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Abstract. Call a noncommutative rational function r regular if it has no singularities,

i.e., r(X) is defined for all tuples of self-adjoint matrices X. In this article regular non-

commutative rational functions r are characterized via the properties of their (minimal

size) linear systems realizations r = b∗L−1c. It is shown that r is regular if and only if

L = A0 +∑j Ajxj is free elliptic. Roughly speaking, a linear pencil L is free elliptic if,

after a finite sequence of basis changes and restrictions, the real part of A0 is positive

definite and the other Aj are skew-adjoint. The second main result is a solution to a

noncommutative version of Hilbert’s 17th problem: a positive regular noncommutative

rational function is a sum of squares.

1. Introduction

Let k be the field of real or complex numbers and x = (x1, . . . , xg) a tuple of freely

noncommuting variables. By the theory of division rings [Ami66, Coh95, Reu96], the free

algebra k<x> of noncommutative polynomials admits a universal skew field of fractions

k(<x)>, whose elements are called noncommutative rational functions. They are usually

represented with syntactically valid expressions involving x1, . . . , xg,+, ⋅, (, ), −1 and ele-

ments from k. Noncommutative rational functions play a prominent role in a wide range

of areas. In ring theory, they appear as quasideterminants of matrices over noncommuta-

tive rings [GKLLRT95] and in the context of rings satisfying rational identities [Ber76].

In theoretical computer science, recognizable series of weighted automata are precisely

formal power series expansions of noncommutative rational functions [BR11]. For similar

reasons they emerge as transfer functions of linear systems evolving along free semigroups

in control theory [BGM05]. These linear systems techniques are also applied in free prob-

ability for computing asymptotic eigenvalue distributions of noncommutative rational

function evaluations on random matrices [BMS16]. In free analysis they are noncommu-

tative analogs of meromorphic functions and are endowed with the difference-differential

calculus [K-VV12, AM15]. Finally, ensembles of noncommutative rational functions are

natural maps between noncommutative semialgebraic domains in free real algebraic ge-

ometry [HMV06, BPT13].
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While the interest in noncommutative rational functions originated from the universal

property of the free skew field k(<x)>, their importance in aforementioned areas derives

from properties of their matrix evaluations. Here one evaluates a given noncommutative

rational function r on tuples of self-adjoint matrices, which leads to the notion of the do-

main of r. Minimal factorizations [K-VV09] and the extent of matrix convexity [HMV06]

of a noncommutative rational function r are examples of problems that directly depend

on knowing the domain of r. On a more applied side, understanding of the singularities of

(non)commutative rational functions is also important in control theory, e.g. for stability

questions [GK-VVW16] or controllability and observability of linear systems [WSCP91].

In this paper we analyze two properties of noncommutative rational functions arising from

their evaluations, namely regularity and positivity.

A noncommutative rational function r is regular if its domain contains all tuples of

like sized self-adjoint matrices. For example, (1+x2
1)
−1 and (1+x2

1x
2
2)
−1 are regular func-

tions1, as well as are all noncommutative polynomials. In general, checking the regularity

of r is harder if the representatives of r are complicated, e.g. if they contain numerous

nested inverses. Furthermore, we note that, as in the commutative case, further difficul-

ties arise because singularities of a given rational expression might be removable. The

proper tool for investigating regularity comes from automata and control theory: every

noncommutative rational function admits a linear systems realization

(1.1) r = c∗L−1b,

where b,c ∈ kd and L is a linear matrix pencil of size d: L = A0+∑j Ajxj with Aj ∈ Md(k).

For the existence we refer to [Coh95, Sections 4.2 and 6.2] or [BGM05] for the case A0 = I.

Linear pencils give rise to linear matrix inequalities L(x) ⪰ 0 and are thus ubiquitous in

optimization [WSV12], systems engineering [SIG97] and in real algebraic geometry, see

e.g. determinantal representations of polynomials [Brä11, NT12], the solution of the Lax

conjecture [HV07], and the solution of the Kadison-Singer paving conjecture [MSS15]. If

the linear pencil L is of minimal size satisfying (1.1), then the “no hidden singularities

theorem” [K-VV09, Theorem 3.1] implies that r is regular if and only if every evaluation of

L on a tuple of self-adjoint matrices is nonsingular. Characterization of regular functions

thus turns into a problem of recognizing everywhere invertible pencils.

After describing regular functions we address their positivity. We say that a noncommu-

tative rational function r is positive if r(X) is positive semidefinite for every tuple of self-

adjoint matricesX in the domain of r. For example, x−2
1 and x2

2−x2x1(1+x2
1)
−1x1x2 are pos-

itive functions. We solve the analog of Hilbert’s 17th problem for regular noncommutative

rational functions. The original solution by Artin, stating that a nonnegative commutative

polynomial is a sum of squares of rational functions (see e.g. [BCR98, Mar08, DAn11]),

has been extended to the noncommutative setting in various ways [PS76, Hel02, McC01].

For example, Helton [Hel02, Theorem 1.1] showed that every positive noncommutative

polynomial is a sum of hermitian squares ∑k q
∗
kqk, where qk are noncommutative polyno-

mials. More general results about noncommutative polynomials that are positive semi-

definite on certain free semialgebraic sets are now commonly known as noncommutative

1 If S1 and S2 are positive semidefinite matrices, then the eigenvalues of S1S2 are real and nonnegative,

so I + S1S2 is invertible.
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Positivstellensätze [HMP07, Nel, HKM16]; for positivity results on free analytic functions

see e.g. [PT-D, BK-V15].

1.1. Main results and reader’s guide. In Section 2 we characterize everywhere invert-

ible pencils. For example, if Aj are skew-adjoint matrices for 1 ≤ j ≤ g and A0 is a sum of

a positive definite and a skew-adjoint matrix, then Λ(X) = A0⊗ I +∑j>0Aj ⊗Xj is clearly

nonsingular for every tuple X of self-adjoint matrices. The condition on the coefficients

of Λ can be also stated as

Re(Λ) = Re(Λ(0)) ≻ 0,

where ReY = 1
2(Y + Y ∗) denotes the real part of a matrix. More generally, we say that a

linear pencil L is free elliptic if there exist constant matrices D1, . . . ,D`, V1, . . . , V`−1 and

V` = 0 of appropriate sizes such that

Re(DkLV1⋯Vk−1) = Re(DkL(0)V1⋯Vk−1) ⪰ 0

for 1 ≤ k ≤ ` and the columns of Vk form a basis of ker Re(DkL(0)V1⋯Vk−1). See also

Definition 2.1 for a recursive version. The pencil Λ described previously is free elliptic

with ` = 1 and D1 = I. The name refers to elliptic systems of partial differential equations

[Mir70, GB83] and is justified in our main result on linear pencils.

Theorem A. A pencil L is free elliptic if and only if L(X) is of full rank for every

self-adjoint tuple X.

