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Abstract

Compiled nonlocal games transfer the power of Bell-type multi-prover tests into a single-
device setting by replacing spatial separation with cryptography. Concretely, the KLVY compiler
(STOC’23) maps any multi-prover game to an interactive single-prover protocol, using quantum
homomorphic encryption. A crucial security property of such compilers is quantum soundness,
which ensures that a dishonest quantum prover cannot exceed the original game’s quantum value.
For practical cryptographic implementations, this soundness must be quantitative, providing
concrete bounds, rather than merely asymptotic. While quantitative quantum soundness has been
established for the KLVY compiler in the bipartite case, it has only been shown asymptotically
for multipartite games. This is a significant gap, as multipartite nonlocality exhibits phenomena
with no bipartite analogue, and the difficulty of enforcing space-like separation makes single-
device compilation especially compelling. This work closes this gap by showing the quantitative
quantum soundness of the KLVY compiler for all multipartite nonlocal games. On the way, we
introduce an NPA-like hierarchy for quantum instruments and prove its completeness, thereby
characterizing correlations from operationally-non-signaling sequential strategies. We further
develop novel geometric arguments for the decomposition of sequential strategies into their
signaling and non-signaling parts, which might be of independent interest.

1 Introduction

Nonlocal games are cooperative tasks involving multiple, non-communicating players (provers) and
a referee (verifier), see Fig. 1(a), originally designed to test the foundational limits of classical
physics in Bell’s seminal work [Bel64]. In this setting, provers who share quantum entanglement
can coordinate their answers to the verifier’s questions in ways that are provably impossible using
only classical resources. This “quantum advantage” makes nonlocal games powerful tools for the
device-independent (i.e., black-box) certification of quantum properties, such as entanglement,
which finds application, for instance, in the generation of genuine randomness [Bru+14; Sca12].
The security of these protocols, however, relies on a crucial assumption: that the provers cannot
communicate. Typically, this is enforced by physical (space-like) separation, an approach that is
experimentally demanding [Giu+15; Hen+15] and scales poorly, especially as the number of provers
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increases [HR19]. This raises a fundamental question in both theory and practice: can we leverage
the power of nonlocality within a protocol involving only a single, untrusted quantum device?

The naive approach of having one prover who plays all the roles fails heavily, as the prover would
see all questions and trivially bypass the no-communication constraint. Cryptography provides an
alternative solution. Kalai et al. [Kal+23] introduced a procedure (the KLVY compiler) to transform
any k-player nonlocal game into a sequential, multi-round protocol between a verifier and a single
prover, using quantum homomorphic encryption (QHE) [Bra18; Mah20]; see Fig. 1(c). Intuitively,
the QHE allows the prover to compute on encrypted questions, preventing them from learning
the questions for early players while generating a valid answer for a later player, up to negligible
probability under standard cryptographic assumptions. The KLVY compiler [Kal+23] is known to
be (i) classically sound (a classical prover cannot perform better than in the original game) and (ii)
quantum complete (an honest quantum prover can achieve the optimal quantum score). The central,
unresolved security question is that of quantum soundness : can a dishonest quantum prover exploit
the compiled protocol to exceed the score achievable in the original, spatially-separated game?

Progress on this question has been incremental. Initial results established soundness for specific
bipartite (two-player) games [Bar+24; Cui+24; MPW24; NZ23]. Subsequently, Kulpe et al. [Kul+25]
proved asymptotic soundness for all bipartite games, showing that the compiled game’s score
approaches the true quantum score in the limit of λ→ ∞ for the cryptographic security parameter.
While theoretically significant, this guarantee is insufficient for practical cryptography, which requires
quantitative bounds for a finite, fixed security parameter λ. Furthermore, these bipartite frameworks
did not extend to the multipartite setting, which provides a much richer structure of quantum
advantages, leaving a crucial gap in our understanding.

Two recent and independent works began to close these gaps. Klep et al. [Kle+25] established the
first quantitative soundness bounds for all bipartite games by introducing a sequential variant of the
Navascués-Pironio-Aćın (NPA) hierarchy [NPA08; PNA10]—a powerful tool for bounding quantum
correlations based on semidefinite programming. (See also [Cui+25] for a parallel independent
work that approaches the same problem from the dual sums-of-squares perspective.) In parallel,
Baroni et al. [Bar+25] proved asymptotic quantum soundness for all multipartite games, developing
composable tools that fully generalize the algebraic approach of [Kul+25], setting up a strong
mathematical foundation for future work.

However, a unified solution for the general multipartite case remains challenging, as both previous
results use different (a priori not compatible) techniques, leaving the question of whether quantitative
quantum soundness for all multipartite games can be achieved widely open. More precisely, the
sequential NPA hierarchy of [Kle+25] is tailored to two-player sequential games and does not
naturally accommodate the complex algebraic structure of multipartite interactions of [Bar+25].
Moreover, its core analytical tool—a signaling vs. non-signaling decomposition—is intrinsically
bipartite and does not generalize. This is a significant obstacle, as multipartite nonlocality exhibits
richer quantum phenomena than its bipartite counterpart, and the practical difficulty of enforcing
physical separation among many parties makes a robust cryptographic compilation especially
desirable.

This work overcomes the above obstacles. That is, we answer the question of whether the
quantitative quantum soundness for all multipartite compiled nonlocal games can be achieved in
the affirmative. Our main tool is a novel and composable NPA-like hierarchy designed to model
the sequential application of quantum instruments. This framework, combined with new geometric
proof techniques for the weak signaling decomposition, is rich enough to capture general multipartite
scenarios in the compiled setting and may be of independent interest for the study of complex
quantum protocols.
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(a) Three spatially separated provers, Alice A,
Bob B, and Charlie C, receive questions
x, y, z and return answers a, b, c. The players’
shared strategy is defined by the correlations
p(abc|xyz) with the corresponding score
(winning probability) given by∑

a,b,c,x,y,z βabcxyzp(abc|xyz), where βabcxyz

is the payoff tensor associated with the rule of
the game G. By using a shared entangled
state, the players can generate quantum
correlations leading to scores that provably
exceed classical limitations. The maximum
achievable quantum score is denoted by ωq(G)
(the tensor-product quantum score).

Charlie

Bob

Alice

x

y

z

a

b

c

(b) The game is played in sequence:
Alice acts first with (x, a), then
Bob with (y, b), then Charlie with
(z, c). In the Heisenberg algebraic
picture, a state σ is fixed. Actions
of A,B are described by quantum
instruments (completely positive
maps) {Ta|x}a and {Tb|y}b, while
C measures with POVM effects
{fc|z}c as usual. The resulting
correlations are p(abc|xyz) =
Tr

(
σ · Ta|x ◦ Tb|y(fc|z)

)
.

Operational-non-signaling requires∑
a Ta|x =

∑
a Ta|x′ for all x, x′

and
∑

b Tb|y =
∑

b Tb|y′ for all
y, y′.

Charlie

Bob

Alice

Enc(x)

Enc(y)

z

Enc(a)

Enc(b)

c

(c) A single prover P plays all roles
sequentially. The pairs (x, a) and
(y, b) are sent and returned in
encrypted form Enc(x),Enc(a) and
Enc(y),Enc(b) (the prover
computes on the encrypted data
homomorphically), while (z, c) is
sent in the clear. Security of the
QHE scheme enforces
computational non-signaling
between the A-, B-, and
C-interfaces.

Figure 1: Nonlocal game variants: (a) standard, (b) sequential, (c) compiled. Time flows from top to bottom.

1.1 Main results

Our first main result is a quantitative quantum soundness theorem for all multipartite compiled
nonlocal games, providing bounds for finite security levels. For a given security parameter λ, we
define an efficient prover as one implementable in quantum-polynomial-time (QPT), i.e., by a
quantum circuit of size poly(λ), and we call a function negligible, denoted negl(λ), if it vanishes
faster than the reciprocal of any polynomial in λ.

Theorem A (Theorem 4.4). Let k, λ ∈ N, let G be a k-partite nonlocal game with optimal
commuting-operator quantum score ωqc(G), and let Gcomp be its compiled version. Let S = (Sλ)λ be
any strategy employed by an efficient prover, and denote by ωλ(Gcomp, S) its compiled Bell score.

If G admits a finite-dimensional optimal quantum strategy (hence ωqc(G) = ωq(G), where ωq(G) is
the optimal tensor-product quantum score), then there exists a negligible function neglS(λ) (depending
on the QHE scheme and on S) such that

ωλ(Gcomp, S) ≤ ωq(G) + neglS(λ). (1)

More generally, for every k-partite nonlocal game G and for every n ∈ N, there exists a negligible
function neglS,n(λ) (depending on the QHE scheme, the strategy S, and n) such that

ωλ(Gcomp, S) ≤ ωn
kseqNPA(G) + neglS,n(λ), (2)
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where ωn
kseqNPA(G) is the level-n value of the k-partite sequential NPA hierarchy (see Eq. (10) for

the full definition), such that ωn
kseqNPA(G) ↘ ωqc(G) as n→ ∞.

This theorem recovers the quantitative bipartite result of [Kle+25] for k = 2. In the limit where
n, λ→ ∞, it reproduces the asymptotic multipartite result of [Bar+25]. Thus, Theorem A unifies
all prior work, delivering both quantitative guarantees for finite-dimensional games and asymptotic
soundness in the general case, definitively settling the problem of quantum soundness for KLVY
compilers.

The central technical tool enabling this result is a novel sequential NPA hierarchy, for which we
show completeness, strict feasibility, and a stopping criterion for finite convergence.

Theorem B (Informal, Theorems 3.6, 3.8 and 3.9). For any k, the k-partite sequential NPA
hierarchy (Eq. (10)) is strictly feasible, and is complete with respect to k-partite commuting-observable
strategies (and thus k-partite operationally-non-signaling sequential strategies), i.e., the sequence of
its finite-level values satisfies

ωn
kseqNPA(G) ↘ ωqc(G) as n→ ∞.

Moreover, a game G admits a flat optimal solution to Eq. (10) if and only if it admits a finite-
dimensional optimal quantum strategy.

1.2 Methods and techniques

As in Theorem A, our primary goal is to characterize and compute upper bounds on the scores of
compiled nonlocal games. Recent works [Bar+25; Kul+25] established a crucial connection: in the
asymptotic limit of perfect cryptographic security, compiled strategies (Fig. 1(c)) are equivalent to
sequential strategies (Fig. 1(b)) where players are constrained to be operationally-non-signaling—
meaning their quantum output, averaged over all classical outcomes, reveals no information about
their classical input. This provides a path to bounding compiled scores by analyzing their sequential
counterparts.

However, for any real-world implementation with a finite security parameter, this correspondence
is not exact, and a quantitative analysis is required. The framework of [Kle+25] provided the
first quantitative bounds for bipartite nonlocal games as follows: they introduce a sequential NPA
hierarchy that is complete to the bipartite quantum scenarios. Then, they show that any efficient
strategy for a compiled game is necessarily “close” to a feasible solution of this hierarchy, using a
signaling decomposition argument. By proving this, the score of the compiled strategy becomes
bounded by the value of the sequential hierarchy, thus proving soundness due to its convergence.

This bipartite solution, however, faces two fundamental obstacles that prevent its generalization
to multipartite cases:

1. An unextendable hierarchy: The bipartite hierarchy in [Kle+25] is built on the Schrödinger
picture, modeling the post-measurement state passed between players. While sufficient for
two players, this approach loses critical algebraic information and is known to fail multipartite
scenarios [Sai+15]. Multipartite sequential protocols require a more robust model that can
handle a chain of quantum instruments (CP maps).

