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Abstract. This paper introduces and develops the algebraic framework of moment

polynomials, which are polynomial expressions in commuting variables and their formal

mixed moments. Their positivity and optimization over probability measures supported

on semialgebraic sets and subject to moment polynomial constraints is investigated. A

positive solution to Hilbert’s 17th problem for pseudo-moments is given. On the other

hand, moment polynomials positive on actual measures are shown to be sums of squares

and formal moments of squares up to arbitrarily small perturbation of their coefficients.

When only measures supported on a bounded semialgebraic set are considered, a stronger

algebraic certificate for moment polynomial positivity is derived. This result gives rise

to a converging hierarchy of semidefinite programs for moment polynomial optimization.

Finally, as an application, two open nonlinear Bell inequalities from quantum physics

are settled.

1. Introduction

Consider two groups of independent variables, x1, . . . , xn and mi1,...,in for i1, . . . in ∈ N0.
Here, the latter are viewed as formal mixed moments, also denoted mi1,...,in = m(xi11 · · ·xinn ),
which in the presence of a probability measure µ on Rn evaluate as

∫
xi11 · · ·xinn dµ. This

paper focuses on the class of moment polynomials, i.e., polynomials in x1, . . . , xn and
their formal moments, and their inequalities. A very rudimentary instance of a moment
polynomial inequality is that every random variable X has a nonnegative variance,

Var(X) = E(X2)− E(X)2 = E
(
(X − E(X))2

)
≥ 0;

in the language of this paper, we say that the moment polynomial m(x21)− m(x1)
2 is non-

negative. Problems involving moment polynomial inequalities and optimization arise in
various fields. For example, concentration inequalities in moments provide bounds on
deviation of a random variable, and the search for such inequalities has been a flourishing
area of probability theory [BBLM05, BP05, MJC+14]. In statistics, distributions of struc-
tural parameters are partially identified by moment inequalities [LJ10]; similarly, moment

2020 Mathematics Subject Classification. 13J30, 44A60, 60E15, 90C22, 46G12, 47L60, 81-08.
Key words and phrases. Moment polynomial, Positivstellensatz, polynomial optimization, moment

problem, semidefinite programming, nonlinear Bell inequality.
IK was supported by the Slovenian Research Agency grants J1-50002, N1-0217, J1-3004 and P1-0222.

VM was supported by the EPOQCS grant funded by the LabEx CIMI (ANR-11-LABX-0040), the

FastQI grant funded by the Institut Quantique Occitan, the PHC Proteus grant 46195TA, the European

Union’s Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie Actions,

grant agreement 813211 (POEMA), by the AI Interdisciplinary Institute ANITI funding, through the

French “Investing for the Future PIA3” program under the Grant agreement n◦ ANR-19-PI3A-0004 as

well as by the National Research Foundation, Prime Minister’s Office, Singapore under its Campus for

Research Excellence and Technological Enterprise (CREATE) programme.

JV was supported by the NSF grant DMS-1954709.
1



2 IGOR KLEP, VICTOR MAGRON, AND JURIJ VOLČIČ

inequality constraints can be used as a basis for estimation and inference in partially iden-
tified behavioral models in economics [PPHI15] and industrial organization [KPT21]. An-
other instance of moment polynomial inequalities arises in operator theory [CP10], where
they characterize hyponormality of operators. Moment optimization is used to study par-
tial differential equations: in [HIKV23], solving a heat equation with a nonlinear pertur-
bation is formulated as a linear optimization problem on moments, while [Fan22] applies
polynomial optimization to verify integral inequalities arising from Lyapunov analysis of
fluid flows. Lastly, nonlinear Bell inequalities in quantum information theory are moment
inequalities that certify nonlocality in quantum networks [PHBB17, TGB21, TPKLR22].

To systematically approach moment polynomial inequalities, it is natural to start
from the theory built around their moment-free analogs, namely real algebraic geome-
try [Mar08]. The cornerstone of real algebraic geometry are sums of squares certificates
for nonnegative polynomials. Artin’s solution of Hilbert’s 17th problem characterizes non-
negative polynomials on Rn in terms of sums of squares and denominators, and Putinar’s
Positivstellensatz [Put93] describes polynomials positive on compact semialgebraic sets in
Rn. The latter was groundbreakingly applied to polynomial optimization in [Las01], re-
sulting in Lasserre’s hierarchy, based on semidefinite programming. This hierarchy yields
a sequence of nondecreasing lower bounds converging to the global infimum of a polyno-
mial over a compact semialgebraic set. Positive polynomials also play a crucial role in
functional analysis and measure theory through moment problems [Sch17]. The duality
between polynomials positive on a semialgebraic set K and measures supported on K con-
nects sums of squares certificates with necessary conditions for solvability of the moment
problem onK. The monographs [Las09, HKL20] present many applications of the moment
problem, Lasserre’s hierarchy and its variations. More recent developments in this field
concern nonlinear expressions in moments, and the infinite-dimensional moment problem.
In [BRS+22], techniques of tropical geometry are applied to nonnegative polynomials and
moment problems, resulting in classification of moment binomial inequalities. In the re-
cent work [HIKV23], nonlinear partial differential equations are formulated as moment
problems for measures supported on infinite-dimensional vector spaces, and then results
about the infinite-dimensional moment problem in nuclear spaces [IKR14, IKKM23] are
leveraged to derive converging approximations to solutions of differential equations.

In the noncommutative setting, the Helton-McCullough Positivstellensatz [HM04] leads
to similar methods for optimizing eigenvalues of polynomials in matrix or operator vari-
ables [BKP16]. The famous Navascués-Pironio-Aćın hierarchy [NPA08] yields bounds
over the maximal violation levels of linear Bell inequalities, which also relates to the
quantum moment problem [DLTW08]. Motivated by the more difficult study of nonlinear
Bell inequalities [PHBB17] for correlations in quantum networks [TPKLR22], the three
authors have recently proposed two nonlinear extensions to optimization problems over
trace [KMV22] and state polynomials [KMVW23], derived from Positivstellensätze for
polynomials in noncommuting variables and formal traces or states of their products. In
this paper, we let noncommutative real algebraic geometry offer a new perspective on
commutative problems involving moment polynomials.

Moment polynomials. This paper investigates positivity and optimization of moment
polynomials subject to polynomial relations between the problem variables xj and their
formal mixed moments. For example,

f = m(x1x
3
2)x1x2 − m(x21)

3x22 + x2 − m(x2)m(x1x2)− 2
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is a moment polynomial; at a probability measure µ on R2 with fourth order moments
and a pair (X1, X2) ∈ R2, f evaluates as

f
(
µ, (X1, X2)

)
= X1X2

∫
x1x

3
2 dµ−X2

2

(∫
x21 dµ

)3

+X2 −
∫
x2 dµ

∫
x1x2 dµ− 2.

Amoment polynomial without freely occurring xj, e.g. m(x
2
1x

2
2)−m(x1)

4+m(x1)m(x2)m(x1x2),
is called pure. The algebra of pure moment polynomials is denoted by M , and the al-
gebra of moment polynomials is denoted by M [x]. There is a natural M -linear map
m : M [x] → M that corresponds to formal integration.
To study constrained positivity of moment polynomials, let S1 ⊆ R[x] and S2 ⊆ M be

collections of constraints. LetK(S1) be the set of points X ∈ Rn such that all polynomials
in S1 are nonnegative at X. Let P(K(S1)) be the set of all Borel probability measures
supported on K(S1), and let K(S1, S2) be the set of measures µ ∈ P(K(S1)) such that all
pure moment polynomials in S2 are nonnegative at µ. Adapting a standard notion from
real algebra [Mar08], we define the quadratic module QM(S1, S2) ⊆ M [x] as the convex
hull of {

f 2 m(g2s), f 2t : s ∈ S1 ∪ {1}, t ∈ S1 ∪ S2, f, g ∈ M [x]
}
.

Elements of QM(S1, S2) are clearly nonnegative on K(S1, S2) × K(S1). This paper
addresses the converse, and provides certificates for moment polynomial positivity on
K(S1, S2)×K(S1) in terms of QM(S1, S2).

Main results. The first positivity certificate applies to archimedean quadratic modules.
Here, QM(S1, S2) is archimedean if N − x21 − · · · − x2n ∈ QM(S1, S2) for some N ∈ N.
Note that the constrained set K(S1) is bounded in this instance. Conversely, if K(S1)
is contained in a ball of radius R, we may add R2 − x21 − · · · − x2n to S1 to obtain an
archimedean quadratic module without shrinking K(S1, S2)×K(S1).

Theorem A (Theorem 4.2). If QM(S1, S2) is archimedean, the following statements are
equivalent for f ∈ M [x]:

(i) f ≥ 0 on K(S1, S2)×K(S1);
(ii) f + ε ∈ QM(S1, S2) for every ε > 0.

Theorem A is proved using results from real algebra and the solution of the moment
problem for compactly supported measures. Analogously to Lasserre’s hierarchy [Las01]
leveraging Putinar’s Positivstellensatz [Put93] in polynomial optimization, we utilize The-
orem A to derive a procedure for solving the moment polynomial optimization problem

minimize f(µ,X) subject to X ∈ K(S1) and µ ∈ K(S1, S2)

based on semidefinite programming.

Theorem B (Corollary 5.2). Let QM(S1, S2) be archimedean and f a moment polynomial.
The Positivstellensatz-induced hierarchy of semidefinite programs produces a nondecreas-
ing sequence converging to the infimum of f on K(S1, S2)×K(S1).

We apply Theorem B to moment polynomial optimization problems from quantum
information theory. Two nonlinear Bell inequalities conjectured in [PHBB17] and [TGB21,
TPKLR22] are established. For example, our optimization scheme allows us to solve the
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following problem:

sup
1

3

∑
i∈{1,2,3}

(
m(xi+3xi+6)− m(xixi+3)

)
−

∑
{i,j,k}={1,2,3}

m(xixj+3xk+6)

subject to

m(xk11 x
k2
2 x

k3
3 x

k4
7 x

k5
8 x

k6
9 ) = m(xk11 x

k2
2 x

k3
3 )m(xk47 x

k5
8 x

k6
9 ) for ki ∈ {0, 1},

x2j = 1 and m(xj) = 0 for j ∈ {0, . . . , 9},
m(xixj+3) = m(xi+3xj+6) = 0 for i, j ∈ {1, 2, 3}, i ̸= j,

m(xixj+3xk+6) = 0 for i, j, k ∈ {1, 2, 3}, |{i, j, k}| ≤ 2.

(1.1)

In Subsection 5.2 it is shown that the solution of (1.1) is 4, attained by certain binary
variables and the uniform measure on 16 points, thereby answering a question in [TGB21,
TPKLR22].

Next, we address certificates for moment polynomial positivity subject to constraint
sets S1 and S2 without the archimedean assumption. In particular, we aim to describe
everywhere nonnegative moment polynomials (i.e., S1 = S2 = ∅). In this particular case,
one might first consider an analog of Hilbert’s 17th problem for moment polynomials
(H17): if f ∈ M [x] is nonnegative on P(Rn) × Rn, can we write it as a quotient of
sums of products of elements of the form f 2 and m(f 2) for f ∈ M [x]? It turns out that
the answer to this question is negative (cf. Example 3.8). More precisely, the algebraic
certificate in (H17) characterizes the strictly smaller class of moment polynomials that
are nonnegative under pseudo-moment evaluations. A pseudo-moment evaluation is a
homomorphism φ : M [x] → R satisfying φ(m(p2)) ≥ 0 for all p ∈ R[x].

Theorem C (Theorem 3.7). The following statements are equivalent for f ∈ M [x]:

(i) φ(f) ≥ 0 for every pseudo-moment evaluation φ;
(ii) f is a quotient of sums of products of elements of the form h2 and m(h2) for

h ∈ M [x].

In other words, (ii) means that f is a quotient of two elements from the preordering
in M [x] generated by formal moments of squares. The proof of Theorem C relies on the
Krivine-Stengle Positivstellensatz and extensions of positive functionals. The negative
answer to (H17) for moment evaluations motivates a search for a different positivity
certificate. In [BRS+22], nonnegative moment binomials are classified in combinatorial
terms. For nonnegative (classical) polynomials in R[x], Lasserre [Las06] showed that
they become sums of squares of polynomials after an arbitrarily small perturbation of
their coefficients. Our second main result generalizes Lasserre’s certificate to moment
polynomials.

Theorem D (Theorem 6.9). If S2 is finite, the following statements are equivalent for
f ∈ M [x]:

(i) f ≥ 0 on K(S1, S2)×K(S1);
(ii) for every ε > 0 there exists r ∈ N such that

f + ε
n∑

j=1

 r∑
k=0

x2kj
k!

+
∑
k,ℓ∈N,
kℓ≤r

m(x2kj )ℓ

(k!)ℓℓ!

 ∈ QM(S1, S2).
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The proof of Theorem D uses constructions and techniques from functional analysis,
conic programming and duality. When Theorem D is restricted to polynomials in R[x],
it improves the approximation result in [LN07], which was established under several re-
strictive assumptions.

Acknowledgments. The authors thank the anonymous reviewers for careful reading,
thoughtful suggestions and raising crucial points that vastly improved the presentation of
the paper, Didier Henrion for the discussion on infinite dimensional-moment problems, and
Scott McCullough for sharing his expertise on measure theory and unbounded operators.