More precise statements involving size bounds are given in Proposition 2.4 and Theorem

2.6. For square pencils L, L(X) is always invertible if and only if the free locus of L,

defined in [KV], does not contain any self-adjoint tuples. Theorem A can be therefore

seen as a weak real Nullstellensatz for linear pencils. In Section 3 we apply Theorem A

to regular noncommutative rational functions via the realization theory. Among regular

functions we also describe strongly bounded functions r, i.e., those for which there exist

ε,M > 0 such that for every (not necessarily self-adjoint) tuple X satisfying ∥X∗ −X∥ < ε
we have ∥r(X)∥ ≤M .

Theorem B. Let r ∈ k(<x)>. Then r is regular if and only if r = c∗L−1b for some free

elliptic pencil L. Furthermore, r is strongly bounded if and only if r = c∗(A0+∑j Ajxj)
−1b,

where ReA0 is positive definite and Aj are skew-adjoint for j > 0.

See Theorem 3.7 for the proof. In Section 4 we address positivity of noncommutative

rational functions. We prove the following analog of Helton’s sum of squares theorem

[Hel02] for regular noncommutative rational functions.

Theorem C. Let r ∈ k(<x)> be regular. Then r(X) is positive semidefinite for every

tuple X of self-adjoint matrices if and only if r is a sum of hermitian squares of regular

functions in k(<x)>.

This statement is proved as Theorem 4.5 using a Hahn-Banach separation argument

for a convex cone in a finite-dimensional vector space constructed from a noncommutative

rational function. Lastly, we discuss the algorithmic perspective and present examples in

Section 5.

Acknowledgments. The authors thank Bill Helton for drawing the connection to elliptic

systems of PDEs to their attention.
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2. Full rank pencils

In this section we prove that a linear pencil is free elliptic if and only if it is of full rank

on all self-adjoint tuples (Theorem 2.6).

2.1. Basic notation. Throughout the paper let k ∈ {R,C} and fix g ∈ N. Let k<x> =

k<x1, . . . , xg> be the free k-algebra of noncommutative polynomials in freely noncom-

muting variables x1, . . . , xg. We endow k<x> with the involution ∗ satisfying x∗j = xj and

α∗ = ᾱ for α ∈ k.

Let ∗ be the involution on Mn(k) given by the transpose (if k = R) or the conjugate

transpose (if k = C) and let Mn(k)sa ⊆ Mn(k) be the R-subspace of self-adjoint matrices.

The notation A ≻ 0 or A ⪰ 0 for A ∈ Mn(k)sa means that A is positive definite or positive

semidefinite, respectively, while ∥ ⋅ ∥ always refers to the operator norm. Furthermore

denote

Mg =⋃
n

Mn(k)
g, Mg

sa =⋃
n

Mn(k)
g
sa

and

ReX =
1

2
(X +X∗), ImX =

⎧⎪⎪
⎨
⎪⎪⎩

1
2(X −X∗) if k = R
1
2i(X −X∗) if k = C

for X ∈Mg.

2.1.1. Linear matrix pencils. If A0, . . . ,Ag ∈ Md×e(k), then

(2.1) L = A0 +

g

∑
j=1

Ajxj ∈ Md×e(k)⊗ k<x>

is a (rectangular) pencil of size d × e. It can be naturally evaluated on Mg as

L(X) = A0 ⊗ I +
g

∑
j=1

Aj ⊗Xj ∈ Mdn×en(k)

for X ∈ Mn(k)
g.

2.2. Free elliptic pencils.

Definition 2.1. Let d ≥ e and L = A0 +∑j Ajxj with Aj ∈ Md×e(k).

(1) L is strongly free elliptic if there exists D ∈ Me×d(k) such that

Re(DA0) ≻ 0, Re(DAj) = 0 for j > 0.

(2) With respect to e we recursively define L to be free elliptic if

(a) it is strongly free elliptic; or

(b) there exists D ∈ Me×d(k) such that

0 ≠ Re(DA0) ⪰ 0, Re(DAj) = 0 for j > 0

and LV is free elliptic, where columns of V form a basis for ker Re(DA0).

Note that LV is a pencil of size d × e′ with e′ < e.

A pencil of size d×e with d < e is (strongly) free elliptic if and only if L∗ is (strongly) free

elliptic.
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Example 2.2. Let k = R, g = 2 and

L =

⎛
⎜
⎜
⎝

1 x1 − x2 x1 − 1

x2 − x1 1 1

1 − x1 −1 0

⎞
⎟
⎟
⎠

= A0 +A1x1 +A2x2.

It is easy to check that every 3×3 matrix D satisfying Re(DA1) = Re(DA2) = 0 is a scalar

multiple of I, so L is not strongly free elliptic. However, we have

Re(A0) = diag(1,1,0), Re(A1) = Re(A2) = 0.

Restricting to the kernel of Re(A0) we obtain

V =

⎛
⎜
⎜
⎝

0

0

1

⎞
⎟
⎟
⎠

, L′ = LV =

⎛
⎜
⎜
⎝

x1 − 1

1

0

⎞
⎟
⎟
⎠

.

Choosing D′ = (0 1 0) we get D′L′ = 1, hence L′ is strongly free elliptic and L is free

elliptic.

Remark 2.3. The terminology of Definition 2.1 refers to the ellipticity of partial differential

equations [Nir59, Mir70, GB83]. For example, a first order system

g

∑
j=1

Pj(x)
∂u

∂xj
= f(x,u),

where Pj are d × e matrices with d ≥ e, is elliptic at the point x if the matrix

P (x, ξ) =
g

∑
j

Pj(x)ξj

has rank e for all ξ ∈ Rg ∖ {0}; see [GB83, Section 4.7]. The analogy between free elliptic

pencils and elliptic systems becomes clear in Theorem 2.6 where we prove that a pencil

L is free elliptic if and only if L(X) is of full rank for all X ∈M
g
sa.

Proposition 2.4. A pencil L of size d× e with d ≥ e is strongly free elliptic if and only if

for some ε > 0,

(2.2) L(X)∗L(X) ≻ εI for all X ∈Mg
sa.

Furthermore, it suffices to test (2.2) for X of size at most (g + 1)e2.

Proof. Let L = A0 +∑j Ajxj with Aj ∈ Md×e(k) and d ≥ e.

(⇒) Let D be a matrix with Re(DA0) = R∗R for R ∈ GLd(k) and Re(DAj) = 0 for

j > 0. Denote K = R−∗ Im(DL)R−1 and let κ = 1 if k = R and κ = i if k = C. If X ∈ Mn(k)
g
sa

and v ∈ ken, then

∥D∥2⟨L(X)v, L(X)v⟩ ≥ ⟨(DL)(X)v, (DL)(X)v⟩

= ⟨(R∗R + κR∗KR)(X)v, (R∗R + κR∗KR)(X)v⟩

≥ ∥R−∗∥−2⟨(I + κK)(X)(R⊗ I)v, (I + κK)(X)(R⊗ I)v⟩

≥ ∥R−∗∥−2⟨(R⊗ I)v, (R⊗ I)v⟩

≥ ∥R−∗∥−4⟨v,v⟩

since κK is skew-adjoint on Mg
sa. Hence we can take ε = ∥R−1∥−4∥D∥−2.
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(⇐) Since A0 is of full rank, there exists R ∈ GLd(k) such that RA0 is an isometry, i.e.,

(RA0)
∗(RA0) = I. Since

⟨(RL)(X)v, (RL)(X)v⟩ ≥ ∥R−1∥−2⟨L(X)v, L(X)v⟩

for every X ∈ Mn(k)
g
sa and v ∈ ken, we have (RL)(X)∗(RL)(X) ≻ ε∥R−1∥−2I.

