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Abstract. Given a positive integer d, the Kaplansky-Lvov conjecture states that

the set of values of a multilinear noncommutative polynomial f ∈ C〈x1, . . . , xn〉
on the matrix algebra Md(C) is a vector subspace. In this article the technique of

using one-wiggle families of Sylvester’s clock-and-shift matrices is championed to

establish the conjecture for polynomials f of degree three when d is even or d < 17.

1. Introduction and the Statement of the Main Result

Images of noncommutative polynomials play a fundamental role in noncommuta-
tive algebra and are a central topic of the theory of polynomial identities [Pro73,

Row80]. Another area where these objects play a prominent role is free analysis
[Voi10, KVV14], especially its free real algebraic geometry branch [Hel02]. This re-
cent progress has led to a surge of interest in images of noncommutative polynomials
in matrix rings. A fundamental open problem in this regard is (cf. [KFKS06]):

Conjecture 1.1 (The Kaplansky-Lvov multilinear conjecture). Let f be a multilinear
polynomial with complex coefficients, and let d ∈ N. Then the set of values of f in
Md(C) is a vector space.

Conjecture 1.1 is stated in [KFKS06] for all fields, not just C. We have, however,
chosen to present the conjecture only over C as this is where our main interest lies.
Likewise many of the results from the literature cited below were proved for large
classes of fields, but we shall only state their restrictions to C. Incidentally, by general
model theory, all our results presented over C are valid over arbitrary algebraically
closed fields of characteristic 0.

If the set of values of a noncommutative polynomial f is a vector subspace ofMd(C),
then it is a Lie ideal (see e.g. [BK09]), and hence either {0}, C · Id, Md(C)∩ ker Tr =
[Md(C),Md(C)] or Md(C) by an old result of Herstein. Thus noncommutative poly-
nomials can be classified based on their (span of) values in Md(C). A very special
instance of Conjecture 1.1 is the case f = [x, y] = xy− yx, which is a classical result
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in matrix theory due to Shoda [Sho37] (see also Albert-Muckenhoupt [AM57]): ev-
ery traceless matrix is a commutator. In [KBMR12] Kanel-Belov, Malev and Rowen
established Conjecture 1.1 for d = 2, i.e., for values in 2 × 2 matrices. In [Špe13]
Špenko proves Conjecture 1.1 for Lie polynomials (i.e., elements of a free Lie algebra)
of degree ≤ 4. Mesyan [Mes13] extends this to polynomials of degree 3 which are
sums of commutators, while Buzinski and Winstanley [BW13] present an extension
to multilinear sums of commutators of degree 4. Further recent progress on images of
multilinear polynomials is given in [AEV15,CW16,LT16,MO16,KBMR16,KBMR].

Our main result establishes Conjecture 1.1 for polynomials f of degree three when
d is even or d < 17 is odd:

Theorem 1.2. Let f be a complex multilinear polynomial of degree three.

(1) If d ∈ N is even then the image of f in Md(C) is a vector space.
(2) If d ∈ N is odd and d < 17, then the image of f in Md(C) is a vector space.

The main novelty in our approach is the use of the clock-and-shift matrices first
utilized by Sylvester [Syl82]. These matrices are ubiquitous in mathematical physics
(cf. [Wey50, Chapter IV, §15] or [BFSS97,CDS98]) and endow Md(C) with a group–
with–cocycle structure (see Subsection 2.2 below for details). Our proofs are elemen-
tary though supported by computer calculations, and the presentation is essentially
self-contained.

1.1. Reader’s guide. The paper is organized as follows. We collect preliminaries

and introduce notation in the next section. Then in Section 3 we prove Theorem 1.2.
At the onset of the section (Subsection 3.1) we present the main idea and the general
strategy for the proof. Subsection 3.2 proves Theorem 1.2 for d = 3, Subsection 3.3
completes the proof of Theorem 1.2(2). In Subsection 3.4 the theorem is established
for d ≡ 2 (mod 4), and the proof finally concludes in Subsection 3.5.

Acknowledgments. The authors thank Špela Špenko for discussions, and Jurij

Volčič for reading a preliminary version of this paper.

2. Preliminaries

In this section we fix notation and terminology, and gather a few basic results
needed later in the paper.

2.1. Words and polynomials. Fix n ∈ N and let x = (x1, . . . , xn) denote an n-
tuple of freely noncommuting variables. We write 〈x〉 for the monoid freely generated
by x, i.e., 〈x〉 consists of words in the n letters x1, . . . , xn (including the empty word

∅ which plays the role of the identity). Let C〈x〉 denote the corresponding free
algebra; its elements are called noncommutative (nc) polynomials. An element of the
form aw where 0 6= a ∈ C and w ∈ 〈x〉 is called a monomial and a its coefficient.

Hence words are monomials whose coefficient is 1. The length of the longest word in
a polynomial f ∈ C〈x〉 is the degree of f and is denoted by deg(f). The set of all
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words of degree at most k is 〈x〉k, and C〈x〉k is the vector space of all polynomials of
degree at most k. A polynomial f ∈ C〈x〉 is called multilinear if it is linear in each
of the variables xj. If f = pq − qp for some p, q ∈ C〈x〉, then f is a commutator.

