
NCSOSTOOLS: A COMPUTER ALGEBRA SYSTEM FOR

SYMBOLIC AND NUMERICAL COMPUTATION WITH

NONCOMMUTATIVE POLYNOMIALS

KRISTIJAN CAFUTA, IGOR KLEP1, AND JANEZ POVH2

Abstract. NCSOStools is a Matlab toolbox for
• symbolic computation with polynomials in noncommuting variables;
• constructing and solving sum of hermitian squares (with commutators)

programs for polynomials in noncommuting variables.
It can be used in combination with semidefinite programming software, such
as SeDuMi, SDPA or SDPT3 to solve these constructed programs.

This paper provides an overview of the theoretical underpinning of these
sum of hermitian squares (with commutators) programs, and provides a
gentle introduction to the primary features of NCSOStools.

1. Introduction

Starting with Helton’s seminal paper [Hel02], free semialgebraic geometry
is being established. Among the things that make this area exciting are its
many facets of applications. A nice survey on applications to control theory,
systems engineering and optimization is given in [dOHMP08], while applications
to mathematical physics and operator algebras have been given by the second
author [KS08a, KS08b].

Unlike classical semialgebraic (or real algebraic) geometry where real poly-
nomial rings in commuting variables are the objects of study, free semialgebraic
geometry deals with real polynomials in noncommuting (NC) variables and their
finite-dimensional representations. Of interest are various notions of positivity
induced by these. For instance, positivity via positive semidefiniteness or the
positivity of the trace. Both of these can be reformulated and studied using
sums of hermitian squares (with commutators) and semidefinite programming.

We developed NCSOStools as a consequence of this recent interest in non-
commutative positivity and sums of (hermitian) squares (SOHS). NCSOStools
is an open source Matlab toolbox for solving SOHS problems using semidefinite
programming. As a side product our toolbox implements symbolic computation
with noncommuting variables in Matlab.
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There is a small overlap in features with Helton’s NCAlgebra package for
Mathematica [HdOMS]. However, NCSOStools performs only basic manipula-
tions with noncommuting variables, while NCAlgebra is a fully-fledged add-on
for symbolic computation with polynomials, matrices and rational functions in
noncommuting variables. However our primary interest is with the different no-
tions of positivity and sum of hermitian squares (with commutators) problems,
where semidefinite programming plays an important role, and we feel that for
constructing and solving these problems Matlab is the optimal framework.

Readers interested in solving sums of squares problems for commuting poly-
nomials are referred to one of the many great existing packages, such as SOS-
TOOLS [PPSP05], SparsePOP [WKK+09], GloptiPoly [HLL09], or YALMIP
[Löf04].

This paper is organized as follows. The first section fixes notation and intro-
duces terminology. Then in Section 2 we introduce the central objects, sums
of hermitian squares and use these to study positive semidefinite NC poly-
nomials. The natural correspondence between sums of hermitian squares and
semidefinite programming is also explained in some detail. The main theoretical
contribution here is an algorithm to extract an eigenvalue minimizer of an NC
polynomial. Section 3 is brief, works on the symbolic level and introduces com-
mutators and cyclic equivalence. These notions are used in Section 4 to study
trace-positive NC polynomials using sums of hermitian squares and commuta-
tors. Such representations can again be found using semidefinite programming.
Section 5 touches upon two notions of convexity. The last section contains an
expanded example demonstrating some of the features of our toolbox. For a
list of all available commands and more detailed documentation we refer the
reader to our website:

http://ncsostools.fis.unm.si/documentation

1.1. Notation. We write N := {1, 2, . . . }, R for the sets of natural and real
numbers. Let 〈X〉 be the monoid freely generated by X := (X1, . . . , Xn), i.e.,
〈X〉 consists of words in the n noncommuting letters X1, . . . , Xn (including the
empty word denoted by 1).

We consider the algebra R〈X〉 of polynomials in n noncommuting variables
X = (X1, . . . , Xn) with coefficients from R. The elements of R〈X〉 are linear
combinations of words in the n letters X and are called NC polynomials. The
length of the longest word in an NC polynomial f ∈ R〈X〉 is the degree of f
and is denoted by deg f . We shall also consider the degree of f in Xi, degi f .
Similarly, the length of the shortest word appearing in f ∈ R〈X〉 is called the
min-degree of f and denoted by mindeg f . Likewise, mindegi f is introduced.
If the variable Xi does not occur in some monomial in f , then mindegi f = 0.
For instance, if f = X3

1 − 3X3X2X1 + 2X4X
2
1X4, then

deg f = 4, deg1 f = 3, deg2 f = deg3 f = 1, deg4 f = 2,

mindeg f = 3, mindeg1 f = 1, mindeg2 f = mindeg3 f = mindeg4 f = 0.

An element of the form aw where 0 6= a ∈ R and w ∈ 〈X〉 is called a monomial
and a its coefficient. Hence words are monomials whose coefficient is 1.

http://ncsostools.fis.unm.si/documentation
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We equip R〈X〉 with the involution ∗ that fixes R∪ {X} pointwise and thus
reverses words, e.g.

(X2
1 −X2X3X1)

∗ = X2
1 −X1X3X2.

Hence R〈X〉 is the ∗-algebra freely generated by n symmetric letters. Let
SymR〈X〉 denote the set of all symmetric elements, that is,

SymR〈X〉 = {f ∈ R〈X〉 | f = f∗}.
The involution ∗ extends naturally to matrices (in particular, to vectors) over
R〈X〉. For instance, if V = (vi) is a (column) vector of NC polynomials vi ∈
R〈X〉, then V ∗ is the row vector with components v∗i . We shall also use V t to
denote the row vector with components vi.

2. Positive semidefinite NC polynomials

A symmetric matrix A ∈ Rs×s is positive semidefinite if and only if it is
of the form BtB for some B ∈ Rs×s. In this section we introduce the notion
of sum of hermitian squares (SOHS) and explain its relation with semidefinite
programming.