2. Preliminaries

We start by introducing the notation and terminology pertaining to moment polyno-
mials and their evaluations, and establishing some basic facts that are used throughout
the paper. Let R[x] = R[x1, . . . , xn] be the polynomial ring in n variables. Consider the
polynomial ring in countably many variables M = R[mi1,...,in : ij ∈ N0] where m0,...,0 := 1,
and denote M [x] = M ⊗R[x]. Elements of M [x] and M are called moment polynomials
and pure moment polynomials, respectively. There is a canonical unital M -linear map
m : M [x] → M determined by m(xi11 · · ·xinn ) = mi1,...,in .
Recalling a standard notion from real algebra [Mar08, Section 2.1], a subset M of a

commutative unital ring A is a quadratic module if 1 ∈M , M +M ⊆M , and a2M ⊆M
for a ∈ A. Given S1 ⊆ R[x] and S2 ⊆ M let qm(S1, S2) ⊆ M be the quadratic module
in M generated by

{m(f 2s) : s ∈ {1} ∪ S1, f ∈ M [x]} ∪ S2,

and let QM(S1, S2) ⊆ M [x] be the quadratic module in M [x] generated by

S1 ∪ {m(f 2s) : s ∈ {1} ∪ S1, f ∈ M [x]} ∪ S2.

Note that q2m(f 2s) = m((qf)2s) for q ∈ M and f, s ∈ M [x]. Consequently, qm(S1, S2) is
the convex hull of

(2.1) m(f 2s1), q2s2

for s1 ∈ {1} ∪ S1, s2 ∈ S2, f ∈ M [x] and q ∈ M . Similarly, QM(S1, S2) is the convex
hull of

(2.2) f 2m(g2s), f 2t

for s ∈ {1} ∪ S1, t ∈ S1 ∪ S2 and f, g ∈ M [x]. Also, let QM(S1) ⊂ R[x] denote the
quadratic module in R[x] generated by S1.

Remark 2.1. Observe that qm(S1, S2) ⊆ QM(S1, S2) ∩ M ⊆ m(QM(S1, S2)), and these
inclusions are strict in general (the first one because of term cancellations, and the second
one because of terms of the form m(f 2)m(g2)). Therefore, for a pure moment polynomial,
membership in qm(S1, S2) is a stronger property than membership in QM(S1, S2). Thus
when stating our results for moment polynomials and QM(S1, S2), we also state refine-
ments for pure moment polynomials and qm(S1, S2), and the proofs are analogous. The
reason for persisting with qm(S1, S2) is that it leads to smaller optimization problems
than m(QM(S1, S2)).

There is a natural notion of a degree deg on M [x] satisfying

deg xj = 1, deg mi1,...,in = i1 + · · ·+ in
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and deg(fg) = deg(f) + deg(g) for f, g ∈ M [x]. For r ∈ N let R[x]r,Mr,M [x]r be
the finite-dimensional subspaces of R[x],M ,M [x] of elements of degree at most r. Also,
let qm(S1, S2)2r ⊆ M2r and QM(S1, S2)2r ⊆ M [x]2r be the convex hulls of elements in
M [x]2r of the form (2.1) and (2.2), respectively.
The following lemma identifies certain non-obvious elements of qm(∅, ∅) that are re-

quired later. It can be viewed as a formal special case of Hölder’s inequality [Rud87,
Theorem 3.5].

Lemma 2.2 (Symbolic Hölder’s inequality). Let k ∈ N0.

(1) If n = 1 then m2k − m2k1 ∈ qm(∅, ∅).
(2) If n ∈ N and i1, . . . , in ∈ N0 then m2ki1,...,2kin − m2ki1,...,in ∈ qm(∅, ∅).

Proof. (1) The case k = 0 holds because m0 − m01 = 0, and the case k = 1 holds because
m2 − m21 = m((m1 − x1)

2). For k ≥ 2 and ℓ = ⌈log2 k⌉ let a0, . . . , aℓ−1 be recursively defined
as a0 = k and ai+1 = ⌈ai

2
⌉. Denote r(ai) = 0 if ai is even and r(ai) = 1 if ai is odd. Note

that ai + r(ai) = 2ai+1 for 0 ≤ i < ℓ− 1, and aℓ−1 = 2. Furthermore, interpreting r(ai) as
digits in a binary expansion shows that

(2.3) 2ℓ − k =
ℓ−1∑
i=0

2ir(ai), k − 1 =
ℓ−1∑
i=0

2i(1− r(ai)).

We claim that

(2.4) m2k − m2k1 = k m

((
mk1 − x1m

k−1
1

)2)
+

ℓ−1∑
i=0

2i m

((
x
r(ai)
1 m

k−r(ai)
1 − xai1 m

k−ai
1

)2)
.

Indeed, the right-hand side of (2.4) expands as

k
(
m2m

2(k−1)
1 − m2k1

)
+

ℓ−1∑
i=0

2i
(
m2r(ai)m

2(k−r(ai))
1 − 2mai+r(ai)m

2k−(ai+r(ai))
1 + m2aiy

2(k−ai)
1

)
= k

(
m2m

2(k−1)
1 − m2k1

)
+

ℓ−1∑
i=0

2im2r(ai)m
2(k−r(ai))
1 + m2a0m

2(k−a0)
1 − 2ℓmaℓ−1+r(aℓ−1)m

2k−(aℓ−1+r(aℓ−1))
1

= k
(
m2m

2(k−1)
1 − m2k1

)
+ m2k − 2ℓm2m

2(k−1)
1 +

ℓ−1∑
i=0

2im2r(ai)m
2(k−r(ai))
1

= m2k − m2k1 −
(
(k − 1)m2k1 + (2ℓ − k)m2m

2(k−1)
1

)
+

ℓ−1∑
i=0

2im2r(ai)m
2(k−r(ai))
1

= m2k − m2k1 ,

where the last equation holds by (2.3).
(2) Given i1, . . . , in ∈ N0, consider the homomorphism Θ : R[x1, mk : k ∈ N] → M [x]

determined by Θ(x1) = xi11 · · ·xinn and Θ(mk) = mki1,...,kin . Then Θ intertwines with the map
m (i.e., Θ◦m = m◦Θ), so applying it to m2k−m2k1 ∈ qm(∅, ∅) results in m2ki1,...,2kin−m2ki1,...,in ∈
qm(∅, ∅). □

Remark 2.3. Not all cases of Hölder’s inequality admit a symbolic interpretation as in
Lemma 2.2. For example, m11m22 − m212 /∈ qm(∅, ∅). Indeed, if f1, . . . , fℓ ∈ M [x] and
uv with u ∈ M and v ∈ [x] is a monomial in one of the fj with maximal deg v, then
m(
∑

j f
2
j ) contains the monomial u2m(v2) with a positive coefficient, and consequently

m(
∑

j f
2
j ) ̸= m11m22 − m212.
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2.1. Moment evaluations of moment polynomials. There are two natural (and
closely related) types of evaluations of moment polynomials. For a closed (but not nec-
essarily bounded) set K ⊆ Rn let P(K) denote the set of Borel probability measures µ
on Rn that are supported on K and admit all marginal moments (that is,

∫
x2kj dµ < ∞

for all j = 1, . . . , n and all k ∈ N). By Hölder’s inequality, it follows that such measures
admit all mixed moments. Note that a Borel probability measure on Rn is always a Radon
measure by [Par05, Theorem II.3.2]. Each pair (µ,X) ∈ P(Rn) × Rn gives rise to the
homomorphism

(2.5) M [x] → R, f 7→ f(µ,X)

determined by

mi1,...,in 7→
∫
xi11 · · ·xinn dµ, xj 7→ Xj.

Such homomorphisms are called moment evaluations.
Let (X ,Σ, π) be a probability space, where Σ is a σ-algebra on X , and π : Σ → R

is a probability measure. For p ∈ N let Lp(X ,Σ, π) be the space of real-valued random
variables F on X such that

∫
|F |p dπ < ∞. There is a partial order ⪰ on Lp(X ,Σ, π),

given as f ⪰ g if f ≥ g almost everywhere. Consider the ring Lω(π) :=
⋂∞

p=1 Lp(X ,Σ, π)
introduced in [Are46]. For F = (F1, . . . , Fn) ∈ Lω(π)n, all the mixed moments of F exist,
and we can define the homomorphism

(2.6) M [x] → Lω(π), f 7→ f [π, F ]

determined by

mi1,...,in 7→
∫
F i1
1 · · ·F in

n dπ, xj 7→ Fj.

The restrictions of homomorphisms (2.5) and (2.6) to M coincide (when we view Rn as a
probability space with the Borel σ-algebra). Observe that the homomorphism (2.6) inter-
twines m : M [x] → M and integration with respect to π. In contrast, the homomorphism
(2.5) does not satisfy such an intertwining property.

For S1 ⊆ R[x] and S2 ⊆ M let

K(S1) = {X ∈ Rn : p(X) ≥ 0 for all p ∈ S1} ⊆ Rn,

K(S1, S2) = {µ ∈ P(K(S1)) : s(µ) ≥ 0 for all s ∈ S2} ⊆ P(K(S1)).

The following proposition indicates that evaluations (2.5) and (2.6) are essentially equiv-
alent from the perspective of moment polynomial positivity.

Proposition 2.4. Let S1 ⊆ R[x] and S2 ⊆ M . The following statements are equivalent
for f ∈ M [x]:

(i) f(µ,X) ≥ 0 for all (µ,X) ∈ K(S1, S2)×K(S1);
(ii) f [π, F ] ⪰ 0 for every probability measure π and a random variable F ∈ Lω(π)n

with values in K(S1)
n such that s[π, F ] ≥ 0 for all s ∈ S2.

Proof. (i)⇒(ii): Suppose a probability space (X ,Σ, π) and a random variable F on X
with values in K(S1)

n satisfy s[π, F ] ≥ 0 for all s ∈ S2. Let µ be the pushforward
of π induced by F . Then for all P ∈ X we have (µ, F (P )) ∈ K(S1, S2) × K(S1) and
f(µ, F (P )) = f [π, F ](P ). Thus (i) implies (ii). Conversely, (i) is a special case of (ii)
(where the probability space is K(S1) endowed with the σ-algebra of Borel sets and the
measure µ, and the coordinate functions are considered as random variables), so (ii)
implies (i). □



8 IGOR KLEP, VICTOR MAGRON, AND JURIJ VOLČIČ

We have introduced the evaluations of the second type mainly to indicate the scope of
our framework, and they appear only in applications in Sections 5.1 and 5.2; in the rest of
the paper, we deal with evaluations of the first type for the sake of simplicity (and this is
sufficient by Proposition 2.4). The following statement is a straightforward consequence
of definitions, and represents the easy part of the algebra-geometry correspondence for
moment polynomial positivity that is pursued in this paper. Namely, elements of the
moment quadratic module are nonnegative on the corresponding moment semialgebraic
set.

Proposition 2.5. Let S1 ⊆ R[x] and S2 ⊆ M . If f ∈ QM(S1, S2) then f ≥ 0 on
K(S1, S2)×K(S1).

Let us comment on the restriction to probability measures in this paper. While moment
polynomials can be evaluated on more general measures, the algebraic certificates of this
paper involve constant term perturbations, or quotients of moment polynomials. The fact
that such certificates indeed guarantee positivity is rooted in the integral of the constant
1 being a fixed positive number; or, from an algebraic perspective, that m : M [x] → M is
M -linear. In general, our results can be modified to moment evaluations on measures µ
with

∫
dµ = t for a fixed t ∈ R>0, by simply renormalizing the measures to probability

measures. Thus we restrict ourselves to probability measures for the sake of simplicity.
We conclude this section with a renowned quadrature result, which is also relevant for

evaluations of moment polynomials, and is utilized in several subsequent proofs.

Proposition 2.6 (Tchakaloff’s theorem [Put97, Theorem 2]). Let S1 ⊆ R[x]. For every
µ ∈ P(K(S1)) and d ∈ N there exists ν ∈ P(K(S1)) with | supp ν| ≤

(
n+d
d

)
such that

mi1,...,in(ν) = mi1,...,in(µ) for all i1 + · · ·+ in ≤ d.
Thus if S2 ⊂ M is finite, f ∈ M [x] and d = max{deg f, deg s : s ∈ S2}, then f ≥ 0 on

K(S1, S2)×K(S1) if and only if f ≥ 0 on
{
ν ∈ K(S1, S2) : | supp ν| ≤

(
n+d
d

)}
×K(S1).

Remark 2.7. Proposition 2.6 in principle allows to reformulate a moment polynomial
optimization problem as a classical polynomial optimization problem in the following way.
Let S1 ⊂ R[x] and S2 ⊂ M be finite, and f ∈ M [x]. Denote d = max{deg f, deg s : s ∈
S2} and D =

(
n+d
d

)
. By Proposition 2.6, the infimum of f on K(S1, S2)×K(S1) is equal

to

inf
X,Y 1,...,Y D,α1,...,αD

f

(
D∑
i=1

αiδY i
, X

)

subject to s

(
D∑
i=1

αiδY i
, X

)
≥ 0 for s ∈ S2,

X, Y 1, . . . , Y D ∈ K(S1),

α1, . . . , αD ≥ 0,
D∑
i=1

αi = 1.

(2.7)

Here, δY i
denotes the Dirac delta measure concentrated at Y i ∈ Rn. While (2.7) minimizes

a polynomial function subject to polynomial constraints, and can be thus approached with
standard methods of polynomial optimization, it has n+Dn+D = (

(
n+d
d

)
+1)(n+1)−1

variables. This number quickly rises beyond the capabilities of solvers for global nonlinear
optimization (see Subsection 5.1 for a concrete example). Furthermore, the problem (2.7)
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does not fully utilize the structure of moment polynomials; e.g. Y i can be permuted, αi

always appears jointly with Y i, and so on. A moment polynomial optimization procedure
bypassing these issues is developed in Section 5 below.

2.2. Comparison with existing work. Now that moment polynomials and their eval-
uations have been rigorously introduced, let us compare them to related constructions in
the literature.