Remark 2.1. It is straightforward to see that a polynomial f =
∑

δ∈〈x〉 aδδ is a sum

of commutators if and only if for each τ ∈ 〈x〉,∑
δ
cyc∼ τ

aδ = 0.

Here words δ, τ ∈ 〈x〉 are called cyclically equivalent, δ
cyc∼ τ , if one is a cyclic

permutation of the other. Equivalently, δ − τ is a commutator in C〈x〉.

2.2. Group–with–cocycle structure in Md(C). We will use extensively the stan-
dard group–with–cocycle structure in Md(C). Let ω = e2πi/d and for integers p and
q, let

upq = yqvp, (1)

where

y = diag(1, ω, ω2, . . . , ωd−1)

v =


0 1

. . . . . .
. . . 1

1 0


are Sylvester’s clock-and-shift permutation matrices, respectively [Syl82]. Note
that the superscript on u in (1) is simply a label, not an exponent, while the super-
scripts on v and y are exponents. Of course urs = upq if both r − p and s − q are
divisible by d and we have

up1q1u
p2
q2

= ωp1q2up1+p2q1+q2 . (2)

Furthermore, {upq | p, q ∈ {0, . . . , d− 1}} is a linear basis for Md(C).

3. Proof of Theorem 1.2

Let

f(x1, x2, x3) =
∑
σ∈S3

aσxσ(1)xσ(2)xσ(3) (3)

for aσ ∈ C and let d ∈ N, d ≥ 2. (Here Sn is used to denote the symmetric group
of permutations on {1, . . . , n}.) We are interested in the image of Md(C)3 under f ,
which we will denote Imf . Clearly, if

∑
σ∈S3

aσ 6= 0, then Imf = Md(C). Henceforth,

assume ∑
σ∈S3

aσ = 0 (4)
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but that aσ 6= 0 for some σ ∈ S3. Note that for brevity, if σ(1) = p, σ(2) = q and
σ(3) = r, then we will often write apqr for aσ. We use Tr to denote the trace on
Md(C).

Proposition 3.1 (Mesyan [Mes13]1). Imf ⊇Md(C) ∩ ker Tr.

We present in Appendix A below an alternative proof of Proposition 3.1, for the
special case where the field is C, that uses clock-and-shift matrices. The proposition
allows us to focus on polynomials which are not sums of commutators:

Corollary 3.2 (cf. [Mes13, Corollary 15]). Imf = Md(C) ∩ ker Tr if and only if
a123 + a231 + a312 = 0 = a132 + a213 + a321.

Proof. By Proposition 3.1, Imf = Md(C)∩ker Tr if and only if Imf ⊆Md(C)∩ker Tr.
Now Imf ⊆Md(C)∩ ker Tr if and only if f is a sum of commutators [BK09]. This is
in turn by Remark 2.1 equivalent to a123 + a231 + a312 = 0 = a132 + a213 + a321.

Remark 3.3. The analog of Proposition 3.1 for multilinear polynomials f of degree
four is presented in [BW13]. It implies that the image of a sum of commutators f
equals Md(C)∩ ker Tr when d ≥ 3. The case d = 2 has a few stray cases arising from
the existence of central polynomials and polynomial identities of degree four.

3.1. One-wiggle families and the general strategy. From now on we consider
f as in (3) and we will always suppose

a123 + a132 + a213 + a231 + a312 + a321 = 0, (5)

a123 + a231 + a312 6= 0. (6)

We shall show that in various cases, Imf = Md(C). Without loss of generality, we
assume a123 + a231 + a312 = 1. Combined with (5), this implies

a312 = 1− a123 − a231, a321 = −1− a132 − a213. (7)

This leaves the four coefficient values that determine f :

a123, a132, a213, a231. (8)

3.1.1. One-wiggle families. We introduce some names we will use throughout this
paper. We will plug in as variables of f unitaries from the set {upq | p, q ∈ {0, . . . , d−
1}}; we will fix two of the three variables of f and vary the third. Then, since f is
multilinear, the linear span of all matrices so obtained will be contained in the Imf .
Since Imf is closed under conjugation by invertible matrices, in order to establish
that Imf = Md(C), it will suffice to show that all Jordan canonical forms belong to
Imf . Therefore, it will be enough to show,{

u0q | q ∈ {0, 1, . . . , d− 1}
}
∪
{
u1q | q ∈ {0, 1, . . . , d− 1}

}
⊆ Imf. (9)

1We point out this result is proved in [Mes13] for all fields with at least d elements.
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For example, in the case d = 3, fixing the second and third variables of f , we find

f(u02, u
2
0, u

1
1) = (−1 + ω2)u00 (10)

f(u00, u
2
0, u

1
1) = ((−1− a213 + a231) + (1 + a213 − a231)ω2)u01 (11)

f(u01, u
2
0, u

1
1) = ((−1− a213) + (a213 + a231)ω + (1− a231)ω2)u02 (12)

f(u12, u
2
0, u

1
1) = ((−1 + a123 − a132 − a213) + (a132 + a213)ω + (1− a123)ω2)u10 (13)

f(u10, u
2
0, u

1
1) = ((−1 + a123 − a132 + a231) + a132ω + (1− a123 − a231)ω2)u11 (14)

f(u11, u
2
0, u

1
1) = ((−1 + a123 − a132 − a213) + (a132 + a231)ω

+ (1− a123 + a213 − a231)ω2)u12

(15)