An NC polynomial of the form g∗g is called a hermitian square and the set of
all sums of hermitian squares will be denoted by Σ2. A polynomial f ∈ R〈X〉
is SOHS if it belongs to Σ2. Clearly, Σ2 ( SymR〈X〉. For example,

X1X2 + 2X2X1 6∈ SymR〈X〉, X2
1X2X

2
1 ∈ SymR〈X〉 \ Σ2,

2 +X1X2 +X2X1 +X1X
2
2X1 = 1 + (1 +X2X1)

∗(1 +X2X1) ∈ Σ2.

If f ∈ R〈X〉 is SOHS and we substitute symmetric matrices A1, . . . , An of the
same size for the variables X, then the resulting matrix f(A1, . . . , An) is positive
semidefinite. Helton [Hel02] and McCullough [McC01] proved (a slight variant
of) the converse of the above observation: if f ∈ R〈X〉 and f(A1, . . . , An) � 0
for all symmetric matrices Ai of the same size, then f is SOHS. For a beautiful
exposition, we refer the reader to [MP05].

The following proposition (cf. [Hel02, §2.2] or [MP05, Theorem 2.1]) is the
noncommutative version of the classical result due to Choi, Lam and Reznick
([CLR95, §2]; see also [Par03, PW98]). The easy proof is included for the sake
of completeness.

Proposition 2.1. Suppose f ∈ SymR〈X〉 is of degree ≤ 2d. Then f ∈ Σ2 if
and only if there exists a positive semidefinite matrix G satisfying

(1) f = W ∗dGWd =
∑
i,j

Gi,j(Wd)∗i (Wd)j ,

where Wd is a vector consisting of all words in 〈X〉 of degree ≤ d.
Conversely, given such a positive semidefinite matrix G with rank r, one can

construct NC polynomials g1, . . . , gr ∈ R〈X〉 of degree ≤ d such that

(2) f =
r∑

i=1

g∗i gi.

The matrix G is called a Gram matrix for f .
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Proof. If f =
∑

i g
∗
i gi ∈ Σ2, then deg gi ≤ d for all i as the highest degree

terms cannot cancel. Indeed, otherwise by extracting all the appropriate highest
degree terms hi with degree > d from the gi we would obtain hi ∈ R〈X〉 \ {0}
satisfying

(3)
∑
i

h∗ihi = 0.

By substituting symmetric matrices for variables in (3), we see that each hi
vanishes for all these substitutions. But then the nonexistence of (dimension-
free) polynomial identities for tuples of symmetric matrices (cf. [Row80, §2.5,
§1.4]) implies hj = 0 for all j. Contradiction.

Hence we can write gi = Gt
iWd, where Gt

i is the (row) vector consisting of
the coefficients of gi. Then g∗i gi = W ∗dGiG

t
iWd and setting G :=

∑
iGiG

t
i, (1)

clearly holds.
Conversely, given a positive semidefinite G ∈ RN×N of rank r satisfying (1),

write G =
∑r

i=1GiG
t
i for Gi ∈ RN×1. Defining gi := Gt

iWd yields (2).

Example 2.2. In this example we consider NC polynomials in 2 variables which
we denote by X,Y . Let

f = 1− 2X + 2X2 + Y 2 − 2X2Y − 2Y X2 + 2Y XY + 2Y X2Y.

Let V be the subvector
[
1 X Y XY

]t
of W2. Then the Gram matrix for f

with respect to V is given by

G(a) :=

[ 1 −1 0 a
−1 2 −a −2
0 −a 1 1
a −2 1 2

]
.

(That is, f = V ∗G(a)V .) This matrix is positive semidefinite if and only if
a = 1 as follows easily from the characteristic polynomial of G(a). Moreover,
G(1) = CtC for

C =
[
1 −1 0 1
0 1 −1 −1

]
.

From

CV =
[
1−X +XY X − Y −XY

]t
it follows that

f = (1−X +XY )∗(1−X +XY ) + (X − Y −XY )∗(X − Y −XY ) ∈ Σ2.

The problem whether a given polynomial is SOHS is therefore a special in-
stance of a semidefinite feasibility problem. This is explained in detail in the
following two subsections.

2.1. Semidefinite programming. Semidefinite programming (SDP) is a sub-
field of convex optimization concerned with the optimization of a linear objec-
tive function over the intersection of the cone of positive semidefinite matrices
with an affine space. More precisely, given symmetric matrices C, A1, . . . , Am

of the same size over R and a vector b ∈ Rm, we formulate a semidefinite
program in standard primal form as follows:

(PSDP)
inf 〈C,G〉
s. t. 〈Ai, G〉 = bi, i = 1, . . . ,m

G � 0.
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Here 〈·, ·〉 stands for the standard scalar product of matrices: 〈A,B〉 = tr(B∗A).
The dual problem to PSDP is the semidefinite program in the standard dual
form

(DSDP)
sup 〈b, y〉
s. t.

∑
i yiAi � C.

Here y ∈ Rm and the difference C −
∑

i yiAi is usually denoted by Z.
The importance of semidefinite programming was spurred by the develop-

ment of efficient methods which can find an ε-optimal solution in a polynomial
time in s,m and log ε, where s is the order of matrix variables G and Z and m
is the number of linear constraints. There exist several open source packages
which find such solutions in practice. If the problem is of medium size (i.e.,
s ≤ 1000 and m ≤ 10.000), these packages are based on interior point methods,
while packages for larger semidefinite programs use some variant of the first
order methods (see [Mit03] for a comprehensive list of state of the art SDP
solvers and also [PRW06, MPRW09]).

Our standard reference for SDP is [Tod01].

2.2. Sums of hermitian squares and SDP. In this subsection we present a
conceptual algorithm based on SDP for checking whether a given f ∈ SymR〈X〉
is SOHS. Following Proposition 2.1 we must determine whether there exists a
positive semidefinite matrix G such that f = W ∗dGWd, where Wd is the vector
of all words of degree ≤ d. This is a semidefinite feasibility problem in the
matrix variable G, where the constraints 〈Ai, G〉 = bi are implied by the fact
that for each product of monomials w ∈ {p∗q | p, q ∈ Wd} the following must
be true:

(4)
∑

p,q∈Wd
p∗q=w

Gp,q = aw,

where aw is the coefficient of w in f (aw = 0 if the monomial w does not appear
in f).