2.2.1. State and trace polynomials. Noncommutative analogs of the moment polynomial
positivity framework have been introduced in [KMV22] and [KMVW23]. While moment
polynomials are polynomial expressions in commuting variables x1, . . . , xn and formal
symbols of their products m(xi11 · · ·xinn ), state polynomials of [KMVW23] are polynomial
expressions in noncommuting variables x1, . . . , xn and formal symbols of their products
ς(xj1 · · ·xjℓ), called formal states. While moment polynomials are evaluated on pairs of
a point X ∈ Rn and a measure µ on Rn, state polynomials are evaluated on pairs of a
tuple of self-adjoint operators X ∈ B(H)n and a state λ on B(H) (a state is a unital
positive linear functional B(H) → C). If one is only interested in evaluations of state
polynomials on tracial states (a state λ : B(H) → C is tracial if λ(AB) = λ(BA) for all
A,B ∈ B(H)), then one can impose additional tracial relations on the symbol ς, namely
ς(w1w2) = ς(w2w1) for all products w1, w2 of x1, . . . , xn, and thus obtains trace polynomials
[KMV22], which originate in invariant theory [Pro76]. There is hierarchy among moment,
trace and state polynomial frameworks. First, positivity of trace polynomials subject
to constraints S can be viewed as positivity of state polynomials subject to S together
with tracial constraints, namely S ∪ {±(ς(w1w2)− ς(w2w1)) : w1, w2}. Second, positivity
of moment polynomials subject to constraints S can be viewed as positivity of trace
polynomials subject to S together with commutativity constraints, namely S∪{±(xixj −
xjxi) : i, j}; this equivalence is exact because states on jointly commuting (bounded)
operators correspond to (compactly supported) measures by the spectral theorem [Sch12,
Theorem 5.23]. All three frameworks are applied in quantum information theory. Classical
shared randomness, maximal quantum entanglement, and general quantum entanglement
can be investigated with moment, trace and state polynomials, respectively.

With the above hierarchy in mind, it is reasonable to ask why these three frameworks
are investigated separately. The answer is that the scope and the strength of positivity
certificates vary considerably among the frameworks. Let us demonstrate this with the
main results presented in the introduction. When positivity without constraints is consid-
ered, the state analog of Hilbert’s 17th problem admits a positive resolution, while trace
and moment analogs of Hilbert’s 17th problem do not. Nevertheless, Theorem C exactly
identifies to what extent such a resolution fails for moment polynomials; namely, a mo-
ment polynomial admits a sum-of-squares certificate with denominators if and only if it
is nonnegative under all pseudo-moment evaluations. Next, when positivity on bounded
domains is considered, Theorem A provides a Positivstellensatz for arbitrary moment
polynomials; on the other hand, within the other two frameworks, such a statement only
holds for pure variants of state and trace polynomials (polynomial expressions in states or
traces, without freely appearing noncommuting variables x1, . . . , xn). Finally, Theorem
D establishes a perturbative Positivstellensatz for moment polynomial positivity subject
to arbitrary (not necessarily bounded) moment semialgebraic sets; on the contrary, no
such general result exists for state or trace polynomials. The underlying principle of these
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differences is that the commutative theory (real algebraic geometry, measure theory) pro-
vides more sophisticated techniques than the noncommutative theory (free real algebraic
geometry, operator algebras).

2.2.2. Related advances on polynomial inequalities in moments. Let us highlight three
other works that can be compared to the moment polynomial framework of this paper.
In [BRS+22], positivity of pure moment binomials (i.e., polynomials with only two addi-
tive terms) is analyzed using tropicalization, resulting in a combinatorial description of
nonnegative pure moment binomials subject to binomial inequalities. The certificates of
[BRS+22] are more definitive than the ones of this paper (easier to utilize, and of combina-
torial nature as opposed to Theorem 6.9 for instance), but they only apply to binomials.
Next, [Fan22] investigates polynomial inequalities in integrals of function variables and
their derivatives. This setup can be compared with our framework on moment polynomial
inequalities in random variables in light of Proposition 2.4. The setup in [Fan22] is more
general because it considers moments of not only function variables, but also of their
derivatives. However, [Fan22] derives only sufficiency conditions for polynomial integral
inequalities, which are comparable to the reverse implication in Theorem A, but does not
establish their necessity. Lastly, let us refer to [IKR14, IKKM23] on infinite-dimensional
moment problems. Often, moment problems are duals of sum-of-squares positivity cer-
tificates, and our paper provides the latter for moment polynomials, which are symmetric
algebras on an infinite-dimensional space (spanned by the formal moments). However,
this point of view is not compatible with the scope of [IKR14, IKKM23]. Namely, these
papers investigate moment problems for algebras generated by nuclear spaces [SW99] (e.g.,
infinitely differentiable functions on Rn with compact support form a nuclear space), and
the topological assumption of nuclearity plays a crucial role in their moment problem
solvability criteria. On the other hand, our positivity certificates are based on algebraic
manipulations of formal moment symbols without substantial topological considerations,
and leverage the real-algebraic nature of R[x], which leads to a computationally viable
framework. Therefore our positivity certificates do not aspire to a moment problem, nor
do moment problems associated to nuclear spaces carry implications for moment polyno-
mial positivity.

3. Pseudo-moments and Hilbert’s 17th problem for moment polynomials

In this section we consider pseudo-moment evaluations of moment polynomials. We
give a solution to a natural version of Hilbert’s 17th problem for pseudo-moment evalu-
ations (Theorem 3.7). In particular, since positivity on pseudo-moments is stricter than
positivity on moments, our solution implies that moment polynomials with nonnegative
moment evaluations are not necessarily rational consequences of terms of the form g2 and
m(g2) for g ∈ M [x].
Let [x]d denote all monomials in R[x] of degree at most d, ordered degree-lexicographically

according to x1 > · · · > xn. For d ∈ N let Hd = (uv)u,v∈[x]d be the symbolic Hankel matrix
over R[x] of order d. For any map α on R[x], let α(Hd) denote the matrix obtained by
applying α entry-wise to Hd. The relation between the matrix Hd and moments of squares
in M [x] is captured by the following statement.

Lemma 3.1. Let ϕ : M [x] → R be a homomorphism of R-algebras. The following
statements are equivalent:

(i) ϕ(m(f 2)) ≥ 0 for all f ∈ M [x];
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(ii) ϕ(m(p2)) ≥ 0 for all p ∈ R[x];
(iii) (ϕ ◦ m)(Hd) is positive semidefinite for all d ∈ N.

Such homomorphism is called a pseudo-moment evaluation.

Proof. The implication (i)⇒(ii) is clear. To see (ii)⇒(iii), suppose that (ii) holds, and let
w = (wu)u∈[x]d be a real vector. Then

w∗ ((ϕ ◦ m)(Hd))w =
∑

u,v∈[x]d

wuwvϕ(m(uv)) = ϕ

m

( ∑
u,v∈[x]d

wuwvuv

)
=ϕ

m

(( ∑
u∈[x]d

wuu

)2
) ≥ 0

by (ii). Since w was arbitrary, it follows that (ϕ◦m)(Hd) is a positive semidefinite matrix,
i.e., (iii) holds. To see (iii)⇒(i), suppose that (iii) holds. Let f ∈ M [x]; for some d ∈ N
we we can write it as f =

∑
u∈[x]d quu for qu ∈ M . Then

ϕ
(
m(f 2)

)
=

∑
u,v∈[x]d

ϕ(qu)ϕ(qv)ϕ (m(uv)) = w∗ ((ϕ ◦ m)(Hd))w,

where w = (ϕ(qu))u∈[x]d is a real vector. Since (ϕ◦m)(Hd) is positive semidefinite, we have
ϕ (m(f 2)) ≥ 0, so (i) holds. □

Remark 3.2. A pseudo-moment evaluation ϕ : M [x] → R is uniquely determined by
ϕ(xj) ∈ R for j = 1, . . . , n, and a unital linear functional L : R[x] → R given by
L(p) = ϕ(m(p)) and satisfying L(p2) ≥ 0 for all p ∈ R[x].

Remark 3.3. There is a certain subtlety in Lemma 3.1. Namely, the implication (ii)⇒(i)
fails in general for homomorphisms M [x] → R where R is a closed real field containing
R, even when n = 1. Indeed, by [KPV21, Example 2.6] there exist a real closed field
R and a homomorphism ϕ : M → R such that ϕ(m(p2)) ≥ 0 for all p ∈ R[x], and
ϕ(m2−m21) < 0, even though m2−m21 = det m(H2) = m((x1−m1)

2) ∈ qm(∅, ∅). This example
stems from the fact that the quadratic module qm(∅, ∅) in M , which is generated by
m(f 2) for f ∈ M [x], cannot be generated by a finite set. Consequently, one cannot apply
Tarski’s tranfer principle (see e.g. [Mar08, Theorem 11.2.1]) to translate the validity of
(ii)⇒(i) for homomorphisms into R to homomorphisms into general real closed fields.

Pseudo-moment evaluations form a strictly larger class than moment evaluations. For
example, the pure moment polynomial m4,2m2,4 − m32,2 is nonnegative under all moment
evaluations, but not under all pseudo-moment evaluations. This is shown in [BRS+22,
Example 5.1] (see Example 3.8 below for an alternative argument) where, more generally,
binomial moment and pseudo-moment inequalities are characterized using tropicalization
techniques. Theorem 3.7 below gives a sums of squares certificate with denominators for
moment polynomials that are nonnegative under all pseudo-moment evaluations. For a
sums of squares certificate with perturbations for moment polynomials that are nonneg-
ative under all moment evaluations, see Theorem 6.9.

In preparation for Theorem 3.7, the next two lemmas address extensions and strictly
positive approximations of positive functionals on R[x]d, which are relevant to pseudo-
moment evaluations in light of Remark 3.2.
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Lemma 3.4. If a linear functional L : R[x]2d → R satisfies L(p2) > 0 for p ∈ R[x]d \{0},
then it extends to a linear functional L̃ : R[x] → R satisfying L̃(p2) > 0 for p ∈ R[x]\{0}.

Proof. For α > 0 consider the linear functional Lα : R[x]2d+2 → R defined on monomials
u ∈ [x]2d+2 as follows:

Lα(u) =


L(u) if u ∈ [x]2d,
0 if u ∈ [x]2d+1 \ [x]2d,
α
∫
[0,1]n

u dx1 · · · dxn if u ∈ [x]2d+2 \ [x]2d+1.

Applying Lα entry-wise to Hd+1 results in

Lα(Hd+1) =

(
L(Hd) B∗

B αK

)
,

where L(Hd), K,B are independent of α, and L(Hd) and K are positive definite matrices.
Since L(Hd) is invertible, L(Hd+1) is positive definite if and only if the Schur complement
αK−BL(Hd)

−1B∗ is positive definite. This is indeed the case for a sufficiently large α > 0.
For such an α, the functional Lα on R[x]2d+2 is positive on m(p2) for p ∈ R[x]d+1 \ {0},
and agrees with L on R[x]2d. Continuing in this fashion by induction on d, we obtain

L̃ : R[x] → R that extends L and satisfies L̃(p2) > 0 for p ∈ R[x] \ {0}. □

Lemma 3.5. For every ε > 0, d ∈ N, and a unital linear functional L : R[x]2d → R
satisfying L(p2) ≥ 0 for p ∈ R[x]d, there exists a unital linear functional L̃ : R[x]2d → R
satisfying L̃(p2) > 0 for p ∈ R[x]d \ {0}, and |L̃(u)− L(u)| < ε for u ∈ R[x]2d.

Proof. Note that the unital linear functional L0 : R[x] → R given by

L0(p) =

∫
[0,1]n

p dx1 · · · dxn

satisfies L0(p
2) > 0 for p ∈ R[x] \ {0}. Then L̃ = (1 − δ)L + δL0 for a sufficiently small

δ > 0 has the desired properties. □

The proof of Theorem 3.7 requires some additional terminology from real algebra
[Mar08]. A preordering P in a commutative unital ring A is a quadratic module closed
under multiplication. Let Ω denote the preordering in M generated by qm(∅, ∅), and let

Ω̂ denote the preordering in M [x] generated by QM(∅, ∅). More concretely,

Ω =

{∑
i

m(f 2
i1) · · · m(f 2

iki
) : fij ∈ M [x]

}
,

Ω̂ =

{∑
i

f 2
i0m(f

2
i1) · · · m(f 2

iki
) : fij ∈ M [x]

}
.

Preorderings play a crucial role in the Krivine-Stengle Positivstellensatz [Mar08, The-
orem 2.2.1], which we recall now. If f, g1, . . . , gℓ ∈ R[y1, . . . , yk] and f is nonnegative
on {g1 ≥ 0, . . . , gℓ ≥ 0}, then the Krivine-Stengle Positivstellensatz implies that f is a
quotient of elements from the preordering in R[y1, . . . , yk] generated by g1, . . . , gℓ.

The following lemma relates the symbolic Hankel matrix Hd to the preordering Ω.

Lemma 3.6. Every principal minor of m(Hd) is a quotient of elements in Ω.



SUMS OF SQUARES CERTIFICATES FOR POLYNOMIAL MOMENT INEQUALITIES 13

Proof. This is an adaptation of [KMVW23, Proposition 4.2]; let us sketch the main idea
without technical details. By [KŠV18, Proposition 4.3], a symmetric matrix X of a fixed
size D is positive semidefinite if and only if tr(XT1(X)2) ≥ 0, . . . , tr(XTℓ(X)2) ≥ 0, where
Tj are polynomials in X and traces of its powers, dependent only on D. In particular,
by the Krivine-Stengle Positivstellensatz, minors of X are quotients of elements from the
preordering in R[tr(X), . . . , tr(XD)] generated by tr(XT1(X)2), . . . , tr(XTℓ(X)2). This
fact is then applied to X = m(Hd), in which case one can furthermore verify that
tr(m(Hd)Tj(m(Hd))

2) ∈ qm(∅, ∅) for j = 1, . . . , ℓ. □

Theorem 3.7. Let f ∈ M [x]. Then all pseudo-moment evaluations of f are nonnegative

if and only if f is a quotient of elements in Ω̂.