When we can fix two of the three variables in f and “wiggle” (or vary) the other
and by so doing we obtain constant multiples of all of the upq appearing in (9), then
we call this a one-wiggle family. Each one-wiggle family H produces a list of
coefficients of the various upq appearing on the right-hand-side. In the case of the

family (10)-(15), using the identity ω2 = −1− ω, these coefficients are

−2− ω (16)

−2− ω + (−2− ω)a213 +(2 + ω)a231 (17)

−2− ω + (−1 + ω)a213 +(1 + 2ω)a231 (18)

−2− ω + (2 + ω)a123+(−1 + ω)a132 + (−1 + ω)a213 (19)

−2− ω + (2 + ω)a123+(−1 + ω)a132 +(2 + ω)a231 (20)

−2− ω + (2 + ω)a123+(−1 + ω)a132 + (−2− ω)a213+(1 + 2ω)a231. (21)

Thus, for any choice of values a123, a132, a213, a231 making all six of the linear expres-

sions (16)-(21) nonzero, we will have Imf = M3(C).
Continuing with our example and the one-wiggle family H described in (10)-(15),

the coefficient (16) is never zero, while setting each of the other coefficients (17)-(21)
to be zero results in an affine subset of dimension 3 in the 4-dimensional parameter
space for the coefficients (8). Thus, all values of the coefficients (8) except those in
the union Ω(H) of five affine subsets of dimension 3 will yield Imf = M3(C).

If we consider another one-wiggle family H ′, and thereby obtain another union
Ω(H ′) of affine subsets of the parameter space, outside of which we have Imf =
M3(C), then taking these together, every choice of values of the coefficients (8) outside
of Ω(H) ∩ Ω(H ′) will yield Imf = M3(C).

3.1.2. The general strategy. Our goal will be to consider sufficiently many one-wiggle

families H1, . . . , Hk so that the intersection
⋂k

1 Ω(Hj) of the corresponding unions of
affine subsets is empty, which will then imply that Imf = Md(C) holds for all values
of coefficients (8).

We will achieve this goal for other cases of Md(C) from Theorem 1.2, but, as we
will soon see, we cannot quite attain it in the case of M3(C). However, we will show⋂k

1 Ω(Hj) is small and treat remaining cases by other, ad hoc methods.
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3.2. d = 3. In this subsection we use the one-wiggle families introduced above to
establish Theorem 1.2 for d = 3.

Recall the Amitsur-Levitzki polynomial [Row80,Pro73] of degree n defined as

Sn(x1, . . . , xn) =
∑
σ∈Sn

sign(σ)xσ(1)xσ(2) · · ·xσ(n). (22)

It is the minimal polynomial identity in the sense that S2n is (up to a scalar multiple)
the only smallest degree minimal polynomial vanishing on Mn(C).

Lemma 3.4. Suppose f is not a scalar multiple of the Amitsur-Levitzki polynomial
S3(x1, x2, x3) = x1x2x3 + x2x3x1 + x3x1x2 − x1x3x2 − x3x2x1 − x2x1x3. Then Imf =
M3(C).

Proof. We use 13 one-wiggle families H1, . . . , H13 and we show that
⋂13
j=1 Ω(Hj) is

the single point (1
3
,−1

3
,−1

3
, 1
3
), which will prove the lemma. The proof involved

computation using Mathematica [WR15]. We will describe the proof below and also
a Mathematica notebook file with more details is available from the arXiv or the
authors’ websites.

The first step of the proof is to find all one-wiggle families (eliminating those where
a constant multiplying a upq in the image is obviously zero, based on the identity (5)).
Computation revealed that there are 144 different one-wiggle families.

The second step is, from each one-wiggle family H, to describe the associated union
Ω(H), of affine subsets of R4. Each affine subspace is given as the solution set of
a linear equation, thus, as a row vector of length 5, whose first four entries are the
coefficients of the variables (8) and whose last entry is the constant term. Though for
a given H, there are ostensibly six affine subsets whose union is Ω(H), corresponding
to setting the six quantities as in (16)-(21) to be zero. In practice one of these is never
zero and the corresponding affine subset is empty; thus it is discarded. Thus, each
Ω(H) is encoded as a set of five nonzero row vectors of length 5, and we normalize so
that the first nonzero entry is equal to 1. Though there were 144 different one-wiggle
families H, computation revealed that they yielded only 48 different sets Ω(H).

The third step is to find one-wiggle families H1, . . . , Hk so that

k⋂
j=1

Ω(Hj) = {1

3
,−1

3
,−1

3
,
1

3
}. (23)

This was accomplished, with k = 13, as follows. Here is how we keep track of affine
subsets of R4 and their unions, and how we compute intersections of the these. (This

description is for working with general d× d matrices which we need later, though in
this lemma, of course, we have d = 3; this is especially relevant at points (h) and (n).)

