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Abstract. In this paper we consider polynomials in noncommuting variables that admit

sum of hermitian squares and commutators decompositions. We recall algorithms for finding

decompositions of this type that are based on semidefinite programming. The main part

of the article investigates how to find such decomposition with rational coefficients if the

original polynomial has rational coefficients. We show that the numerical evidence, obtained

by the Gram matrix method and semidefinite programming, which is usually an almost feasible

point, can be frequently tweaked to obtain an exact certificate using rational numbers. In the

presence of Slater points, the Peyrl-Parrilo rounding and projecting method applies. On the

other hand, in the absence of strict feasibility, a variant of the facial reduction is proposed to

reduce the size of the semidefinite program and to enforce the existence of Slater points. All

these methods are implemented in our open source computer algebra package NCSOStools.

Throughout the paper many worked out examples are presented to illustrate our results.

1. Introduction

In this paper we consider free noncommutative (nc) polynomials that are sums of hermitian
squares (and commutators). We focus on the following important question: how to obtain
a rational certificate (i.e., a symbolic proof) for such a decomposition when the given nc
polynomial has rational coefficients and we have numerical (approximate) evidence of a sum of
hermitian squares (and commutators) decomposition obtained by mathematical optimization
methods (e.g. by using open-source software package NCSOStools)?

1.1. Notation. Nc polynomials with real coefficients, denoted by R〈X〉, are (real) linear com-
binations of words in letters X1, . . . , Xn, including the empty word 1. We shortly denote
by X the n-tuple of letters (X1, . . . , Xn). These nc polynomials form a free algebra, which
we equip with the involution ∗ that fixes R and letters point-wise and thus reverses words,
e.g. (X1X2X3−X2

3X1)
∗ = X3X2X1−2X1X

2
3 . Hence R〈X〉 is the ∗-algebra freely generated by

n symmetric letters. The subset of R〈X〉 consisting of all symmetric nc polynomials is denoted
by

SymR〈X〉 := {f ∈ R〈X〉 | f = f∗}.
If V = (vi) is a (column) vector of nc polynomials vi ∈ R〈X〉, then V ∗ is the row vector with
components v∗i and V t denotes the row vector with components vi.
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The length of the longest word in an nc polynomial f ∈ R〈X〉 is the degree of f and is
denoted by deg f . The degree of f in Xi, degi f , is the largest number of occurrences of the
letter Xi in a monomial appearing in f . Similarly, the length of the shortest word appearing
in f ∈ R〈X〉 is called the min-degree of f and denoted by mindeg f . Likewise, mindegi f is
introduced. If the variable Xi does not occur in any monomial of f , then mindegi f = 0. The
set of all nc polynomials of degree ≤ d will be denoted by R〈X〉≤d. Whenever an nc polynomial
f involves only two variables, we write f ∈ R〈X,Y 〉.

Example 1.1. Let f = 3Y 2X + 2XYXY − 5Y 3 ∈ R〈X,Y 〉. Then

deg f = 4, degX f = 2, degY f = 3, mindeg f = 3, mindegX f = 0, mindegY f = 2,

f∗ = 3XY 2 + 2Y XY X − 5Y 3.

Positivity of nc polynomials is a core part of free real algebraic geometry. In this paper we
consider two types of positivity: (i) positivity via eigenvalues, i.e., f ∈ SymR〈X〉 is positive
if f(A) is a positive semidefinite matrix for every n-tuple of real symmetric matrices A of the
same order; (ii) trace positivity, i.e., f ∈ R〈X〉 is trace positive if tr f(A) ≥ 0 for every n-tuple
of real symmetric matrices A of the same order. Note that positivity implies trace positivity
while the converse is not true.

Helton [Hel02] and McCullough [McC01] proved that a symmetric nc polynomial f is
positive if and only if it can be decomposed as a sum of hermitian squares (SOHS), that is,
there exist nc polynomials g1, . . . , gm such that f =

∑m
i=1 g

∗
i gi. We denote all nc polynomials

that admit SOHS decompositions as

Σ2 :=
{
f ∈ SymR〈X〉 | f =

m∑
i=1

g∗i gi, gi ∈ R〈X〉, m ≥ 1
}
.

For trace positivity there is no necessary and sufficient condition of this type but there
exists an important sufficient condition, obtained using cyclic equivalence to SOHS [KS08a];
for a more example specific approach to certificates for trace positivity we refer to [Qua].

NC polynomials f, g ∈ R〈X〉 are cyclically equivalent (f
cyc∼ g) if and only if there exist nc

polynomials pi, qi ∈ R〈X〉 such that

f − g =

k∑
i=1

(piqi − qipi).