Proof. (⇒) Let d = deg f . Let A be the polynomial ring generated by x1, . . . , xn and
m(u) for u ∈ [x]2d; in particular, A is a finitely generated polynomial ring. Let P be
the preordering in A generated by the principal minors of m(Hd). Then P is a finitely

generated preordering, and contained in Ω̂ by Lemma 3.6. Assume f is not a quotient

of elements in Ω̂. Then f is not a quotient of elements in P . By the Krivine-Stengle
Positivstellensatz [Mar08, Theorem 2.2.1] there is a homomorphism ϕ : A→ R such that
ϕ(f) < 0 and ϕ is nonnegative on the principal minors of m(Hd). In particular, the matrix
(ϕ ◦ m)(Hd) is positive semidefinite. Note that ϕ is determined by ϕ(xj) for j = 1, . . . , n
and the linear functional L : R[x]d → R given by L(p) = ϕ(m(p)). By Lemma 3.5, we can
slightly perturb L, so that L(p2) > 0 for p ∈ R[x]d \ {0}, and still ϕ(f) < 0. By Lemma

3.4, L extends to L̃ : R[x] → R such that L̃(p2) ≥ 0 for p ∈ R[x]. Define a homomorphism

ϕ̃ : M [x] → R determined by ϕ̃(p) = ϕ(p) and ϕ̃(m(p)) = L̃(p) for p ∈ R[x]. Then ϕ̃ is a

pseudo-moment evaluation by Lemma 3.1, and ϕ̃(f) < 0.

(⇐) Let f = g
h
for some nonzero g, h ∈ Ω̂. Suppose ϕ(f) < 0 for a pseudo-moment

evaluation ϕ : M [x] → R. Note that ψ(g), ψ(h) ≥ 0 for all pseudo-moment evaluations
ψ : M [x] → R. Since h ̸= 0, there exists a pseudo-moment evaluation ϕ′ : M [x] → R
such that ϕ′(h) > 0 (indeed, one can even choose ϕ′ arising from evaluation at a point in
Rn and a measure in P(Rn)). For ε ∈ [0, 1] let ϕε : M [x] → R be the pseudo-moment
evaluation determined by ϕε(m(p)) = (1− ε)ϕ(m(p)) + εϕ′(m(p)) for p ∈ R[x]. Then there
exists a sufficiently small ε > 0 so that ϕε(f) < 0 and ϕε(h) > 0. Hence

0 > ϕε(h)ϕε(f) = ϕε(g) ≥ 0,

a contradiction. □

Example 3.8 ([BRS+22, Example 5.1]). Let f = m4,2m2,4 − m32,2. All moment evaluations

of f are nonnegative by Hölder’s inequality applied to the three polynomials x41x
2
2, x

4
1x

2
2, 1

as

∫
(x41x

2
2 · x41x22 · 1) dµ ≤

(∫
x41x

2
2 dµ

) 1
3
(∫

x41x
2
2 dµ

) 1
3
(∫

1 dµ

) 1
3

.
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On the other hand, consider the functional L : R[x]6 → R given on the Hankel matrix H3

as

(3.1) L(H3) =



1 0 0 5 0 5 0 0 0 0
0 5 0 0 0 0 26 0 2 0
0 0 5 0 0 0 0 2 0 563
5 0 0 26 0 2 0 0 0 0
0 0 0 0 2 0 0 0 0 0
5 0 0 2 0 563 0 0 0 0
0 26 0 0 0 0 587 0 1 0
0 0 2 0 0 0 0 1 0 1
0 2 0 0 0 0 1 0 1 0
0 0 563 0 0 0 0 1 0 319642


Note that the right-hand side of (3.1) is positive definite, and L(x41x

2
2)L(x

2
1x

4
2)−L(x21x22)3 =

1 − 23 = −7. By Lemma 3.4, L extends to L̃ : R[x] → R such that L̃(p2) ≥ 0 for

p ∈ R[x]. Therefore, ϕ(f) < 0 for the pseudo-moment evaluation ϕ determined by L̃ (and
any evaluation on x1, x2), so f is neither a quotient of sums of products of elements in
QM(∅, ∅), nor in qm(∅, ∅), by Theorem 3.7.

4. Archimedean Positivstellensatz for moment polynomials

The main result of this section, Theorem 4.2, describes moment polynomials that are
positive subject to constraints on measures with a given compact support. Recall [Mar08,
Section 5.2] that a quadratic module A in a commutative unital ring A is archimedean if
for every a ∈ A there existsN ∈ N such thatN±a ∈M . Equivalently, a quadratic module
M in R[x] is archimedean if and only if there is an N ∈ N such that N−x21−· · ·−x2n ∈M
[Mar08, Corollary 5.2.4]. We start by observing how archimedianity in R[x] transfers to
archimedianity in M [x].

Lemma 4.1. Let S ⊆ R[x]. If QM(S) ⊆ R[x] is archimedean, then qm(S, ∅) ⊆ M and
QM(S, ∅) ⊆ M [x] are archimedean.

Proof. Let (i1, . . . , in) ∈ Nn
0 be arbitrary. Since QM(S) is archimedean, there exists N > 0

such that N±xi11 · · · xinn is a convex combination of some p2s for p ∈ R[x] and s ∈ S∪{1}.
Hence, N ± mi1,...,in ∈ qm(S, ∅). Consequently, qm(S, ∅) and QM(S, ∅) are archimedean
by [Mar08, Proposition 5.2.3]. □

The following theorem is the main result of this section.

Theorem 4.2 (Archimedean Positivstellensatz). Let S1 ⊆ R[x] and S2 ⊆ M , and suppose
QM(S1) is archimedean in R[x]. The following statements are equivalent for f ∈ M [x]:

(i) f ≥ 0 on K(S1, S2)×K(S1);
(ii) f + ε ∈ QM(S1, S2) for all ε > 0.

The following statements are equivalent for f ∈ M :

(i’) f ≥ 0 on K(S1, S2);
(ii’) f + ε ∈ qm(S1, S2) for all ε > 0.

Proof. We only prove the first equivalence (the proof of second one is analogous). The
implication (ii)⇒(i) is straightforward. Now suppose (ii) is false. Since QM(S1, S2) is
archimedean, the Kadison-Dubois representation theorem [Mar08, Theorem 5.4.4] states
that QM(S1, S2) contains all g ∈ M [x] which are positive under all homomorphisms
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M [x] → R that are nonnegative on QM(S1, S2). In particular, since f + ε /∈ QM(S1, S2),
there exists a homomorphism φ : M [x] → R such that φ(QM(S1, S2)) = R≥0 and φ(f +
ε) ≤ 0 (in particular, φ(f) < 0). Then X := (φ(x1), . . . , φ(xn)) ∈ K(S1). Consider
the unital functional L : R[x] → R given by L(p) = φ(m(p)). Then L is nonnegative on
QM(S1), so by the solution of the moment problem on compact sets [Sch17, Theorem 12.36
(ii)] there is µ ∈ P(K(S1)) such that L(p) =

∫
p dµ for all p ∈ R[x]. By the construction,

µ ∈ K(S1, S2). Therefore, (µ,X) ∈ K(S1, S2)×K(S1) and f(µ,X) = φ(f) < 0. □

Remark 4.3. The equivalence (i’)⇔(ii’) in Theorem 4.2 also follows from [KMVW23,
Theorem 5.5] on state polynomials and their evaluations on constrained tuples of bounded
operators and states. Indeed, the class of admissible constraints in [KMVW23, Theorem
5.5] is large enough to allow for commutators, and thus one can consider positivity of state
polynomials on commuting bounded operators subject to archimedean constraints. The
second part of Theorem 4.2 can be then obtained using the spectral theorem for tuples
of commuting bounded operators [Sch12, Theorem 5.23]. However, note that the results
of [KMVW23] carry implications only for pure moment polynomials, but not for general
moment polynomials, and are not applicable to the equivalence (i)⇔(ii) in Theorem 4.2.

Corollary 4.4. Let S1 ⊂ R[x] and S2 ⊂ M , and suppose QM(S1) is archimedean in
R[x]. If f ∈ M [x] is strictly positive on K(S1, S2)×K(S1), then f ∈ QM(S1, S2).

Proof. Since K(S1) is compact, the set of Borel probability measures supported on K(S1)
is also compact by [Par05, Theorem II.6.4], and is equal to P(K(S1)) (the existence of all
marginal moments for Borel measures on a compact subset of Rn is automatic). Therefore,
K(S1, S2)×K(S1) is compact, so there is ε > 0 such that f−ε ≥ 0 on K(S1, S2)×K(S1).
Then f ∈ QM(S1, S2) by Theorem 4.2. □

Corollary 4.4 also admits the following interpretation in the absence of the archimedean
assumption.

Corollary 4.5. Let S1 ⊂ R[x] and S2 ⊂ M , and suppose K(S1) ⊂ Rn is bounded. Then
the following statements are equivalent for f ∈ M [x]:

(i) f ≥ 0 on K(S1, S2)×K(S1);

(ii) f + ε ∈ QM(S̃1, S2) for all ε > 0, where S̃1 is the set of all square-free products of
elements in S1.

Proof. If K(S1) is bounded, then QM(S̃1) is archimedean in R[x] by [Mar08, Corollary
6.1.2]. The rest then follows from Theorem 4.2. □

5. Moment polynomial optimization and examples

Theorem 4.2 can be applied to design a converging hierarchy of semidefinite programs
(SDPs) for moment polynomial optimization as presented in this section. For the sake
of simplicity, we first focus on pure moment polynomial objective functions, and then
indicate the necessary changes for general moment polynomial objective functions. Fi-
nally, we demonstrate how this SDP hierarchy can be applied to problems in quantum
information theory (Subsections 5.1 and 5.2).

Let S1 ⊂ R[x] and S2 ⊂ M be finite, and r ∈ N. Recall that qm(S1, S2)2r is the convex
hull of

m(f 2s1), q
2s2 : si ∈ {1} ∪ Si, f ∈ M [x], q ∈ M ,

deg s1 + 2deg f, deg s2 + 2deg q ≤ 2r.
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Membership in qm(S1, S2)2r can be certified by an SDP; indeed, its members are of the
form ∑

s∈{1}∪S1

∑
v1,v2

G(s)
v1,v2

· m(v1v2s) +
∑
t∈S2

∑
u1,u2

H(t)
u1,u2

· u1u2t,

where vi are monomials in M [x]r−deg s
2
, ui are monomials in Mr−deg t

2
, and G(s), H(t) are

positive semidefinite matrices of dimensions dimM [x]r−deg s
2

and dimMr−deg t
2
, respec-

tively.
For f ∈ M and r ≥ deg f

2
consider the sequence of SDPs

(5.1) fr = sup{α ∈ R : f − α ∈ qm(S1, S2)2r}.

Theorem 4.2 implies (under the archimedean assumption) that fr form a sequence of
upper bounds converging to the infimum of f on K(S1, S2).

Corollary 5.1. Let S1 ⊆ R[x], S2 ⊆ M , f ∈ M , and suppose QM(S1) is archimedean
in R[x]. Then the sequence {fr}r≥deg f

2
arising from the SDP hierarchy (5.1) converges

monotonically to f∗ := infµ∈K(S1,S2) f(µ) from below.

Proof. The sequence {fr}r is increasing since qm(S1, S2)2r ⊆ qm(S1, S2)2(r+1). Also, fr ≤
f∗ because f − α ∈ qm(S1, S2)2r implies f ≥ α on K(S1, S2). Now let ε > 0 be arbitrary.
Since f − f∗ ≥ 0 on K(S1, S2), Theorem 4.2 implies f − f∗ + ε ∈ qm(S1, S2). Thus, there
exists r ∈ N such that

f − f∗ + ε ∈ qm(S1, S2)2r,

so f∗ − ε ≤ fr. Therefore, limr→∞ fr = f∗. □

Corollary 5.1 is also a specialization of [KMVW23, Corollary 6.1] from the state poly-
nomial setup. Let us note a few further consequences of [KMVW23, Section 6] without
proofs:

(1) If N −x21−· · ·−x2n for some N > 0 is a conic combination of S1∪{ℓ2 : ℓ ∈ R[x]1},
then there is no duality gap between SDP (5.1) and its dual,

inf {L(f) : L ∈ M ∨
2r, L(1) = 1, L(qm(S1, S2)2r) = R≥0} .

(2) If the solution of the dual of (5.1) satisfies certain rank conditions, then the SDP
hierarchy (5.1) stops, and one can extract a concrete finitely supported optimizer
for f∗.

(3) While the sizes of SDPs (5.1) and their duals grow quickly in concrete applications,
one can mitigate this by employing sparsity [MW23] and symmetry reductions.

To apply semidefinite programming to optimization of general moment polynomials,
one needs to first address the following obstacle. Recall that QM(S1, S2)2r is the convex
hull of

f 2
1m(g

2s), f 2
2 t : s ∈ {1} ∪ S1, t ∈ S1 ∪ S2, f1, f2, g ∈ M [x],

deg s1 + 2(deg f1 + deg g), deg s2 + 2deg f2 ≤ 2r.