2. A non-scalable proof technique: The signaling decomposition argument in [Kle+25] relies on
a Gelfand-Naimark-Segal (GNS) representation of the underlying algebra. This argument
is intrinsically bipartite and does not generalize to the multipartite setting, necessitating a
completely new approach.
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Figure 2: Geometric sketch of proof for Theorem A, detailed in Section 4.2. The gray region is the PSD
cone; the blue slice encodes the Hankel condition and operationally-non-signaling constraints of our k-partite
sequential NPA hierarchy Eq. (10). The thick dark line indicates normalized moment matrices. From a

compiled strategy we extract Γ
(n),λ
comp. Applying the projector Π (constructed based on Eq. (12)) yields Γ

(n),λ
1

that satisfies the affine constraints but may fail PSD and normalization. Positivity is restored by convexly

mixing with a strictly feasible point Γ
(n)
strict, giving Γ

(n),λ
2 , which is then rescaled to a normalized Γ(n),λ that is

a feasible solution to our multipartite NPA hierarchy.

This paper overcomes both obstacles by adopting the same high-level approach while introducing
entirely new, scalable tools. First, to replace the unextendable bipartite model, we introduce
a composable multipartite sequential NPA hierarchy based on the Heisenberg picture, which is
guaranteed to converge for any number of players. Second, to replace the non-scalable proof
technique, we develop a novel, concise, and scalable geometric proof illustrated by Fig. 2. This new
argument establishes the crucial closeness result between a near-solution from a compiled strategy
and a true feasible solution in our hierarchy. Together, these contributions prove quantitative
soundness for compiled games with any number of players. We now detail our techniques in two
parts.

A sequential NPA hierarchy for quantum instruments. The Navascués-Pironio-Aćın (NPA)
hierarchy [NPA08; PNA10], a noncommutative generalization of the Lasserre-Parrilo hierarchy [Las01;
Par03], is a cornerstone for analyzing nonlocal games. It provides a sequence of increasingly tight
semidefinite programming (SDP) relaxations that systematically compute upper bounds on the
optimal quantum score. However, the standard NPA hierarchy is designed for the standard Bell
scenario (Fig. 1(a)), where all players’ actions are modeled as terminal measurement POVMs
that commute. Specifically, consider a game G with questions x, y, z, . . . and answers a, b, c . . . ,
the POVMs of all players are modeled with commuting letters {fa|x}, {fb|y}, {fc|z}, etc. These
letters form words that index a moment matrix, which encodes the expectation values of all such
operator words with respect to the underlying quantum states and thus characterizes the commuting
observable quantum strategies. However, it cannot describe sequential protocols (Fig. 1(b)) or their
compiled counterparts (Fig. 1(c)) that are central to our work, where the actions of earlier players
are quantum instruments that transform the state for subsequent players.

This necessitates a fundamental generalization of the NPA framework for the sequential settings.
To this end, we introduce a composable, multipartite sequential NPA hierarchy (Eq. (10)) that is
complete for both the quantum sequential and nonlocal scenarios (Theorem B). We now sketch its
construction, focusing on the tripartite case for demonstration purposes.
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We use notations of Fig. 1(b), based on the Heisenberg algebraic picture of a sequential game,
dual to the standard Schrödinger’s picture in which maps act on states. More precisely, the quantum
instruments modeling Alice’s and Bob’s actions do not act on the state σ which is fixed, but on
Charlie’s measurement operators (see Eq. (3) below). Alice’s and Bob’s actions are described by
completely positive (CP) maps (quantum instruments) {Ta|x}a and {Tb|y}b, while the final player,
Charlie, performs a standard measurement with POVM effects {fc|z}c. With these objects, the
corresponding correlations are

p(abc|xyz) = Tr
(
σ · Ta|x ◦ Tb|y(fc|z)

)
,

achieving the score ∑
a,b,x,y

βabcxyzp(abc|xyz),

where βabcxyz is the payoff tensor associated with the rule of the game G. Diagrammatically, the
sequentiality can be represented by

fc|z of C
Tb|y−−→ Tb|y(fc|z) of B

Ta|x−−−→ Ta|x ◦ Tb|y(fc|z) of A. (3)

The final pieces of the sequential scenarios are the operationally-non-signaling constraints of Alice’s
and Bob’s actions, which are, respectively,∑

a

Ta|x =
∑
a

Ta|x′ ,
∑
b

Tb|y =
∑
b

Tb|y′ ,

for all x, x′, y, y′.
Our sequential variant must therefore algebraically encode both the ordered action of these

instruments and their CP-map-level operationally-non-signaling constraints. The core of our solution
is a level-n moment matrix, Γ(n), whose entries correspond to the expectation values of different
operators with respect to the shared quantum state σ. That is, for any two operator words w and v,
the corresponding matrix entry is:

Γ(n)
w,v = L2n(w∗v) = Tr(σ · w∗v),

where L2n is the associated linear map modeling Tr(σ ·). The fundamental challenge is to (1) define
a set of operator words that captures the sequential structure of the game and (2) implement the
appropriate constraints on Γ(n) to model the sequential scenarios.

For (1), the solution is a sequential construction of the “words” (operator monomials) that index
our Γ(n), which we start from the last player as in Eq. (3):

(a) The final player Charlie: We begin with Charlie, whose action is a standard POVM. Similarly
to the standard NPA hierarchy, we describe his measurements with a set of operator letters
{fc|z}. These letters form words (monomials) such as u = fc1|z1fc2|z2 · · · fcm|zm , which have a
degree m, denoted by deg u = m. The set of all such words with deg u ≤ n forms our base
word set, Wn

C .

(b) The preceding player Bob: To model Bob’s quantum instrument {Tb|y}, we introduce a set
of ∗-homomorphisms {Tb|y}. (This representation is justified by the Stinespring dilation
theorem, which guarantees that any quantum instrument (a CP map) can be “lifted” to a ∗-
homomorphism on a larger space.) These are maps that act on Charlie’s operators to generate
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new letters, fbc|yz := Tb|y(fc|z), which algebraically capture the effect of Bob’s instrument on
the subsequent system. The set of all words formed from these new letters up to degree n is
denoted Wn

BC .

(c) The first player Alice: We proceed sequentially for Alice, defining her corresponding Stinespring
dilated ∗-homomorphisms {Ta|x} which act on the words of Bob and Charlie. This generates
the final set of letters fabc|xyz = Ta|x(fbc|yz) and the degree ≤ n word set Wn

ABC . This layered
construction directly models the sequentiality of the protocol analogous to Eq. (3):

fc|z (Charlie)
Tb|y−−→ fbc|yz (Bob)

Ta|x−−→ fabc|xyz (Alice).

(d) The moment matrix : This sequential process defines the full set of words Wn
ABC that index

our moment matrix Γ(n). The entry Γ
(n)
1,fabc|xyz

represents the correlation p(abc|xyz), and

consequently corresponding score in game G with the payoff tensor βabcxyz is∑
a,b,c,x,y,z

βabcxyzΓ
(n)
1,fabc|xyz

.

With the indices of Γ(n) sequentially defined, we now address (2) by identifying the appropriate
constraints to recover a sequential quantum strategy as the NPA level n→ ∞.

(A) Standard constraints: Since Γ(n) and L2n are to model the expectation map Tr(σ ·), this
physical interpretation leads directly to three fundamental constraints on Γ(n). First, for L2n

to be a well-defined linear map on the word sets, the matrix Γ(n) must be symmetric, and
satisfy a Hankel-like condition. Second, since Tr(σ ·) is a positive map for any state σ, the
functional L2n must also be positive. This is precisely equivalent to the constraint that Γ(n)

must be positive semidefinite (PSD). Third, the state normalization Tr(σ) = 1 corresponds to

L2n(1) = 1, which implies the matrix normalization condition Γ
(n)
1,1 = 1.

(B) Alice’s operationally-non-signaling constraint : A crucial innovation of our hierarchy are CP
map level constraints that formalize the notion of operationally-non-signaling, meaning that
the marginal maps

∑
a Ta|x and

∑
a Ta|x′ are the same if only tested against polynomials up

to degree n; as n goes to infinity, perfect operationally-non-signaling constraints are retrieved.
The constraints for Alice’s instrument read:

L2n
(
w∗
∑
a

(
Ta|x(r∗s) − Ta|x′(r∗s)

)
v
)

= 0

for all x, x′, and for all words r, s built from {fbc|yz} and w, v from {fabc|xyz} up to a total
degree ≤ 2n. Here, the central term

∑
a

(
Ta|x(r∗s) − Ta|x′(r∗s)

)
tests Alice’s non-signaling

condition on an arbitrary operator r∗s from Bob’s algebra. This test is then embedded within
the context of arbitrary actions from the full sequential strategy that Alice can perform (words
w, v), ensuring the condition holds universally.

(C) The constraint for Bob’s instrument is more involved, but demonstrates the composable
structure of our method:

L2n
(
Ta|x

(
r∗
∑
b

(
Tb|y(t∗u) − Tb|y′(t

∗u)
)
s
))

= 0,
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for all a, x, y, y′, and for all words r, s built from {fbc|yz} and t, u from {fc|z} up to a total
degree ≤ 2n. Similarly, the central term,

∑
b

(
Tb|y(t∗u) − Tb|y′(t

∗u)
)
, tests Bob’s non-signaling

condition on an arbitrary operator t∗u from Charlie’s algebra. This core expression is embedded
within the context of arbitrary operators from Bob’s layer (words r, s) and placed under every
possible action by Alice (Ta|x, ∀a, x). In this way, the SDP enforces Bob’s non-signaling
constraints across every possible algebraic context created by the preceding players.

Following (a)-(d) and (A)-(C), we reach the subsequent definition of the tripartite sequential
NPA hierarchy that maximizes the score achievable by all sequential quantum strategies (Eq. (7)):

ωn
3seqNPA(G) := max

∑
a,b,c,x,y,z

βabcxyz Γ
(n)
1,fabc|xyz

s.t. Γ(n) ⪰ 0, Γ
(n)
1,1 = 1, (PSD and normalization)

Γ
(n)
w,w′ = Γ

(n)
v,v′ whenever w∗w′ = v∗v′, (Hankel condition)

L2n
(
w∗
∑
a

(
Ta|x(r∗s) − Ta|x′(r∗s)

)
v
)

= 0

∀x,x′,∀w,v∈Wn
ABC ,

r,s∈Wn
BC ,

degw+deg v+deg r+deg s≤2n
(Alice operationally-non-signaling)

L2n
(
Ta|x

(
r∗
∑
b

(
Tb|y(t∗u) − Tb|y′(t

∗u)
)
s
))

= 0

∀ a,x,y,y′,
r,s∈Wn

BC ,
t,u∈Wn

C ,
deg r+deg s+deg t+deg u≤2n

(Bob operationally-non-signaling).

(4)
As showcased in the sequential construction (a)-(d), it is straightforward to obtain the word sets

to any k-partite scenarios. Analogously, the operationally-non-signaling constraints in (B) and (C)
can be generalized to k-partite scenarios in an inductive way. Indeed, by induction, we formulate in
Eq. (10) the general k-partite sequential NPA hierarchy. As stated in Theorem B, this hierarchy is
complete to both the standard multipartite quantum strategies (Fig. 1(a)) and the multipartite
quantum sequential strategies (Fig. 1(b)).