We call an element of the form [p, q] := pq − qp, where p, q ∈ R〈X〉, a commutator. Cyclically
equivalent nc polynomials have equal trace if they are evaluated at the same n-tuple of real
symmetric matrices, since the trace of every commutator of matrices is zero. Therefore if f is
cyclically equivalent to SOHS, it is trace positive. We denote the set of nc polynomials of this
type by

Θ2 :=
{
f ∈ R〈X〉 | ∃g ∈ Σ2 : f

cyc∼ g
}
.

By definition, the elements in Θ2 are exactly the nc polynomials which can be written as sums
of hermitian squares with commutators.

Although any bivariate nc polynomial of degree at most 4 is trace positive if and only
if it is a sum of (four) squares with commutators [BK10, Caf13], there are trace positive nc
polynomials which are not members of Θ2. Probably the easiest example is the noncommu-
tative Motzkin polynomial, XY 4X + Y X4Y − 3XY 2X + 1 [KS08a, Example 4.4]; see also
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Subsection 3.3.2. We also refer the reader to [KS08b, Example 3.5] for more sophisticated
examples obtained by considering the BMV conjecture.

Cyclic equivalence is obviously an equivalence relation. It can be easily detected by the
following remark.

Remark 1.2 ([KS08a]).

(a) For words v, w ∈ 〈X〉, we have v
cyc∼ w if and only if there are words v1, v2 ∈ 〈X〉 such that

v = v1v2 and w = v2v1. That is, v
cyc∼ w if and only if w is a cyclic permutation of v.

(b) Nc polynomials f =
∑

w∈〈X〉 aww and g =
∑

w∈〈X〉 bww (aw, bw ∈ R) are cyclically equiva-

lent if and only if for each word v ∈ 〈X〉,∑
w∈〈X〉

w
cyc
∼ v

aw =
∑
w∈〈X〉

w
cyc
∼ v

bw. (1)

Example 1.3. Let f = 1 +X2 + 2X2Y − 2XY + 2XY 2X ∈ R〈X,Y 〉. Since

f = (X +XY )∗(X +XY ) + (1− Y X)∗(1− Y X) + [X2 −X,Y ] + [XY, Y X]

it follows that

f
cyc∼ (X +XY )∗(X +XY ) + (1− Y X)∗(1− Y X),

and therefore f ∈ Θ2.

1.2. Motivation and related work. There is s surge of interest in free real algebraic ge-
ometry in the last decade, partially due to many facets of applications. A nice survey on
connections to control theory, systems engineering and optimization is given by de Oliveira,
Helton, McCullough, Putinar [dOHMP08]. Applications to quantum physics are explained
e.g. by Pironio, Navascués, Aćın [PNA10] who also consider computational aspects related
to sums of hermitian squares. On the theoretical level, trace positive nc polynomials arise
e.g. in the Lieb-Seiringer reformulation of the famous Bessis-Moussa-Villani (BMV) conjecture
[BMV75] from statistical quantum mechanics, which was recently proved by Stahl [Sta]. This
connection will be explained in detail later to demonstrate the usage of our proposed algorithm.
In addition, trace positive nc polynomials occur naturally in von Neumann algebras and func-
tional analysis. For instance, Connes’ embedding problem [Con76] on finite II1-factors is a
question about the existence of a certain type of sum of hermitian squares certificates for trace
positive nc polynomials [KS08a]. Motivated by this intensive research in free real algebraic
geometry we have developed NCSOStools [CKP11] – an open source Matlab toolbox for solv-
ing such problems using semidefinite programming. As a side product our toolbox implements
symbolic computation with free noncommuting variables in Matlab.

1.3. Contribution. The main contribution of this paper is the following. Once we know that
a given rational nc polynomial f can be decomposed as a sum of hermitian squares (with com-
mutators), i.e., we have numerical evidence for the existence of such a decomposition, we aim
to obtain an exact (rational) certificate. Following ideas from [PP08] (see also [KLYZ12]) we
propose an algorithm which under a strict feasibility assumption theoretically and practically
always yields a rational certificate. On the other hand, in the absence of strict feasibility, a
variant of the facial reduction [BW81] (in our case projecting onto the orthogonal complement
of the nullspace of the analytic center) is used to reduce the size of the semidefinite program and
enforce the existence of Slater points. We employ the noncommutative version of Motzkin’s
polynomial to demonstrate how the proposed algorithm as implemented in NCSOStools is

http://ncsostools.fis.unm.si/
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used and provide new rational certificates for some instances of nc polynomials related to the
Bessis-Moussa-Villani conjecture.