While membership in QM(S1, S2)2r is a feasibility linear conic program [Bar02, Section
IV.6], it does not seem to be a semidefinite program. For this reason we consider a slightly
larger cone. Sums of elements of the form f 2s, where f ∈ M [x] and s ∈ S1 ∪ S2 satisfy
deg s+ 2deg f ≤ 2r, are precisely

(5.2)
∑

s∈S1∪S2

∑
v1,v2

G(s)
v1,v2

· v1v2s
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where vi are monomials in M [x]r−deg s
2
, and G(s) are positive semidefinite matrices of

dimensions dimM [x]r−deg s
2
. On the other hand, sums of elements of the form f 2m(g2s),

where f, g ∈ M [x] and s ∈ {1} ∪ S1 satisfy deg s+ 2(deg f + deg g) ≤ 2r, can be written
as

(5.3)
∑

s∈{1}∪S1

∑
(u1,v1),(u2,v2)

G
(s)
(u1,v1),(u2,v2)

· m(u1u2s)v1v2,

where (ui, vi) are pairs of monomials ui in R[x] and vi in M [x] with deg s + 2(deg ui +
deg vi) ≤ 2r, and G(s) are positive semidefinite matrices of size

∑
i+j≤r−deg s

2
(dimR[x]i +

dimM [x]j). Let Q̃M(S1, S2)2r denote the set of sums of elements of the form (5.2) and

(5.3). Then the cone Q̃M(S1, S2)2r contains QM(S1, S2)2r, but is typically larger than
QM(S1, S2)2r. For example, if n ≥ 4 then

m(x21)x
2
2 + 2m(x1x3)x2x4 + m(x23)x

2
4

belongs to Q̃M(S1, S2)2r (namely, it is of the form (5.3)) but not to QM(S1, S2)2r. Never-

theless, elements of Q̃M(S1, S2)2r are nonnegative on K(S1, S2)×K(S1), and membership

in Q̃M(S1, S2)2r can be determined by a feasibility SDP. Given f ∈ M [x], the optimization
problems

(5.4) fr = sup{α : f − α ∈ Q̃M(S1, S2)2r}

for r ≥ deg f
2

are then SDPs, and the following analog of Corollary 5.1 holds.

Corollary 5.2. Let S1 ⊆ R[x], S2 ⊆ M , f ∈ M [x], and suppose QM(S1) is archimedean
in R[x]. Then the sequence {fr}r≥deg f

2
arising from the SDP hierarchy (5.4) converges

monotonically to f∗ := inf(µ,X)∈K(S1,S2)×K(S1) f(µ,X) from below.

Next, we demonstrate the above SDP hierarchy method on two open optimization
problems arising from nonlinear Bell inequalities in quantum physics [CG22]. A Bell
scenario refers to a repeated experiment, where two or more parties, not communicating
between themselves, perform measurements on a source of classical randomness and record
outcomes in each round. Each party has a fixed number of measurements at disposal (with
a fixed set of possible outputs), and uses one of them in each round. These measurements
are viewed as random variables on a probability space that governs the source measured
by the parties. The conditional expectations of joint outcomes relative to measurements
in such an experiment are called correlations. A Bell inequality for a given Bell scenario
is an inequality in correlations that is valid regardless of the underlying probability space
and measurements that model the experiment. Bell inequalities thus provide universal
constraints on classical probabilistic models of a Bell scenario, and are widely used in
quantum physics to certify quantum nonlocality (which violates Bell inequalities). Bell
scenarios that model more sophisticated quantum networks call for nonlinear polynomial
Bell inequalities, which are (from the perspective of this paper) special cases of moment
polynomial inequalities. Section 5.1 confirms a covariance Bell inequality proposed in
[PHBB17], and Section 5.2 rectifies a bilocal Bell inequality proposed in [TGB21].

Encoding of moment polynomials and preparation of the SDPs was done in Mathemat-
ica, and numerical solutions of the SDPs were obtained with the SDP solver MOSEK. The
final exact certificates provided below are heavily inspired by these numerical solutions.
The ad-hoc Mathematica code for constructing and solving SDPs is available on GitHub:
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https://github.com/magronv/mompop (it terminates within a few minutes on a standard
desktop PC), as well as the notebook for verifying the obtained exact certificates.

5.1. Covariance Bell inequality. For j = 1, 2, 3 let Aj, Bj be binary random variables
(valued in {−1, 1}) on a probability space (X ,Σ, π), and consider the expression

cov3322(A,B) := cov(A1, B1) + cov(A1, B2) + cov(A1, B3)

+ cov(A2, B1) + cov(A2, B2)− cov(A2, B3)

+ cov(A3, B1)− cov(A3, B2)

where cov(X, Y ) =
∫
XY dπ −

∫
X dπ ·

∫
Y dπ. In [PHBB17], the authors ask for the

largest possible value of cov3322. They provide concrete examples of probability spaces
(on a three-element set) and binary random variables where cov3322 attains the value 9

2
.

In the quest for proving that cov3322 ≤ 9
2
for all binary random variables, they propose

a reduction to solving a certain number of linear systems. Nonetheless, for establishing
this particular inequality, they estimate that more than 1014 linear systems would have
to be solved, thus rendering this particular approach infeasible. As an alternative, they
suggest maximizing cov3322 via classical polynomial optimization similarly as in Remark
2.7. However, the corresponding polynomial problem has too many variables for global
optimization tools to work. Thus they use numerical nonlinear optimization to look
for local maxima of cov3322 from numerous starting points, which lends confidence to
their conjecture that cov3322 ≤ 4.5. Below, we settle this conjecture using the methods
developed in this paper.

Let

f =m100100 − m100000 m000100 + m100010 − m100000 m000010 + m100001 − m100000 m000001

+m010100 − m010000 m000100 + m010010 − m010000 m000010 − m010001 + m010000 m000001

+m001100 − m001000 m000100 − m001010 + m001000 m000010.

The question of [PHBB17] is equivalent to the moment polynomial optimization problem

f∗ = sup f subject to x2j = 1 for j = 1, . . . , 6.

By Corollary 5.1, we have fr ↘ f∗ for

fr = inf{α : α− f ∈ qm(S, ∅)}

with S = {±(1 − x2j) : j = 1, . . . , 6}. When constructing SDPs for fr, we encode the
relations of S as substitution rules, to reduce the size of the SDPs. For r = 2, the
resulting SDP has 4146 indeterminates and the semidefinite constraint of size 100× 100,
and yields f2 = 4.5. Therefore, f∗ = 4.5. After carefully inspecting the output of the SDP
solver (namely, heuristically extracting exact constraints from the kernel of the numerical
positive semidefinite constraint) one can obtain an exact certificate for f∗ ≤ 9

2
. Concretely,

https://github.com/magronv/mompop/
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modulo the relations x2j = 1 we have 9
2
− f = m(v∗Gv), where

G =



4
3

0 −1
2

0 0 0 0 0

0 1
32

0 0 0 0 0 0

−1
2

0 3
8

1
16

0 0 0 0

0 0 1
16

1
8

−1
8

0 3
64

3
64

0 0 0 −1
8

1
4

−1
8

− 1
16

− 1
16

0 0 0 0 −1
8

1
4

0 0

0 0 0 3
64

− 1
16

0 3
64

0

0 0 0 3
64

− 1
16

0 0 3
64


∈ R8×8

is positive definite, and

v =



x6m110000

(x1 − x2)(x4 + x5)

1 + x6(x2 − x1 + 4m100000)

2− (x1 + x2)(x4 + x5)− 8x6m100000

(x3 + 2m001000)(x4 − x5)

2x4m001000 − x3x5

2 + (x4 − x5)(4m001000 − x1 − x2) +
8
3
x4m110000 + 8x6m100000

2 + (x4 − x5)(4m001000 + x1 + x2) +
8
3
x5m110000 + 8x6m100000


∈ M [x]8.

5.2. Bilocal Bell inequality. In [TGB21, TPKLR22], the authors ask about the largest
value of

(5.5)
1

3

∑
i∈{1,2,3}

(
E(BiCi)− E(AiBi)

)
−

∑
{i,j,k}={1,2,3}

E(AiBjCk)

where Aj, Bj, Cj for j = 1, 2, 3 are binary random variables on a probability space (X ,Σ, π)
satisfying bilocality constraints

(5.6) E(Ak1
1 A

k2
2 A

k3
3 C

k4
1 C

k5
2 C

k6
3 ) = E(Ak1

1 A
k2
2 A

k3
3 )E(Ck4

1 C
k5
2 C

k6
3 )

for all ki ∈ {0, 1}, and additional vanishing constraints

E(Ai) = E(Bi) = E(Ci) = 0 for i ∈ {1, 2, 3},
E(AiBj) = E(BiCj) = 0 for i ̸= j,

E(AiBjCk) = 0 for |{i, j, k}| ≤ 2.

(5.7)

Here, E(X) =
∫
X dπ. In [TGB21] it is shown that the largest value of (5.5) for bilocal

models with the tetrahedral symmetry is 3. Furthermore, [TGB21, TPKLR22] suggest
that (5.5) can be at most 3 in general, and support this claim with numerical methods
that search for local maxima. However, as shown below, this claim is false; the largest
value of (5.5) subject to (5.6) and (5.7) is 4.
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Consider the moment polynomial optimization problem

sup
1

3

∑
i∈{1,2,3}

(
m(xi+3xi+6)− m(xixi+3)

)
−

∑
{i,j,k}={1,2,3}

m(xixj+3xk+6)

subject to

m(xk11 x
k2
2 x

k3
3 x

k4
7 x

k5
8 x

k6
9 ) = m(xk11 x

k2
2 x

k3
3 )m(xk47 x

k5
8 x

k6
9 ) for ki ∈ {0, 1},

x2j = 1 and m(xj) = 0 for j ∈ {0, . . . , 9},
m(xixj+3) = m(xi+3xj+6) = 0 for i, j ∈ {1, 2, 3}, i ̸= j,

m(xixj+3xk+6) = 0 for i, j, k ∈ {1, 2, 3}, |{i, j, k}| ≤ 2.

(5.8)

Corollary 5.1 provides a converging sequence of upper bounds for the solution of (5.8). For
r = 3, one obtains the upper bound 4.0 by solving an SDP with 31017 indeterminates and
the semidefinite constraint of size 263, or more practically, by solving its dual with 4549
indeterminates and the semidefinite constraint of size 325. The value of (5.5) subject to
(5.6) and (5.7) is thus at most 4.0. Next, we show that the value 4 is attained; incidentally,
the below construction was inspired by the numerical output of the dual SDP. Denote

η0 = ( 1 1 1 1), η1 = ( 1 1 − 1 − 1), η2 = ( 1 − 1 1 − 1), η3 = ( 1 − 1 − 1 1),

and let ei ∈ R4 be the ith standard unit vector. Endow {1, 2, 3, 4}2 with the uniform
probability distribution, and consider the following binary random variables on it:

Ai = η0 ⊗ ηi, Bi =

(
η0 ⊗ η0 − 2

4∑
k=1

ek ⊗ ek

)
· ηi ⊗ η0, Ci = ηi ⊗ η0,

for i ∈ {1, 2, 3}. Here, we identified the algebra of random variables on {1, 2, 3, 4}2 with
R4 ⊗ R4. The bilocality constraints (5.6) are satisfied because of the tensor structure of
Ai, Ci (and the uniform distribution on a product is the product of uniform distributions),
and the vanishing constraints (5.7) follow by direct calculation. Finally, (5.5) evaluates
to 4 for this ensemble of binary random variables.

Lastly, let us provide an analytic proof that the value of (5.5) subject to (5.6) and
(5.7) is at most 4. The sub-cases in the proof were identified by looking at the numerical
output of the aforementioned dual SDP for r = 3.

Proposition 5.3. If binary random variables Ai, Bi, Ci for i = 1, 2, 3 satisfy constraints
(5.6) and (5.7), then

1

3

∑
i∈{1,2,3}

(
E(BiCi)− E(AiBi)

)
−

∑
{i,j,k}={1,2,3}

E(AiBjCk) ≤ 4.

Proof. It suffices to see that

(5.9) E(BiCi)− E(AiBi) ≤ 1

for i = 1, 2, 3, and

(5.10) −E(AiBjCk)− E(AkBjCi) ≤ 1

for j = 1, 2, 3 and {i, k} = {1, 2, 3} \ {j}. First, (5.9) follows from

1− E(BiCi) + E(AiBi) = E
(
(1−BiCi)(1 + AiBi)

)
≥ 0;
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here, the equality holds by B2
i = 1 and E(AiCi) = E(Ai)E(Ci) = 0, and the inequality

holds since 1 − BiCi and 1 + AiBi are nonnegative random variables. Second, (5.10)
follows from the equality

1 + E(AiBjCk) + E(AkBjCi) = E

((
1
2

(
(AiAk + CiCk)Bj + AiCi + AkCk

)
− E(AiAk)Bj

)2)
,

which is verified by expanding the right-hand side, and applying the relations (5.6) and
(5.7). □

6. Lasserre’s perturbative Positivstellensatz for moment polynomials

This section addresses moment polynomial positivity on general moment semialgebraic
sets (without the archimedean assumption from Section 4). We show that moment poly-
nomials nonnegative on K(S1, S2)×K(S1) belong to the quadratic module QM(S1, S2) up
to an arbitrarily small perturbation of their coefficients (Theorem 6.9). This is achieved
through the analysis of a sequence of conic optimization problems and their duals, and a
sufficient condition for partially estimating a positive functional on M [x] with a moment
evaluation. Finally, a corollary for polynomial positivity on semialgebraic sets is given
(Corollary 6.14).

The aforementioned perturbations arise from polynomials

Φr =
n∑

j=1

r∑
k=0

x2kj
k!

and pure moment polynomials

Ψr =
n∑

j=1

∑
k,ℓ∈N,
kℓ≤r

m(x2kj )ℓ

(k!)ℓℓ!

for r ∈ N. We start with a crude estimate pertaining to the sequence (Ψr)r.