In contrast to the bipartite hierarchy of [Kle+25] formulated in the Schrödinger picture, our novel
sequential construction operates in the Heisenberg picture. Instead of tracking the evolving state,
we model the transformations themselves using ∗-homomorphisms. This preserves the complete
algebraic structure of each quantum instrument in the sequence. This perspective provides a clean
and rigorous way to encode the CP-map-level non-signaling constraints, leading to a hierarchy that
is powerful enough to converge for any number of players (as shown in Theorem B). We expect this
technique to be of independent interest for the computational analysis of multi-round quantum
protocols and in fields where CP maps are fundamental [Pau02; Rag03].

A scalable geometric argument to decompose compiled correlations. To prove the
quantitative soundness for compiled games using our new hierarchy, we must connect the two. The
high-level strategy, mirroring that of [Kle+25], is to show that any efficient compiled strategy is
“close” to a genuinely feasible solution within our multipartite sequential NPA hierarchy. However, as
previously discussed, the representation-based signaling decomposition argument used in [Kle+25]
is intrinsically bipartite and fails here.
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We therefore introduce a novel, scalable geometric proof that achieves this closeness result
(illustrated in Fig. 2 and fully presented in Section 4). The core idea is as follows:

1. As a consequence of [Bar+25], an efficient compiled strategy, due to finite cryptographic

security λ, produces a moment matrix Γ
(n),λ
comp that acts as a “pseudo-solution” for our hierarchy.

It is positive and normalized, but it weakly violates the operationally-non-signaling constraints.

Based on Γ
(n),λ
comp, our proof then geometrically constructs a nearby, genuinely feasible solution.

2. We first project Γ
(n),λ
comp onto the affine subspace of matrices that perfectly satisfy the non-

signaling and Hankel constraints. However, this projected matrix might no longer be PSD
and normalized.

3. We then restore positivity by taking a slight convex combination with a known, strictly feasible

solution Γ
(n)
strict (Theorem 3.9). Finally, we re-normalize the result to obtain a genuine, feasible

solution Γ(n),λ that satisfies all constraints of our hierarchy.

4. We prove that Γ(n),λ is negligibly close to the original Γ
(n),λ
comp in operator norm (Theorem 4.3).

The quantitative soundness theorem is then a direct corollary of this closeness.

The key advantage of this geometric approach is its scalability. It provides a powerful template for
establishing quantitative control in complex quantum scenarios where representation-based algebraic
arguments are insufficient.

1.3 Further discussions

Our results provide a definitive resolution to the question of quantitative quantum soundness for all
compiled nonlocal games and introduce a powerful new hierarchy for analyzing sequential quantum
protocols. We briefly discuss the implications of both contributions.

Resolving quantum soundness for multipartite games. Our main result (Theorem A) establishes
the quantitative soundness of multipartite compiled games, elevating them to a provably secure
framework. This is a critical step because many unique quantum phenomena, such as the GHZ
paradox and genuine multipartite nonlocality, have no bipartite analogue. Our work makes it possible
to explore and certify these genuinely multipartite phenomena, such as self-testing multipartite
states, within the practical single-device model, opening a new perspectives for both theoretical and
experimental research.

With quantitative soundness established, a natural next step is to optimize the resulting
protocols for efficiency. Compiling a game with k players produces a protocol consisting of k
rounds. An interesting open question is whether the number of rounds can be reduced without
jeopardizing observable classical-quantum and quantum-post quantum separations. In particular, for
strategies that give rise to correlations violating Svetlichny-type inequalities (genuine multipartite
nonlocality) [Sve87], it is plausible that merging two rounds into a single one might still yield an
observable classical–quantum separation. Furthermore, adapting techniques used in self-testing
allowing communication among certain parties [Mey+24; MB23] might lead to retain quantum
soundness of compiled games with a reduced number of rounds. Exploring such round-compression
techniques could lead to more efficient compiled protocols.

Future directions for the multipartite sequential NPA hierarchy. Beyond its immediate application
in this work, our multipartite sequential NPA hierarchy for quantum instruments is a technical
contribution that could be of independent interest. It provides the first systematic, convergent, and
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composable tool for computing bounds on the capabilities of sequential quantum strategies. This
opens up several avenues for future research:

1. Numerical performance and convergence. Our sequential NPA hierarchy involves smaller
moment matrices at each level compared to the standard NPA hierarchy, but incorporates
more complex constraints. Understanding this trade-off between the rate of convergence and the
moment matrix size can be interesting both theoretically and important for practical numerical
implementation. Such insight can have further implications to related SDP hierarchies,
such as the sparse SOS hierarchies [KMP22; MW23] and the bipartite sequential NPA
hierarchies [Kle+25].

2. Extending device-independent certification. The standard NPA hierarchy is often the foundation
for the device-independent certification of properties like randomness and entanglement. Our
hierarchy extends this capability to a broader class of sequential and multi-round protocols,
enabling the certification of tasks where players act one after another.

3. Beyond operationally-non-signaling constraints. The algebraic nature of our framework is
not limited to non-signaling. It can be adapted to enforce other constraints on quantum
instruments to describe different scenarios. For instance, one could require a specific instrument
outcome (a = 0) to correspond to an identity channel, a common feature in error correction
or gate-based protocols. Moreover, it can be adapted to model new constraints due to
cryptographic primitives beyond the homomorphic encryption.

4. Analyzing quantum interactive proofs. Our current work models a linear sequence of players.
However, its composable, algebraic nature suggests it could be extended to analyze protocols
with more complex interaction structures. It could provide a framework for understanding
more general interactive quantum protocols (where a quantum prover with memory interacts
with a verifier over multiple rounds), a central scenario in quantum complexity theory and
quantum cryptography.

In summary, by providing both a complete solution to the soundness problem and a novel
analytical tool, our work strengthens the foundations of single-device quantum cryptography and
offers new capabilities for the broader study of quantum information protocols.

1.4 Outline of the manuscript

The remainder of this paper is organized as follows. Section 2 presents necessary preliminaries:
We review the necessary background, defining nonlocal and compiled games (Section 2.1), and the
standard NPA hierarchy (Section 2.2). Section 3 then presents the novel multipartite sequential
NPA hierarchy, where we introduce the construction progressively: Section 3.1 first revisits the
bipartite case to provide a proof of concept and contrast our Heisenberg-picture approach with the
Schrödinger-picture method of [Kle+25]. Section 3.2 then uses the tripartite case as a pedagogical
bridge to the general construction. Section 3.3 presents the full, general k-partite hierarchy and
proves its key properties—completeness, the flatness condition, and strict feasibility. Then, Section 4
works up to the main quantitative quantum soundness result: We leverage our new hierarchy to
prove the main result of this paper: quantitative quantum soundness for all multipartite compiled
nonlocal games (Theorem A). After establishing notation in Section 4.1, Section 4.2 develops the
novel geometric proof, detailing the projection, regularization, and normalization argument that
overcomes the limitations of prior techniques. The manuscript finishes with Section A on a brief
comparison on [Bar+25; Kle+25].
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2 Preliminaries

We introduce the notations of nonlocal games and compiled games in Section 2.1, followed by a
brief introduction of the NPA hierarchy in Section 2.2.

2.1 Nonlocal games and compiled games

A nonlocal game G is an interaction involving a referee and multiple players (provers) who cannot
communicate with each other during the game; see Fig. 1(a) for a tripartite example. The referee
sends each player a question xi (drawn from some specified distribution µ(x⃗)), and each player
must respond with an answer ai. Whether the players win is decided by a publicly known rule (a
predicate depending on all questions and answers) V (⃗a, x⃗). No communication means each player
must base their answer only on their own question and a prior agreed-upon strategy among the
players, but not on the other players’ questions or answers. The players’ goal is to maximize their
winning probability

∑
x⃗a⃗ µ(x⃗)V (⃗a, x⃗)p(⃗a|x⃗) by coordinating a strategy ahead of time (they know

the game’s description in advance).
The classical value (or score) of a nonlocal game is the maximum success probability achievable

when the players share only classical resources, e.g., a pre-shared random string (common randomness)
or any predetermined classical strategy. Denoting with fi an arbitrary deterministic function mapping
input xi to output ai, the classical value takes the form

ωc(G) = max
f1,··· ,fk

∑
x⃗

µ(x⃗)V (x1, · · · , xk, f1(x1), · · · , fk(xk)).

In contrast, the quantum value (or score) is the maximum winning probability when players can use
quantum resources such as shared entangled states ρ and quantum measurements Mai|xi

:

ωq(G) = sup
ρ,Ma1|x1 ,··· ,Mak|xk

∑
a⃗,x⃗

µ(x⃗)V (x⃗, a⃗) Tr

(
k⊗

i=1

Mai|xi
ρ

)
.

Quantum strategies can outperform classical ones in certain games, a phenomenon known as a
nonlocal quantum advantage. For example, in the famous CHSH game [Cla+69], the best classical
strategy wins with probability 0.75, whereas players sharing an entangled qubit pair can win with
probability about 0.85. This higher success rate (≈ 85% vs 75%) is a quantum advantage that
cannot be achieved by any classical means. Such nonlocal games (also called Bell games in physics)
thus highlight the stronger-than-classical correlations allowed by entanglement.

It is worth noting a subtle point about the definition of “quantum value”. In finite-dimensional
quantum systems, insisting that players cannot communicate is equivalent to requiring that they act
on separate Hilbert spaces (tensor factors) of a joint entangled state. More generally, one can impose
that all of one player’s measurement operators commute with all of the other player’s operators,
which is a formal way to enforce a non-signaling condition in possibly infinite-dimensional or arbitrary
systems. While the tensor-product and commuting definitions coincide for finite dimensions [SW08],
a result now known to be robust [Oza13; XRK25], they differ in general [Ji+22]. This leads to
the definition of the quantum commuting operator value of a game, which is the supremum win
probability attained by any strategy where the players’ operations commute:

ωqc(G) = sup
ρ,Na1|x1 ,··· ,Nak|xk

∑
a⃗,x⃗

µ(x⃗)V (x⃗, a⃗) Tr

(
k∏

i=1

Nai|xi
ρ

)
.
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While nonlocal games traditionally require multiple spatially isolated devices, the recent line
of work initiated by [Kal+23] shows that, under computational assumptions, one can compile a
k-prover game G to produce a new protocol between a single QPT prover and a classical verifier,
which we call a compiled nonlocal game. Intuitively, the compilation procedure simulates space-like
separation using cryptography and a specific sequential structure as in Fig. 1(c): the verifier sends an
encrypted question, and always wait for an encrypted answer before sending the following question;
the last question-answer round doesn’t need to be encrypted.

Definition 2.1 (Compiled k-partite nonlocal game). Let G be a k-partite nonlocal game with input
alphabets Xi, answer alphabets Ai, input distribution µ on X := X1 × · · · × Xk, and predicate
V (x⃗, a⃗), where x⃗ = (x1, . . . , xk) and a⃗ = (a1, . . . , ak). Fix a quantum homomorphic encryption
scheme QHE = (Gen,Enc,Eval,Dec).

For a security parameter λ, the KLVY compilation outputs a sequential protocol Gλ
comp with k

rounds. Define by Gcomp := (Gλ
comp)λ the compiled nonlocal game of G. At the beginning of the

protocol, the verifier runs Gen(1λ) to generate a secret key sk for QHE, and samples inputs x⃗ from
the distribution µ. In rounds i ∈ {1, . . . , k − 1}, the verifier then uses their key to compute and
send encryptions Encsk(xi) and receives as responses ai; in the last round k the verifier sends xk
in the clear and receives ak. The verifier decrypts the responses to obtain ai := Decsk(ai) for all
i ∈ {1, . . . , k− 1}, forming the transcript (x⃗, a⃗), which is evaluated using the same predicate V as in
G.