Any input polynomial f is symmetric, so aw = aw∗ for all w, and equations
(4) can be rewritten as

(5)
∑

u,v∈Wd
u∗v=w

Gu,v +
∑

u,v∈Wd
u∗v=w∗

Gu,v = aw + aw∗ ∀w ∈ {p∗q | p, q ∈Wd},

or equivalently,

(6) 〈Aw, G〉 = aw + aw∗ ∀w ∈ {p∗q | p, q ∈Wd},
where Aw is the symmetric matrix defined by

(Aw)u,v =

 2; if u∗v ∈ {w,w∗}, w∗ = w,
1; if u∗v ∈ {w,w∗}, w∗ 6= w,
0; otherwise.

Note: Aw = Aw∗ for all w.
As we are interested in an arbitrary positive semidefinite G = [Gu,v]u,v∈W

satisfying the constraints (6), we can choose the objective function freely. How-
ever, in practice one prefers solutions of small rank leading to shorter SOHS
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decompositions. Hence we minimize the trace, a commonly used heuristic for
matrix rank minimization [RFP]. Therefore our SDP in the primal form is as
follows:

(SOHSSDP)
inf 〈I,G〉
s. t. 〈Aw, G〉 = aw + aw∗ ∀w ∈ {p∗q | p, q ∈Wd}

G � 0.

(Here and in the sequel, I denotes the identity matrix of appropriate size.) To
reduce the size of this SDP (i.e., to make Wd smaller), we may employ the
following simple observation:

Proposition 2.3. Let f ∈ SymR〈X〉, let mi := mindegi f
2 , Mi := degi f

2 , m :=
mindeg f

2 , M := deg f
2 . Set

V := {w ∈ 〈X〉 | mi ≤ degiw ≤Mi for all i, m ≤ degw ≤M}.

Then f ∈ Σ2 if and only if there exists a positive semidefinite matrix G satis-
fying f = V ∗GV .

Proof. This follows from the fact that the highest or lowest degree terms in a
SOHS decomposition cannot cancel.

Example 2.4 (Example 2.2 revisited). Let us return to

f = 1− 2X + 2X2 + Y 2 − 2X2Y − 2Y X2 + 2Y XY + 2Y X2Y.

We shall describe in some detail (SOHSSDP) for f . From Proposition 2.3, we
obtain

V =
[
1 X Y XY Y X

]t
.

Thus G is a symmetric 5 × 5 matrix and there will be 17 matrices Aw, as
|{u∗v | u, v ∈ V }| = 17. In fact, there are only 13 different matrices Aw as
Aw = Aw∗ . Here is a sample:

AY X = AXY =

[
0 0 0 1 1
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
1 0 0 0 0

]
, AXY 2X =

[
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 2

]
.

These two give rise to the following linear constraints in (SOHSSDP):

G1,XY +GX,Y +GXY,1 +G1,Y X +GY,X +GY X,1 = 〈AXY , G〉
= aXY + aY X = 0,

2GY X,Y X = 〈AXY 2X , G〉 = 2aXY 2X = 0,

where we have used aw to denote the coefficients of f and the entries of V enu-
merate the columns, while the entries of V ∗ enumerate the rows of G. Observe
that the second constraint tells us that the (Y X, Y X) entry of G is zero. As
we are looking for a positive semidefinite G, the corresponding row and column
of G can be assumed to be identically zero. That is, the last entry of V is
redundant (cf. Example 2.2).

A further reduction in the vector of words needed is presented in [KP10] (the
so-called Newton chip method) and its implementation in NCSOStools is NCsos.
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2.3. Eigenvalue optimization of NC polynomials and flat extensions.
One of the features of our freely available Matlab software package NCSOStools

[CKP] is NCmin which uses sum of hermitian squares and semidefinite program-
ming to compute a global (eigenvalue) minimum of a symmetric NC polynomial
f . This is discussed in detail in [KP10, §5]. Here we present the theoretical
underpinning of an algorithm to extract the minimizers of f , implemented in
NCopt.

The main ingredients are the noncommutative moment problem and its so-
lution due to McCullough [McC01], and the Curto-Fialkow theory [CF96] of
how flatness governs the truncated moment problem. Our results are influ-
enced by the method of Henrion and Lasserre [HL05] for the commutative case,
which has been implemented in GloptiPoly [HLL09]. For an investigation of
the non-global case in the free noncommutative setting see [PNA].

2.3.1. Eigenvalue optimization is an SDP. Let f ∈ SymR〈X〉≤2d. We are in-
terested in the smallest eigenvalue f? ∈ R of the polynomial f . That is,
(7)
f? = inf

{
〈f(A)v, v〉 | A an n-tuple of symmetric matrices, v a unit vector

}
.

Hence f? is the greatest lower bound on the eigenvalues f(A) can attain for
n-tuples of symmetric matrices A, i.e., (f − f?)(A) � 0 for all n-tuples of
symmetric matrices A, and f? is the largest real number with this property.
Given that a polynomial is positive semidefinite if and only if it is a sum of
hermitian squares (the Helton-McCullough SOHS theorem), we can compute
f? conveniently with SDP. Let

(SDPeig−min)
f sohs = sup λ

s. t. f − λ ∈ Σ2.

Then f sohs = f?.
In general (SDPeig−min) does not satisfy the Slater condition. That is, there

does not always exist a strictly feasible solution. Nevertheless (SDPeig−min) sat-

isfies strong duality [KP10, Theorem 5.1], i.e., its optimal value f sohs coincides
with the optimal value Lsohs of the dual SDP:

(DSDPeig−min)d

Lsohs = inf L(f)
s. t. L : SymR〈X〉≤2d → R is linear

L(1) = 1
L(p∗p) ≥ 0 for all p ∈ R〈X〉≤d.