(a) affine subsets of R4 are recorded as ` × 5 matrices in reduced row-echelon
form;

(b) the first four columns correspond to the coefficients of the variables (8) and
the last column is for the constant terms;
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(c) any rows of all zeros are dropped;
(d) if the matrix contains the row (0, 0, 0, 0, 1) then the corresponding affine space

is empty and this entire matrix is discarded;
(e) an `× 5 matrix corresponds to an affine subset of dimension 4− `;
(f) unions of affine subsets are recorded as sets of such row-reduced matrices;
(g) the intersection of two affine subsets is computed by forming the matrix con-

sisting of the rows of one stacked on top of the rows of the other, finding
the reduced row-echelon form of the matrix and discarding any zero rows;
if the row (0, 0, 0, 0, 1) is present then the intersection is empty and may be
discarded;

(h) the matrix computations are carried out in exact arithmetic using Mathemat-
ica’s AlgebraicNumber facility, in terms of the primitive d-th root of unity;

(i) the intersection of two sets Θ and Φ that are unions of affine subsets is com-
puted as the union of all pairwise intersections of the affine subsets, one from
Θ and one from Φ.

The search for the one-wiggle families H1, . . . , Hk so that the intersection
⋂k
j=1 Ω(Hj)

is as small as possible, is carried out as follows:

(j) an initial one-wiggle family H1 is selected
(k) if H1, . . . , Hp have been selected and the intersection Φ =

⋂p
j=1 Ω(Hj) is

recorded, then all of the remaining unselected one-wiggle families H are con-
sidered, and tested for the effect on the intersection;

(l) ideally, Hp+1 is chosen so that the union Φ ∩ Ω(Hp+1) of affine subsets of R4

is as good as possible, where “good” means
(1) the maximal dimension of the affine subsets is as small as possible;
(2) in case of a tie for the maximal dimension, the number of different affine

subsets of maximal dimension in the union is as small as possible;
(3) in case of ties for the maximal dimension and the number of subspaces of

maximal dimension, the number of different affine subsets of dimension
one less than maximal is as small as possible, etc.

(m) in case of ties in the above criteria, arbitrary selections are made

(n) in practice it can be computationally too expensive to test all of the intersec-
tions Φ ∩ Ω(H); instead, we sometimes
(1) consider only Φmax ∩ Ω(H), where Φmax is the union of affine subsets of

maximal dimension in Φ;

(2) test only some of the one-wiggle families H, by randomly selecting them
and keeping track of the properties of Φ∩Ω(H); if, after testing several,
sufficient improvement in the goodness of Φ is observed, then the testing
is terminated and Hp+1 is selected to be the one that was tested that
resulted in the most improvement.

As mentioned, we found 13 one-wiggle families H1, . . . , H13 so that (23) holds with
k = 13. Without going into full details, these are summarized in Table 1. The order
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of their numbering is the order in which they were selected by the algorithm described
in parts (j)-(n) above.

Table 1. The one-wiggle families for d = 3

name form name form name form

H1 f(u10, u
2
2, u

p
q) H2 f(upq , u

1
0, u

0
2) H3 f(u01, u

p
q , u

1
0)

H4 f(u10, u
p
q , u

2
2) H5 f(u10, u

p
q , u

1
1) H6 f(u20, u

1
1, u

p
q)

H7 f(upq , u
2
1, u

1
0) H8 f(u10, u

1
1, u

p
q) H9 f(u10, u

p
q , u

2
1)

H10 f(u20, u
2
1, u

p
q) H11 f(u11, u

1
0, u

p
q) H12 f(upq , u

2
0, u

1
2)

H13 f(u20, u
1
2, u

p
q)

Lemma 3.5. For the Amitsur-Levitzki polynomial f = S3, we have Imf = M3(C).

Proof. It suffices to prove all possible 3 × 3 Jordan forms are in the image of S3.
Letting

N3 =

0 1 0
0 0 1
0 0 0

 ,

it is easy to verify thatα 0 0

0 β 0

0 0 γ

 = S3

N3,

0 0 0

2 0 0

0 1 0

 ,
1

6

5α
2 − 2β + γ 0 0

0 2 (α− 2β + γ) 0

0 0 α− 2β − 2γ

 ,

α 1 0

0 α 0

0 0 β

 = S3

N3,

−1 0 0

0 1 0

0 0 2

 ,
1

3

3 0 0

α 0 0

0 β 0

 ,

α 1 0

0 α 1

0 0 α

 = S3

N3,

1 0 0

1 0 0

0 1 −1

 ,
1

2

α− 1 0 0

0 −2 0

0 0 −α− 1

 .

Now the following is a result of Lemmas 3.4 and 3.5.

Proposition 3.6. For any multilinear polynomial f with coefficients satisfying (5)
and (6), evaluated on triples from M3(C), we have Imf = M3(C).

3.3. d < 17 odd. The cases of d × d matrices for d odd, 5 ≤ d ≤ 15, are proved
similarly to the d = 3 case, though the method of intersecting affine subsets eliminated

all values of the variables (8) without exception.

Proposition 3.7. For any multilinear polynomial f with coefficients satisfying (5)
and (6), evaluated on triples from Md(C), for d odd and 5 ≤ d ≤ 15 and also for
d ∈ {21, 35}, we have Imf = Md(C).