Let S = (Sλ)λ be any efficient prover strategy for Gcomp (i.e., Sλ implementable by quantum
circuits of size poly(λ)). Denote by pλ(⃗a|x⃗) the correlation realized by Sλ in Gλ

comp at security
parameter λ. The compiled Bell score of S is

ωλ(Gcomp, S) :=
∑
x⃗,⃗a

βx⃗,⃗a p
λ(⃗a|x⃗),

where we write the payoff tensor βx⃗,⃗a := µ(x⃗)V (x⃗, a⃗) to simplify the notation for the remainder of
this manuscript.

Despite the added difficulty of encryption, the compiled game is designed so that an honest
quantum prover can still play optimally. In fact, KLVY [Kal+23] proved two key properties of
their compiler, classical soundness and quantum completeness, for all k-partite games. Classical
soundness refers to the fact that any efficient classical prover (one who does not use entanglement
or quantum memory) with strategy Sclassical cannot win the compiled game with probability higher
than the original game’s classical value:

ωλ(Gcomp, Sclassical) ≤ ωc(G) + negl(λ),

where negl(λ) is a negligible function that goes to zero faster than the reciprocal of any polynomial
in λ, which is also dependent on the QHE scheme for the compilation. Quantum completeness refers
to the fact that there exists an efficient quantum strategy Scomplete for the compiled game whose
success probability approaches the original game’s quantum value as the security parameter grows:

lim
λ→∞

ωλ(Gcomp, Scomplete) = ωq(G).

In particular, if the original nonlocal game exhibits a quantum advantage, then the compiled
single-prover protocol also exhibits a classical-quantum gap, at least as big as the nonlocal one.

With the above setup, quantum soundness refers to the property that even a malicious quantum
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prover cannot win with probability exceeding the optimal quantum value of the original k-player
nonlocal game.

Definition 2.2 (Quantum soundness for compiled k-partite games). Let G be a k-partite nonlocal
game with quantum value ωq(G) and commuting-operator value ωqc(G). Let Gcomp := (Gλ

comp)λ
denote the family of compiled games produced by the KLVY compilation at security parameter λ.

Let S = (Sλ)λ be any efficient (QPT) prover strategy for Gcomp, and let pλ(⃗a|x⃗) be the correlation
realized by Sλ in Gλ

comp. We say that the compiler is quantum sound (against QPT strategies) if
there exists a value B(G) ∈ {ωq(G), ωqc(G)} such that for every efficient strategy S there exists a
negligible function neglS(λ) with

ωλ(Gcomp, S) ≤ B(G) + neglS(λ) for all λ ∈ N.

Our focus here is precisely on establishing quantitative quantum soundness for all compiled
k-partite games: an analytical upper bound on the compiled protocol’s quantum winning probability
as a function of λ, showing it stays within a negligible distance of the appropriate benchmark from
the original k-partite game.

2.2 The NPA hierarchy for bounding quantum correlations

To upper-bound the winning probabilities of quantum strategies in a k-partite nonlocal game G, a
powerful tool is the Navascués-Pironio-Aćın (NPA) hierarchy [NPA08; PNA10]. The hierarchy is a
sequence of increasingly tight semidefinite programming (SDP) relaxations that characterize the set
of quantum-achievable correlations. In broad terms, NPA provides a family of efficiently checkable
necessary conditions for a conditional distribution p(⃗a|x⃗) to arise from some quantum strategy. By
optimizing the game’s payoff over these conditions, one obtains an upper bound on the quantum
value. If, at some finite level, a distribution violates an NPA constraint, then it cannot come from
any measurement on any shared quantum state. Conversely, as one increases the level (adding
higher-degree algebraic constraints), the feasible set converges to the set of commuting-operator
quantum correlations, and thus the bounds converge to the commuting-operator value ωqc(G). In
practice, low levels already yield sharp bounds for many games.

To explain the construction in the k-partite setting, it is convenient to use an abstract algebraic
presentation.

Definition 2.3 (Measurement symbols and relations). For each player i ∈ [k], question xi ∈ Xi,

and answer ai ∈ Ai, introduce a symbol f
(i)
ai|xi

that represents a measurement effect. Without loss of
generality the measurements can be assumed to be projective

f
(i)
ai|xi

∗
= f

(i)
ai|xi

, f
(i)
ai|xi

f
(i)
a′i|xi

= δai,a′if
(i)
ai|xi

,
∑
ai

f
(i)
ai|xi

= 1

and we impose inter-party commutation

[f
(i)
ai|xi

, f
(j)
aj |xj

] = 0 (i ̸= j).

Any commuting-operator strategy is a ∗-representation of these symbols on a Hilbert space with a
state ρ.

The NPA hierarchy is phrased in terms of words (monomials) in these symbols and a corresponding
moment matrix.
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Definition 2.4 (Words and level-n moment matrix). Fix a truncation level n ∈ N, n ≥ 1. Let Wn be

the set of words of length ≤ n in the symbols f
(i)
a|x (and 1), modulo the relations above; because different

players’ symbols commute, words admit a canonical normal order. Given a commuting-operator

realization
(
ρ, {f (i)a|x}

)
and a purification |ψ⟩ of ρ, the level-n moment matrix is the Hermitian

matrix
Γ(n)
w,v = ⟨ψ|w∗v |ψ⟩ , ∀w, v ∈ Wn.

Then Γ(n) ⪰ 0 (it is a Gram matrix), and it satisfies all linear identities implied by Theorem 2.3.
The degree-1 block reads off the correlation:

p(⃗a|x⃗) = Γ
(n)

1,Πk
i=1f

(i)
ai|xi

,

whenever Πk
i=1f

(i)
ai|xi

∈ W(n).

With these ingredients, the level-n NPA relaxation is the SDP that maximizes the game’s payoff
over all PSD matrices Γ(n) obeying the linear identities.

Definition 2.5 (Level-n NPA upper bound for a k-partite game). Let βa⃗,x⃗ be the payoff tensor (in
predicate form βa⃗,x⃗ = µ(x⃗)V (x⃗, a⃗)) from the nonlocal game G. The level-n NPA bound is

ωn
NPA(G) := max

Γn

∑
a⃗,x⃗

βa⃗,x⃗Γ
(n)

1,Πk
i=1f

(i)
ai|xi

s.t. Γ(n) ⪰ 0,

all linear identities induced by the relations on Wn.

Two basic properties encapsulate the usefulness of the hierarchy:

(a) Soundness. Any commuting-operator strategy produces a feasible Γ(n), so for all n

ωqc(G) ≤ ωn
NPA(G).

(b) Monotone convergence. The sequence ωn
NPA(G) is nonincreasing and converges to the commuting-

operator value:
ω1
NPA(G) ≥ ω2

NPA(G) ≥ · · · ↘ ωqc(G).

Thus, optimizing at higher levels tightens the upper bound, and in the limit (including moments of
all lengths) one recovers the exact commuting-operator quantum value.

3 Generalized NPA hierarchy for multipartite quantum sequential
scenarios

In this section, we introduce a generalized NPA hierarchy that converges to multipartite sequential
setups as in Fig. 1(b). The main novelty of our multipartite generalization is the use of ∗-
homomorphisms with appropriate constraints, which allows us to model quantum instruments that
are essential in the description of multipartite quantum sequential scenarios.

We begin with the bipartite sequential scenarios in Section 3.1 to set a foundation for the
more complex multipartite scenarios, and to contrast the subnormalized-moment-matrix method
of [Kle+25]. In Section 3.2, we then discuss in detail the construction of the tripartite case for
pedagogical purposes and finally introduce the k-partite sequential NPA hierarchy in Section 3.3.
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3.1 Bipartite case revisited

As a proof of concept, we first consider the well-understood bipartite case and introduce a sequential
generalization of the NPA hierarchy that is more composable than that of [Kle+25] (see Section A.1
for a quick review).

In a sequential bipartite game G, Alice receives some state σ, applies some quantum instrument
Aa|x, and passes it to Bob for another measurement Bb|y. Using the notation from [Bar+25,
Lemma 12] and thinking in the Heisenberg picture, we first consider generators {fb|y | ∀b, y}
satisfying the relations RB:

f∗b|y = fb|y, fb|yfb′|y = δb,b′fb|y,
∑
b

fb|y = 1.

Define Bob’s algebra by the universal PVM C∗-algebra as

AB = C∗({fb|y}b,y | RB).

In addition, consider generators {fab|xy | ∀a, b, x, y} satisfying the relations RAB:

f∗ab|xy = fab|xy, fab|xyfa′b′|xy = δa,a′δb,b′fab|xy,∑
b

fab|xy =
∑
b

fab|xy′ ∀y, y′,
∑
a,b

fab|xy = 1.

Define the post-Alice-measurement algebra of Bob by

AAB = C∗({fab|xy}a,b,x,y | RAB),

denoted as AA→B in [Bar+25]. For every a, x, it is shown in [Bar+25] that there exists a (not
necessarily unital) *-homomorphism that maps generators to generators

Ta|x : AB → AAB, fb|y 7→ fab|xy,

which shall be central to our analysis. A simple –but very effective– change of perspective with
respect to all previous works, is to not model Alice’s action as post-measurement states φa|x, but
through CP maps Ta|x.

For the game G and a correlation p(ab|xy), the associated score is
∑

a,b,x,y βabxyp(ab|xy). Denote
the objective Bell polynomial by

β =
∑

a,b,x,y

βabxyfab|xy ∈
∑
a,x

Ta|x(AB) ⊂ AAB.

We now construct a variant of the NPA hierarchy with words fab|xy and leverage the equality
fab|xy = Ta|x(fb|y) to encode the sequential information, such that it converges to the algebraic
bipartite sequential strategy.

To this end, define the word sets at level n by

Wn
AB :=

{
w = fa1b1|x1y1 · · · fakbk|xkyk

∣∣ 0 ≤ k ≤ n
}
⊂ AAB,

Wn
B :=

{
w = fb1|y1 · · · fbk|yk

∣∣ 0 ≤ k ≤ n
}
⊂ AB,

Ta|x
(
Wn

B

)
=
{
fab1|xy1 · · · fabk|xyk

∣∣ 0 ≤ k ≤ n
}
⊂ Ta|x(AB) ⊂ AAB.
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Clearly, β ∈ span(Ta|x
(
Wn

B

)
) ⊂ span(Wn

AB) for n ≥ 1. Note that for any polynomial s ∈ span(Wn
B),

the polynomial Ta|x(s) ∈ Wn
AB has the same degree as s, i.e., the homomorphism Ta|x does not

increase the degree.
Consider the matrix Γ(n) indexed by the monomials/words in Wn

AB with the associated functional
L2n : W2n

AB → C defined by

L2n(w∗v) := Γ(n)
w,v, ∀w, v ∈ Wn

AB.

For any P ∈ span(W2n
AB) with degP = k, denote by

Γ(n)(P )w,v = L2n(w∗Pv), ∀w, v ∈ Wn−⌈k/2⌉
AB

the localizing matrix of Γ(n) at P . This leads to the following NPA-like hierarchy at level n:

ωn
2seqNPA(G) := max

∑
a,b,x,y

βabxy Γ
(n)
1,fab|xy

s.t. Γ(n) ⪰ 0,

Γ
(n)
1,1 = 1,

Γ(n)
w,v = Γ

(n)
w′,v′

(
when w∗v = w′∗v′

)
,

Mx,x′

(w,r),(s,v) := Γ(n)
(∑

a

(
Ta|x(r∗s) − Ta|x′(r∗s)

))
w,v

= 0

∀x,x′,
∀w,v∈Wn

AB , r,s∈Wn
B ,

degw+deg v+deg r+deg s≤2n
(operationally-non-signaling).