2. Nc polynomials and semidefinite programming

2.1. Semidefinite programming. Semidefinite programming (SDP) is a generalization of
linear programming (LP) where one looks for the optimum of a linear function over the inter-
section of an affine subspace with the cone of positive semidefinite matrices. Although this is a
far-reaching extension of LP, there exists several methods that can solve semidefinite programs
efficiently in theory and practice. Given s× s self-adjoint matrices C, A1, . . . , Am of the same
size over R and a vector b ∈ Rm, we formulate a semidefinite program in standard primal form
as follows:

inf 〈C,G〉
s. t. 〈Ai, G〉 = bi, i = 1, . . . ,m

G � 0.
(PSDP)

Here 〈·, ·〉 stands for the standard inner product of matrices: 〈A,B〉 = tr(B∗A), and G � 0
means that G is positive semidefinite. If C = 0 or if C is not important, we call such a problem
a semidefinite programming feasibility problem:

G � 0,
s. t. 〈Ai, G〉 = bi, i = 1, . . . ,m.

(FSDP)

The complexity of solving semidefinite programs is mainly determined by the order s of
matrix variable G and the number of linear constraints m. Given ε > 0, the interior point
methods can find an ε-optimal solution with polynomially many iterations, where each iteration
takes polynomially many real number operations, provided that (PSDP) and its dual both have
non-empty interiors of feasible sets and we have good initial points. The variables appearing
in these polynomial bounds are s,m and log ε (cf. [WSV00, Chapter 10.4.4]).

Many problems in control theory, system identification and signal processing can be for-
mulated using SDPs [BGFB94, Par00, AL12]. Combinatorial optimization problems can often
be modeled or approximated by SDPs [GW95, LR05, PR07, PR09, Pov11]. SDP has important
role in real algebraic geometry, where it is used e.g. for finding sums of squares decomposi-
tions of polynomials or approximating the moment problem [Las01, Las09, Mar08, Lau09],
and in free real algebraic geometry [KS08a, KP10, BCKP13a], as is recalled in the following
subsection.

2.2. Sums of hermitian squares (with commutators) and semidefinite programming.
Testing whether a given nc polynomial f ∈ R〈X〉 is an element of Σ2 can be done efficiently by
using semidefinite programming [KP10, CKP11]. This is the Gram matrix method, which is
based on the following proposition [Hel02, MP05], the noncommutative version of the classical
result for commuting variables.

Proposition 2.1. Suppose the nc polynomial f ∈ SymR〈X〉 is of degree ≤ 2d and let Wd be
the vector of all words w ∈ 〈X〉 of degree ≤ d. Then f ∈ Σ2 if and only if there exists a positive
semidefinite matrix Gf (called a Gram matrix for f) satisfying f = W ∗dGfWd.

Example 2.2. Take f = 1 +X2 +XY + Y X + 4Y X2Y + Y 2 and let V = [1 X Y XY ]t

be a subvector of W2. Then the Gram matrix for nc polynomial f corresponding to the vector



RATIONAL SUMS OF HERMITIAN SQUARES OF NC POLYNOMIALS 5

V is

G(u) :=


1 0 0 u
0 1 1− u 0
0 1− u 1 0
u 0 0 4

 .
The question is: does there exist (at least one) u such that G(u) is a positive semidefinite
matrix? Since G(2) = CtC for

C =

[
1 0 0 2
0 1 −1 0

]
,

it follows that f = (1 + 2XY )∗(1 + 2XY ) + (X − Y )∗(X − Y ) ∈ Σ2.

As we saw in the last example we can sometimes replace Wd with a smaller subvector in
the Gram matrix method. An algorithm (the Newton chip method) for reducing the size of
needed word vector is presented in [KP10] and is implemented in NCSOStools. See also [Nel]
for a strengthening.

Similarly we can use semidefinite programming to test whether a given nc polynomial f ∈
R〈X〉 is an element of Θ2 as first observed in [KS08b], see also [CKP11, BCKP13b, BCKP13a].
The method behind it is a variant of the Gram matrix method:

Proposition 2.3. Suppose that an nc polynomial f ∈ R〈X〉 is of degree ≤ 2d and let Wd be
as above. Then f ∈ Θ2 if and only if there exists a positive semidefinite matrix Gf (called a

tracial Gram matrix for f) such that f
cyc∼ W ∗dGfWd.

Again we can sometimes replace the full word vector Wd with a smaller subvector. An
algorithm (the Newton cyclic chip method) for reducing the size of needed word vector is
presented in [BCKP13a] and is implemented in NCSOStools.

