencil and repeat
the process. Once we have no more redundant blocks in L′,
the obtained pencil L̃ is minimal, and satisfies DL̃ = DL by
construction.

V. POSITIVSTELLENSATZ

Algebraic characterizations of polynomials p which are pos-
itive on DL are called Positivstellensätze and are classical for
polynomials on Rg . This theory underlies the main approach
currently used for global optimization of polynomials, cf. [7],
[8], [12]. The generally noncommutative techniques of this
paper and [6] lead to a cleaner and more powerful commutative
Putinar-type Positivstellensatz [15] for p strictly positive on a
bounded spectrahedron DL(1). In the theorem which follows,
SRd×d[y] is the set of symmetric d× d matrices with entries
from R[y], the algebra of (commutative) polynomials with
coefficients from R. Note that an element of SRd×d[y] may
be identified with a polynomial (in commuting variables) with
coefficients from SRd×d.

Theorem V.1. Suppose L ∈ SRd×d[y] is a monic linear
pencil and DL(1) is bounded. Then for every symmetric
matrix polynomial p ∈ R`×`[y] with p|DL(1) � 0, there are
Aj ∈ R`×`[y], and Bk ∈ Rd×`[y] satisfying

p =
∑
j

A∗jAj +
∑
k

B∗kLBk. (V.1)

For perspective we mention that the proof of Theorem V.1
actually relies on the linear Positivstellensatz. For experts we
point out that the key reason LMI sets behave better is that the
quadratic module associated to a monic linear pencil L with
bounded DL is archimedean.

A general Positivstellensatz for matrix polynomials positive
definite on compact semialgebraic sets has been given by Hol
and Scherer [5]. The main difference with our Theorem V.1
is the archimedeanity which is an additional assumption in
[5], but is a consequence of the boundedness of DL(1) in our
setting.
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