2.3.2. Extract the optimizers. In this section we investigate the attainability of
f? and explain how to extract the minimizers A, v for f if the lower bound f?

is attained. That is, A is an n-tuple of symmetric matrices and v is a unit
eigenvector for f(A) satisfying

(8) f? = 〈f(A)v, v〉.
Of course, in general f will not be bounded from below. Another problem is
that even if f is bounded, the infimum f? need not be attained.

Example 2.5. Let f = Y 2 +(XY −1)∗(XY −1). Clearly, f sohs ≥ 0. However,
f
(
1/ε, ε) = ε2, so f sohs = 0 and hence Lsohs = 0. On the other hand, f? from

(7) and the dual optimum Lsohs are not attained.
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Let us first consider f?. Suppose (A,B) is a pair of matrices yielding a
singular f(A,B) and let v be a nullvector. Then

B2v = 0 and (AB − I)∗(AB − I)v = 0.

From the former we obtain Bv = 0, whence

v = Iv = (AB − I)v = 0,

a contradiction.
We now turn to the nonexistence of a dual optimizer. Suppose otherwise

and let L : SymR〈X〉≤4 → R be a minimizer with L(1) = 1. We extend L to
R〈X〉≤4 by symmetrization. That is,

L(p) :=
1

2
L(p+ p∗).

We note L induces a semi-scalar product (i.e., a positive semidefinite bilinear
form) (p, q) 7→ L(p∗q) on R〈X〉≤2 due to the positivity property. Since L(f) = 0,
we have

L(Y 2) = 0 and L
(
(XY − 1)∗(XY − 1)

)
= 0.

Hence by the Cauchy-Schwarz inequality, L(XY ) = L(Y X) = 0. Thus

0 = L
(
(XY − 1)∗(XY − 1)

)
= L

(
(XY )∗(XY )

)
+ L(1) ≥ L(1) ≥ 0,

implying L(1) = 0, a contradiction.

Hence despite the strong duality holding for (SDPeig−min), the eigenvalue
infimum f? and the dual optimum Lsohs need not be attained, so some caution
is necessary. In the sequel our main interest lies in the case where f? is attained.
We shall see later below (see Corollary 2.10) that this happens if and only it
the infimum Lsohs = f sohs = f? for (DSDPeig−min)d+1 is attained.

Definition 2.6. To each linear functional L : R〈X〉≤2d → R we associate
a matrix Md (called an NC Hankel matrix ) indexed by words u, v ∈ 〈X〉 of
length ≤ d, with

(9) (Md)u,v = L(u∗v).

If L is positive, i.e., L(p∗p) ≥ 0 for all p ∈ R〈X〉≤d, then Md is positive semi-
definite. We say that L is unital if L(1) = 1.

Note that a matrix M indexed by words of length ≤ d satisfying the NC
Hankel condition Mu1,v1 = Mu2,v2 if u∗1v1 = u∗2v2, yields a linear functional L
on R〈X〉≤2d as in (9). If M is positive semidefinite, then L is positive.

Definition 2.7. Let A ∈ Rs×s be a symmetric matrix. A (symmetric) extension

of A is a symmetric matrix Ã ∈ R(s+`)×(s+`) of the form

Ã =

[
A B
Bt C

]
for some B ∈ Rs×` and C ∈ R`×`. Such an extension is flat if rankA = rank Ã,
or, equivalently, if B = AZ and C = ZtAZ for some matrix Z.

Proposition 2.8. Let f ∈ SymR〈X〉≤2d be bounded from below. If the infimum
Lsohs for (DSDPeig−min)d+1 is attained, then it is attained at a linear map L
that is flat over its own restriction to R〈X〉≤2d.
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Proof. For this proof it is beneficial to work with NC Hankel matrices. Let L be
a minimizer for (DSDPeig−min)d+1. To it we associate Md+1 and its restriction
Md. Then

Md+1 =

[
Md B
Bt C

]
for some B,C. Since Md+1 and Md are positive semidefinite, B = MdZ and
C � ZtMdZ for some Z (this is easy to verify using Schur complements; or see
[CF96]) Now form a “new” Md+1:

M̃d+1 =

[
Md B
Bt ZtMdZ

]
=
[
I Z

]t
Md

[
I Z

]
.

This matrix is obviously flat over Md, positive semidefinite, and satisfies the NC
Hankel condition (it is inherited from Md+1 since for all quadruples u, v, z, w
of words of degree d + 1 we have u∗v = z∗w ⇐⇒ u = z and z = w). So it

yields a positive linear map L̃ on R〈X〉≤2d+2 flat over L̃|R〈X〉≤2d
= L|R〈X〉≤2d

.

Moreover, L̃(f) = L(f) = Lsohs.

The following is a solution to a free noncommutative moment problem in
the truncated case. It resembles the classical results of Curto and Fialkow
[CF96] in the commutative case. For the free noncommutative moment problem
see [McC01] or also [PNA]. A similar statement (with a positive definiteness
assumption) is given in [MP05].

Theorem 2.9. Suppose L : R〈X〉≤2d+2 → R is positive and flat over L|R〈X〉≤2d
.

Then there is an n-tuple A of symmetric matrices of size s ≤ dimR〈X〉≤d and
a vector v such that

(10) L(p∗q) = 〈p(A)v, q(A)v〉

for all p, q ∈ R〈X〉 with deg p+ deg q ≤ 2d.

Proof. For this we use the Gelfand-Naimark-Segal (GNS) construction. To L we
associate two positive semidefinite matrices, Md+1 and its restriction Md. Since
Md+1 is flat over Md, there exist s linear independent columns of Md labeled by
words w ∈ 〈X〉 with degw ≤ d which form a basis B of E = rangeMd+1. Now
L (or Md+1) induces a positive definite bilinear form (i.e., a scalar product)
〈 , 〉E on E.