Following Proposition 2.1, we can decide whether an nc polynomial f is a sum of hermitian
squares by solving a semidefinite programming feasibility problem in the matrix variable G,
where the constraints 〈Ai, G〉 = bi are implied by the fact that for each product of monomials
w ∈ {p∗q | p, q ∈W} the following must be true:∑

p,q∈W
p∗q=w

Gp,q = aw, (2)

where aw is the coefficient of w in f (aw = 0 if the monomial w does not appear in f). Since any
input nc polynomial f is symmetric (so aw = aw∗ for all w), the corresponding SDP feasibility
problem is as follows:

G � 0
s. t. 〈Aw, G〉 = aw + aw∗ ∀w ∈ {p∗q | p, q ∈W},

(SOHSSDP)

where Aw = Aw∗ is the symmetric matrix defined by

(Aw)u,v =


2; if u∗v ∈ {w,w∗}, w∗ = w,
1; if u∗v ∈ {w,w∗}, w∗ 6= w,
0; otherwise.

Similarly, following Proposition 2.3, an nc polynomial f is cyclically equivalent to a sum
of hermitian squares if and only if there exists a positive semidefinite matrix G such that

f
cyc∼ W ∗GW . Again, this is an SDP feasibility problem (FSDP) in the matrix variableG, where

http://ncsostools.fis.unm.si/
http://ncsostools.fis.unm.si/


6 KRISTIJAN CAFUTA, IGOR KLEP, AND JANEZ POVH

the constraints 〈Ai, G〉 = bi are essentially equations (1), i.e., for each product of monomials
v ∈ {p∗q | p, q ∈W} the following must be true:∑

p,q∈W
p∗q

cyc∼ v

Gp,q =
∑
w

cyc∼ v

aw. (3)

The SDP feasibility problem is as follows [BCKP13a, Corollary 4.5]:

G � 0,

s. t.
∑

p,q, p∗q
cyc
∼ v

∨ p∗q
cyc
∼ v∗

〈Av, G〉 =
∑
w

cyc∼ v

(aw + aw∗), ∀v ∈W (CSOHSSDP)

where Av = Av∗ is the symmetric matrix defined by

(Av)p,q =


2; if p∗q

cyc∼ v & p∗q
cyc∼ v∗,

1; if p∗q
cyc∼ v & p∗q 6cyc∼ v∗,

0; otherwise.

Remark 2.4. Finding a Gram matrix for the sum of hermitian squares (and commutators)
decomposition problem by solving (SOHSSDP) and (CSOHSSDP) gives a solution of highest
rank since under a strict feasibility assumption the interior point methods yield solutions in
the relative interior of the optimal face, which is in our case the whole feasibility set. If strict
complementarity is additionally provided, the interior point methods lead to the analytic center
of the feasibility set [HdKR02].

Alternately, we can consider these SDP problems as usual SDP problems by using a non-
zero choice of C. The choice C = I is a commonly used heuristic for matrix rank minimization
[RFP10], and it tends to give sum of hermitian squares (and commutators) with a small number
of hermitian squares.

Even though the above assumptions do not always hold for the instances of SDPs we
construct, in our experiments the choice C = 0 in the objective function almost always gave
a solution of higher rank than the choice C = I. High ranks are desired and exploited when
trying to compute a rational (exact) Gram matrix from numerical solution of (SOHSSDP) and
(CSOHSSDP).

3. Rational sums of hermitian squares and facial reduction

In this section particular emphasis is given to the extraction of rational certificates if the
input data is rational. We present several examples illustrating our results, e.g. concerning
the recently proven BMV conjecture [Sta] from statistical physics (Subsection 3.3.1) and the
noncommutative Motzkin polynomial (Subsection 3.3.2).

3.1. Rational sums of hermitian squares. Consider a feasibility SDP in primal form
(FSDP) and assume the input data Ai, bi is rational for i = 1, . . . ,m. If the problem is
feasible, does there exist a rational solution? If so, can one use a combination of numerical
and symbolic computation to produce one?
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Example 3.1. Some caution is necessary, as a feasible SDP of the form (FSDP) need not
admit a rational solution. For a simple concrete example, note that[

2 x
x 1

]
⊕

x 1 0
1 x 1
0 1 x

 � 0 ⇔ x =
√

2.