Lemma 6.1. For all y ≥ 0, ∑
k,ℓ∈N

ykℓ

(k!)ℓℓ!
<∞.

In particular,
∑

k,ℓ∈N
1

(k!)ℓℓ!
≤ e2.

Proof. Since exp(t)− 1 ≤ t exp(t) for t ≥ 0,

(6.1)
∑
k,ℓ∈N

ykℓ

(k!)ℓℓ!
=

∞∑
k=1

∞∑
ℓ=1

1

ℓ!

(
yk

k!

)ℓ

=
∞∑
k=1

(
exp

(
yk

k!

)
− 1

)
≤

∞∑
k=1

yk

k!
exp

(
yk

k!

)
.

Since limk→∞
k
√
k! = ∞, there exists k0 ∈ N such that yk

k!
≤ 1 for all k ≥ k0 (in particular,

if y = 1 one can take k0 = 1). Then we estimate (6.1) as

∞∑
k=1

yk

k!
exp

(
yk

k!

)
=

k0−1∑
k=1

yk

k!
exp

(
yk

k!

)
+

∞∑
k=k0

yk

k!
exp

(
yk

k!

)

≤
k0−1∑
k=1

yk

k!
exp

(
yk

k!

)
+

∞∑
k=k0

yk

k!
· e

≤
k0−1∑
k=1

yk

k!
exp

(
yk

k!

)
+ e · exp(y) <∞.
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If y = 1, the first sum above is empty, so (6.1) is bounded by e2. □

If X ∈ Rn, then n ≤ Φr(X) ≤
∑n

j=1 exp(X
2
j ) is uniformly bounded for all r ∈ N.

Similarly, if ν ∈ P(Rn) is finitely supported, i.e., ν =
∑m

i=1 αiδXi
is a convex combination

of the Dirac delta measures δXi
concentrated atX i ∈ Rn, then setting yj := X2

1j+· · ·+X2
mj

gives

0 ≤ Ψr(ν) =
n∑

j=1

∑
k,ℓ∈N,
kℓ≤r

(∑m
i=1 αiX

2k
ij

)ℓ
(k!)ℓℓ!

≤
n∑

j=1

∑
k,ℓ∈N,
kℓ≤r

ykℓj
(k!)ℓℓ!

≤
n∑

j=1

∑
k,ℓ∈N

ykℓj
(k!)ℓℓ!

<∞

by Lemma 6.1, so Ψr(ν) is uniformly bounded for all r ∈ N.
Let S1 ⊆ R[x], S2 ⊆ M and f ∈ M [x]. In the proof of Theorem 6.9, the following pair

of optimization problems for every r ≥ deg f
2

and M > 0 plays an important role:

(6.2) Qr,M :

{
sup
z∈R

z

s.t. f − z ∈ QM(S1, S2)2r + R≥0 ·
(
M − Φr −Ψr

)
;

(6.3) Q∨
r,M :


inf

L∈M [x]∨2r

L(f)

s.t. L(1) = 1 ,

L
(
M − Φr −Ψr

)
≥ 0 ,

L(g) ≥ 0 for all g ∈ QM(S1, S2)2r .

Here, R≥0·g for g ∈ M [x] denotes the set of all nonnegative multiples of g. In the following
two lemmas and their proofs we abbreviate Cr,M = QM(S1, S2)2r + R≥0 · (M − Φr −Ψr).
The next lemma provides information on the closure of Cr,M .

Lemma 6.2. For all r ∈ N and M > 0, the closure of the cone M [x]r ∩ C2r,M in M [x]r
is contained in

(6.4) {g ∈ M [x]r : g + ε ∈ C2r,M for all ε > 0} .

Proof. Let us fix r ∈ N, M > 0 and let us endow the finite-dimensional space M [x]r with
some norm ∥ · ∥. Observe the identities

±2xkjv = (xkj ± v)2 − x2kj − v2,

±2mki1,...,inv = (mki1,...,in ± v)2 +
(
m2ki1,...,2kin − m2ki1,...,in

)
− m2ki1,...,2kin − v2,

±2m(xkjv) = m
(
(xkj ± v)2

)
− m(x2kj )− m(v2),

(6.5)

for all v ∈ M [x], and note that m2ki1,...,2kin − m2ki1,...,in ∈ qm(∅, ∅) by Lemma 2.2(2). Let
u ∈ M [x]r be an arbitrary monomial. Applying (6.5) recursively to factors of u shows
that ±u equals an element of QM(∅, ∅)2r minus a conic combination of x2kj , m(x

2k
j ) for

k ≤ 2r. Here, the bound 2r arises from deg u ≤ r and squaring on the right-hand side of
(6.5) when extracting factors of u (cf. Lemma 6.4 below). Thus there exists Au > 0 such
that

±u+ Au ∈ QM(∅, ∅)2r + R≥0 ·
(
M − Φ2r −Ψ2r)

)
.

Since M [x]r is finite-dimensional, there exists A > 0 (dependent on r and M) such that

(6.6) g + A∥g∥ ∈ QM(∅, ∅)2r + R≥0 ·
(
M − Φ2r −Ψ2r)

)
for all g ∈ M [x]r. Now define F : M [x]r → [−∞,∞] as

F (g) = sup {z ∈ R : g − z ∈ C2r,M} .
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This function satisfies the following properties:

(a) F (g) ≥ −A∥g∥ for all g ∈ M [x]r;
(b) F (g1 + g2) ≥ F (g1) + F (g2) for all gi ∈ M [x]r;
(c) F (g) ≥ 0 if and only if g belongs to (6.4).

Here, (a) follows from (6.6) because QM(∅, ∅)2r + R≥0 ·
(
M − Φ2r − Ψ2r)

)
is contained

in C2r,M ; (b) holds since g1 − z1, g2 − z2 ∈ C2r,M implies g1 + g2 − (z1 + z2) ∈ C2r,M ;
and (c) follows directly by definitions of F and (6.4). Now suppose (gi)i is a sequence in
M [x]r ∩ C2r,M that converges to g ∈ M [x]r. Then

F (g) ≥ F (gi) + F (g − gi) ≥ −A∥g − gi∥

for all i, and so F (g) ≥ 0. Therefore, g belongs to (6.4). □

Remark 6.3. Note that Cr,M is not closed in general. Indeed, following [PS01, Remark
2.8] let S1 = {−x21}; then x1 + ε ∈ QM(S1, ∅) = C1,1 for all ε > 0 but x1 /∈ C1,1.

One particular aspect of the proof of Lemma 6.2 is reused later, so we record it in detail
next.

Lemma 6.4. For all i1, . . . , in ∈ N0,

n−1∑
j=1

1

2j
m(x

2j+1ij
j ) +

1

2n−1
m(x2

nin
n )− m2i1,...,in ∈ qm(∅, ∅).

Proof. By Lemma 2.2(2) it suffices to see that

(6.7)
n−1∑
j=1

1

2j
m(x

2j+1ij
j ) +

1

2n−1
m(x2

nin
n )− m2i1,...,2in ∈ qm(∅, ∅),

which we prove by induction on n. If n = 1, the left-hand side of (6.7) is 0. Suppose (6.7)
holds for n− 1. Then

n−1∑
j=1

1

2j
m(x

2j+1ij
j ) +

1

2n−1
m(x2

nin
n )− m2i1,...,2in

=
n−1∑
j=1

1

2j
m(x

2j+1ij
j ) +

1

2n−1
m(x2

nin
n ) +

1

2
m
((
x2i11 − x2i22 · · ·x2inn

)2)− 1

2
m(x4i11 )− 1

2
m0,4i2,...,4in

=
1

2

(
n−2∑
j=1

1

2j
m(x

2j+1·2ij+1

j+1 ) +
1

2n−2
m(x2

n−1·2in
n )− m0,4i2,...,4in

)
+

1

2
m
((
x2i11 − x2i22 · · ·x2inn

)2)
belongs to qm(∅, ∅) by the induction hypothesis. □

We can now show that the solutions of (6.2) and (6.3) converge to the same value.

Lemma 6.5. For all r and M , the optimization problem (6.2) is a linear conic problem,
and (6.3) is its dual. Sequences (supQr,M)r and (inf Q∨

r,M)r are increasing. If S2 is finite,
K(S1, S2) ̸= ∅ and M is large enough, then

(6.8) lim
r→∞

supQr,M = lim
r→∞

inf Q∨
r,M .

Proof. The optimization problems (6.2) and (6.3) have linear objective functions and
constraints that consist of linear equations and cone memberships, so (6.2) and (6.3) are
linear conic problems. Furthermore, they are dual to each other, by the definition of
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duality [Bar02, Section IV.6]. The sequence (supQr,M)r is increasing since Cr,M ⊆ Cr+1,M .
If L is feasible forQ∨

r,M , then its restriction is feasible forQ∨
r′,M if r′ < r; hence the sequence

(inf Q∨
r,M)r≥d is increasing (the set of constraints on L increases with r, and consequently so

does the infimum). By weak duality [Bar02, Theorem IV.6.2] we have supQr,M ≤ inf Q∨
r,M .

The rest of the proof is dedicated to showing that inf Q∨
r,M ≤ supQ2r,M ; then (6.8)

follows immediately from supQr,M ≤ inf Q∨
r,M ≤ supQ2r,M . Since K(S1, S2) ̸= ∅, there

exists (ν,X) ∈ K(S1, S2) ×K(S1). By Proposition 2.6, we can further assume that ν is
supported on a finite set. Let M ≥ supr(Φr(X) + Ψr(ν)) (note that the right hand side
is finite). Then L ∈ M [x]∨2r defined by L(p) = p(ν,X) is clearly feasible for (6.3), whence
inf Q∨

r,M <∞ for all r ≥ deg f
2

. Note that L(f−inf Q∨
r,M) ≥ 0 for all L ∈ C∨

r,M . This implies
that f−inf Q∨

r,M is in C∨∨
r,M , which is the closure of Cr,M . Therefore, f−inf Q∨

r,M+ε ∈ C2r,M
for all ε > 0 by Lemma 6.2, so inf Q∨

r,M ≤ supQ2r,M . □

Next, we turn to a partial estimate of positive functionals on moment polynomials
with moment evaluations (cf. [IKR14, AJK15] for related infinite-dimensional moment
problems), in the spirit of Nussbaum’s theorem [Sch17, Theorem 14.25] on functionals
satisfying the multivariate Carleman condition. This classical result states that if the
marginals of a positive linear functional L on R[x] do not grow too fast (Carleman’s
condition, which is in particular satisfied if there is M > 0 such that L(x2kj ) ≤ Mkk! for
all k), then L equals integration with respect to some measure on Rn.

Proposition 6.6. Let S1 ⊆ R[x], S2 ⊆ M , M > 0, and f ∈ M [x]. Suppose L ∈ M [x]∨

satisfies

(a) L(1) = 1,
(b) L(QM(S1, S2)) = R≥0,
(c) L(x2kj ) ≤ k!M and L(m(x2kj )ℓ) ≤ ℓ!(k!)ℓM for all j ∈ {1, . . . , n} and k, ℓ ∈ N.

Then there exists (µ,X) ∈ K(S1, S2)×K(S1) such that L(f) ≥ f(µ,X).

Before diving into the proof, two remarks are in order. Firstly, Proposition 6.6 does
not provide a full estimate of a functional with a moment evaluation; given a functional
L with properties (a), (b), (c) as above, it does not provide a point X and a measure
µ such that L(g) ≤ g(µ,X) for all g ∈ M [x]. Rather, it provides X and µ such that
L(f) ≥ f(µ,X) for a single f ∈ M [x] given in advance. Secondly, while the proof
of Proposition 6.6 below relies on classical ideas from functional analysis and moment
problems, it is rather intricate. At its core is a version of the Gelfand-Naimark-Segal
(GNS) construction producing X and µ. However, handling unboundedness requires
special care (hence analyticity of vectors and strong commutation of unbounded operators
are invoked), and obtaining X and µ is a two-step process (first constructing a point
evaluation on M [x] using direct integral decomposition of the GNS representation, and
then arguing that its restriction to m(R[x]) arises from a measure). For the theory of
unbounded operators, which is extraneous to the rest of the paper outside of this proof,
we refer the reader to the books [Sch90, Sch12] (see also footnotes for short explanations).

Proof of Proposition 6.6. We divide the proof into three steps.
Step 1: unbounded GNS construction. On M [x] we define a semi-inner product ⟨p, q⟩ =

L(pq). Let N = {p ∈ M [x] : L(p2) = 0}. By the Cauchy-Schwarz inequality for semi-
inner products, N is an subspace of M [x]: if p, q ∈ N then L(pq)2 ≤ L(p2)L(q2) = 0
implies that L((p + q)2) = L(p2) + 2L(pq) + L(q2) = 0, so p + q ∈ N . Furthermore, if
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p ∈ N then p2 ∈ N . Indeed, if L(p2) = 0, then

0 ≤ L
(
(p± εp3)2

)
= L(p2)± 2εL(p4) + ε2L(p6) = ε

(
±2L(p4) + εL(p6)

)
and hence ±2L(p4) + εL(p6) ≥ 0 for every ε > 0, implying L(p4) = 0. Consequently,
N is an ideal of M [x]: if p ∈ N and q ∈ M [x] then L((pq)2)2 ≤ L(p4)L(q4) = 0 by
the Cauchy-Schwarz inequality, and so pq ∈ N . Let H be the completion of the inner
product space M [x]/N . Multiplication with generators xj and mi1,...,in in M [x] induces
symmetric1 unbounded operators Xj and Yi1,...,in on H with a dense domain M [x]/N .
Moreover, the Cauchy-Schwarz inequality and the condition (c) on L imply that for all
j ∈ {1, . . . , n} and k, ℓ ∈ N, the inequalities

∥Xk
j p∥2 = L(x2kj p

2) ≤
√
L(x4kj )

√
L(p4) ≤

√
(2k)!