Proof. Using the method and algorithm described in the proof of Lemma 3.4, for
each d we found one-wiggle families H1, . . . , Hn (n ranging from 6 to 14, depending
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on d) such that
⋂n
j=1 Ω(Hj) = ∅, which provides a proof. These one-wiggle families,

numbered according to the order in which they were found by the algorithm, are de-
scribed in Table 2. For those interested in more details, Mathematica 10.0 notebooks
carrying out the algorithm in each case are available from the arXiv or the authors’
websites.

Table 2. The one-wiggle families for d odd, 5 ≤ d ≤ 15 and for d ∈ {21, 35}

d name form name form name form

d = 5 H1 f(u40, u
p
q , u

0
4) H2 f(u10, u

4
4, u

p
q) H3 f(upq , u

3
0, u

2
4)

H4 f(u20, u
p
q , u

4
1) H5 f(u40, u

p
q , u

3
4) H6 f(u30, u

p
q , u

1
3)

H7 f(u40, u
p
q , u

1
2) H8 f(upq , u

3
0, u

2
2) H9 f(u20, u

1
4, u

p
q)

H10 f(u20, u
2
3, u

p
q) H11 f(u10, u

4
2, u

p
q) H12 f(u30, u

p
q , u

2
3)

H13 f(u20, u
1
3, u

p
q)

d = 7 H1 f(u30, u
2
1, u

p
q) H2 f(u10, u

p
q , u

1
6) H3 f(upq , u

5
1, u

6
0)

H4 f(u60, u
p
q , u

0
3) H5 f(u10, u

2
2, u

p
q) H6 f(upq , u

3
0, u

3
1)

H7 f(u30, u
3
5, u

p
q) H8 f(upq , u

5
0, u

2
5) H9 f(u40, u

p
q , u

3
2)

H10 f(u40, u
3
6, u

p
q) H11 f(upq , u

3
0, u

4
2) H12 f(u20, u

p
q , u

5
6)

H13 f(upq , u
5
0, u

2
1) H14 f(u10, u

6
4, u

p
q)

d = 9 H1 f(u61, u
6
2, u

p
q) H2 f(u30, u

0
5, u

p
q) H3 f(u01, u

3
0, u

p
q)

H4 f(upq , u
6
1, u

3
0) H5 f(u38, u

p
q , u

6
8) H6 f(u38, u

6
8, u

p
q)

d = 11 H1 f(u20, u
p
q , u

8
1) H2 f(upq , u

1
0, u

6
3) H3 f(upq , u

6
0, u

5
10)

H4 f(u100 , u
6
5, u

p
q) H5 f(u10, u

p
q , u

10
10) H6 f(u90, u

9
5, u

p
q)

H7 f(u10, u
7
3, u

p
q) H8 f(u50, u

6
6, u

p
q) H9 f(u80, u

p
q , u

5
1)

H10 f(u80, u
3
8, u

p
q) H11 f(u100 , u

p
q , u

1
1) H12 f(upq , u

6
0, u

5
4)

d = 13 H1 f(upq , u
1
0, u

11
11) H2 f(u90, u

p
q , u

4
6) H3 f(upq , u

10
0 , u

3
1)

H4 f(u20, u
9
1, u

p
q) H5 f(u70, u

3
8, u

p
q) H6 f(upq , u

7
0, u

9
5)

H7 f(upq , u
9
0, u

8
2) H8 f(u90, u

4
7, u

p
q) H9 f(upq , u

9
0, u

4
3)

H10 f(u10, u
12
3 , u

p
q) H11 f(u50, u

p
q , u

8
5)

d = 15 H1 f(u013, u
5
8, u

p
q) H2 f(u1010, u

p
q , u

0
8) H3 f(upq , u

0
8, u

5
2)

H4 f(u104 , u
5
0, u

p
q) H5 f(upq , u

6
3, u

12
12) H6 f(u91, u

p
q , u

6
10)

d = 21 H1 f(upq , u
14
12, u

7
13) H2 f(u147 , u

14
15, u

p
q) H3 f(u147 , u

0
11, u

p
q)

H4 f(u010, u
7
1, u

p
q) H5 f(u1416, u

p
q , u

14
17) H6 f(u28, u

p
q , u

19
9 )

H7 f(u156 , u
6
2, u

p
q)

d = 35 H1 f(upq , u
7
6, u

28
0 ) H2 f(upq , u

14
29, u

28
31) H3 f(upq , u

21‘
17 , u

0
28)

H4 f(u027, u
p
q , u

21
28) H5 f(u1431, u

p
q , u

0
29) H6 f(u2933, u

p
q , u

6
6)

H7 f(u2220, u
13
20, u

p
q)
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3.4. d even but not a multiple of 4.

Proposition 3.8. For any multilinear polynomial f with coefficients satisfying (5)
and (6), evaluated on triples from Md(C), for d ≥ 6 even but not a multiple of 4, we
have Imf = Md(C).

Proof. We write d = 2c with c odd. We consider one-wiggle families. Since ω is a
primitive d-th root of unity and d = 2c with c odd we have ωc = −1 and ωc

2
= −1.