In fact there are commutative polynomials with rational coefficients that are sums of squares
of polynomials over the reals, but not over the rationals (see [Sch]). Adapting an example of
Scheiderer, we obtain an nc polynomial with rational coefficients that is cyclically equivalent
to a sum of hermitian squares of nc polynomials over the reals, but not over the rationals:

f = 1 +X3 +X4 − 3

2
XY − 3

2
Y X − 4XYX + 2Y 2 + Y 3 +

1

2
XY 3 +

1

2
Y 3X + Y 4.

This is a dehomogenized and symmetrized noncommutative version of the (commutative) poly-
nomial from [Sch, Theorem 2.1] (setting x0 = 1, x1 = X and x2 = Y ). So f is not cyclically
equivalent to a sum of hermitian squares with rational coefficients. By [Sch, Theorem 2.1],
f |R2 ≥ 0. Together with the fact that f is cyclically sorted, [KS08a, Proposition 4.2] implies
that f is trace positive. Since f is of degree 4 in two variables it is a sum of hermitian squares
with commutators [BK10, Caf13] (with real coefficients).

On the other hand, if (FSDP) admits a feasible positive definite solution, then it admits
a (positive definite) rational solution. More exactly, we have the following:

Theorem 3.2 (Peyrl & Parrilo [PP08]). If an approximate feasible point G0 for (FSDP)
satisfies

δ := min(eig(G0)) > ‖(〈Ai, G0〉 − bi)i‖ =: ε, (4)

then a (positive definite) rational feasible point G exists. It can be obtained from G0 in the
following two steps (cf. Figure 1):

(1) compute a rational approximation G̃ of G0 with τ := ‖G̃−G0‖ satisfying τ2 + ε2 < δ2;

(2) project G̃ onto the affine subspace L given by the equations 〈Ai, G〉 = bi to obtain G.

δ

τG̃

G

PsD

L

ε
G0

Figure 1. Rounding and projecting to obtain a rational solution
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Note that the results in [PP08] are stated for SDPs arising from sum of squares problems,
but their results carry over verbatim to the setting of (the seemingly more) general SDPs.
The rationalization scheme based on this Peyrl-Parrilo technique has been implemented in
NCSOStools; see Example 3.5 for a demonstration.

3.2. Facial reduction. Not all is lost, however, if the SDP solver gives a singular feasible
point G0 for (FSDP). Suppose that z is a rational nullvector for G0. Let P be a change of
basis matrix containing z as a first column and a (rational) orthogonal basis for the orthogonal
complement {z}⊥ as its remaining columns. Then

P tG0P =

[
0 0

0 Ĝ0

]
,

i.e.,

G0 = P−t
[
0 0

0 Ĝ0

]
P−1

for some symmetric Ĝ0. Hence

bi = 〈Ai, G0〉 = tr(AiG0) = tr

(
AiP

−t
[
0 0

0 Ĝ0

]
P−1

)
= tr

(
P−1AiP

−t
[
0 0

0 Ĝ0

])
.

So if

P−1AiP
−t =

[
ai cti
ci Âi

]
then Âi is a symmetric matrix with rational entries and

bi = tr

([
ai cti
ci Âi

] [
0 0

0 Ĝ0

])
= tr(ÂiĜ0) = 〈Âi, Ĝ0〉.

We have established a variant of the facial reduction [BW81] which applies whenever
the original SDP is given by rational data and has a singular feasible point with a rational
nullvector:

Theorem 3.3. Let (FSDP), Âi and Ĝ0 be as above. Consider the feasibility SDP

Ĝ � 0

s. t. 〈Âi, Ĝ〉 = bi, i = 1, . . . ,m
(FSDP’)

(1) (FSDP’) is feasible if and only if (FSDP) is feasible.
(2) (FSDP’) admits a rational solution if and only if (FSDP) does.

3.3. Examples.

3.3.1. BMV conjecture. In their 2004 paper [LS04], Lieb and Seiringer gave the following purely
algebraic reformulation of the Bessis-Moussa-Villani (BMV) conjecture [BMV75] from quantum
statistical physics, which was recently proved in the original formulation by Stahl [Sta]:

Conjecture 3.4. For all positive semidefinite matrices A and B and all m ∈ N, the polynomial
p(t) := tr((A+ tB)m) ∈ R[t] has only nonnegative coefficients.

The coefficient of tk in p(t) for a given m is the trace of Sm,k(A,B), where Sm,k(A,B) is
the sum of all words of length m in the letters A and B in which B appears exactly k times.
For example, S4,2(A,B) = A2B2+ABAB+AB2A+BABA+B2A2+BA2B. Thus Sm,k(X,Y )

http://ncsostools.fis.unm.si/
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is an nc polynomial; it is the sum of all words in two variables X,Y of degree m in which Y
appears exactly k times.