Without loss of generality we can thus assume that A0 is an isometry. Also let

K = (∑
j>0

imAj)

⊥
.

Because L∗L − εI is a positive polynomial (on matrices of size at most (g + 1)e2), it is a

sum of hermitian squares of matrix-valued polynomials of degree at most 1 by [McC01,

Theorem 0.2] or [MP05, Theorem 1.1]:

L∗L − εI =
N

∑
k=1

(Ck,0 +∑
j

Ck,jxj)

∗
(Ck,0 +∑

j

Ck,jxj) , Ck,j ∈ Me(k).

If C = (Ck,j)j,k ∈ Me(k)
N×(g+1) and `∗ = (1, x1, . . . , xg), then

L∗L − εI = `∗C∗C`.

By looking at the coefficients of L we conclude that the positive semidefinite matrix

A = C∗C is of the form

(2.3) A =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

I − εI B1 B2 ⋯ Bg

B∗
1 A∗

1A1 A∗
1A2 ⋯ A∗

1Ag
B∗

2 A∗
2A1 A∗

2A2 ⋯ A∗
2Ag

⋮ ⋮ ⋮ ⋱ ⋮

B∗
g A∗

gA1 A∗
gA2 ⋯ A∗

gAg

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where Bj ∈ Me(k) satisfy

(2.4) Bj +B
∗
j = A

∗
0Aj +A

∗
jA0.

Let v ∈ kgd be arbitrary and set w = 0⊕ v ∈ k(g+1)d. If v satisfies

(A1 ⋯ Ag)v = 0,

then w∗Aw = 0 and therefore Aw = 0, so

(B1 ⋯ Bg)v = 0.

Hence the rows of a block matrix (B1 ⋯ Bg) lie in the linear span of the rows of (A1 ⋯ Ag),

so there exists T ∈ Me×d(k) such that

(2.5) (B1 ⋯ Bg) = T (A1 ⋯ Ag) , TK = 0.

Since L(0)∗L(0) − εI ≻ 0 and A ⪰ 0, the Schur complement of I − εI in A

(2.6)

⎛
⎜
⎜
⎝

A∗
1

⋮

A∗
g

⎞
⎟
⎟
⎠

(A1 ⋯ Ag) − (1 − ε)
−1

⎛
⎜
⎜
⎝

B∗
1

⋮

B∗
g

⎞
⎟
⎟
⎠

(B1 ⋯ Bg)

is also positive semidefinite. Combining (2.5) and (2.6) yields

(2.7) I − (1 − ε)−1T ∗T ⪰ 0.
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Let D = A∗
0 − T . Now (2.4) and (2.5) imply Re(DAj) = 0 for j > 0, while (2.7) together

with A∗
0A0 = I yields

0 ⪯ A∗
0 ((1 − ε)I − T

∗T )A0 = 2 Re(DA0) − (εI +A
∗
0D

∗DA0),

and therefore Re(DA0) ≻ 0. �

Lemma 2.5. Let u1, . . . ,un ∈ kd and v1, . . . ,vn ∈ km. If (w∗ ⊗ I)(∑k uk ⊗ vk) = 0 for all

w ∈ kd, then ∑k uk ⊗ vk = 0.

Proof. Without loss of generality we can assume that vk are linearly independent. If

∑
k

(w∗uk)vk = 0,

then w∗uk = 0 for all k. Since this holds for every w, we have uk = 0 and hence ∑k uk⊗vk =

0. �

The proof of the following theorem applies a specialized GNS construction that is

inspired by a more general and intricate version in the proof of the matricial real Null-

stellensatz in [Nel].

Theorem 2.6. For a pencil L = A0 +∑j Ajxj with Aj ∈ Md×e(k) and d ≥ e, the following

are equivalent:

(i) L is free elliptic;

(ii) L is of full rank on Mg
sa;

(iii) L(X) is of full rank for all X ∈M
g
sa of size at most (g + 1)e2.

Remark 2.7. Square linear pencils that are nonsingular on whole Mg been characterized

in [KV, Corollary 3.4]: if L = A0 +∑j Ajxj, then detL(X) ≠ 0 for all X ∈Mg if and only

if A−1
0 A1, . . . ,A−1

0 Ag are jointly nilpotent matrices.

Remark 2.8. In the opposite direction, square linear pencils L with detL(X) = 0 for all

X ∈M
g
sa are precisely those that are not invertible as matrices over k(<x)>. By [Coh95,

Corollary 6.3.6], a linear pencil A0 +∑j Ajxj with Aj ∈ Md(k) is not invertible over k(<x)>

if and only if there exist matrices U,V ∈ GLd(k) such that for 0 ≤ j ≤ g we have a block

decomposition

UAjV = (
∗ 0

∗ ∗
) ,

where the zero block is of size d1 × d2 with d1 + d2 > d. A linear bound on size of X for

testing detL(X) = 0 has been given in [DM].

Proof of Theorem 2.6. We prove (i)⇒(ii) and (iii)⇒(i) by induction on e, while (ii)⇒(iii)

is obvious.

(i)⇒(ii) By Proposition 2.4, the claim holds if L is strongly free elliptic. If L is free

elliptic but not strongly free elliptic there exists D ∈ Me×d(k) such that 0 ≠ Re(DA0) ⪰ 0,

Re(DAj) = 0 for j > 0 and LV is free elliptic, where columns of V constitute a basis of

ker Re(DA0). Let X ∈ Mn(k)
g
sa and consider the decomposition

kerL(X) ⊆ ken = ke ⊗ kn = ((ker Re(DA0))
⊥ ⊗ kn)⊕ (ker Re(DA0)⊗ kn).
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If ( uv ) ∈ kerL(X), then

(u∗ v∗)Re(DL)(X)(
u

v
) = 0

and so u∗(Re(DA0)⊗ I)u∗ = 0. Hence u = 0 and (LV )(X)v = 0, therefore the induction

hypothesis implies v = 0. Thus L is of full rank on Mg
sa.

(iii)⇒(i) Assume that L is not free elliptic. Therefore for every D such that 0 ≠

Re(DA0) ⪰ 0 and Re(DAj) = 0 for j > 0, LV is not free elliptic, where V consists of a

basis of ker Re(DA0). By assumption there exists X ∈M
g
sa such that (LV )(X) is not of

full rank, so L(X) is not of full rank. Hence we need to consider the situation when L

satisfies

(2.8) ∀D∶ Re(DA0) ⪰ 0 and Re(DAj) = 0 for j > 0 ⇒ Re(DA0) = 0.