(5)

The last operationally-non-signaling constraint is equivalent to∑
a

L2n(P ∗Ta|x(S)Q) −
∑
a

L2n(P ∗Ta|x′(S)Q) = 0

for all x, x′, P,Q ∈ span(Wn
AB), and S ∈ span(Wn

B) such that degP + degQ + degS ≤ 2n. A
moment matrix Γ(n) is said to be a feasible solution of Eq. (5) if it satisfies all the constraints but
does not necessarily maximize the score, and is said to be an optimal feasible solution of Eq. (5) if
it satisfies all constraints and maximizes the score.

The physical submatrices of Γ(n) include the block indexed by Ta|x(Wn
B)×Ta|x(Wn

B) corresponding
to Bob’s measurement subject to output-input (a, x) by Alice’s measurement. Thus, the hierarchy
Eq. (5) is stricter than the bipartite sequential NPA hierarchy (Eq. (20)) by identifying this submatrix
with its Riesz functional σa|x.

We present the following convergence theorem on the hierarchy Eq. (5).

Theorem 3.1. Let p(ab|xy) be a correlation for the nonlocal game G. The following statements are
equivalent:

(i) The correlation p(ab|xy) arises from a bipartite sequential operationally-non-signaling strategy.

(ii) The correlation p(ab|xy) arises from a bipartite commuting operator strategy.

(iii) There exists a family of {Γ(n)}n of feasible solutions to Eq. (5) such that p(ab|xy) = Γ
(n)
1,fab|xy

for all n.
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Consequently, ωn
2seqNPA(G) ↘ ωqc(G) monotonically as n→ ∞.

Proof. It is clear that both (i) and (ii) imply (iii). The equivalence between (i) and (ii) is
well-established in, e.g., [Kul+25].

The statement (iii) implies (i) is a consequence of the paragraph proceeding the theorem,
combined with the convergence property of the sequential NPA hierarchy of [Kle+25]. Nonetheless,
we do another proof that connects to [Bar+25] better.

To this end, one has span(Wn
AB) → AAB as n→ ∞. Since all generators fab|xy are projective,

each entry of Γ(n) is necessarily bounded for all n. Then the standard Banach-Alaoglu argument
implies the existence of a convergent subsequence Γ(nk) and an infinite moment matrix Γ, such that

Γ(nk)
w,v → Γw,v

for all w, v and all nk ≥ max{deg(w),deg(v)}. That is, we have recovered a state σ on AAB via

σ : AAB → C,

w∗v 7→ Γw,v,

such that

p(ab|xy) = σ(Ta|x(fb|y))

and ∑
a

σ(P ∗Ta|x(S)Q) − σ(P ∗Ta|x′(S)Q) = 0

for all S ∈ AB and P,Q ∈ AAB. We are done by identifying σ with an asymptotically-secured
C∗-algebraic compiled strategy for two players [Bar+25, Definition 17 and Theorem 14].

For completeness, let us give an explicit proof. Consider the GNS representation (H, π, |Ω⟩)
of σ, where H is a Hilbert space, π : AAB → B(H) is a ∗-representation, and |Ω⟩ ∈ H such that
σ(P ) = ⟨Ω|π(P )|Ω⟩ for all P ∈ AAB. It follows that, for any x, x′, S ∈ AB, and P,Q ∈ AAB,

0 = ⟨Ω|π(P )∗π(
∑
a

Ta|x(S) −
∑
a

Ta|x′(S))π(Q)|Ω⟩.

By cyclicity, this implies that∑
a

π ◦ Ta|x =
∑
a

π ◦ Ta|x′ := T̄ : AB → B(H),

where π ◦ Ta|x is completely positive map AB → B(H) (due to *-homomorphisms being completely
positive) dominated by the completely positive map T̄ . Thus, (|Ω⟩ , π ◦ Ta|x) defines a C∗-algebraic
sequential correlation as in [Bar+25, Definition 22], finishing (iii) =⇒ (i).

Let us show (iii) =⇒ (ii), analogously to [Bar+25, Theorem 16] for further demonstration. Let
(K, πK, V ) be the minimal Stinespring dilation of T̄ such that, for all S ∈ AB,

T̄ (S) =
∑
a

π ◦ Ta|x(S) = V ∗πK(S)V.

Arveson’s Radon-Nikodym derivative [Arv69, Theorem 1.4.2], see also [Rag03], then implies the
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existence of unique positive operator Fa|x ∈ πK(AB)′ such that

π ◦ Ta|x(S) = V ∗Fa|xπK(S)V.

The uniqueness of the minimal dilation with
∑

a Ta|x = T̄ further imposes
∑

a Fa|x = 1, i.e., Fa|x
form POVMs for every x. We are done by identifying the state σ with V |Ω⟩.

We now analyze some properties of the novel sequential hierarchy that will be useful later; more
precisely, we discuss the stopping criterion and strict feasibility.

Definition 3.2. For n ∈ N, let Γ(n) be the solution for Eq. (5) at level n for some nonlocal game
G. Consider its block form

Γ(n) =

(
Γ(n−1) M
M∗ N

)
,

where Γ(n−1) is the principal block indexed by words in Wn−1
AB . We say that the solution Γ(n) is flat

(or has a rank-loop) if

rank(Γ(n)) = rank(Γ(n−1)) <∞.

Proposition 3.3. The hierarchy of Eq. (5) for G admits a flat optimal solution at some finite level
n if and only if the G admits a finite-dimensional optimal quantum strategy.

Proof. This follows from the standard flatness argument, see e.g., [NPA08, Theorem 10]. Note that
the equality rank(Γ(n)) = rank(Γ(n−1)) is sufficient since this already enforces the operationally-non-
signaling condition on the generator fab|xy in the resulting finite-dimensional representation and
thereby can propagate to higher degree words.

Note that the existence of flat solutions does not guarantee that numerical algorithms will find
it in practice. In fact, it is possible that there exist infinitely many inequivalent finite-dimensional
optimal strategies, leading the SDP solver to return any convex mixture of them.

Proposition 3.4. For every level n, the SDP in Eq. (5) is strictly feasible. That is, there exists a

moment matrix Γ
(n)
strict ≻ 0 that satisfies all the linear constraints of Eq. (5).

Proof. The unconstrained NPA hierarchy with commuting PVMs {Aa|x}, {Bb|y} admits a strictly
feasible moment matrix at every level. This follows from the faithfulness of the left-regular GNS
representation of the universal ∗-algebra generated by Aa|x and Bb|y. Thus, for each n there exists

a full-rank moment matrix Γ
(n)
NPA ≻ 0 for the standard NPA hierarchy. (See [Tav+24, Appendix C]

for a more explicit argument.)
Define fab|xy := Aa|xBb|y. Then every word in the sequential hierarchy of Eq. (5) is also a word

in the larger algebra generated by Aa|x, Bb|y. Therefore, we let Γ
(n)
strict be the principle submatrix

of Γ
(n)
NPA corresponding to all the fab|xy-words, which can be straightforwardly checked satisfy all

constraints of Eq. (5). Finally, since a principal submatrix of a positive definite matrix is itself

positive definite, Γ
(n)
strict ≻ 0.

3.2 Tripartite case

Now, we showcase the construction of the tripartite sequential NPA hierarchy in detail to inspire the
general multipartite case. As in Fig. 1(b), the game begins with Alice A receiving and answering
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with the pair (x, a), followed by Bob B with the pair (y, b), and ends with Charlie C with the pair
(z, c), during which the operationally non-signaling condition is respected by Alice and Bob.

To describe this scenario, consider generators {fc|z | ∀c, z} satisfying the relation RC :

f∗c|z = fc|z, fc|zfc′|z = δc,c′fc|z,
∑
c

fc|z = 1,

and define Charlie’s algebra by the universal PVM C∗-algebra

AC = C∗({fc|z}c,z | RC).

Next, consider generators {fbc|yz | ∀b, c, y, z} satisfying the relation RBC :

f∗bc|yz = fbc|yz, fbc|yzfb′c′|yz = δb,b′δc,c′fbc|yz,∑
c

fbc|yz =
∑
c

fbc|yz′ ∀z, z′,
∑
b,c

fbc|yz = 1. (6)

Define post-Bob-measurement algebra of Charlie by

ABC = C∗({fbc|yz}b,c,y,z | RBC).

denoted as AB→C [Bar+25]. Then, consider the generators {fabc|xyz | ∀a, b, c, x, y, z} satisfying the
relation RABC :

f∗abc|xyz = fabc|xyz, fabc|xyzfa′b′c′|xyz = δa,a′δb,b′δc,c′fabc|xyz,∑
c

fabc|xyz =
∑
c

fabc|xyz′ ,
∑
b,c

fabc|xyz = fabc|xy′z′ ,
∑
a,b,c

fabc|xyz = 1,

and define the post-Alice-Bob-measurement algebra of Charlie by

AABC = C∗({fabc|xyz}a,b,c,x,y,z | RABC),

denoted as AA→B→C in [Bar+25]. Finally, define the natural *-homomorphisms for a, b, x, y by

Tb|y : AC → ABC , fc|z 7→ fbc|yz,

Ta|x : ABC → AABC , fbc|yz 7→ fabc|xyz.

Similarly, for a tripartite nonlocal game G and a correlation p(abc|xyz), the associated score∑
a,b,c,x,y,z βabcxyzp(abc|xyz) results in the objective polynomial

β =
∑

a,b,c,x,y,z

βabcxyzfabc|xyz ∈
∑

a,b,x,y

Ta|xTb|y(AC) ⊂ AABC .

Analogous to Section 3.1, define the word sets at level n:

Wn
ABC :=

{
fa1b1c1|x1y1z1 · · · fakbkck|xkykzk | 0≤k≤n

}
⊂ AABC ,

Wn
BC :=

{
fb1c1|y1z1 · · · fbkck|ykzk | 0≤k≤n

}
⊂ ABC ,

Wn
C :=

{
fc1|z1 · · · fck|zk | 0≤k≤n

}
⊂ AC ,
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along with Tb|y
(
W n

C

)
⊂ ABC and Ta|xTb|y

(
W n

C

)
⊂ AABC . Again, β ∈ span(Wn

ABC) for n ≥ 1.

Consider the matrix Γ(n) indexed by monomials/words in Wn
ABC . Using the same notation as in

Section 3.1, we define the following tripartite sequential NPA-like hierarchy at level n:

ωn
3seqNPA(G) := max

∑
a,b,c,x,y,z

βabcxyz Γ
(n)
1,fabc|xyz

s.t. Γ(n) ⪰ 0,

Γ
(n)
1,1 = 1,

Γ
(n)
w,w′ = Γ

(n)
v,v′ whenever w∗w′ = v∗v′,

Mx,x′

(w,r),(s,v) := Γ(n)
((∑

a

Ta|x(r∗s) − Ta|x′(r∗s)
))

w,v
= 0

∀x,x′,∀w,v∈Wn
ABC ,

r,s∈Wn
BC ,

degw+deg v+deg r+deg s≤2n
(Alice operationally-non-signaling)

Ny,y′

(r,t),(s,u) := Γ(n)
(
Ta|x

(∑
b

Tb|y(t∗u) − Tb|y′(t
∗u)
))

Ta|x(r),Ta|x(s)
= 0

∀ a,x,y,y′,
r,s∈Wn

BC ,
t,u∈Wn

C ,
deg r+deg s+deg t+deg u≤2n

(Bob operationally-non-signaling)

(7)
Here, let L2n be the normalized positive linear map associated with Γ(n), then Alice operationally-
non-signaling constraint is equivalent to∑

a

L2n(P ∗Ta|x(S)Q) −
∑
a

L2n(P ∗Ta|x′(S)Q) = 0

for all x, x′, P,Q ∈ span(Wn
ABC), and S ∈ span(Wn

BC) such that degP + degQ + degS ≤ 2n. In
addition, Bob operationally-non-signaling constraint is equivalent to∑

b

L2n ◦ Ta|x(R∗Tb|y(O)S) −
∑
b

L2n ◦ Ta|x(R∗Tb|y′(O)S) = 0

for all a, x, y, y′, R,S ∈ span(Wn
BC), and O ∈ span(Wn

C) such that degR+ degS + degO ≤ 2n.
A moment matrix is said to be a feasible solution of Eq. (7) if it satisfies all the constraints but

does not necessarily maximize the score, and is said to be an optimal feasible solution of Eq. (7) if
it satisfies all constraints and maximizes the score.