Even though the motivating conjecture was proved, the related questions concerning nc
polynomials remain interesting. In the last few years there has been much activity around the
following question: which pairs (m, k) does Sm,k(X

2, Y 2) ∈ Θ2 or Sm,k(X,Y ) ∈ Θ2 hold for?
An affirmative answer (for all m, k) to the former would imply the BMV conjecture. This ques-
tion has been resolved completely (see e.g. [KS08b, CDTA10, CKP10]), however only finitely
many nontrivial Sm,k(X

2, Y 2) admit a Θ2-certificate. Adding to the current state of knowledge
(nicely summarized in [CDTA10]), we shall use our computer algebra system NCSOStools to
establish S10,2(X,Y ) ∈ Θ2 and S14,6(X,Y ) 6∈ Θ2. We also show that S2m,2(X,Y ) ∈ Θ2 holds
for all m ∈ N.

Example 3.5. Consider the nc polynomial f = S10,2(X,Y ), i.e., the sum of all words of degree
10 in the nc variables X and Y in which Y appears exactly twice. To prove that f ∈ Θ2 with
the aid of NCSOStools, proceed as follows:

(1) Define two noncommuting variables:

>> NCvars x y

(2) Our nc polynomial f is constructed using BMV(10,2). For a numerical test whether f ∈ Θ2,
run

>> params.obj = 0;

>> [IsCycEq,G0,W,sohs,g,SDP_data] = NCcycSos(BMV(10,2), params);

Using the SDP solver SDPT3, this yields a floating point Gram matrix G0

G0 =


5.0000 2.5000 −1.8851 0.8230 −0.0899
2.5000 8.7702 1.6770 −2.7313 0.8230
−1.8851 1.6770 10.6424 1.6770 −1.8851
0.8230 −2.7313 1.6770 8.7702 2.5000
−0.0899 0.8230 −1.8851 2.5000 5.0000


for the word vector

W =
[
X4Y X3Y X X2Y X2 XYX3 Y X4

]t
.

The rest of the output: IsCycEq = 1 since f is (numerically) an element of Θ2; sohs is

a vector of nc polynomials gi with f
cyc∼
∑

i g
∗
i gi = g; SDP data is the SDP data for (3)

constructed from f .
(3) To round and project the obtained floating point solution G0 following Theorem 3.2, feed

G0 and SDP data into RprojRldlt:

>> [G,L,D,P,err]=RprojRldlt(G0,SDP_data,true)

This produces a rational Gram matrix G for f with respect to W and its LDU decomposi-
tion PLDLtP t, where P is a permutation matrix, L lower unitriangular, and D a diagonal
matrix with positive entries. We caution the reader that L,D, and G are cells, each contain-
ing numerators and denominators separately as a matrix. Finally, the obtained rational
sum of hermitian squares certificate for f = S10,2(X,Y ) is

f
cyc∼

5∑
i=1

λig
∗
i gi

http://ncsostools.fis.unm.si/
http://ncsostools.fis.unm.si/


10 KRISTIJAN CAFUTA, IGOR KLEP, AND JANEZ POVH

for

g1 = X2Y X2 +
7

44
X3Y X +

7

44
XYX3 − 2

11
X4Y − 2

11
Y X4

g2 = X3Y X − 577

1535
XYX3 +

408

1535
X4Y +

188

1535
Y X4

g3 = XYX3 +
11909

45984
X4Y +

7613

15328
Y X4

g4 = X4Y − 296301

647065
Y X4

g5 = Y X4

and

λ1 = 11, λ2 =
1535

176
, λ3 =

11496

1535
, λ4 =

647065

183936
, λ5 =

1242629

647065
.

This example is not surprising, as it is a particular instance of a larger pattern:

Proposition 3.6. For all m ∈ N we have: S2m,2(X,Y ) ∈ Θ2.

Proof. We first point out that for all m ∈ N we have

S2m,2(X,Y ) =
∑

α+β≤2m−2
XαY XβY X2m−2−α−β

cyc∼
2m−2∑
t=0

(2m− 2− t+ 1)Y XtY X2m−2−t

cyc∼
1

2

2m−2∑
t=0

(2m− 2− t+ 1)(Y XtY X2m−2−t + Y X2m−2−tY Xt)

=
1

2

2m−2∑
t=0

(
(2m− 2− t+ 1)Y XtY X2m−2−t + (t+ 1)Y XtY X2m−2−t

)
cyc∼ m

2m−2∑
t=0

Y XtY X2m−2−t.