For k ∈ {0,1,2} define

Vk = {p ∈ Me(k)⊗ k<x>∶deg ≤ k} , U = Me×d(k)L +L∗ Md×e(k),

Vsa
2 = {p ∈ V2∶p

∗ = p} , S2 = {∑
j

p∗j pj ∶pj ∈ V1} .

Here Vk and U are k-linear spaces, while Vsa
2 and S2 are a R-linear space and a convex

cone, respectively. It is easy to verify that S2 is closed in V2 (see e.g. the proofs of [MP05,

Proposition 3.4] or Proposition 4.1 below). Observe that (2.8) implies U∩S2 = {0}. Indeed,

if DL +L∗E∗ ∈ S2, then (DL +L∗E∗) + (EL +L∗D∗) ∈ S2 and so Re((D +E)A0) ⪰ 0 and

Re((D + E)Aj) = 0 for j > 0. Hence (2.8) implies Re((D + E)A0) = 0 and consequently

DL +L∗E∗ = 0.

By [Kle55, Theorem 2.5] there exists a R-linear functional λ ∶ Vsa
2 + U → R such that

λ(S2 ∖ {0}) ⊆ R>0 and λ(U) = {0}, which we extend to a k-linear functional Λ ∶ V2 → k by

setting Λ(p) ∶= λ(Rep)+ iλ(Imp) if k = C and Λ(p) ∶= λ(Rep) if k = R. Consequently we

obtain a scalar product ⟨p1, p2⟩ ∶= Λ(p∗2p1) on V1. Note that

⟨ap, q⟩ = Λ(q∗ap) = ⟨p, a∗q⟩

for all a ∈ V0 and p, q ∈ V1. Let π ∶ V1 → V0 be the orthogonal projection. For every a, b ∈ V0

and 1 ≤ j ≤ g we have

⟨π(axj), b⟩ = ⟨axj, b⟩ = ⟨xj, a
∗b⟩ = ⟨π(xj), a∗b⟩ = ⟨aπ(xj), b⟩,

so

(2.9) π(ap) = aπ(p) ∀a ∈ V0, p ∈ V1.

Now define

Xj ∶V0 → V0, b↦ π(xjb),

`a∶V0 → V0, b↦ ab.

It is easy to check that Xj is a self-adjoint operator that commutes with `a by (2.9). Let

D ∈ Me×d(k) be arbitrary and consider I ∈ Me(k) as a vector in V0. Then DL determines

a linear operator (DL)(X) ∶ V0 → V0 and

⟨(DL)(X)I, b⟩ = ⟨π(DL), b⟩ = ⟨DL, b⟩ = Λ((b∗D)L) = 0
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for every b ∈ V0 by (2.9) and the definition of Λ. Therefore (DL)(X)I = 0 and consequently

L(X)I = 0 by Lemma 2.5.

Finally, the bound from the statement follows from Proposition 2.4 and the fact that

dimV0 = e2 < (g + 1)e2. �

Remark 2.9. Let L = A0 +∑j>0Ajxj be given and assume D satisfies

(2.10) Re(DA0) ⪰ 0, Re(DAj) = 0 for j > 0.

If Re(DA0) ≠ 0, then Theorem 2.6 implies that L is free elliptic if and only if LV is free

elliptic, where V comprises a basis of ker Re(DA0). This fact simplifies the ellipticity

testing: we can do the recursion with an arbitrary D which non-trivially solves (2.10) in

the sense that Re(DA0) ≠ 0.

3. Regular rational functions

In this section we turn our attention to regular nc rational functions, i.e., those without

singularities. The main result, Theorem 3.7, shows that r ∈ k(<x)> is regular (strongly

bounded) if and only if it admits a realization with a (strongly) free elliptic pencil.

3.1. Preliminaries. We introduce noncommutative rational functions using matrix eval-

uations of formal rational expressions following [HMV06, K-VV12]. Originally they were

defined ring-theoretically, cf. [Ami66, Coh95]. Noncommutative (nc) rational ex-

pressions are syntactically valid combinations of elements in k, freely noncommuting

variables {x1, . . . , xg}, arithmetic operations +, ⋅, −1 and parentheses (, ). For example,

(1 + x−1
2 x1)

−1 + 1, x1 + (−1)x1 and 0−1 are nc rational expressions. Their set is Rk(x).

Given r ∈ Rk(x) and X ∈ Mn(k)
g, the evaluation r(X) is defined in the obvious way

if all inverses appearing in r exist at X. The set of all X ∈Mg such that r is defined at

X is is called the domain of r and denoted dom r. Note that dom r ∩Mn(k)
g ⊆ Mn(k)

g

is a Zariski open set for every n ∈ N and therefore either empty or dense in Mn(k)
g with

respect to Euclidean topology. A nc rational expression r is non-degenerate if dom r ≠ ∅.

On the set of all non-degenerate nc rational expressions we define an equivalence relation

r1 ∼ r2 if and only if r1(X) = r2(X) for all X ∈ dom r1 ∩ dom r2. The equivalence classes

with respect to this relation are called noncommutative (nc) rational functions. By

[K-VV12, Proposition 2.1] they form a skew field denoted k(<x)>, which is the universal

skew field of fractions of k<x> by [Coh95, Section 4.5]. The equivalence class of a nc

rational expression r ∈ Rk(x) is written as r ∈ k(<x)>. The previously defined involution

on k<x> naturally extends to k(<x)>.

We define the domain of a nc rational function r ∈ k(<x)> as the union of dom r over

all representatives r ∈Rk(x) of r. Lastly, let

domsa r = dom r ∩Mg
sa, domsa r = dom r ∩Mg

sa.

For a non-degenerate r ∈Rk(x) we have domsa r ≠ ∅ if and only if dom r ≠ ∅, see e.g. [Vol,

Remark 6.8].

3.1.1. Realizations of nc rational functions. For every r ∈ k(<x)> there exist d ∈ N, b,c ∈ kd

and a linear pencil L of size d such that

(3.1) r = c∗L−1b,
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cf. [Coh95, Section 4.2]. We say that (3.1) is a realization of r of size d; we refer to

[Coh95, BR11] for good expositions on classical realization theory.

Fix r ∈ k(<x)> and suppose 0 ∈ dom r. In general, r admits various realizations. A

realization of r whose size is smallest among all realizations of r is called minimal.

These are unique up to basis change [BR11, Theorem 2.4], and if c∗L−1b is a minimal

realization of r, then dom r ⊆ {X ∈Mg ∶detL(X) ≠ 0}, see [K-VV09, Theorem 3.1].

3.2. Regularity.

Definition 3.1. We say that r ∈ k(<x)> is:

(1) regular if domsa r =M
g
sa;

(2) bounded if there exists M > 0 such that ∥r(X)∥ ≤M for all X ∈ domsa r.

(3) strongly bounded if there exist ε > 0 and M > 0 such that ∥r(X)∥ ≤ M for all

X ∈ dom r with ∥ ImX∥ < ε.