Let Ai be the left multiplication with Xi on E, i.e., if w denotes the column
of Md+1 labeled by w ∈ 〈X〉≤d+1, then Ai : u 7→ Xiu for u ∈ 〈X〉≤d. The
operator Ai is well defined and symmetric:

〈Aip, q〉E = L(p∗Xiq) = 〈p,Aiq〉E .

Let v := 1, and A = (A1, . . . , An). Note it suffices to prove (10) for words
u,w ∈ 〈X〉 with deg u + degw ≤ 2d. Since the Ai are symmetric, there is no
harm in assuming deg u,degw ≤ d. Now compute

L(u∗w) = 〈u,w〉E = 〈u(A)1, w(A)1〉E = 〈u(A)v, w(A)v〉E .

Corollary 2.10. Let f ∈ R〈X〉≤2d. Then f? is attained if and only if there is
a feasible point L for (DSDPeig−min)d+1 satisfying L(f) = f?.
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Proof. (⇒) If (8) holds for some A, v, then L(p) := 〈p(A)v, v〉 is the desired
feasible point. (⇐) By Proposition 2.8, we may assume L is flat over L|R〈X〉≤2d

.

Now Theorem 2.9 applies and yields A, v. By definition, ‖v‖ =
√
〈v, v〉 =√

L(1) = 1. Hence f(A) has (unit) eigenvector v with eigenvalue f?.

2.3.3. Implementing the extraction of optimizers. Let f ∈ SymR〈X〉≤2d.

Step 1: Solve (DSDPeig−min)d+1. If the problem is unbounded or the optimum
is not attained, stop. Otherwise let L denote an optimizer.

Step 2: To L we associate the positive semidefinite matrix Md+1 =

[
Md B
Bt C

]
.

Modify Md+1: M̃d+1 =

[
Md B
Bt ZtMdZ

]
, where Z satisfies MdZ = B.

This matrix yields a positive linear map L̃ on R〈X〉≤2d+2 which is flat

over L̃|R〈X〉≤2d
= L|R〈X〉≤2d

. In particular, L̃(f) = L(f) = f?.

Step 3: As in the proof of Theorem 2.9, use the GNS construction on L̃ to
compute symmetric matrices Ai and a vector v with L̃(f) = f? =
〈f(A)v, v〉.

In Step 3, to construct symmetric matrix representations Ai ∈ Rs×s of the
multiplication operators we calculate their image according to a chosen basis
B for E = range M̃d+1. To be more specific, Aiu1 for u1 ∈ 〈X〉≤d being the
first label in B, can be written as a unique linear combination

∑s
j=1 λjuj with

words uj labeling B such that L
(
(u1Xi−

∑
λjuj)

∗(u1Xi−
∑
λjuj)

)
= 0. Then[

λ1 . . . λs
]t

will be the first column of Ai. The vector v is the eigenvector
of f(A) corresponding to the smallest eigenvalue.

Warning 2.11. Running the above algorithm raises several challenges in prac-
tice. Since the primal problem (SDPeig−min) often has no strictly feasible point
we have no guarantee that the optimal value Lsohs of (DSDPeig−min)d+1 is at-
tained. We do not know how to test for attainability efficiently, since all state-of-
the-art SDP solvers return only an ε-optimal solution (a point which is feasible
and gives optimal value up to some rounding error).

Detecting unboundedness of (DSDPeig−min)d+1 seems easier. First of all, the
SDP solver is likely to detect it directly. Otherwise numerical problems will
be mentioned, and we then solve the (usually much smaller) primal problem
(SDPeig−min) to detect its infeasibility, which is equivalent to the unboundedness
of (DSDPeig−min)d+1.

In summary, the performance of our algorithm to extract the optimizers
depends heavily on the quality of the underlying SDP solver.

Remark 2.12. We finish this section by emphasizing that the extraction of
eigenvalue optimizers (theoretically) always works if the optimum for (DSDPeig−min)d+1

is attained. This is in sharp contrast with the commutative case; cf. [Las09].

We implemented the procedure explained in Steps 1–3 under NCSOStools

as NCopt, while solving (SDPeig−min) can be done by calling NCmin - see also
Subsection 6.2 for a demonstration.
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3. Commutators and zero trace NC polynomials

It is well-known and easy to see that trace zero matrices are sums of com-
mutators. Less obvious is the fact (not needed in this paper) that trace zero
matrices are commutators. In this section we present the corresponding theory
for NC polynomials and describe how it is implemented in NCSOStools. Most
of the results are taken from [KS08a].

Definition 3.1. An element of the form [p, q] := pq − qp for p, q ∈ R〈X〉 is
called a commutator. Two NC polynomials f, g ∈ R〈X〉 are called cyclically

equivalent (f
cyc∼ g) if f − g is a sum of commutators:

f − g =
k∑

i=1

(piqi − qipi) for some k ∈ N ∪ {0} and pi, qi ∈ R〈X〉.

Example 3.2. 2X3Y + 3XYX2 cyc∼ X2Y X + 4Y X3 as

2X3Y + 3XYX2 − (X2Y X + 4Y X3) = [2X,X2Y ] + [X,XY 2] + [4X,Y X2].

The following remark shows that cyclic equivalence can easily be tested.

Remark 3.3.

(a) For v, w ∈ 〈X〉, we have v
cyc∼ w if and only if there are v1, v2 ∈ 〈X〉 such

that v = v1v2 and w = v2v1. That is, v
cyc∼ w if and only if w is a cyclic

permutation of v.
(b) Two polynomials f =

∑
w∈〈X〉 aww and g =

∑
w∈〈X〉 bww (aw, bw ∈ R) are

cyclically equivalent if and only if for each v ∈ 〈X〉,∑
w∈〈X〉

w
cyc
∼ v

aw =
∑

w∈〈X〉

w
cyc
∼ v

bw.