The basic idea of the proof is similar to that of the odd cases treated in Lemma 3.4
and Proposition 3.7, but with simplification provided by some happy coincidences in
the coefficients for certain one-wiggle families. For example, we get

f(uc0, u
c
c, u

0
q) = αu0c+q

where

α =

{
−2− 2a132 + 2a231, q even,

−2, q odd

and
f(uc0, u

c
c, u

1
q) = β u1c+q

where

β =

{
2− 2a123 + 2a132 + 2a213, q even,

2− 2a123 + 2a213 − 2a231, q odd,

where we have made the substitutions (7). Thus, for any choice of coefficients (8)

making the three expressions

−2− 2a132 + 2a231, 2− 2a123 + 2a132 + 2a213, 2− 2a123 + 2a213 − 2a231 (24)

nonzero, Imf = Md(C) is proved. We will need eight such one-wiggle families, and

these, named H1, . . . , H8, are described in Table 3.

Table 3: Values of f used in the case d = 2c with c odd

fam. f evaluation yields u∗∗ times this quantity

H1 f(uc0, u
c
c, u

0
q), q even u0c+q −2− 2a132 + 2a231

f(uc0, u
c
c, u

0
q), q odd u0c+q −2

f(uc0, u
c
c, u

1
q), q even u1c+q 2− 2a123 + 2a132 + 2a213

f(uc0, u
c
c, u

1
q), q odd u1c+q 2− 2a123 + 2a213 − 2a231

H2 f(uc1, u
c
c+1, u

0
q), q even u02+c+q 2 + 2a132 − 2a231

f(uc1, u
c
c+1, u

0
q), q odd u02+c+q 2

f(uc1, u
c
c+1, u

1
q), q even u12+c+q −2ω2 + (1 + ω2)a123 − (ω + ω2)a132

− (1 + ω2)a213 − (ω − ω2)a231

Continued on next page
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Table 3 – Continued from previous page

fam. f evaluation yields u∗∗ times this quantity

f(uc1, u
c
c+1, u

1
q), q odd u12+c+q −2ω2 + (1 + ω2)a123 + (ω − ω2)a132

− (1 + ω2)a213 + (ω + ω2)a231

H3 f(u0q, u
c
0, u

c
c), q even u0c+q −2a123 − 2a213 − 2a231

f(u0q, u
c
0, u

c
c), q odd u0c+q −2

f(u1q, u
c
0, u

c
c), q even u1c+q −2a132 − 2a231

f(u1q, u
c
0, u

c
c), q odd u1c+q −2 + 2a123 − 2a132 − 2a213

H4 f(uc0, u
0
q, u

c
c), q even u0c+q −2a123 − 2a132 − 2a213

f(uc0, u
0
q, u

c
c), q odd u0c+q 2

f(uc0, u
1
q, u

c
c), q even u1c+q −2a132 − 2a231

f(uc0, u
1
q, u

c
c), q odd u1c+q 2− 2a123 + 2a213 − 2a231

H5 f(u0q, u
c
c−1, u

c
c), q even u0q−1 −2a123 − 2a213 − 2a231

f(u0q, u
c
c−1, u

c
c), q odd u0q−1 −2

f(u1q, u
c
c−1, u

c
c), q even u1q−1 −(1 + ω−1)− (1− ω−1)a132

−(1− ω−1)a231
f(u1q, u

c
c−1, u

c
c), q odd u1q−1 −(1− ω−1)− 2ω−1a123

− (1− ω−1)a132 − 2a213

− (1 + ω−1)a231

H6 f(uc1, u
0
q, u

c
0), q even u0q+1 2a123 + 2a132 + 2a213

f(uc1, u
0
q, u

c
0), q odd u0q+1 −2

f(uc1, u
1
q, u

c
0), q even u1q+1 −1 + ω + 2a123 + (1 + ω)a132

+2ωa213 + (1− ω)a231

f(uc1, u
1
q, u

c
0), q odd u1q+1 −(1 + ω) + (1− ω)a132 + (1− ω)a231

H7 f(ucq, u
0
1, u

c
c), q even u0q+c+1 2

f(ucq, u
0
1, u

c
c), q odd u0q+c+1 −2 + 2a123 − 2a132 − 2a213

f(uc+1
q , u01, u

c
c), q even u1q+c+1 1 + ω − 2a123ω + (1 + ω)a132

+ 2a213 + (1− ω)a231

f(uc+1
q , u01, u

c
c), q odd u1q+c+1 −(1 + ω)− (1− ω)a132 − (1− ω)a231

H8 f(u0−1, u
c
q, u

c
0), q even u0q−1 −2 + 2a123 − 2a213 + 2a231

Continued on next page
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Table 3 – Continued from previous page

fam. f evaluation yields u∗∗ times this quantity

f(u0−1, u
c
q, u

c
0), q odd u0q−1 2

f(u0−1, u
c+1
q , uc0), q even u1q−1 −(1 + ω−1) + 2a123 + (1− ω−1)a132

− 2ω−1a213 + (1 + ω−1)a231

f(u0−1, u
c+1
q , uc0), q odd u1q−1 1 + ω−1 − (1− ω−1)a132

− (1− ω−1)a231

As in the previous treatments, for each family Hi we have a union Ω(Hi) of three
affine subsets of R4, namely, the subsets described by setting the expressions in the
last column of Table 3 equal to zero. For example, in the case of the family H1, these
are the expressions (24). (In the case of the third and fourth rows of families H5 and
H8, we first multiply the entire quantity by ω to get nonnegative powers of ω.) We
show that the intersection