Analogously, we say that r ∈Rk(x) is regular if domsa r =M
g
sa.

This definition is naturally extended to matrices over k(<x)>. Obviously a regular expres-

sion yields a regular function and (3) implies (2). Using Riemann’s removable singularities

theorem [Kra01, Theorem 7.3.3] it is not hard to deduce that (3) implies (1); however,

this is also a consequence of Theorem 3.7.

Example 3.2. Examples of regular but not bounded nc rational functions are nonconstant

nc polynomials. An example of a bounded but not regular (and hence also not strongly

bounded) function is r = (1+x1x−2
2 x1)

−1: indeed, we have ∥r(X1,X2)∥ ≤ 1 for all (X1,X2) ∈

domsa r and (0,0) ∉ dom r. On the other hand, (1
2 + x

2
1 + x

2
2 + x

2
1x

2
2)
−1 is an example of a

strongly bounded rational function.

Proposition 3.3. Let M be a square matrix over k(<x)> and assume each of its entries

admits a regular rational expression. If M(X) is nonsingular for every X ∈M
g
sa, then

every entry of M−1 admits a regular expression.

Proof. We prove the statement by induction on the size d of M . If d = 1, then M = r is an

everywhere invertible regular rational function with a corresponding regular expression r;

hence M−1 is given by r−1.

Assume the statement holds for matrices of size d − 1 and let m be the first column of

M . Then m(X) is of full rank for every X ∈M
g
sa, so the regular rational function m∗m is

everywhere invertible and its inverse is given by a regular expression. Hence the entries of

the Schur complement of m∗m in M∗M admit regular rational expressions. Since M∗M
is nonsingular onMg

sa, the same holds for the Schur complement, which is a matrix of size

d − 1. By the induction hypothesis, the entries of the inverse of this Schur complement

admit regular rational expressions, hence the same holds for the inverse of M∗M . Finally,

the entries of M−1 = (M∗M)−1M∗ admit regular rational expressions. �

Corollary 3.4. If r ∈ k(<x)> is regular, then it arises from a regular rational expression.

Proof. Let r = c∗L−1b be a minimal realization of r. Since r is regular, L is nonsingular

on Mg
sa by [K-VV09, Theorem 3.1]. Since L is a matrix of polynomials, entries of L−1

admit regular rational expressions by Proposition 3.3. Hence r admits a regular rational

expression. �
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Lemma 3.5. Let L be a square linear pencil. The following are equivalent:

(i) L−1 is strongly bounded;

(ii) L−1 is bounded;

(iii) There exists η > 0 such that L(X)∗L(X) ≻ η2I for all X ∈M
g
sa.

Proof. (i)⇒(ii) Trivial.

(ii)⇒(iii). Assume that ∥L−1(X)∥ ≤ M for X ∈ domsaL−1; this means that the largest

eigenvalue of (L∗L)−1(X) is at most M2, so the smallest eigenvalue of (L∗L)(X) is at

least 1
M2 . Since domsaL−1 ∩ Mn(k)

g
sa is dense in Mn(k)

g
sa for infinitely many n ∈ N, we

conclude that the smallest eigenvalue of (L∗L)(X) is at least 1
M2 for every X ∈M

g
sa and

hence L(X)∗L(X) ≻ 1
M2 I for all X ∈M

g
sa.

(iii)⇒(i) Let L = A0 +∑j Ajxj and assume L(X)∗L(X) ≻ η2I for all X ∈M
g
sa. Choose

ε = η
2(∑j>0 ∥Aj∥)

−1. If X ∈ domL−1 and ∥ ImX∥ < ε, then

∥L(ReX)−1
∑
j>0

Aj ⊗ ImXj∥ ≤
1

η
(∑
j>0

∥Aj∥) ε =
1

2
,

so

L(X) = L(ReX)−1 (I +L(ReX)−1
∑
j>0

Aj ⊗ ImXj)

is invertible and ∥L(X)−1∥ ≤ 2
η . �

Lemma 3.6. A nc rational function is strongly bounded if and only if the inverse of the

pencil from its minimal realization is strongly bounded.

Proof. The implication (⇐) is clear, so consider (⇒). For 1 ≤ j ≤ g let

∆j ∶ k(<x)>→ k(<x)>⊗ k(<x)>

be the difference-differential operator as in [K-VV12, Section 4]; this is the noncom-

mutative counterpart of both the partial finite difference and partial differential op-

erator. If X,X ′ ∈ dom r ∩ Mn(k)
g and ∆(r)(X,X ′) is interpreted as an element of

Endk(Mn(k)) ≅ Mn(k)⊗Mn(k), then

(
X W

0 X ′) ∈ dom r ∩M2n(k)
g

for every W ∈Mn(k)
g and

r(
X W

0 X ′)

is up to conjugation by a permutation matrix equal to

(
r(X) ∑j ∆(r)(X,X ′)(Wj)

0 r(X ′)
)

by [K-VV12, Theorem 4.8]. In particular, if r is strongly bounded, then (∆jr)(x,0) and

(∆jr)(0, x) are also strongly bounded nc rational functions. Indeed, suppose ∥r(X)∥ ≤M

for all X ∈ dom r with ∥ ImX∥ < ε. Then for every X ∈ dom r with ∥ ImX∥ < ε
2 we have

∥Im(
X εI

0 0
)∥ < ε
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and therefore

∥(
r(X) ε(∆jr)(X,0)

0 r(0)
)∥ ≤M

by assumption. Consequently

∥(∆jr)(X,0)∥ ≤
M

ε
.

Since dom r is dense in dom(∆jr)(x,0), we conclude that (∆jr)(x,0) is strongly bounded.

Now let r ∈ k(<x)> be a strongly bounded nc rational function with minimal realization

r = c∗L−1b which can be chosen such that L(0) = I. By [K-VV12, Example 4.7] we have

∆j(r)(x,0) = c∗L−1Ajb, ∆j(r)(0, x) = c∗AjL−1b.

Minimality of the realization implies

span
k
{Awb∶w ∈ <x>} = kd, span

k
{(A∗)wc∶w ∈ <x>} = kd

by [BR11, Proposition 2.1]. Therefore we conclude that every entry of L−1 is strongly

bounded. �

3.3. Free elliptic realizations and regular rational functions.

Theorem 3.7. Let r ∈ k(<x)>.

(1) r is strongly bounded if and only if it admits a (minimal) realization with a strongly

free elliptic pencil.

(2) r is regular if and only if it admits a (minimal) realization with a free elliptic

pencil.

Proof. (1) If r is strongly bounded and c∗L−1b′ is its minimal realization, then L−1 is

strongly bounded by Lemma 3.6. Hence L is strongly free elliptic by Lemma 3.5 and

Proposition 2.4. Conversely, if r admits a realization with a strongly free elliptic pencil

L, then L−1 is bounded by Proposition 2.4 and hence strongly bounded by Lemma 3.5.

Therefore r is strongly bounded.