Note that for t = 2s we have Y XtY X2m−2−t cyc∼ Xm−s−1Y X2sY Xm−s−1 ∈ Σ2, hence we next
turn our attention to words Y XtY X2m−2−t for odd t. In such cases we write t = 2s + 1 and
observe that

Y X2s+1Y X2m−3−2s cyc∼
1

2

(
(Xs+1Y Xm−s−2 +XsY Xm−s−1)∗(Xs+1Y Xm−s−2 +XsY Xm−s−1)

)
−1

2
Xm−s−2Y X2s+2Y Xm−s−2 − 1

2
Xm−s−1Y X2sY Xm−s−1.

Therefore each word with odd t is cyclically equivalent to a hermitian square minus two her-
mitian squares. These two negative hermitian squares cancel out with the “even” words for
t = 2s and t = 2s+ 2. In fact, each word with odd t cancels one half of these two even terms,
hence all even terms finally cancel out and only one half of the first and the last even term
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remains (these two terms are cyclically equivalent). Finally we get

S2m,2(X,Y )
cyc∼

m

2

2m−2∑
t=0

(Xs+1Y Xm−s−2 +XsY Xm−s−1)(Xs+1Y Xm−s−2 +XsY Xm−s−1)∗

+Xm−1Y 2Xm−1.

Example 3.7. We conclude this subsubsection by showing S14,6(X,Y ) 6∈ Θ2. We define two
noncommuting variables and run NCcycSos as in the previous examples:

>> NCvars x y

>> [IsCycEq,G0,V,sohs,g,SDP_data] = NCcycSos(BMV(14,6));

However, this seems to be an infeasible problem. In fact, we shall use the generated data
SDP data to prove it is strongly infeasible by computing a rational hyperplane separating Θ2

and S14,6(X,Y ). Let P be the set of all nc polynomials p with degX p = mindegX p = 8 and
degY p = mindegY p = 6. Obviously, S14,6(X,Y ) ∈ P. Each p ∈ P can be represented by
a 35 × 35 Gram matrix using the basis V from given as output of NCcycSos. An important
observation is that p ∈ Θ2 if and only if there is a positive semidefinite matrix G satisfying

p
cyc∼ V ∗GV , cf. Proposition 2.3.

Let L : P → R be a linear ∗-map nonnegative on Θ2 ∩ P. It can be represented as
p 7→ 〈M,Gp〉 for a symmetric 35 × 35 matrix M , where Gp is a Gram matrix for p. Since

L(Σ2) ⊆ [0,∞), the matrix M is positive semidefinite. The fact that L(f) = 0 for all f
cyc∼ 0,

can be modeled with constraints 〈M,H〉 = 0 for all H ∈ A⊥, cf. [CKP10, Section 2.2]. Here,
A⊥ is the orthogonal complement of the span of the Av from Section 2.2 in the set of symmetric
matrices. Clearly, it suffices to consider H from a linearly independent generating subset C of
A⊥.

To express L(S14,6(X,Y )) < 0, we first compute a Gram matrix for S14,6(X,Y ). The
matrix A = SDP data.A and vector b = SDP data.b model the linear constraints 〈Av, G〉 = bv
for v ∈ 〈X,Y 〉 with degX v = 8, degY v = 6. Hence a symmetrized solution of the linear system

>> SDP_data.A\SDP_data.b

will be a Gram matrix G for S14,6(X,Y ). Now consider the feasibility SDP

M � 0
s. t. 〈M,G〉 = −35, ∀H ∈ C : 〈M,H〉 = 0.

(Here, −35 is just a convenient scaling factor.) Every feasible point induces a hyperplane
separating Θ2 and S14,6(X,Y ). Solving this SDP with SeDuMi (using the trivial objective
function C = 0) yields a floating point solution M0 in the relative interior of the optimal face,
see Remark 2.4, with minimal eigenvalue δ = 0.3426 and residual norm ε = 6.8 · 10−9. Thus
we can find a rational feasible solution M as explained in Theorem 3.2, using RprojRldlt. This
proves S14,6(X,Y ) 6∈ Θ2.

3.3.2. Noncommutative Motzkin polynomial. The nc polynomial

fMot(X,Y ) = XY 4X + Y X4Y − 3XY 2X + 1 ∈ R〈X,Y 〉

is a noncommutative version of the (commutative) Motzkin polynomial. The Motzkin polyno-
mial is a well-known example of a (commutative) polynomial which is nonnegative on R2 but
is not a sum of squares of polynomials. Similarly, fMot is an example of trace positive nc poly-
nomial which is not a member of Θ2 [KS08a, Example 4.4]. Indeed, since the (commutative)
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Motzkin polynomial is not a sum of squares of polynomials, fMot is not a member of Θ2. An al-
ternative proof for trace positivity of fMot(X,Y ) follows from the fact that fMot(X

3, Y 3) ∈ Θ2,
as we can show with the aid of the facial reduction procedure from Subsection 3.2.