⋂8
i=1 Ω(Hi) is empty, which proves Imf = Md(C). The

technique is similar to that described in items (a)-(i) except that when performing
Gaussian elimination on matrices representing affine subsets, instead of working over
the field of algebraic numbers generated by a specific primitive d-th root of unity,
we work over the ring of polynomials in the indeterminant ω, where ω represents a
primitive d-th root of unity for unknown d, and we are careful never to divide by a
polynomial of positive degree. With this it is only possible, in general, to reduce to
a matrix in row-echelon form where the leading nonzero entry of each row is a monic
polynomial and all entries above it have strictly lower degree in ω. In particular,
item (h) no longer applies and items (d) and (g) are modified; note that anytime
a row (0, 0, 0, 0, p) appears in a matrix representing an affine subset, where p is a
nonzero polynomial in ω, then the affine subset is empty provided d is such that
p applied to a primitive d-th root of unity is nonzero. Thus, items (d) and (g)
are modified so that whenever such a row (0, 0, 0, 0, p) appears, then the matrix is
discarded, but a note is made that it is assumed p(ω) 6= 0.

In the end, we obtained that the intersection
⋂8
i=1 Ω(Hi) is empty, provided that

all in a list of polynomials in ω are nonvanishing; the irreducible factors of the poly-
nomials in this list are:

ω − 1, ω, ω + 1, ω2 + 1, ω2 − 6ω + 1, 3ω2 − 2ω + 3.

It is easy to see that none of these polynomials vanish on the primitive d-th root of

unity when d ≥ 3. This proves the proposition. The details of the calculations can
be found in a Mathematica 10.0 notebook available from the arXiv or the authors’
websites.
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3.5. d multiple of 4.

Proposition 3.9. For any multilinear polynomial f as in (3) with coefficients sat-
isfying (5) and (6), evaluated on triples from Md(C), for d ≥ 4 a multiple of 4, we
have Imf = Md(C).

Proof. We write d = 2c with c even, c ≥ 2. We proceed as in the proof of Proposi-
tion 3.8. Computations are summarized in Table 4, below.

Table 4: Values of f used in the case d = 2c with c even

fam. f evaluation yields u∗∗ times this quantity

H1 f(uc1, u
c
c, u

0
q), q even u0c+q+1 2 + 2a132 − 2a231

f(uc1, u
c
c, u

0
q), q odd u0c+q+1 2

f(uc1, u
c
c, u

1
q), q even u1c+q+1 −2ω + (1 + ω)a123 − (1 + ω)a132

− (1 + ω)a213

f(uc1, u
c
c, u

1
q), q odd u1c+q+1 −2ω + (1 + ω)a123 + (1− ω)a132

− (1 + ω)a213 + 2ωa231

H2 f(uc1, u
0
1, u

c
q), q even u0q+2 −2

f(uc1, u
0
1, u

c
q), q odd u0q+2 −2 + 2a123 − 2a132 − 2a213

f(uc1, u
0
1, u

c+1
q ), q even u1q+2 −2ω2 − (1− ω2)a123 + (ω − ω2)a132

+ (1− ω2)a213 − (ω − ω2)a231

f(uc1, u
0
1, u

c+1
q )), q odd u1q+2 −2ω2 + (1 + ω2)a123 − (ω + ω2)a132

− (1 + ω2)a213 − (ω − ω2)a231

H3 f(ucq, u
c
0, u

0
1), q even u0q+1 −2a132 − 2a231

f(ucq, u
c
0, u

0
1), q odd u0q+1 2

f(uc+1
q , uc0, u

0
1), q even u1q+1 −(1− ω)a123 − (1 + ω)a132

−(1− ω)a213 − 2a231

f(uc+1
q , uc0, u

0
1), q odd u1q+1 2− (1− ω)a123 + (1− ω)a132

+ (1− ω)a213

H4 f(ucq, u
0
1, u

c
0), q even u0q+1 −2a132 − 2a231

f(ucq, u
0
1, u

c
0), q odd u0q+1 2

f(uc+1
q , u01, u

c
0), q even u1q+1 1 + ω − 2ωa123 + (1 + ω)a132

+ 2a213 + (1− ω)a231

Continued on next page
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Table 4 – Continued from previous page