(2) Let c∗L−1b be a minimal realization of r. Then L is invertible onMg
sa by [K-VV09,

Theorem 3.1] and hence free elliptic by Theorem 2.6. The converse implication also follows

by Theorem 2.6. �

Remark 3.8. One may also ask an analogous question about functions r ∈ k(<x)> satisfying

dom r = Mg. The answer to this question is much simpler [KV, Theorem 4.2]: a nc

rational function is defined at every point in Mg if and only if it is a nc polynomial.

3.4. Functions in x and x∗. We briefly discuss nc rational functions in x and x∗, i.e.,

elements of the free skew field with involution C(<x,x∗)>. They are naturally evaluated

at g-tuples of matrices X by replacing xj with Xj and x∗j with X∗
j . We refer to [KŠ] for

analytic properties of these ∗-evaluations. On the other hand, if y is a copy of x, then

we have skew field isomorphisms

C(<x,x∗)>→ C(<x,y)>, xj ↦ xj + iyj, x
∗
j ↦ xj − iyj

C(<x,y)>→ C(<x,x∗)>, xj ↦
1

2
(xj + x

∗
j ), yj ↦

1

2i
(xj − x

∗
j ).

Thus we get a natural correspondence between ∗-evaluations of elements in C(<x,x∗)> and

Hermitian evaluations of elements in C(<x,y)>. Our main results on rational functions and
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pencils in self-adjoint variables can be easily adapted to this setup. We leave this as an

exercise for the reader.

4. Positive rational functions

In this section we solve a noncommutative analog of Hilbert’s 17th problem: every pos-

itive regular nc rational function is a sum of hermitian squares, see Theorem 4.5. For this

we shall require a description of complexity of nc rational expressions. A sub-expression

of r ∈ Rk(x) is any nc rational expression which appears during the construction of r.

For example, if r = ((2 + x1)
−1x2)x−1

1 , then all its sub-expressions are

2, x1,2 + x1, (2 + x1)
−1, x2, (2 + x1)

−1x2, x
−1
1 , ((2 + x1)

−1x2)x
−1
1

We recursively define a complexity-measuring function τ ∶Rk(x)→ N0 as follows:

(a) τ(α) = 0 for α ∈ k;

(b) τ(xj) = 1 for 1 ≤ j ≤ g;

(c) τ(r1 + r2) = max{τ(r1), τ(r2)} for r1, r2 ∈Rk(x);

(d) τ(r1r2) = τ(r1) + τ(r2) for r1, r2 ∈Rk(x);

(e) τ(r−1) = 2τ(r) for r ∈Rk(x).

Note that there is also a well-defined map r ↦ r∗ on Rk(x) that mimics the involution

on k(<x)> and τ(r∗) = τ(r) for all r ∈Rk(x).

4.1. A sum of squares cone associated with a rational expression. Throughout

the rest of this section fix a non-degenerate expression r ∈ Rk(x) and the following

notation. Let Q ⊂ Rk(x) be the finite set of all sub-expressions of r and their images

under the map q ↦ q∗. Then define Q̃ = {q∶ q ∈ Q} ⊂ k(<x)> and

Vk =
k

∑
j=0

k

j


Q̃⋯Q̃ , Vsa
k = {s ∈ Vk∶ s = s

∗}, S2k = {∑
j

s∗j sj ∶ sj ∈ Vk}

for k ∈ N. Then S2k ⊆ Vsa
2k ⊆ V2k are a convex cone, R-linear space and k-linear space,

respectively. Since Vsa
2k is finite-dimensional, every norm on Vsa

2k yields the usual Euclidean

topology. We note that Q and Q̃ are rational analogs of Newton chips [BKP16] for free

polynomials.

Proposition 4.1. S2k is closed in Vsa
2k.

Proof. Since Vsa
2k is finite-dimensional, there exists X ∈ domsa r such that

∀s ∈ Vsa
2k∶ s(X) = 0 ⇒ s = 0

by the CHSY Lemma ([CHSY03, Corollary 3.2] or [BPT13, Corollary 8.87]). Hence we

can define a norm on Vsa
2k by ∥s∥● ∶= ∥s(X)∥. Also, finite-dimensionality of Vsa

2k implies

that every element of S2k can be written as a sum of N = 1 + dimVsa
2k hermitian squares

by Carathéodory’s theorem [Bar02, Theorem I.2.3]. Assume that a sequence {rn}n ⊂ S2k

converges to s ∈ Vsa
2k with respect to ∥ ⋅ ∥●. If

rn =
N

∑
j=1

s∗n,jsn,j, sn,j ∈ Vk,
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then the definition of our norm implies ∥snj
∥2 ≤ ∥rn∥. In particular, the sequences {sn,j}n ⊂

Vk for 1 ≤ j ≤ N are bounded. Hence, after restricting to subsequences, we may assume

that they are convergent: sj = limn sn,j for 1 ≤ j ≤ N . Consequently we have

s = lim
n
rn =

N

∑
j=1

lim
n
(s∗n,jsn,j) =

N

∑
j=1

s∗j sj ∈ S2k. �

4.2. Moore-Penrose evaluations. In this subsection we generalize our notion of an

evaluation of a nc rational expression. For A ∈ Mn(k) let A† ∈ Mn(k) be its Moore-

Penrose pseudoinverse [HJ85, Section 7.3]. Its properties that will be used in this section

are

(A†)∗ = (A∗)†, A∗ = A†AA∗.

Given r ∈ Rk(x) and X ∈Mg we recursively define the Moore-Penrose evaluation of

r at X, denoted rmp(X):

(a) αmp(X) = αI for α ∈ k;

(b) xmp
j (X) =Xj for 1 ≤ j ≤ g;

(c) (r1 + r2)
mp(X) = rmp

1 (X) + r
mp
2 (X) and

(r1r2)
mp(X) = rmp

1 (X)r
mp
2 (X) for r1, r2 ∈Rk(x);

(d) (r−1)mp(X) = (rmp(X))† for r ∈Rk(x).

Loosely speaking, with this kind of evaluation we replace all the inverses in an expression

with Moore-Penrose pseudoinverses and the evaluation is then defined at any matrix point.

Moore-Penrose evaluations of nc rational expressions frequently appear in control theory;

see e.g. [BEFB94]. We warn the reader that in general these evaluations do not respect

the equivalence relation defining nc rational functions; also, Moore-Penrose evaluation is

defined even for degenerate expressions. For example, (0−1)mp(X) = 0 for all X ∈ Mg.

However, if r ∈Rk(x) is non-degenerate and X ∈ dom r, then

rmp(X) = r(X) = r(X).

Proposition 4.2. Let r be a non-degenerate expression and assume the notation from the

beginning of the section. If λ ∶ Vsa
2k+2 → R is a R-linear functional satisfying λ(S2k+2∖{0}) ⊆

R>0, then there exists a scalar product ⟨⋅, ⋅⟩ on Vk and self-adjoint operators Xj on Vk such

that

λ(q) = ⟨qmp(X)1,1⟩

for every q = q∗ ∈ Q with 4τ(q) ≤ k.