Given f
cyc∼ g and an n-tuple of symmetric matrices A of the same size,

tr f(A) = tr g(A). The converse is given by the following tracial Nullstellensatz:

Theorem 3.4 (Klep-Schweighofer [KS08a]). Let d ∈ N and f ∈ SymR〈X〉 be
of degree ≤ d satisfying

(11) tr(f(A1, . . . , An)) = 0

for all symmetric A1, . . . , An ∈ Rd×d. Then f
cyc∼ 0.

The cyclic equivalence test has been implemented under NCSOStools - see
NCisCycEq.

4. Trace positive NC polynomials

A notion of positivity of NC polynomials weaker than that via positive
semidefiniteness considered in Section 2, is given by the trace: f ∈ R〈X〉 is
called trace-positive if tr f(A) ≥ 0 for all tuples of symmetric matrices A of the
same size. Clearly, every f ∈ Σ2 is trace-positive and the same is true for every
NC polynomial cyclically equivalent to SOHS. However, unlike in the positive
semidefinite case, the converse fails. That is, there are trace-positive polynomi-
als which are not cyclically equivalent to SOHS, see [KS08a, Example 4.4] or
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[KS08b, Example 3.5]. Nevertheless, the obvious certificate for trace-positivity
has been shown to be useful in applications to e.g. operator algebras [KS08a]
and mathematical physics [KS08a], so deserves a further study here.

Let

Θ2 := {f ∈ R〈X〉 | ∃g ∈ Σ2 : f
cyc∼ g}

denote the convex cone of all NC polynomials cyclically equivalent to SOHS.
By definition the elements in Θ2 are exactly the polynomials which are sums of
hermitian squares and commutators.

Testing whether a given f ∈ R〈X〉 is an element of Θ2 can be done again
using SDP (the so-called Gram matrix method) as observed in [KS08b, §3]. A
slightly improved algorithm reducing the size of the SDP needed is given by the
following theorem.

Theorem 4.1. Let f ∈ R〈X〉, let mi := mindegi f
2 , Mi := degi f

2 , m := mindeg f
2 ,

M := deg f
2 . Set

V := {w ∈ 〈X〉 | mi ≤ degiw ≤Mi for all i, m ≤ degw ≤M}.

Then f ∈ Θ2 if and only if there exists a positive semidefinite matrix G satis-

fying f
cyc∼ V ∗GV .

Proof. Suppose f
cyc∼ V ∗GV for some positive semidefinite G. Then G =∑

GiG
t
i for some vectors Gi and V ∗GV =

∑
g∗i gi, where gi = Gt

iV . Thus
f ∈ Θ2.

Conversely, suppose f
cyc∼
∑
g∗i gi. We claim that each gi is in the linear span

of V . Assume otherwise, say one of the gi contains a word w with degj w < mj .
Let hi denote the sum of all monomials of gi whose corresponding words have
degj less than mj . Let ri = gi − hi. Then
(12)

f
cyc∼
∑

g∗i gi =
∑

(hi + ri)
∗(hi + ri) =

∑
h∗ihi +

∑
h∗i ri +

∑
r∗i hi +

∑
r∗i ri.

Since each monomial w in h∗i ri, r
∗
i hi and r∗i ri has degiw ≥ 2mi, none of these

can be cyclically equivalent to a monomial in h∗ihi. Thus

0
cyc∼
∑

h∗ihi, f
cyc∼
∑

h∗i ri +
∑

r∗i hi +
∑

r∗i ri.

However, this implies hi = 0 for all i (see [KS08b, Lemma 3.2]; or also the proof
of Proposition 2.1), contradicting the choice of w.

The remaining cases (i.e., a word w in one of the gi with degiw > Mi or
degw < m or degw > M) can be dealt with similarly, so we omit the details.

Testing whether a NC polynomial is a sum of hermitian squares and com-
mutators (i.e., an element of Θ2) has been implemented under NCSOStools as
NCcycSos.

4.1. Trace-optimization of NC polynomials. In this subsection we present
a “practical” application of SOHS decompositions modulo cyclic equivalence,
namely approximating global minima of NC polynomials.

The minimum of an NC polynomial with respect to positive semidefiniteness
has been discussed above, and here we focus on the trace minimum of an NC
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polynomial f , that is, the largest number f? making f − f? trace-positive.
Equivalently,

f † = inf{tr f(A) | A an n-tuple of symmetric matrices of the same size}.
(A word of caution: tr denotes the normalized trace, i.e., tr I = 1.) This
number is hard to compute but a good approximation can be given using sums
of hermitian squares and commutators. For this we define

(SDPtr−min)
f c−sohs = sup λ

s. t. f − λ ∈ Θ2.

We denote the problem above by SDPtr−min, since it is an instance of semidefi-
nite programming. Suppose f ∈ SymR〈X〉. Let W be a vector consisting of all
monomials from 〈X〉 with degree ≤ 1

2 deg f and degree in Xi at most 1
2 degi f .

Assume the first entry of W is 1. Then (SDPtr−min) rewrites into

sup f0 − 〈E11, G〉
s. t. f − f0

cyc∼ W ∗(G−G11E11)W
G � 0.

(Here f0 is the constant term of f and E11 is the matrix with all entries 0 except

for the (1, 1) entry which is 1.) The condition f − f0
cyc∼ W ∗(G − G11E11)W

translates into linear constraints on the entries of G by Remark 3.3.

Proposition 4.2. f † ≥ f c−sohs. The inequality might be strict.

Proof. If λ ∈ R is such that f−λ ∈ Θ2, then f−λ cyc∼ g ∈ Σ2 for some g ∈ R〈X〉.
Thus tr f(A) = tr(g(A)) + λ ≥ λ.

The second statement follows from the fact that trace-positive NC polyno-
mials need not be sums of hermitian squares and commutators. For an ex-
plicit example we refer the reader to [KS08a, Example 4.4] or [KS08b, Example
3.5].

In general (SDPtr−min) does not satisfy the Slater condition. Nevertheless:

Theorem 4.3. (SDPtr−min) satisfies strong duality.