Example 3.8. Consider f = fMot(X
3, Y 3) = X3Y 12X3+Y 3X12Y 3−3X3Y 6X3+1. To prove

that f ∈ Θ2 with the aid of NCSOStools, proceed as follows:

(1) Define two noncommuting variables and the nc polynomial f :

>> NCvars x y

>> f = x^3*y^12*x^3 + y^3*x^12*y^3 - 3*x^3*y^6*x^3 + 1;

(2) Define a custom vector of monomials W

>> W = {’’; ’x*y*y’; ’x*x*y’; ’x*x*y*y*y*y’; ’x*x*x*x*y*y’;

’x*x*x*y*y*y*y*y*y’; ’x*x*x*x*y*y*y*y*y’; ’x*x*x*x*x*y*y*y*y’;

’x*x*x*x*x*x*y*y*y’};

(3) For a numerical test whether f ∈ Θ2, run

>> param.V = W;

[IsCycEq,G0,W,sohs,g,SDP_data] = NCcycSos(f,param);

This yields a floating point Gram matrix G0 that is singular.
(4) Try to round and project the obtained floating point solution G0, feed G0 and SDP data

into RprojRldlt:

>> [G,L,D,P,err] = RprojRldlt(G0,SDP_data)

This exits with an error, since unlike in Example 3.5, the rounding and projecting alone
does not yield a rational feasible point.

(5) Instead, let us reexamine G0. A detailed look at the matrix reveals three nullvectors. We
thus run our interactive procedure which aids the computer in reducing the size of the
SDP as in Theorem 3.3.

>> [G,SDP_data] = fac_reduct(f,param)

This leads the computer to return a floating point feasible point G0 ∈ R9×9 and the data
for this SDP, SDP data. It also stays in interactive mode and the user can inspect the
matrix and enter the nullvector z to be used in the dimension reduction. We feed in three
nullvectors as a matrix of three columns:

K>> z = [0 -1 0; -1 0 0; 0 0 1; 0 -1 0; 0 -1 0; -1 0 0; 0 0 1; -1 0 0; 0 0 1];

return

Inside the interactive routine this enables the computer to produce a positive definite
feasible Ĝ0 ∈ R6×6. Hence we exit the interactive routine.

K>> stop = 1; return

Now, NCSOStools uses Ĝ0 to produce a rational positive semidefinite Gram matrix G for
f , which proves f ∈ Θ2. Like in the Example 3.5, the solution G is a cell containing
two matrices with numerators and denominators of the rational entries of G. The reader
can verify that f

cyc∼ W ∗GW exactly by doing rational arithmetic or approximately by
computing floating point approximation for G and using floating point arithmetic.

(6) To compute the LDU decomposition PLDLtP t for the rational Gram matrix G of f with
respect to W (where G,L,D are cells, each containing numerators and denominators sepa-
rately as a matrix) run

K>> [L,D,P] = Rldlt(G)

http://ncsostools.fis.unm.si/
http://ncsostools.fis.unm.si/
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The obtained rational sum of hermitian squares certificate for fMot(X
3, Y 3) is then

fMot(X
3, Y 3)

cyc∼
6∑
i=1

λig
∗
i gi

for

g1 = 1− 1

2
X2Y 4 − 1

2
X4Y 2

g2 = XY 2 − 1

2
X3Y 6 − 1

2
X5Y 4

g3 = X2Y − 1

2
X4Y 5 − 1

2
X6Y 3

g4 = X2Y 4 −X4Y 2

g5 = X3Y 6 −X5Y 4

g6 = X4Y 5 −X6Y 3

and

λ1 = λ2 = λ3 = 1, λ4 = λ5 = λ6 =
3

4
.

Remark 3.9. We point out that this yields a rational sum of squares certificate for f̌(x3, y3)
where f̌(x, y) = 1 + x4y2 + x2y4 − 3x2y2 is the commutative Motzkin polynomial.

4. Conclusions

In this paper we considered nc polynomials p in freely noncommuting variables which can
be decomposed as a sum of hermitian squares (and commutators) with a special focus on nc
polynomials with rational coefficients that admit rational decompositions.

We explained how to obtain rational decompositions in theory and practice: if the related
semidefinite programming problems have strictly feasible solutions then the algorithm we pro-
posed - a variant of Peyrl-Parrilo rounding and projecting method - always yields a rational
(i.e., exact symbolic) decomposition. In the absence of strict feasibility we proposed a variant
of the facial reduction to reduce the size of the semidefinite program and enforce the existence
of Slater points.

We implemented both methods in our open source software package NCSOStools [CKP11]
and demonstrated them on several illustrative examples.

http://ncsostools.fis.unm.si/
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