Proof. Let Λ ∶ V2k+2 → k be the k-linear functional given by Λ(s) ∶= λ(Re s) + iλ(Im s) if

k = C and Λ(s) ∶= λ(Re s) if k = R. Now ⟨s1, s2⟩ ∶= Λ(s∗2s1) defines a scalar product on

Vk+1. Let π ∶ Vk+1 → Vk be the orthogonal projection. If xj ∈ Q, then define

Xj ∶ Vk → Vk, s↦ π(xjs).

It is clear that Xj is a self-adjoint operator. We claim the following:

(⋆) if q ∈ Q, then qmp(X)s = qs holds for s ∈ ⋃kj=0

j

Q⋯Q satisfying 4τ(q) + τ(s) ≤ k.

We prove (⋆) by the induction on the construction of q. Firstly, (⋆) obviously holds for

q ∈ k or q ∈ Q∩{x1 . . . , xg}. Next, if (⋆) holds for q1, q2 ∈ Q such that q1+q2 ∈ Q or q1q2 ∈ Q,
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then it also holds for the latter. Finally, suppose that (⋆) holds for q ∈ Q and assume

q−1 ∈ Q. If s ∈ ⋃kj=0Q⋯Q and 4τ(q−1) + τ(s) ≤ k, then 4τ(q) + (τ(q−∗) + τ(q−1) + τ(s)) ≤ k

and q−∗q−1s ∈ ⋃kj=0Q⋯Q, so

qmp(X)∗(q−∗q−1s) = (q∗)mp(X)(q−∗q−1s) = q∗q−∗q−1s = q−1s,(4.1)

qmp(X)(q−1s) = qq−1s = s.(4.2)

Since q−1s lies in the image of qmp(X)∗ by (4.1), we have

q−1s = (qmp(X)†qmp(X))(q−1s) = (qmp(X))†s = (q−1)mp(X)s

by (4.2).

In particular, if q = q∗ satisfies 4τ(q) ≤ k, then

⟨qmp(X)1,1⟩ = Λ (qmp(X)1) = λ(q)

by (⋆). �

Proposition 4.3. Let r ∈Rk(x) be a non-degenerate expression and t = τ(r). If r ∉ S8t+2,

then there exists X ∈M
g
sa of size dimV4t such that rmp(X) is not positive semidefinite.

Proof. If r ≠ r∗, then there clearly exists X ∈ M
g
sa such that r(X) is not self-adjoint;

hence we assume that r = r∗. By Proposition 4.1 and the Hahn-Banach separation theorem

[Bar02, Theorem III.1.3] there exists a R-linear functional λ ∶ Vsa
8t+2 → R such that λ(S8t+2∖

{0}) ⊆ R>0 and λ(r) < 0. By Proposition 4.2 there exists X ∈M
g
sa and a vector v of size

dimV4t such that

⟨rmp(X)v,v⟩ = λ(r) < 0. �

Remark 4.4. The converse of Proposition 4.3 does not hold. For example, if r = x−1x − 1,

then r = 0 is a sum of hermitian squares, but rmp(0) = −1 is not positive semidefinite.

4.3. Regular positive rational functions. As a consequence of Proposition 4.3 we

obtain the following version of Artin’s theorem. It is a rational function analog of Helton’s

sum of hermitian squares theorem [Hel02].

Theorem 4.5. Let r ∈ k(<x)> be regular. Then r(X) ⪰ 0 for all X ∈M
g
sa if and only if

r =∑
j

s∗j sj

for some regular sj ∈ k(<x)>.

Proof. The implication (⇐) is clear, so consider (⇒). Since r is regular, it admits a

regular rational expression r by Corollary 3.4. If r is not a sum of hermitian squares, then

there exists X ∈M
g
sa such that rmp(X) is not positive semidefinite by Proposition 4.3.

Since X ∈ domsa r, we have rmp(X) = r(X). �

Remark 4.6. Let r ∈ k(<x)> be a regular rational function that is not a sum of hermitian

squares. If r ∈Rk(x) is its regular representative and t = τ(r), then there exists X ∈M
g
sa

of size dimV2t such that rmp(X) is not positive semidefinite. Indeed, this improved bound

follows by replacing 4 with 2 in Proposition 4.2 since (4.1) becomes unnecessary when

dealing with proper inverses.

For strictly positive regular nc rational functions also see Remark 5.1. Moreover, by

the same reasoning as in Subsection 3.4, a suitably modified version of Theorem 4.5 holds

for nc rational functions in x and x∗ over C.
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5. Examples and algorithms

In this section we present efficient algorithms to check whether r ∈ k(<x)> is regular

and whether it is a sum of hermitian based on semidefinite programming. We finish the

section with worked out examples.

5.1. Testing regularity. Our main results are effective and enable us to devise an algo-

rithm to check for regularity of a nc rational function.

5.1.1. Free elliptic pencils. Let L = A0 +∑j>0Ajxj ∈ Md×e(k)⊗k<x> with d ≥ e. (If d < e,

simply replace L by L∗.) Now solve the following feasibility semidefinite program (SDP)

for D ∈ Me×d(k):

Re(DA0) ⪰ 0

tr(DA0) = 1

Re(DAj) = 0 for j > 0.

(5.1)

(See e.g. [WSV12, BPT13] for more on SDPs.) If (5.1) is infeasible, then L is not free

elliptic. If the output is aD with Re(DA0) ≻ 0, then L is (strongly) free elliptic. Otherwise

replace L by the linear pencil LV , where the columns of V form a basis for ker Re(DA0),

and repeat the algorithm. Since LV is of smaller size than L, the procedure will eventually

terminate.

5.1.2. Regular nc rational functions. Given r ∈ k(<x)>, we use an efficient (linear-algebra-

based) algorithm, cf. [BR11, Section II.3], to construct a realization of r and then reducing

it to a minimal one, say r = c∗L−1b, where L is a d × d pencil. Now use the algorithm in

Subsection 5.1.1 below to check whether L is free elliptic. By Theorem 3.7, r is regular if

and only if L is free elliptic.

Remark 5.1. This algorithm also yields a procedure to check whether a regular rational

function is strictly positive everywhere: for a regular r ∈ k(<x)> we have r(X) ≻ 0 for all

X ∈M
g
sa if and only if r(0) ≻ 0 and r−1 is regular. In particular, this can be applied for

testing whether a nc polynomial is positive everywhere.

5.2. Testing positivity. In this subsection we present an efficient algorithm based on

SDP to check whether a regular rational function is a sum of hermitian squares, i.e.,

whether it is positive everywhere. We point out this is in sharp contrast to the classical

commutative case [BCR98] where no efficient algorithms exist (in > 2 variables) to check

whether a rational function r ∈ R(X) is globally positive.

Let r ∈ k(<x)>. A positively free elliptic realization is one of the form

r = b∗ (A0 +∑
j

Ajxj)

−1

b, ReA0 ⪰ 0, ReAj = 0 for j > 0.