Proof. Suppose f ∈ R〈X〉 is of degree ≤ 2d and its trace is bounded from below.
Let Θ2

≤2d denote the cone of all sums of hermitian squares and commutators of
degree ≤ 2d, i.e.,

Θ2
≤2d = {f ∈ R〈X〉 | deg f ≤ 2d, f

cyc∼
t∑

i=1

g∗i gi , t ∈ N, gi ∈ R〈X〉 of degree ≤ d}.

Then (SDPtr−min) can be rewritten as:

(Primal)
sup ε
s. t. f − ε ∈ Θ2

≤2d.

The dual cone of Θ2
≤2d is the set of all linear maps SymR〈X〉≤2d → R

which are nonnegative on Θ2
≤2d; note that these automatically vanish on all

commutators. (We use SymR〈X〉≤2d to denote the set of all (symmetric) NC
polynomials of degree ≤ 2d.)
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Claim: The cone Θ2
≤2d is closed in SymR〈X〉≤2d.

Proof: This is a straightforward modification of [MP05, Proposition 3.4], so we
omit it.

Let us now return to the SDP. The dual problem to (Primal) is given by:

(Dual)

inf L(f)
s. t. L : SymR〈X〉≤2d → R is linear

L(1) = 1
L(p∗p) ≥ 0 for all p ∈ R〈X〉≤d
L(pq − qp) = 0 for all p, q ∈ R〈X〉≤d.

Let f c−sohs and Lc−sohs denote the optimal value of (Primal) and (Dual),
respectively. We claim that f c−sohs = Lc−sohs. Clearly, f c−sohs ≤ Lc−sohs. To
prove the converse note that L(f − Lc−sohs) ≥ 0 for all L in the dual cone of
Θ2
≤2d. This means that f − Lc−sohs belongs to the closure of Θ2

≤2d, so by the

Claim, f − Lc−sohs ∈ Θ2
≤2d. Hence also f c−sohs ≥ Lc−sohs.

Now suppose f ∈ SymR〈X〉≤2d is not bounded from below. Then for every
λ ∈ R there exists a tuple of symmetric matrices A such that tr(f − λ)(A) =
tr f(A)− λ < 0. Define

L : SymR〈X〉≤2d → R, g 7→ tr g(A).

Then L(f) < λ. As λ was arbitrary, this shows that (Dual) is unbounded, hence
strong duality holds in this case as well.

Trace-optimization of NC polynomials is implemented in NCSOStools, where
the optimal solution of (Primal) is computed by calling the routine NCcycMin.

5. Convex and trace convex NC polynomials

5.1. Convex NC polynomials. Motivated by consideration in engineering
system theory (cf. [dOHMP08] for a modern treatment), Helton and McCul-
lough [HM04] studied convex NC polynomials. An NC polynomial p ∈ R〈X〉 is
convex if it satisfies

p(tA+ (1− t)B) � tp(A) + (1− t)p(B)

for all 0 ≤ t ≤ 1 and for all tuples A,B of symmetric matrices of the same size.
Convexity can be rephrased using second directional derivatives and sums of

hermitian squares. Given p ∈ R〈X〉, consider

r(X,H) = p(X +H)− p(X) ∈ R〈X,H〉.
Then the second directional derivative p′′(X,H) ∈ R〈X,H〉 is defined to be
twice the part of r(X,H) which is homogeneous of degree two in H. Alterna-
tively,

p′′(X,H) =
d2p(X + tH)

dt2
|t=0.

For example, if p(X) = X1X2X1, then p′′(X,H) = 2(X1H2H1 + H1X2H1 +
H1H2X1).

By [HM04, Theorem 2.4], p ∈ R〈X〉 is convex if and only if p′′ is a sum of
hermitian squares in R〈X,H〉. Thus this is easily tested using NCSOStools and
has been implemented under NCisConvex0.
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However, the convexity test can be simplified and greatly improved using
[HM04, Theorem 3.1]: every convex NC polynomial p is of degree ≤ 2. Hence
only variables H will appear in p′′. The Gram matrix G for p′′ is therefore a
unique scalar matrix, so testing for convexity of p is simply checking whether
G is positive semidefinite. See NCisConvex.

For a different and more general type of convexity test we refer the reader to
[CHSY03].

5.2. Trace convex NC polynomials. An NC polynomial p ∈ R〈X〉 is trace
convex if it satisfies

tr p(tA+ (1− t)B) ≤ t tr p(A) + (1− t) tr p(B)

for all 0 ≤ t ≤ 1 and for all tuples A,B of symmetric matrices of the same size.
As with convexity, tracial convexity can be rephrased using second directional

derivatives: p is trace convex if and only if p′′ is trace-positive. However, this
is hard to check, so we have instead implemented the test for the stronger
condition p′′ ∈ Θ2, see NCisCycConvex. We remark that for NC polynomials in
one variable, p is trace convex if and only if p′′ ∈ Θ2, a result due to Chris Nelson
et al. at UCSD (in preparation). Equivalently: p is convex as a polynomial of
one commuting variable.

We do not know whether p ∈ SymR〈X〉 is trace convex if and only if p′′ ∈ Θ2

in general.

6. Two examples

In this section we give two sample applications of our toolbox. One concerns
the Bessis-Moussa-Villani (BMV) conjecture from quantum statistical mechan-
ics, while the other presents the eigenvalue minimization of polynomials based
on the algorithm presented in Section 2.3.

6.1. The BMV conjecture. In an attempt to simplify the calculation of par-
tition functions of quantum mechanical systems Bessis, Moussa and Villani
[BMV75] conjectured in 1975 that for any two symmetric matrices A,B, where
B is positive semidefinite, the function t 7→ tr(eA−tB) is the Laplace transform
of a positive Borel measure with real support. This would permit the calcu-
lation of explicit upper and lower bounds of energy levels in multiple particle
systems. In their 2004 paper [LS04], Lieb and Seiringer have given the following
purely algebraic reformulation:

Conjecture 6.1. For all positive semidefinite matrices A and B and all m ∈ N,
the polynomial p(t) := tr((A+ tB)m) ∈ R[t] has only nonnegative coefficients.