Similarly to the bipartite case, Wn
C ×Wn

C plays the role of Charlie’s measurement, the block of
W n

b|y×W n
b|y corresponds to the case when Bob measures afterwards with (b, y), and the block W n

ab|xy×
W n

ab|xy represents the case of Alice measuring with (a, x) after Bob and Charlie’s measurement. We
analogously have the following theorem.

Theorem 3.5. Let p(abc|xyz) be a correlation for the tripartite nonlocal game G. The following
statements are equivalent:

(i) The correlation p(abc|xyz) arises from a tripartite sequential operationally-non-signaling
strategy.

(ii) The correlation p(abc|xyz) arises from a tripartite commuting operator strategy.
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(iii) There exists a family of {Γ(n)}n of feasible solutions to Eq. (7) such that p(abc|xyz) = Γ
(n)
1,fabc|xyz

for all n.

Consequently, ωn
3seqNPA(G) ↘ ωqc(G) monotonically as n→ ∞.

Proof. It is straightforward to check that both (i) and (ii) imply (iii). The equivalence between
(i) and (ii) is shown by [Bar+25] thanks to the new chain rule for Arveson’s Radon-Nikodym
derivatives.

The direction (iii) =⇒ (i) is almost the same as the proof of Theorem 3.1. Again, span(Wn
ABC) →

AABC as n→ ∞ with projective generators. Then by the Banach-Alaoglu Theorem there exists a
weak-* convergent subsequence Γ(nk) → Γ. That is, we have obtained a state on AABC via

σ : AABC → C,

w∗v 7→ Γw,v

such that

p(abc|xyz) = σ(fabc|xyz) = σ(Ta|xTb|y(fc|z)).

Furthermore, we have the operational-non-signaling for Alice∑
a

σ(P ∗Ta|x(S)Q) −
∑
a

σ(P ∗Ta|x′(S)Q) = 0

for all P,Q ∈ AABC and S ∈ ABC ; and for Bob∑
b

σ ◦ Ta|x(R∗Tb|y(O)S) −
∑
b

σ ◦ Ta|x(R∗Tb|y′(O)S) = 0

for all R,S ∈ ABC and O ∈ An
C .

We are done by identifying σ with a asymptotically-secured C∗-algebraic compiled strategy for
three players as in [Bar+25, Definition 17 and Theorem 14] and then invoking [Bar+25, Theorem 16
or 17].

We omit the flatness condition and the strict feasibility for the tripartite hierarchy since it is
straightforward, and instead present the k-partite variant directly in the next subsection.

3.3 General multipartite case

We are ready to tackle the general k-partite sequential quantum scenarios for any k ≥ 2.
First, let us develop a notation for any k-partite sequential algebras and the corresponding NPA

hierarchy. In our sequential convention, we begin with the kth party and then (k − 1)-th until the
1-st party, i.e., k → k−1 → · · · → 1. Write [j] := {1, 2, . . . , j} and denote a1 · · · aj , a′1 · · · a′j , x1 · · ·xj
by a[j], a

′
[j], x[j], respectively, when there is no ambiguity.

For any j ∈ [k], consider the generators/letters {fa[j]|x[j]
| ∀a[j], x[j]} satisfying the relation R[j]:

f∗a[j]|x[j]
= fa[j]|x[j]

, fa[j]|x[j]
fa′

[j]
|x[j]

= δa[j],a′[j]
fa[j]|x[j]

,
∑
a[j]

fa[j]|x[j]
= 1,

∑
a1,...al

fa1···alal+1···aj |x1···xlxl+1···xj
=
∑

a1,...al

fa1···alal+1···aj |x′
1···x′

lxl+1···xj
, ∀l ∈ [j].
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The corresponding universal C∗-algebra is defined as

A[j] = C∗({fa[j]|x[j]
}a[j],x[j]

| R[j]). (8)

For every j such that 1 < j ≤ k, there exists a natural *-homomorphism for ak, xk such that

T j
aj |xj

: A[j−1] → A[j], fa1···aj−1|x1···xj−1
7→ fa1···aj−1aj |x1···xj−1xj

.

That is, in the Heisenberg picture, the sequentiality is captured as

A[1]

T 2
a2|x2−−−−→ A[2]

T 3
a3|x3−−−−→ · · ·

Tk−1
ak−1|xk−1−−−−−−−→ A[k−1]

Tk
ak|xk−−−−→ A[k]

with A[1] = C∗({fa1|x1
}a1,x1 | R[1]) as the end party (e.g., Bob in the bipartite case and Charlie in

the tripartite case).
For a k-partite nonlocal game G with the correlation p(a[k]|x[k]), the associated score objective

Bell polynomial is

β =
∑

a[k],x[k]

βa[k]x[k]
fa[k]|x[k]

∈
∑

a[k],x[k]

T k
ak|xk

· · ·T 2
a2|x2

(A[1]) ⊂ A[k].

Let us define the n-th level of the k-partite sequential NPA hierarchy for game G. We consider
the word sets at level n for each j:

Wn
[j] := {w ∈ A[k] | 0 ≤ deg(w) ≤ n} ⊂ A[j], (9)

with β ∈ span(Wn
[k]) and T k

ak|xk
· · ·T 2

a2|x2
(Wn

[1]) ⊂ Wn
[k]. For the matrix Γ(n) indexed by Wn

[k], the
k-partite sequential NPA hierarchy at level is defined as:

ωn
kseqNPA(G) := max

∑
a[k],x[k]

βa[k]x[k]
Γ
(n)
1,fa[k]|x[k]

s.t. Γ(n) ⪰ 0,

Γ
(n)
1,1 = 1,

Γ
(n)
w,w′ = Γ

(n)
v,v′ whenever w∗w′ = v∗v′,∑

aj

Γ(n)
(
T k
ak|xk

· · ·T j+1
aj+1|xj+1

(
T j
aj |xj

(r∗s) − T j
aj |x′

j
(r∗s)

))
w,v

= 0

∀j∈[2,k]∩N,
∀aj+1,...,ak,x

′
j ,xj ,...,xk,∀ r,s∈Wn

[j−1]
,

∀w,v∈Tk
ak|xk

···T j+1
aj+1|xj+1

(Wn
[j]

),

degw+deg v+deg r+deg s≤2n

(party-j operationally-non-signaling).

(10)
Here, let L2n be the normalized positive linear map associated with Γ(n), then party-j operationally-
non-signaling constraint is equivalent to∑

aj

L2n ◦ T k
ak|xk

· · ·T j+1
aj+1|xj+1

(
P ∗T j

aj |xj
(S)Q

)
−
∑
aj

L2n ◦ T k
ak|xk

· · ·T j+1
aj+1|xj+1

(
P ∗T j

aj |x′
j
(S)Q

)
= 0

for all x′j , xj , . . . , xk, aj+1, . . . ak, P,Q ∈ span(Wn
[j]), and S ∈ span(Wn

[j−1]). This corresponds to the
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degree n relaxation of [Bar+24, Eq. (38)].
With the notation introduced, we state all the k-partite results analogous to the bipartite and

tripartite cases.

Theorem 3.6. Let p(a[k]|x[k]) be a correlation for the k-partite nonlocal game G. The following
statements are equivalent:

(i) The correlation p(a[k]|x[k]) arises from a k-partite sequential operationally-non-signaling strat-
egy.

(ii) The correlation p(a[k]|x[k]) arises from a k-partite commuting operator strategy.

(iii) There exists a family of {Γ(n)}n of feasible solutions to Eq. (10) such that p(a[k]|x[k]) =

Γ
(n)
1,fa[k]|x[k]

for all n.

Consequently, ωn
kseqNPA(G) ↘ ωqc(G) monotonically as n→ ∞.

Proof. This follows from a routine inductive generalization of the proof for Theorems 3.1 and 3.5.

We now present the flatness condition and strict feasibility of the k-partite hierarchy achieved
by a direct inductive generalization.

Definition 3.7. For n ∈ N, let Γ(n) be the solution for Eq. (10) at level n for some nonlocal game
G. Consider its block form

Γ(n) =

(
Γ(n−1) M
M∗ N

)
,

where Γ(n−1) is the principal block indexed by words in Wn−1
[k] . We say that the solution Γ(n) is flat

(or has a rank-loop) if

rank(Γ(n)) = rank(Γ(n−1)) <∞.

Proposition 3.8. The hierarchy of Eq. (10) for G admits a flat optimal solution at some finite
level n if and only if the G admits a finite-dimensional optimal quantum strategy.

Proof. This follows from the standard flatness argument, see e.g., [NPA08, Theorem 10].

Proposition 3.9. For every level n, the SDP in Eq. (10) is strictly feasible. That is, there exists a

moment matrix Γ
(n)
strict ≻ 0 that satisfies all the linear constraints of Eq. (10).

Proof. This is inductive from the proof of Theorem 3.4.

4 Quantitative quantum soundness for multipartite compiled non-
local games

In this section, we give our main result (Theorem 4.4): the quantitative quantum soundness
statement for all multipartite compiled nonlocal games (as in Fig. 1(b)). We begin with introducing
the necessary notations in Section 4.1. Then in Section 4.2, since the old technique of signaling
decomposition of [Kle+25] cannot be extended to multipartite scenarios, we give novel proofs for
multipartite signaling decomposition to show that the compiled strategy at any λ is negligibly
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different from some solutions of Eq. (10) for any NPA level n. This new approach uses geometric
arguments involved with the projection on the convex set of constraints of Eq. (10), and then fixing
the positivity with strict feasibility followed by a renormalization, see Fig. 2 for illustration.

4.1 Notations preliminaries

According to [Bar+25], at the security parameter λ, an efficient (quantum polynomial-time) strategy
S = (Sλ) of a k-partite compiled nonlocal game gives rise to states σλ : A[k] → C such that

pλ(a[k]|x[k]) = σλ(T k
ak|xk

· · ·T 2
a2|x2

(fa[1]|x[1]
)).