fam. f evaluation yields u∗∗ times this quantity

f(uc+1
q , u01, u

c
0), q odd u1q+1 −(1 + ω)− (1− ω)a132 − (1− ω)a231

H5 f(u0q, u
c
0, u

c
1), q even u0q+1 −2a123 − 2a213 − 2a231

f(u0q, u
c
0, u

c
1), q odd u0q+1 −2

f(u1q, u
c
0, u

c
1), q even u1q+1 −(1 + ω)a123 − (1− ω)a132

− (1 + ω)a213 − 2a231

f(u1q, u
c
0, u

c
1), q odd u1q+1 −2 + (1− ω)a123 − (1− ω)a132

− (1− ω)a213

H6 f(uc0, u
0
q, u

c
1), q even u0q+1 −2a123 − 2a132 − 2a213

f(uc0, u
0
q, u

c
1), q odd u0q+1 2

f(uc0, u
1
q, u

c
1), q even u1q+1 −(1 + ω)a123 − 2a132 − (1 + ω)a213

− (1− ω)a231

f(uc0, u
0
q, u

c
1), q odd u1q+1 2− (1− ω)a123 + (1− ω)a213

− (1− ω)a231

Proceeding as described in the proof of Proposition 3.8, we show that the intersection⋂6
i=1 Ω(Hi) is empty provided none of the polynomials

ω − 3, ω − 1, ω, ω + 1, 3ω − 1, ω2 + 1, ω2 − 4ω + 1,

ω2 + 4ω + 1, 3ω2 − 2ω + 3, ω4 − 2ω3 + 10ω2 − 2ω + 1

vanish and it is easy to show that none of these vanish when ω is a primitive d-th

root of unity for d ≥ 5. However, in case d = 4, namely ω = i, the polynomial w2 + 1
does, of course, vanish.

It remains to consider the case ω = i. For this case, we need to add one more

one-wiggle family, H7, presented in Table 5. Substituting ω = i and executing the
algorithm as described in the proof of Lemma 3.4, we easily show

⋂7
i=1 Ω(Hi) = ∅ in

this case, which finishes the proof.

Appendix A. Alternative Proof of Proposition 3.1

In this appendix we present a short and self-contained proof of Proposition 3.1. We

start by recording a well-known lemma stating that every traceless matrix is unitarily
similar to a hollow matrix; see e.g. [HJ85, Chapter 2, Section 2.2, Problem 3] for a
proof.

Lemma A.1. Given A ∈Md(C) with Tr(A) = 0, there exists a unitary U ∈ GLd(C)
so that U−1AU has only zeros on the diagonal.
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Table 5. The extra one-wiggle family used in the case d = 4

fam. f evaluation yields u∗∗ times this quantity

H7 f(uc0, u
0
1, u

c
q), q even u0q+1 2− 2a123 + 2a132 + 2a213

f(uc0, u
0
1, u

c
q), q odd u0q+1 2

f(uc0, u
0
1, u

c+1
q ), q even u1q+1 2ω − (1 + ω)a123 + 2ωa132

+ (1 + ω)a213 + (1− ω)a231

f(uc0, u
0
1, u

c+1
q ), q odd u1q+1 2ω + (1− ω)a123 − (1− ω)a213

+ (1− ω)a231

Proof of Proposition 3.1. Since

span
{
upq | p ∈ {1, 2, . . . , d− 1}, q ∈ {0, 1, . . . , d− 1}

}
(25)

equals the set of matrices in Md(C) having all diagonal entries zero, in light of
Lemma A.1, it will suffice to show that Imf contains the space (25). Using (4),
we have

f(u00, u
0
1, u

p
q) =

(
(a123 + a213 + a231) + (a132 + a312 + a321)ω

p
)
upq+1

= (a123 + a213 + a231)(1− ωp)upq+1 (26)

and, similarly,

f(u01, u
0
0, u

p
q) = (a123 + a132 + a213)(1− ωp)upq+1

f(u01, u
p
q , u

0
0) = (a123 + a132 + a312)(1− ωp)upq+1 .

Suppose that at least one of the three quantities

a123 + a213 + a231 , a123 + a132 + a213 , a123 + a132 + a312 (27)

is nonzero. If the first is nonzero, then using (26) and (25) we get

f(u00, u
0
1, span {upq | p ∈ {1, 2, . . . , d− 1}, q ∈ {0, 1, . . . , d− 1}}) =

= span {f(u00, u
0
1, u

p
q) | p ∈ {1, 2, . . . , d− 1}, q ∈ {0, 1, . . . , d− 1}} =

= span {upq+1 | p ∈ {1, 2, . . . , d− 1}, q ∈ {0, 1, . . . , d− 1}},

and the last of these is the set of all matrices having zero diagonal. By Lemma A.1,
the union of the similarity orbits (in fact, the unitary orbits) of these matrices is
Md(C)∩ker Tr. The cases of the other expressions in (27) being nonzero are handled
in a like manner.

Hence, we may suppose that all three expressions in (27) vanish. Then, using
also (4), we get

a213 = −a123 − a132 , a231 = a132 , a312 = −a123 − a132 , a321 = a123 . (28)
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We find

f(u01, u
p
q , u

0
1) =

(
(a123 + a321)ω

p + (a132 + a312) + (a213 + a231)ω
2p
)
upq+2

= −a123(1− ωp)2upq+2,

using (28) for the second equality, and similarly

f(u01, u
0
1, u

p
q) = −a132(1− ωp)2upq+2 .

Arguing as before, if a123 6= 0 or a132 6= 0, then the set (25) is in Imf . But we cannot
have a123 = a132 = 0, for this together with (28) would imply that f is identically
zero, contrary to hypothesis.
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