The coefficient of tk in p(t) for a given m is the trace of Sm,k(A,B), where
Sm,k(A,B) is the sum of all words of length m in the letters A and B in which
B appears exactly k times. For example S4,2(A,B) = A2B2+ABAB+AB2A+
BABA + B2A2 + BA2B. Sm,k(X,Y ) is thus an NC polynomial; it is the sum
of all words in two variables X,Y of degree m with degree k in Y .

In the last few years there has been much activity around the question for
which pairs (m, k) does Sm,k(X2, Y 2) ∈ Θ2 or Sm,k(X,Y ) ∈ Θ2 hold? An
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affirmative answer (for all m, k) to the former would suffice for the BMV con-
jecture to hold; this question has been resolved completely (see e.g. [KS08b,
CDTA, Bur]), however only finitely many nontrivial Sm,k(X2, Y 2) admit a Θ2-
certificate. Here we give a quick proof of the main result of [KS08b] establishing
S14,6(X

2, Y 2) ∈ Θ2. Together with [Hil07] this proves the BMV conjecture for
m ≤ 13.

Example 6.2. Consider the polynomial f = S14,6(X
2, Y 2). To prove that

f ∈ Θ2 with the aid of NCSOStools, proceed as follows:

(1) Define two noncommuting variables:

>> NCvars x y;

(2) Our polynomial f is constructed using BMVq(14,6).

>> f=BMVq(14,6);

For a numerical test whether f ∈ Θ2, we first construct a small monomial
vector V [KS08b, Proposition 3.3] to be used in the Gram matrix method.

>> [v1,v2,v3]=BMVsets(14,6); V=[v1;v2;v3];

>> params.obj = 0; params.V=V;

>> [IsCycEq,X,V,sohs,g,SDP_data] = NCcycSos(f, params);

This yields a floating point positive definite 70× 70 Gram matrix X. The
rest of the output: IsCycEq = 1 since f is (numerically) in Θ2; sohs is a

vector of polynomials gi with f
cyc∼
∑

i g
∗
i gi = g; SDP data is the SDP data

run for testing whether f ∈ Θ2.

To obtain an exact Θ2-certificate, we can round and project the obtained solu-
tion X (cf. [PP08] for details).

6.2. Eigenvalue minimization. In this section we present a toy example of
eigenvalue optimization as presented in Section 2.3.

Example 6.3. Assuming we have already introduced NC variables x, y, let us
define

>> f = (1-y+x*y+y*x)’*(1-y+x*y+y*x) + (-2+y^2)^2 + (-x+x^2)^2;

As is usual in Matlab, the prime ’ denotes an involution, in our case acting
on NC polynomials. By definition, f is a sum of hermitian squares. We shall
compute the eigenvalue minimum f? of f and determine the minimizers A,B, v
satisfying 〈f(A,B)v, v〉 = f?. Here A,B are symmetric matrices, and v is a
unit eigenvector of f(A,B), corresponding to λmin(f(A,B)). Running

>> NCmin(f)

yields an eigenvalue minimum f? = 0.0000. We next run the algorithm pre-
sented in Subsection 2.3.3 to extract optimizers:

>> [X,fX,eig_val,eig_vec]=NCopt(f)

The output: X is a 2 × 16 matrix, whose rows represent symmetric matrices
A,B; fX is the 4 × 4 matrix f(A,B); eig val are the eigenvalues of fX, and
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eig vec are the corresponding unit eigenvectors. In our example,

A =


0.2117 0.2911 0.2907 0.0671
0.2911 0.8360 −0.0328 −0.2921
0.2907 −0.0328 0.7916 0.3179
0.0671 −0.2921 0.3179 −0.2987



B =


1.1832 −0.7438 0.2035 −0.0920
−0.7438 −1.1270 0.0527 −0.5790

0.2035 0.0527 −1.2469 −1.1049
−0.0920 −0.5790 −1.1049 0.9849



f(A,B) =


0.0164 0.0120 0.1019 −0.1058
0.0120 0.3019 0.4787 0.0576
0.1019 0.4787 1.2163 −0.2926
−0.1058 0.0576 −0.2926 1.9334


and the smallest eigenvalue f? of f(A,B) is (only 4 decimal digits displayed)
0.0000, with the corresponding unit eigenvector

v =
[
0.9663 0.2038 −0.1555 0.0233

]t
.

This was computed on a Mac using SDPA. We note the minimum of f on R2

(i.e., the minimum of f considered as a polynomial in commuting variables) can
be computed exactly using Mathematica. It is approximately 0.0146.

Conclusions

In this paper we present NCSOStools: a computer algebra system for working
with noncommutative polynomials with a special focus on methods determin-
ing whether a given NC polynomial is a sum of hermitian squares (SOHS) or
is cyclically equivalent to SOHS (i.e., is a sum of hermitian squares and com-
mutators). NCSOStools is an open source Matlab toolbox freely available from
our web site:

http://ncsostools.fis.unm.si/

The package contains several extensions, like computing SOHS lower bounds,
extracting minimizers, and checking for convexity or trace convexity of given
NC polynomials. Moreover, functions have been implemented to handle cyclic
equivalence. Most of the methods rely on semidefinite programming there-
fore the user should provide an SDP solver. Currently SeDuMi [Stu99], SDPA
[YFK03] and SDPT3 [TTT] are supported, while other solvers might be added
in the future.

NCSOStools can handle NC polynomials of medium size, while larger prob-
lems may run into trouble for two reasons: the underlying SDP is too big for the
state-of-the-art SDP solvers or the (combinatorial) process of constructing the
SDP is too exhaustive. The ongoing research will mainly concern the second
issue (with improvements for sparse NC polynomials or NC polynomials with
symmetries). Also methods to produce exact rational solutions from numerical
solutions given by SDP solvers are being implemented, in the spirit of [PP08].

Acknowledgments. The authors thank both anonymous referees for helpful sugges-
tions. Sabine Burgdorf provided valuable feedback on the software.
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