Instead of the operationally-non-signaling condition as in Eq. (10), we only have a weakly-non-
signaling condition. That is, for all j ∈ [2, k] ∩N and for all x′j , xj , . . . , xk, aj+1, . . . ak and for every
operator P,Q ∈ A[j] and R ∈ A[j−1], there exists a negligible function neglS,P,R,Q(λ), depending on
the strategy S and operators P,Q,R, such that∣∣∣∑

aj

σλ ◦ T k
ak|xk

· · ·T j+1
aj+1|xj+1

(
P ∗T j

aj |xj
(R)Q

)
−
∑
aj

σλ ◦ T k
ak|xk

· · ·T j+1
aj+1|xj+1

(
P ∗T j

aj |x′
j
(R)Q

)∣∣∣ ≤ neglS,P,R,Q(λ).
(11)

Next, fix the NPA level n ∈ N with word sets for all j ∈ [k]. Consider the associated compiled
moment matrix

(Γ(n),λ
comp)w,v := σλ(w∗v), Γ(n),λ

comp ⪰ 0,

for all w, v ∈ Wn
[k] that is “almost” a feasible solution of Eq. (10). Observe that

∥∥∥Γ
(n),λ
comp

∥∥∥
op

≤
∣∣∣Wn

[k]

∣∣∣
regardless of λ. Indeed, since σλ is contractive and the generators of C∗-algebra A[k] are projective,

all diagonals satisfy (Γ
(n),λ
comp)w,w ≤ 1, thus∥∥∥Γ(n),λ

comp

∥∥∥
op

= max eigenvalue of Γ(n),λ
comp ≤ Tr

(
Γ(n),λ
comp

)
≤
∣∣∣Wn

[k]

∣∣∣ .
(In fact, the same argument shows that any level-n normalized moment matrix on Wn

[k] admits the

same operator norm upper bound.)
To formalize and quantify the notion of “almost feasibility”, we define a linear map En

k . This
map consolidates all linear constraints of Eq. (10) by mapping a Hermitian matrix H to a single
vector, and H satisfies these constraints if and only if it lies in the kernel of En

k , ker(En
k ). Specifically,

let Herm(Wn
[k]) be the space of Hermitian matrices indexed by words in Wn

[k]. Let

InHan = {(w, v, w′, v′) | w∗v = w′∗v′}

be the index pairs for the Hankel condition (symmetry of moment matrices) and, for each j ∈ [2, k]∩N,
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let

Inj−ons = {(aj+1, . . . , ak, x
′
j , xj , . . . , xk, w, v, r, s) |

∀aj+1, . . . , ak, x
′
j , xj , . . . , xk, w, v ∈ Wn

[j],

r, s ∈ Wn
[j−1], degw + deg v + deg r + deg s ≤ 2n}

be the set of tuples defining the operationally-non-signaling constraints of party j. Define

En
k : Herm(Wn

[k]) → C|InHan| ⊕ (⊕jC
|Inj−ons|)

H 7→


(Hw,v −Hw′,v′)(w,v,w′,v′)∈InHan(∑

aj
H
(
T k
ak|xk

· · ·T j+1
aj+1|xj+1

(
T j
aj |xj

(r∗s) − T j
aj |x′

j
(r∗s)

))
Tk
ak|xk

···T j+1
aj+1|xj+1

(w),

Tk
ak|xk

···T j+1
aj+1|xj+1

(v)

)
(aj+1,...,ak, x

′
j ,xj ,...,xk,

w,v,r,s)∈Inj-ons

 .

(12)
Here, the top InHan block of the output vector corresponds to the Hankel condition and the bottom
Inj−ons block corresponds to the operationally-non-signaling constraints for every party j. The norm
of the vector En

k (H) can then serve as a measure of the solution’s “almost-ness” as formalized in
Theorem 4.2.

Example 4.1. We give an example for the tripartite case with k = 3 with an efficient strategy S3. In
the notation of Section 3.2, the weakly non-signaling conditions for Alice and Bob are, respectively,

|
∑
a

σλ(P ∗Ta|x(U)Q) −
∑
a

σλ(P ∗Ta|x′(U)Q)| ≤ neglS3,P,U,Q(λ),

|
∑
b

σλ ◦ Ta|x(R∗Tb|y(O)U) −
∑
b

σλ ◦ Ta|x(R∗Tb|y′(O)U)| ≤ neglS3,R,O,U (λ),

for all operators P,Q ∈ AABC , R,U ∈ ABC , and O ∈ AC . The constraint-testing map En
3 is

En
3 : Herm(Wn

ABC) → C|InHan| ⊕ C|I
n
A−ons| ⊕ C|I

n
B−ons|

H 7→


(Hw,v −Hw′,v′)(w,v,w′,v′)∈InHan(

H
(∑

a

(
Ta|x(r∗s) − Ta|x′(r∗s)

))
w,v

)
(x,x′,w,v,r,s)∈InA−ons,(

H
(
Ta|x

(∑
b Tb|y(t∗u) − Tb|y′(t

∗u)
))

Ta|x(r),Ta|x(s)

)
(y,y′,a,x,r,s,t,u)∈InB−ons

 ,

where

InA−ons = {(x, x′, w, v, r, s) | ∀x, x′, w, v ∈ Wn
ABC , r, s ∈ Wn

BC , degw + deg v + deg r + deg s ≤ 2n}

is the set of tuples defining Alice’s operationally-non-signaling constraints and

InB−ons = {(y, y′, a, x, r, s, t, u) | ∀y, y′, a, x, r, s ∈ Wn
BC , t, u ∈ Wn

C , deg r + deg s+ deg t+ deg u ≤ 2n}

is the corresponding set for Bob’s.
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4.2 Geometric proofs for quantitative quantum soundness

We first formalize the notation of “almost feasibility” of the compiled moment matrix Γ
(n),λ
comp as

follows.

Lemma 4.2. For the compiled moment matrix Γ
(n),λ
comp extracted from an efficient (quantum polynomial-

time) strategy S = (Sλ) for a k-partite compiled nonlocal game, there exists a negligible function
negllemS,n(λ), dependent on S, n, such that∥∥∥En

k (Γ(n),λ
comp)

∥∥∥
2
≤ negllemS,n(λ),

where ∥·∥2 denotes the usual Euclidean norm.

Proof. Clearly (Γ
(n),λ
comp)w,v − (Γ

(n),λ
comp)w′,v′ = 0 if w∗v = w′∗v′ by its definition. On the other hand, by

Eq. (11),∣∣∣∑
aj

Γ(n),λ
comp

(
T k
ak|xk

· · ·T j+1
aj+1|xj+1

(
T j
aj |xj

(r∗s) − T j
aj |x′

j
(r∗s)

))
Tk
ak|xk

···T j+1
aj+1|xj+1

(w),

Tk
ak|xk

···T j+1
aj+1|xj+1

(v)

∣∣∣

=

∣∣∣∣∣∣
∑
aj

σλ ◦ T k
ak|xk

· · ·T j+1
aj+1|xj+1

(
w∗T j

aj |xj
(r∗s)v

)
−
∑
aj

σλ ◦ T k
ak|xk

· · ·T j+1
aj+1|xj+1

(
w∗T j

aj |x′
j
(r∗s)v

)∣∣∣∣∣∣
≤ neglS,w,r,s,v(λ) ≤ max

w,r,s,v
neglS,w,r,s,v(λ) := negl′S,n(λ),

where the maximum makes sense because the degree n word sets Wn
[j−1],W

n
[j] are finite. Then, as

the InHan-block is already 0 for En
k (Γ

(n),λ
comp), one has∥∥∥En

k (Γ(n),λ
comp)

∥∥∥
2
≤
√∑

j

∣∣∣Inj−ons

∣∣∣ · negl′S,n(λ) := negllemS,n(λ).

Now, we are ready for the proof of our main technical result as illustrated by Fig. 2.

Theorem 4.3. Let G be a k-partite nonlocal game with Gcomp as its compiled version. Let S = (Sλ)λ
be an arbitrary efficient (quantum polynomial-time) strategy employed by the prover, and consider
the corresponding algebraic compiled strategy state σλ : A[k] → C due to [Bar+25]. For every n ∈ N,

let (Γ
(n),λ
comp)w,v := σλ(w∗v) be the associated level-n moment matrix.

Then, there exists a (S, n)-dependent negligible function neglS,n(λ) (goes to zero faster than the

reciprocal of any polynomial in λ) and a feasible solution Γ(n),λ of Eq. (10) such that∥∥∥Γ(n),λ
comp − Γ(n),λ

∥∥∥
op

≤ neglS,n(λ),

where ∥·∥op denotes the operator spectral norm.

Proof. We aim to construct a feasible solution Γ(n),λ that is negligibly close to the compiled moment

matrix Γ
(n),λ
comp, see Fig. 2 for a pictorial illustration. To this end, consider the projection onto ker(En

k )

Π := 1− (En
k )†En

k ,
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where (En
k )† denotes the Moore-Penrose pseudo-inverse of En

k (see e.g., [GV13]). Thus, the projection
of the compiled moment matrix

Γ
(n),λ
1 := Π(Γ(n),λ

comp)

satisfies all linear constraints of Eq. (10) and∥∥∥Γ
(n),λ
1 − Γ(n),λ

comp

∥∥∥
op

=
∥∥∥(En

k )†En
k (Γ(n),λ

comp)
∥∥∥
op

≤
∥∥∥(En

k )†
∥∥∥
op

∥∥∥En
k (Γ(n),λ

comp)
∥∥∥
2

≤
∥∥∥(En

k )†
∥∥∥
op

negllemS,n(λ) := negl′S,n(λ),
(13)

where we use Theorem 4.2 and absorb the bounded constant
∥∥(En

k )†
∥∥
op

into the negligible function.

While Γ
(n),λ
1 satisfies almost all constraints of Eq. (10), it is no longer normalized nor necessarily

positive semidefinite. Nonetheless, by the fact that Γ
(n),λ
comp ⪰ 0 and Eq. (13), Weyl’s inequality [Wey12]

implies that the minimum eigenvalue µ0(Γ
(n),λ
1 ) of Γ

(n),λ
1 satisfies

µ0(Γ
(n),λ
1 ) ≥ − negl′S,n(λ), (14)

i.e., Γ
(n),λ
1 is almost positive semidefinite. Furthermore, normalization is almost fulfilled in the sense

that ∣∣∣(Γ(n),λ
1 )1,1 − 1

∣∣∣ =
∣∣∣(Γ(n),λ

1 )1,1 − (Γ(n),λ
comp)1,1

∣∣∣ ≤ ∥∥∥Γ
(n),λ
1 − Γ(n),λ

comp

∥∥∥
max

≤
∥∥∥Γ

(n),λ
1 − Γ(n),λ

comp

∥∥∥
op

≤ negl′S,n(λ),
(15)

where ∥·∥max denotes the max norm and ∥·∥max ≤ ∥·∥op is immediate. The last observation is that∥∥∥Γ
(n),λ
1

∥∥∥
op

≤
∥∥∥Γ

(n),λ
comp

∥∥∥
op

≤
∣∣∣Wn

[k]

∣∣∣, independent of λ, due to the contractivity of Π.

Next, consider the strictly feasible solution Γ
(n)
strict of Theorem 3.9 and denote its minimal

eigenvalue by µn > 0. With a convex combination of Γ
(n)
strict and Γ

(n),λ
1 , define

Γ
(n),λ
2 :=

µn
µn + negl′S,n(λ)

Γ
(n),λ
1 +

negl′S,n(λ)

µn + negl′S,n(λ)
Γ
(n)
strict.