Proposition 5.2. A nc rational function r = r∗ ∈ k(<x)> is a sum of hermitian squares if

and only if it admits a positively free elliptic realization.

Proof. (⇒) Let r = ∑j s
∗
j sj and sj = c∗jL

−1
j bj. Then

s∗j sj = (0 b∗j )(
cjc∗j L∗j
−Lj 0

)

−1

(
0

bj
)
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is a positively free elliptic realization and the direct sum of these pencils and vectors yields

a positively free elliptic realization of r.

(⇐) Let r = b∗L−1b be a positively free elliptic realization. Then

Re (L−1) = L−∗ Re(L)L−1 = L−∗R∗RL−1

for some constant matrix R by assumption. Since r is self-adjoint we have

r = Re (b∗L−1b) = b∗ Re (L−1)b = (RL−1b)
∗
(RL−1b) ,

so r is a sum of hermitian squares. �

Remark 5.3. If k = R, then a positively free elliptic realization automatically yields a

symmetric nc rational function.

5.2.1. Sum of squares testing. Retain the notation of Section 4. Let t = τ(r) and suppose

that r = r∗. To test whether r is a sum of hermitian squares, we proceed as follows. Pick

a basis for V2t+1 and stack the elements of the basis into a vector, say W . Then r is a

sum of squares if and only if the SDP (5.2) is feasible.

G ⪰ 0

s.t. r =W ∗GW.
(5.2)

To implement the equality in (5.2) we evaluate r and W ∗GW at sufficiently many tuples

of random self-adjoint matrices X ∈M
g
sa of size

(5.3) κ(r)(1 + (2t + 1)(dimV2t+1)
2),

where

κ(r) = #(constant terms in r) + 2 ⋅#(symbols in r) +#(inverses in r).

We refer to [Vol, Subsection 6.1] for the bound (5.3).

Each solution G to (5.2) yields a sum of squares decomposition of r. Namely, letting

G = H∗H and s = HW , we have r = s∗s = ∑j s
∗
j sj, where sj are the entries of the vector

s. Finally, as in the proof of Proposition 5.2, such a sum of squares decomposition can

be employed to construct a positively free elliptic realization for r.

Example 5.4. A sum of hermitian squares does not necessarily admit a positively free

elliptic realization that is also a minimal one. For example, x1 has a realization of size

2, so x2
1 has a positively free elliptic realization of size 4 by the proof of Proposition 5.2.

However, it can be checked that x2
1 admits a realization of size 3 but does not admit a

positively free elliptic realization of size 3.

5.3. Examples.

Example 5.5. Let k = R and

r = ((1 − x1x2)(1 − x2x1) + x
2
1)

−1
.

While one can show that r is regular using elementary arguments, we demonstrate this

fact by applying our algorithm. Firstly we take a minimal realization of r with the
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corresponding pencil

L =

⎛
⎜
⎜
⎜
⎜
⎝

1 0 0 −x2

0 1 −x2 0

0 −x1 1 −x1

−x1 0 x1 1

⎞
⎟
⎟
⎟
⎟
⎠

= A0 +A1x1 +A2x2.

The system Re(DA1) = Re(DA2) = 0 has a solution space of dimension 2. Adding the

constraint Re(DA0) ⪰ 0 we obtain a one-dimensional salient convex cone C. For every

D ∈ C we have rk Re(DA0) = 2, so r is not strongly bounded. By choosing

D =

⎛
⎜
⎜
⎜
⎜
⎝

0 0 −1 0

0 0 0 1

1 0 1 0

0 −1 0 1

⎞
⎟
⎟
⎟
⎟
⎠

we get

Re(DA1) = Re(DA2) = 0, Re(DA0) = diag(0,0,1,1).

Hence let

L′ =

⎛
⎜
⎜
⎜
⎜
⎝

1 0

0 1

0 −x1

−x1 0

⎞
⎟
⎟
⎟
⎟
⎠

.

By choosing

D′ = (
1 0 0 0

0 1 0 0
)

we verify that L′ is free elliptic. Therefore L is free elliptic and so r is regular.

Example 5.6. The rational function

r = (2 + (x1x2 − x1 − 2x2) (1 + x
2
2)

−1
+ (x1 + x2 − 1) (1 + x2

2)
−1
x1)

−1

is strongly bounded since it admits a realization with the strongly free elliptic pencil

⎛
⎜
⎜
⎝

1 −x2 0

x2 1 −x1 − x2 + 1

0 x1 + x2 − 1 1

⎞
⎟
⎟
⎠

.

Example 5.7. Let k = C and consider

r = (1 + x2
2 − ((1 − i)x1 + x2) (1 + 2x2

1)
−1
((1 + i)x1 + x2))

−1
.

Note that (X1,X2) ∈ domsa r for every pair of commuting hermitian matrices X1 and X2.

It can be checked that r admits a minimal realization with the pencil

L =

⎛
⎜
⎜
⎜
⎜
⎝

1 (−1 − i)x1 −x1 0

0 1 0 −x1

(−1 + i)x2 0 1 −x2

0 (−1 − i)x2 0 1

⎞
⎟
⎟
⎟
⎟
⎠

= A0 +A1x1 +A2x2.
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If

D =

⎛
⎜
⎜
⎜
⎜
⎝

0 0 0 i

0 1 + i i 0

0 i 0 0

i 0 0 1
2 +

i
2

⎞
⎟
⎟
⎟
⎟
⎠

,

then

Re(DA1) = Re(DA2) = 0, Re(DA0) = diag (0,1,0,
1

2
) .

Therefore we are left with

L′ =

⎛
⎜
⎜
⎜
⎜
⎝

1 −x1

0 0

(−1 + i)x2 1

0 0

⎞
⎟
⎟
⎟
⎟
⎠

= A′
0 +A

′
1x1 +A

′
2x2.

But for every D′ satisfying Re(D′A′
1) = Re(D′A′

2) = 0 we have Re(D′A′
0) = (

0 α
ᾱ 0 ) for α ∈ C,

so L′ and L are not free elliptic. Hence r is not regular. To find X ∈M2
sa∖dom r consider

the structure of L′. We see that if 1
2 +

i
2 is an eigenvalue of X2X1, then (X1,X2) ∉ domsa r.

For a concrete example, take

X1 = (
0 1 + i

1 − i 0
) , X2 = (

0 i
2

− i
2 0
) .

Example 5.8. Again let k = R. Another nontrivial example is the following inverse of a

sum of hermitian squares:

r = ((1 + (x2x1)
2x2

2) (1 + x
2
2(x1x2)

2) − (x1x2 − x2x1)
2
)
−1
.

The size of its minimal realization is 15. With routine computation one observes that

Re(DA1) = Re(DA2) = 0 and Re(DA0) ⪰ 0 ⇒ Re(DA0) = 0,

so r is not regular. However, it is not apparent which concrete tuple of symmetric matrices

is not contained in domsa r; using brute force one can check that domsa r = Msa
2 (R) and

domsa r ≠ Msa
3 (R).
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