√
M∥p2∥

∥Y ℓ
kej
p∥2 = L(m(xkj )

2ℓp2) ≤
√
L(m(x2kj )4ℓ

√
L(p4) ≤

√
(4ℓ)!

√
(k!)4ℓM∥p2∥

hold for all p ∈ M [x]/N and k, ℓ ∈ N (here, Ykej = Y...,0,k,0... with k at the jth position is

the operator given by multiplication with m(xkj )). By induction on k it is easy to see that
m
√

(mk)! ≤ mkk! for all k,m ∈ N. Therefore,

∥Xk
j p∥ ≤

√
k!
√
2
k 4
√
M
√

∥p2∥,

∥Y ℓ
kej
p∥ ≤ ℓ!(4 · k!)ℓ 4

√
M
√

∥p2∥

for all k, ℓ, j and p ∈ ⟨x⟩/N . In terms of [Sch12, Definition 7.1], the elements of M [x]/N
are analytic2 vectors for Xj and Ykej , for every j ∈ {1, . . . , n} and k ∈ N. By [Sch12,

Theorem 7.18], the closures3 Xj and Y kej are pairwise strongly commuting self-adjoint

operators4. In particular, Y 2kej are positive self-adjoint operators. By Lemma 6.4 and
the Cauchy-Schwarz inequality we have

∥Yi1,...,inp∥2 = L(m2i1,...,inp
2)

≤
n−1∑
j=1

1

2j
L
(
m(x

2j+1ij
j )p2

)
+

1

2n−1
L
(
m(x2

nin
n )p2

)
≤

n−1∑
j=1

1

2j
∥∥(Y (2j+1ij)ej + I

)
p
∥∥2 + 1

2n−1

∥∥(Y (2nin)en + I
)
p
∥∥2

(6.9)

for all p ∈ M [x]/N . That is, the operators Yi1,...,in are majorized in the sense of (6.9)
by self-adjoint operators that pairwise strongly commute with all Xj and Y kej . Thus,
for every collection i1, . . . , in, i

′
1, . . . , i

′
n, j there exists a self-adjoint operator S on H that

commutes with Xj, Yi1,...,in , Yi′1,...,i′n on M [x]/N , and satisfies

∥Xjp∥, ∥Yi1,...,inp∥, ∥Yi′1,...,i′np∥ ≤ ∥Sp∥

1An operator S : D → H on a dense subspace D ⊆ H is symmetric if ⟨Su, v⟩ = ⟨u, Sv⟩ for all u, v ∈ D.
2A vector v ∈ D is analytic for S : D → D if there is M > 0 such that ∥Skv∥ ≤ Mkk! for all k.
3The closure of an operator T on H is the operator on H whose graph in H⊕H is the closure of the

graph of T . Every densely defined symmetric operator admits the closure.
4An operator is self-adjoint if it is equal to its own adjoint on H (this notion is stronger than being

symmetric). Spectral projections of a self-adjoint operator S are projections on H corresponding to

measurable subsets of the spectrum of S via the spectral theorem. Two self-adjoint operators strongly

commute if all their spectral projections commute.
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for all p ∈ M [x]/N . Then the closures Xj, Y i1,...,in , Y i′1,...,i
′
n
are pairwise strongly commut-

ing self-adjoint operators by [Sch88, Proposition 2]. Since real polynomials in strongly
commuting self-adjoint operators are again self-adjoint,

φ(xj) = Xj, φ(mi1,...,in) = Y i1,...,in

defines an integrable representation5 φ of M [x] on H according to [Sch90, Definition
9.1.1]. By the construction, φ(QM(S1, S2)) consists of positive self-adjoint operators.

Step 2: integral decomposition of φ. Irreducible integral representations of M [x] are
one-dimensional by the unbounded analog of Schur’s lemma6 [Sch90, Corollary 9.1.11].
Since M [x] is countably generated, by [Sch90, Theorem 12.3.5 and subsequent Remark 2]
there exist a compact metric space T with a Borel probability measure λ and a measurable
family of integral representations φt of M [x] acting on Hilbert spaces Ht for t ∈ T , such
that φ is unitarily equivalent to the direct integral7∫ ⊕

T

φt dλ(t)

on the Hilbert space H′ =
∫ ⊕
T
Ht dλ(t), and almost every (relative to λ) Ht is one-

dimensional. Let et ∈ Ht be such that that the vector
∫ ⊕
T
et dλ(t) ∈ H′ corresponds to

the unit vector 1 ∈ H under the aforementioned unitary equivalence. Since 1 ∈ H is a
cyclic8 vector for φ(M [x]), we have et ̸= 0 for almost all t. Define Lt : M [x] → R as
Lt(p) = ⟨φt(p)et, et⟩; then

(6.10) L(p) =

∫
T

Lt(p) dλ(t)

for all p ∈ M [x]. Since φ(QM(S1, S2)) consists of positive self-adjoint operators, it fol-
lows by [Sch90, Proposition 12.2.3(ii)] that φt(QM(S1, S2)) consists of positive selfadjoint
operators, for almost every t. In particular, Lt(QM(S1, S2)) = R≥0 for almost every t.
The subset

Z ′ = {t ∈ T : Lt(f) ≤ L(f)Lt(1)}
of T is measurable. Note that λ(Z ′) = 0 would by (6.10) give rise to the contradiction

L(f) =

∫
T

Lt(f) dλ(t) >

∫
T

L(f)Lt(1) dλ(t) = L(f)L(1) = L(f),

so m := λ(Z ′) > 0.
Let N > 0 be sufficiently large so that

∑∞
k=1

nM
Nk < m, and consider the sets

Zj,k =
{
t ∈ T : Lt

(
m(x2kj )

)
≥ Nkk!

}
for j ∈ {1, . . . , n} and k ∈ N. Then Zj,k is measurable, and

k!M ≥ L
(
m(x2kj )

)
=

∫
T

Lt

(
m(x2kj )

)
dλ(t) ≥

∫
Zj,k

Lt

(
m(x2kj )

)
dλ(t) ≥ Nkk!λ(Zj,k),

5An integrable representation of a commutative algebra (with trivial involution) is a homomorphism

into a subalgebra of strongly commuting self-adjoint operators on a Hilbert space.
6The Schur-Dixmier lemma implies that irreducible representations of an abelian C-algebra of count-

able dimension are one-dimensional.
7Direct integrals of Hilbert spaces, operators and representations generalize direct sums of these objects.

While infinite-dimensional integral representations do not necessarily admit a direct sum decomposition

into irreducible ones, they do admit a direct integral decomposition into irreducible ones.
8A vector v ∈ H is cyclic for an algebra of operators A on H if A · v is dense in H.
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so λ(Zj,k) ≤ M
Nk . By the choice of N ,

λ

(
n⋃

j=1

⋃
k∈N

Zj,k

)
≤

n∑
j=1

∞∑
k=1

λ(Zj,k) ≤ n
∞∑
k=1

M

Nk
< m,

and so

λ

(
Z ′ \

⋃
j,k

Zj,k

)
> 0.

In particular, there exists t ∈ T such that φt is one-dimensional, et ̸= 0, and

Lt(QM(S1, S2)) = R≥0, Lt(f) ≤ L(f)Lt(1), Lt

(
m(x2kj )

)
≤ Nkk! for k ∈ N.

Since φt : M [x] → R is a nonzero homomorphism, it is unital, thus Lt(p) = φt(p)Lt(1)
for all p ∈ M [x]. Since Lt(1) = ∥et∥2 > 0,

φt(QM(S1, S2)) = R≥0, φt(1) = 1, φt(f) ≤ L(f), φt

(
m(x2kj )

)
≤ Nkk!

Lt(1)
for k ∈ N.

Step 3: conclusion. Consider the functional L̃ : R[x] → R given by L̃(p) = φt(m(p)).

Then L̃(QM(S1)) = R≥0, and L̃ satisfies the Carleman condition since L̃(x2kj ) ≤ 1
Lt(1)

Nkk!

for all j = 1, . . . , n and k ∈ N. By a refined version of Nussbaum’s theorem [Sch17, The-

orem 14.25] applied to L̃, there is µ ∈ K(S1, S2) such that φt(mi1,...,in) = L̃(xi11 · · ·xinn ) =∫
xi11 · · ·xinn dµ for all (i1, . . . , in) ∈ Nn

0 . Let X = (φt(x1), . . . , φt(xn)); then X ∈ K(S1)
because φt(QM(S1, S2)) = R≥0. Lastly, f(µ,X) = φt(f) ≤ L(f). □

The following auxiliary lemma bounds the growth of a positive linear functional on
moment polynomials in terms of its marginal values (on x2kj and m(x2kj )).

Lemma 6.7. Let r ∈ N, M ≥ 1 and L ∈ M [x]∨2r. Suppose L(QM(∅, ∅)2r) = R≥0 and

(6.11) L
(
x2kj
)
, L
(
m(x2kj )

)
≤ k!M

for j = 1, . . . , n and k = 1, . . . , r. Then

(6.12) |L(w)| ≤
√
(degw)!M

for all monomials w in M [x]r.

Proof. By applying [Las06, Lemma 6.2] to the moment matrix (L(m(αβ)))α,β indexed by
xi11 · · ·xinn for i1 + · · ·+ in ≤ r, one obtains

(6.13) L(m2i1,...,2in) ≤ (i1 + · · ·+ in)!M

for i1 + · · ·+ in ≤ r. Next,

(6.14) L(m2ki1,...,in) ≤ L(m2ki1,...,2kin)

for k(i1 + · · ·+ in) ≤ r since m2ki1,...,2kin − m2ki1,...,in ∈ qm(∅, ∅) by Lemma 2.2(2). By (6.13),
(6.14) and [Las06, Lemma 6.2],

L(w2) ≤ (degw)!M

for all monomials w ∈ M [x]r. Finally, (6.12) follows from L(w2) − L(w)2 = L((w −
L(w))2) ≥ 0 for degw ≤ r. □

In the final preparation for Theorem 6.9, we connect the solution of the optimization
problem (6.3) with the infimum of f on K(S1, S2)×K(S1).
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Lemma 6.8. Suppose S2 is finite, K(S1, S2) ̸= ∅ and f ∈ M [x] is bounded below on
K(S1, S2) ×K(S1); denote f∗ := inf(µ,X)∈K(S1,S2)×K(S2) f(µ,X) > −∞. For large enough
M > 0, (6.3) is feasible for 2r ≥ deg f , and inf Q∨

r,M ↗ fM as r → ∞ for some fM ≥ f∗.

Proof. Feasibility of (6.3) follow by the same argument as in the proof of Lemma 6.5. Let
L be feasible for Q∨

r,M . Then L(M − Φr −Ψr) ≥ 0 implies

(6.15) L(x2kj ) ≤ k!M for k ≤ r, L(m(x2kj )ℓ) ≤ ℓ! (k!)ℓM for kℓ ≤ r.

Let d ∈ N, and r ≥ d. By Lemma 6.7 and (6.15) (for ℓ = 1),

(6.16) |L(w)| ≤
√
d!M =: cd

for all monomials w in M [x]d. In particular, L(f) is uniformly bounded for large enough r.
Therefore, (inf Q∨

r,M)r is an increasing function bounded from above, whence inf Q∨
r,M ↗

fM as r → ∞, for some fM . It remains to show fM ≥ f∗.
Let ℓ∞ be the space of bounded functions on monomials in M [x]. For every r ∈ N

let L(r) be an optimizer of (6.3), and let sr ∈ ℓ∞ be given as sr(w) = 1
cdegw

L(r)(w)

for monomials w with degw ≤ 2r, and sr(w) = 0 for all other monomials w. Note
that for every monomial w, sr(w) is bounded by 1 for all sufficiently large r. By the
Banach-Alaoglu theorem [Bar02, Theorem III.2.9], the closed unit ball in ℓ∞ is compact
in the weak-* topology. In particular, the sequence (sr)r has an accumulation point in ℓ∞

with respect to the weak-* topology. Hence, there is s ∈ ℓ∞ and a subsequence (srm)m
converging to s. Define

L : M [x] → R, L(w) = cdegw · s(w).

Then L(rm)|M [x]d → L|M [x]d as m→ ∞, for every d ∈ N. In particular, L is a unital linear
functional, L(f) = fM , and L(QM(S1, S2)) = R≥0. Let d ∈ N be arbitrary. Then for
every rm ≥ d,

L(x2kj ) ≤ k!M for k ≤ rm, L(m(x2kj )ℓ) ≤ ℓ! (k!)ℓM for kℓ ≤ rm

by (6.15) since L(rm) is feasible for Q∨
rm,M . Consequently,

L(x2kj ) ≤ k!M for k ∈ N, L(m(x2kj )ℓ) ≤ ℓ! (k!)ℓM for k, ℓ ∈ N.

Therefore, L(f) ≥ f∗ by Proposition 6.6. □

The following is a moment polynomial analog of Lasserre’s Positivstellensatz [Las06,
LN07]. Its proof relies on the interplay of solutions of optimization problems (6.2) and
(6.3) with the infimum of f on K(S1, S2)×K(S1).

Theorem 6.9 (Perturbative Positivstellensatz). Let S1 ⊆ R[x] and S2 ⊆ M , and suppose
S2 is finite. The following statements are equivalent for f ∈ M [x]:

(i) f ≥ 0 on K(S1, S2)×K(S1);
(ii) for every ε > 0 there exists r ∈ N such that f + ε(Φr +Ψr) ∈ QM(S1, S2).