It follows from Eq. (14) and Weyl’s inequality [Wey12] that the minimal eigenvalue µ0(Γ
(n),λ
2 ) of

Γ
(n),λ
2 satisfies

µ0(Γ
(n),λ
2 ) ≥ µn

µn + negl′S,n(λ)
µ0(Γ

(n),λ
1 )︸ ︷︷ ︸

≥−negl′S,n(λ)

+
negl′S,n(λ)

µn + negl′S,n(λ)
µ0(Γ

(n)
strict)︸ ︷︷ ︸

=µn

≥ 0,

consequently Γ
(n),λ
2 ⪰ 0. Thus, the matrix Γ

(n),λ
2 satisfies all constraints of Eq. (10) except for the

normalization, because of the convexity of the constraint set. Moreover,∥∥∥Γ
(n),λ
1 − Γ

(n),λ
2

∥∥∥
op

=
negl′S,n(λ)

µn + negl′S,n(λ)

∥∥∥Γ
(n),λ
1 − Γ

(n)
strict

∥∥∥
op

≤ negl′S,n(λ)
∥∥∥Γ

(n),λ
1 − Γ

(n)
strict

∥∥∥
op

:= negl′′S,n(λ),

(16)
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where the constant
∥∥∥Γ

(n),λ
1 − Γ

(n)
strict

∥∥∥
op

is absorbed into the negligible function, since both
∥∥∥Γ

(n),λ
1

∥∥∥
op

and
∥∥∥Γ

(n)
strict

∥∥∥
op

are upper bounded by
∣∣∣Wn

[k]

∣∣∣ that is independent of λ. Note that by the definition of

Γ
(n),λ
2 , µn > 0, negl′S,n(λ) ≥ 0, and Eq. (15),

∣∣∣(Γ(n),λ
2 )1,1 − 1

∣∣∣ =
µn

µn + negl′S,n(λ)

∣∣∣(Γ(n),λ
1 )1,1 − 1

∣∣∣ ≤ µn negl′S,n(λ)

µn + negl′S,n(λ)
≤ negl′S,n(λ). (17)

Finally, we normalize Γ
(n),λ
2 and obtain

Γ(n),λ := Γ
(n),λ
2 /(Γ

(n),λ
2 )1,1,

which is a proper feasible solution of Eq. (10) since all constraints (that are not normalization) are
homogeneous and thus preserved by this renormalization. It follows from Eqs. (13), (16) and (17)
that ∥∥∥Γ(n),λ

comp − Γ(n),λ
∥∥∥
op

≤
∥∥∥Γ(n),λ

comp − Γ
(n),λ
1

∥∥∥
op

+
∥∥∥Γ

(n),λ
1 − Γ

(n),λ
2

∥∥∥
op

+
∥∥∥Γ

(n),λ
2 − Γ(n),λ

∥∥∥
op

≤ negl′S,n(λ) + negl′′S,n(λ) +

∣∣∣∣∣1 − 1

(Γ
(n),λ
2 )1,1

∣∣∣∣∣ ∥∥∥Γ
(n),λ
2

∥∥∥
op

≤ negl′S,n(λ) + negl′′S,n(λ) +

∣∣∣∣∣∣∣
∥∥∥Γ

(n),λ
2

∥∥∥
op

(Γ
(n),λ
2 )1,1

∣∣∣∣∣∣∣ negl′S,n(λ) := neglS,n(λ),

where neglS,n(λ) is a negligible function by the fact that
∥∥∥Γ

(n),λ
2

∥∥∥
op
/
∣∣∣(Γ(n),λ

2 )1,1

∣∣∣ is a bounded

constant.

A direct consequence of the existence and closeness statement from Theorem 4.3 is the following
quantitative quantum soundness statement for all multipartite compiled nonlocal games.

Corollary 4.4. Let G be a k-partite nonlocal game with Gcomp as its compiled version. Let S = (Sλ)λ
be an arbitrary efficient (quantum polynomial-time) strategy employed by the prover. Then for every
n ≥ 1, there exists a negligible function neglS,n(λ) (dependent on the QHE scheme, the strategy S,
and the NPA level n) such that

ωλ(Gcomp, S) ≤ ωn
kseqNPA(G) + neglS,n(λ), (18)

where ωλ(Gcomp, S) is the prover’s Bell score using S and ωn
kseqNPA(G) is the optimal value of the

hierarchy Eq. (10) at level n.
Furthermore, if the game G admits a finite-dimensional optimal strategy, then there exists a

negligible function neglS(λ) (dependent on the QHE scheme, the strategy S) such that

ωλ(Gcomp, S) ≤ ωq(G) + neglS(λ), (19)

where ωq(G) is the optimal tensor product quantum score.

Proof. Let σλ : A[k] → C be the corresponding algebraic compiled strategy state due to [Bar+25].
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For each n ≥ 1, consider the associated compiled moment matrix

(Γ(n),λ
comp)w,v := σλ(w∗v) ⪰ 0

for all w, v ∈ Wn
[k].

By Theorem 4.3, there exists an n-dependent negligible function negl′S,n(λ) and a feasible solution

Γ(n),λ for every λ of the k-partite sequential NPA hierarchy of Eq. (10) such that∥∥∥Γ(n),λ
comp − Γ(n),λ

∥∥∥
op

≤ negl′S,n(λ).

Then,

ωλ(Gcomp, S) = σλ(β) =
∑

a[k],x[k]

βa[k]x[k]
(Γ(n),λ

comp)1,fa[k]|x[k]

=
∑

a[k],x[k]

βa[k]x[k]
Γ
(n),λ
1,fa[k]|x[k]︸ ︷︷ ︸

score of a possibly non-optimal feasible solution

+
∑

a[k],x[k]

βa[k]x[k]

(Γ(n),λ
comp)1,fa[k]|x[k]

− Γ
(n),λ
1,fa[k]|x[k]︸ ︷︷ ︸

bounded by the max norm



≤ ωn
kseqNPA(G) +

∣∣∣∣∣∣
∑

a[k],x[k]

βa[k]x[k]

∣∣∣∣∣∣︸ ︷︷ ︸
game-related constant

∥∥∥Γ(n),λ
comp − Γ(n),λ

∥∥∥
max

≤ ωn
kseqNPA(G) + const ·

∥∥∥Γ(n),λ
comp − Γ(n),λ

∥∥∥
op

≤ ωn
kseqNPA(G) + const · negl′S,n(λ) = ωn

kseqNPA(G) + neglS,n(λ),

where neglS,n(λ) := const · negl′S,n(λ) is again negligible.
Finally, if G admits a finite-dimensional optimal strategy, Theorem 3.8 implies the existence of

some fixed level n′ with some flat optimal solution such that ωn′
kseqNPA(G) = ωq(G). We are done by

letting neglS(λ) := neglS,n′(λ).

Note that we recover [Kle+25, Theorem A] the quantitative quantum soundness statement for
all bipartite compiled nonlocal games by setting k = 2, and the asymptotic results of [Bar+25] by
letting n→ ∞ thanks to Theorem 3.6.
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A Appendix

We give a brief comparison of the two related previous works [Bar+25; Kle+25].

A.1 The bipartite sequential NPA hierarchy of [Kle+25]

As the first attempt to bridge the gap between the standard NPA hierarchy and the sequential
protocols central to this work (Fig. 1), the authors of [Kle+25] introduced a sequential variant of
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the NPA hierarchy for bipartite games. Different from our Heisenberg picture inspired hierarchy in
Section 3, they model the scenario from the Schrödinger picture: after Alice receives question x
and produces answer a, the shared state σ collapses into a new, subnormalized state σa|x for Bob,
that can now perform a measurement y and obtain an output b. Instead of a single moment matrix
representing the global pre-measurement state, the hierarchy is defined via a collection of moment
matrices labeled by the actions of Alice Θ(n)(a|x), which are indexed by words built from Bob’s
operators fb|y.

The constraint of operationally-non-signaling translates to this family of moment matrices as
follows.

Definition A.1 (Bipartite sequential NPA hierarchy [Kle+25]). For a bipartite game G, the level-n
sequential NPA relaxation is the solution to the following SDP, defined in terms of a collection of
subnormalized moment matrices Θ(n)(a|x) indexed by words of length ≤ n in letters {fb|y}:

ωn
seqNPA(G) = max

Θ(n)(a|x)

∑
a,b,x,y

βabxyΘ(n)(a|x)1,fb|y

s.t. Θ(n)(a|x) ⪰ 0, ∀a, x,∑
a

Θ(n)(a|x) =
∑
a

Θ(n)(a|x′) := Θ(n) ∀x, x′ (operationally-non-signaling condition)

1 = Θ
(n)
1,1 (normalization).

(20)

This hierarchy effectively characterizes the set of bipartite sequential quantum correlations and
the commuting observable quantum correlations as n→ ∞, and possesses several key properties:

(a) Soundness and monotone convergence. Like the standard NPA hierarchy from Theorem 2.5, it
is sound,

ωqc(G) ≤ ωn
seqNPA(G),

and converges to the commuting-operator value monotonically,

ω1
seqNPA(G) ≥ ω2

seqNPA(G) ≥ · · · ↘ ωqc(G).

(b) Relation to standard NPA. At any finite level n, it is equivalent to a relaxed version of the
standard NPA hierarchy where Alice’s operators fa|x do not satisfy the POVM completeness
condition:

∑
a fa|x ≠ 1. It only need to appear to be complete when testing with length ≤ n

words of Bob’s operators fb|y.

(c) Duality. Its conic dual problem is equivalent to a sparse sum-of-squares (SOS) hierar-
chy [KMP22; MW23]. Similar to its dual counterpart, the bipartite sequential NPA hierarchy
can be less computationally demanding, as the moment matrices Θ(n)(a|x) indexed by only
fb|y are much smaller than the standard bipartite NPA moment matrices.

However, as discussed in Section 1, this Schrödinger-picture construction based on post-
measurement states is inherently bipartite. It does not naturally extend to the multipartite setting,
as tracking the sequence of post-measurement states loses too much of the necessary algebraic
structure.
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A.2 The multipartite algebraic framework of [Bar+25]

In order to extend the operator-algebraic techniques of [Kul+25] from the bipartite to the multipartite
setting, the authors of [Bar+25] propose a composable algebraic structure that is very well-suited to
characterize sequential players. For the notation convenience, let us focus on the tripartite scenarios.
Their key idea is the new concept of universal C∗-algebras of sequential projective measurements,
which generalizes the classical universal algebra of static measurements, i.e., what before we were
referring to as the ”symbols” for Bob fb|y. More concretely, let us consider the non-trivial case
of three players in a sequence. The action of Alice is modeled as an algebraic state φa|x, Bob
performs a transformation and in the end Charlie measures; or equivalently in the Heisenberg
picture, Charlie performs a measurement and Bob implements a transformation that is pulling back
Bob’s measurement to the space in which Alice’s state is defined. In this picture, Charlie and Bob
jointly perform a measurement, whose only constraint is that Bob acts before Charlie, hence the
latter cannot signal to the first, while the contrary is allowed.

In more detail, [Bar+25] define the universal C∗-algebra AB→C of Bob’s and Charlie’s sequential
measurements using the following relations on its generators {fbc|yz}:

f∗bc|yz = fbc|yz, fbc|yzfb′c′|yz = δb,b′δc,c′fbc|yz,
∑
b,c

fbc|yz = 1,
∑
c

fbc|yz =
∑
c

fbc|yz′ , ∀z, z′.

Note that AB→C is precisely ABC that we introduce in Section 3.2. Letting AC be the universal
C∗-algebra of Charlie’s measurements, there exists then a family of *-homomorphisms Tb|y : AC →
AB→C , taking generators to generators naturally in the following way

Tb|y(fc|z) = fbc|yz.

Note, that by construction, summing over b yields unital *-homomorphisms Ty =
∑

b Tb|y. In this
way, the maps Tb|y can be thought of as embeddings of AC into subalgebras of AB→C labeled by b
and y.

The power of this approach lies in two important features:

1. Composability , it is very immediate to understand how to increase the number of sequential
players: it is sufficient to add the labels and the additional ”causal” constraint;

2. It provides a very compact framework, because all of the players strategies are defined on a
single big algebra, with a rich internal structure that retrieves the action of the single players,
which is captured by *-homomorphisms.
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