The following statements are equivalent for f ∈ M :

(i’) f ≥ 0 on K(S1, S2);
(ii’) for every ε > 0 there exists r ∈ N such that f + ε(1 + Ψr) ∈ qm(S1, S2).

Proof. (ii)⇒(i) Let X ∈ K(S1) be arbitrary, and let ν be a finitely supported measure in
K(S1, S2). There is 0 < M <∞ such that

Φr(X) + Ψr(ν) ≤M
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for all r ∈ N. Then for every ε > 0 one has f(ν,X) ≥ −εM , and so f(ν,X) ≥ 0. Since
X and ν were arbitrary, and finitely supported measures in K(S1, S2) interpolate any
measure in K(S1, S2) up to moments of any fixed order by Proposition 2.6, it follows that
f(µ,X) ≥ 0 for all (µ,X) ∈ K(S1, S2)×K(S1).

(i)⇒(ii) We divide the proof into two main cases (a) and (b), according to whether
K(S1, S2) is empty or not.

Case (a): assume K(S1, S2) ̸= ∅ and denote f∗ = inf(µ,X)∈K(S1,S2)×K(S1) f(µ,X). We
further divide this case in two sub-cases.

First suppose f∗ > 0. By Proposition 2.6, there exists (ν,X) ∈ K(S1, S2) × K(S1),
with a finitely supported ν. Denote M0 := supr(Φr(X) + Ψr(ν)) < ∞, and let M >
max{ 1

f∗
,M0} be arbitrary. By Lemmas 6.5 and 6.8, there exists rM > 0 such that

supQrM ,M > f∗− 1
M
. That is, there are zM ≥ f∗− 1

M
, λM ∈ R≥0 and qM ∈ QM(S1, S2)2rM

such that

(6.17) f − zM = qM + λM
(
M − ΦrM −ΨrM

)
.

Evaluating (6.17) at (ν,X) ∈ K(S1, S2)×K(S1) gives

f(ν,X)− f∗ +
1

M
≥ f(ν,X)− zM

= qM(ν,X) + λM
(
M − ΦrM (X)−ΨrM (ν)

)
≥ λM(M −M0),

and therefore

(6.18) λM ≤
f(ν,X)− f∗ +

1
M

M −M0

.

The right-hand side of (6.18) goes to 0 as M → ∞. By (6.17),

f + λM
(
ΦrM +ΨrM

)
= zM + qM + λMM ∈ QM(S1, S2)2rM ,

and λM → 0 as M → ∞, so (ii) holds.
Now suppose f∗ = 0, and let ε > 0 be arbitrary. By applying (i)⇒(ii) to f + nε

2
and

ε
2
> 0, there exists r ∈ N such that (f + nε

2
) + ε

2
(Φr +Ψr) ∈ QM(S1, S2)2r. But the latter

equals f + ε(Φr +Ψr)− ε
2
(Φr − n+Ψr), so f + ε(Φr +Ψr) ∈ QM(S1, S2)2r.

Case (b): assume K(S1, S2) = ∅, and let f ∈ R[x] and ε > 0 be arbitrary. Let
xn+1 be an auxiliary variable, and consider S ′

1 = xn+1 · ({1} ∪ S1) ⊂ R[x1, . . . , xn+1]
and S ′

2 = m21,0,...,0 · S2 ⊂ M . Then K(S ′
1) contains Rn × {0}, K(S ′

1, S
′
2) contains all

µ ∈ P(Rn × {0}) such that
∫
x1 dµ = 0 (and is thus nonempty), and xn+1f ≥ 0 on

K(S ′
1, S

′
2). By the case (a) of the proof above, there exists r ∈ N such that

(6.19) xn+1f +
ε

n+ e+ e2

Φr +Ψr +
r∑

k=0

x2kn+1

k!
+
∑
k,ℓ∈N,
kℓ≤r

m(x2kn+1)
ℓ

(k!)ℓℓ!

 ∈ QM(S ′
1, S

′
2).

Consider the homomorphism ξ, from moment polynomials generated by x1, . . . , xn+1 to
moment polynomials generated by x1, . . . , xn, that is determined by

ξ(xj) = xj for j ≤ n, ξ(xn+1) = 1, ξ(mi1,...,in+1) = mi1,...,in .
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Note that ξ intertwines with m. Applying ξ to (6.19) thus gives

f +
ε

n+ e+ e2

Φr +Ψr +
r∑

k=0

1

k!
+
∑
k,ℓ∈N,
kℓ≤r

1

(k!)ℓℓ!

 ∈ QM(S1, S
′
2) ⊆ QM(S1, S2),

and therefore f + ε(Φr +Ψr) ∈ QM(S1, S2) because
∑r

k=0
1
k!
≤ e and

∑
kℓ≤r

1
(k!)ℓℓ!

≤ e2 by

Lemma 6.1.
(i’)⇔(ii’) The proof is analogous to (i)⇔(ii), and utilizes the straightforward counter-

parts of Lemmas 6.5, 6.7, 6.8 and Proposition 6.6 for qm(S1, S2). □

Remark 6.10. In Theorem 6.9, one can replace the cone QM(S1, S2) with the larger cone

Q̃M(S1, S2) from Section 5. While the resulting statement is slightly weaker than Theorem
6.9, it has the advantage that it is more amenable for computations. Namely, for every

r ∈ N, the smallest εr ≥ 0 such that f + εr(Φr + Ψr) ∈ Q̃M(S1, S2)2r can be computed
via SDP. Theorem 6.9 then implies that limr→∞ εr = 0 if f ≥ 0 on K(S1, S2)×K(S1).

Example 6.11. The implications (ii)⇒(i) and (ii’)⇒(i’) of Theorem 6.9 fail in general
when S2 is not finite. Let n = 1, f = −1 and

S2 = {m2i − (4i+ 1)! : i ∈ N}.

Since the 2ith moment of µ = e−
√

|t| dt is (4i + 1)!, we have K(∅, S2) ̸= ∅ and therefore
(i’) and (i) are false. Now let ε > 0 be arbitrary; then there exists r ∈ N such that
r! ≤ ε(4r + 1)!, and so

−1 + εΨr =
ε

r!

(
m2r −

r!

ε

)
+ ε

(
Ψr −

1

r!
m2r

)
∈ qm(∅, S2).

Thus, (ii) and (ii’) are true.

Example 6.12. Let f = m2,0m0,2. Since f is a product of two elements in qm(∅, ∅), it
is nonnegative on P(R2); on the other hand, f does not belong to qm(∅, ∅). For a fixed
r ∈ N, searching for the smallest εr ≥ 0 such that f + εr(1 + Ψr) ∈ qm(∅, ∅) can be
formulated as an SDP. For small values of r one obtains ε2 = 0.33333, ε3 = 0.06330,
ε4 = 0.01416.

Example 6.13. Let us return to f = m4,2m2,4 − m32,2 from Example 3.8. Then f is non-

negative on P(R2), but ρ(f) < 0 for some pseudo-moment evaluation ρ : M → R, so f
does not admit a sum-of-squares certificate with denominators in the sense of Hilbert’s
17th problem by Theorem 3.7. Nevertheless, for every ε > 0, Theorem 6.9 guarantees an
r ∈ N such that f + ε(1 + Ψr) ∈ qm(∅, ∅). Alternatively, since f is homogeneous with
respect to the degree on M , its nonnegativity on P(R2) is equivalent to nonnegativity
on P([−1, 1]2). By Theorem 4.2, f + ε ∈ qm({1− x1, 1 + x1, 1− x2, 1 + x2}, ∅) for every
ε > 0.

6.1. Polynomial positivity on arbitrary semialgebraic sets. Theorem 6.9 also car-
ries implications for classical (non-moment) polynomials (see Remark 6.15 for comparison
with earlier results).

Corollary 6.14. Let S ⊆ R[x]. Then the following statements are equivalent for f ∈ R[x]:
(i) f ≥ 0 on K(S);
(ii) for every ε > 0 there exists r ∈ N such that f + εΦr ∈ QM(S).



SUMS OF SQUARES CERTIFICATES FOR POLYNOMIAL MOMENT INEQUALITIES 31

Proof. The homomorphism ζ : M [x] → R[x] determined by ζ|R[x] = idR[x] and ζ(mi1,...,in) =
0 (for ij not all zero) maps QM(S, ∅) into QM(S). Applying ζ to the conclusions of
Theorem 4.2 for f and QM(S, ∅) gives the desired statement. □

Remark 6.15. The special case of Corollary 6.14 for S = ∅ is given in [Las06, Theo-
rem 4.1]. Furthermore, the conclusion of Corollary 6.14 has been established in [LN07,
Corollary 3.7] under additional assumptions, namely that S is finite and has the strong
moment property9, and the interior of K(S) is nonempty; furthermore, [LN07, Corollary
3.7] requires preorderings instead of quadratic modules. Corollary 6.14 disposes of all
these assumptions. On the other hand, [Las06] and [LN07] provide stronger certificates in
two special cases: when nonnegativity onK(S)∩[−1, 1]n is considered (and S is finite with
the strong moment property, and K(S) has nonempty interior), a simpler perturbation
can be used in place of Φr [LN07, Corollary 3.6]; when S consists of concave polynomials
and f is convex, only sums of squares and conic combinations of S are needed in place of
QM(S) [Las06, Corollary 4.3].

Remark 6.16. Corollary 6.14 characterizes polynomial positivity on arbitrary basic
closed semialgebraic sets (and even more general sets, since infinitely many constraints
are allowed), but differently from the renowned Krivine-Stengle Positivstellensatz [Mar08,
Theorem 2.2.1]; while the latter certificate involves preorderings and denominators, the
former involves quadratic modules and coefficient perturbations.

Example 6.17. Let us record one of the simplest cases to which [LN07, Corollary 3.7]
does not apply. Clearly, x1x2 ≥ 0 on K({x1, x2}). By Corollary 6.14, for every ε > 0
there exists r ∈ N such that x1x2 + εΦr ∈ QM({x1, x2}), even though the set {x1, x2}
does not have the strong moment property.

For a fixed r ∈ N, one can find the smallest εr ≥ 0 such that x1x2 + εrm(Φr) ∈ qm(∅, ∅)
by solving an SDP. For r = 2, . . . , 8 the values of εr are

0.5, 0.012428, 0.002016, 0.000580, 0.000238, 0.000117, 0.000065, 0.000032.

Remark 6.18. As is evident from the proof of Theorem 6.9, the sequence of polynomials
Φr can be replaced by

(6.20)
n∑

j=1

r∑
k=0

x2kj
ck

for r ∈ N,

where ck > 0 are such that (ck)k has super-exponential growth (to ensure point-wise
convergence of (6.20), which is used for (ii)⇒(i) of Theorem 6.9 and for feasibility of (6.2)
and (6.3)) and (k−kck)k has at most exponential growth (which is needed for applying
Proposition 6.6). One might further contemplate whether only the constant term and
the leading terms of Φr are essential in Corollary 6.14; this is indeed true in certain cases
[KSV22, Example 7.9]. However, the following example shows this is not true in general.

Let n = 1, f = −2 and S = {−1 +
x2k
1

k!−1
: k ≥ 2}. Then K(S) = ∅ and f ≥ 0 on K(S).

We claim that −2 + (1 +
x2r
1

r!
) /∈ QM(S) for every r ∈ N. Indeed, suppose

(6.21) −1 +
x2r1
r!

= σ1 +
ℓ∑

k=2

σk ·
(
−1 +

x2k1
k!− 1

)
9S has the strong moment property if every functional on R[x] that is nonnegative on the preordering

generated by S, equals integration with respect to a measure supported on K(S). This is a rather

restrictive property; e.g., S = {x1, x2} does not have it.
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where ℓ ≥ 2 and σk ∈ R[x] are sums of squares. Note that ℓ ≤ r. Let X = 2ℓ
√
ℓ!− 1.

Then the right-hand side of (6.21) is nonnegative at X, while the left-hand side of (6.21)
is negative at X, a contradiction.
On the other hand, if ε > 0 is arbitrary and r ≥ 2

ε
− 1, then

−1 + εΦr =

(
−1 + ε

(
1 +

r∑
k=2

k!− 1

k!

))
+ εx21 + ε

r∑
k=2

k!− 1

k!

(
−1 +

x2k1
k!− 1

)
∈ QM(S),

as anticipated by Corollary 6.14.

We conclude the section with a modified Lasserre’s SDP hierarchy, applicable to arbi-
trary semialgebraic sets. Let S ⊆ R[x], f ∈ R[x] and ε > 0. Let f∗ = infX∈K(S) f(X).

For r ≥ deg f
2

consider the SDP

f (ε)
r = sup {z ∈ R : f − z + εΦr ∈ QM(S)2r} .

Corollary 6.19. Let S, f, ε be as above. Then (f
(ε)
r )r is an increasing sequence, and

(6.22) f∗ ≤ lim
r→∞

f (ε)
r ≤ inf

X∈K(S)

(
f(X) + ε(exp(X2

1 ) + · · ·+ exp(X2
n)
)
.

In particular,

(6.23) lim
ε↓0

lim
r→∞

f (ε)
r = f∗.

Proof. The first inequality in (6.22) holds by Corollary 6.14, and the second inequality in
(6.22) is straightforward. Lastly, (6.23) follows from limε↓0 infK(f + εg) = infK f for any
nonnegative function g on Rn. □
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[Sch88] Konrad Schmüdgen. Strongly commuting selfadjoint operators and commutants of un-

bounded operator algebras. Proc. Amer. Math. Soc., 102:365–372, 1988. 26
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[Sch12] Konrad Schmüdgen. Unbounded self-adjoint operators on Hilbert space, volume 265 of Grad-

uate Texts in Mathematics. Springer Dordrecht, 2012. 9, 15, 24, 25
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