REGULAR AND POSITIVE NONCOMMUTATIVE RATIONAL FUNCTIONS

 $\rm IGOR$ KLEP $1,$ JAMES ELDRED PASCOE 2, AND JURIJ VOLČIČ 3

ABSTRACT. Call a noncommutative rational function r regular if it has no singularities, i.e., $\mathbb{r}(X)$ is defined for all tuples of self-adjoint matrices X. In this article regular noncommutative rational functions r are characterized via the properties of their (minimal size) linear systems realizations $\mathbf{r} = \mathbf{b}^* L^{-1} \mathbf{c}$. It is shown that r is regular if and only if $L = A_0 + \sum_i A_i x_i$ is free elliptic. Roughly speaking, a linear pencil L is free elliptic if, after a finite sequence of basis changes and restrictions, the real part of A_0 is positive definite and the other A_j are skew-adjoint. The second main result is a solution to a noncommutative version of Hilbert's 17th problem: a positive regular noncommutative rational function is a sum of squares.

1. INTRODUCTION

Let k be the field of real or complex numbers and $\boldsymbol{x} = (x_1, \ldots, x_q)$ a tuple of freely noncommuting variables. By the theory of division rings [\[Ami66,](#page-18-0) [Coh95,](#page-19-0) [Reu96\]](#page-20-0), the free algebra $\< x$ of noncommutative polynomials admits a universal skew field of fractions k<(x>), whose elements are called noncommutative rational functions. They are usually represented with syntactically valid expressions involving $x_1, \ldots, x_g, +, \cdot, (0, 0, 1)$ and elements from k. Noncommutative rational functions play a prominent role in a wide range of areas. In ring theory, they appear as quasideterminants of matrices over noncommutative rings [\[GKLLRT95\]](#page-19-1) and in the context of rings satisfying rational identities [\[Ber76\]](#page-18-1). In theoretical computer science, recognizable series of weighted automata are precisely formal power series expansions of noncommutative rational functions [\[BR11\]](#page-19-2). For similar reasons they emerge as transfer functions of linear systems evolving along free semigroups in control theory [\[BGM05\]](#page-18-2). These linear systems techniques are also applied in free probability for computing asymptotic eigenvalue distributions of noncommutative rational function evaluations on random matrices [\[BMS16\]](#page-18-3). In free analysis they are noncommutative analogs of meromorphic functions and are endowed with the difference-differential calculus [\[K-VV12,](#page-19-3) [AM15\]](#page-18-4). Finally, ensembles of noncommutative rational functions are natural maps between noncommutative semialgebraic domains in free real algebraic geometry [\[HMV06,](#page-19-4) [BPT13\]](#page-19-5).

Date: April 30, 2018.

²⁰¹⁰ Mathematics Subject Classification. Primary 13J30, 16K40, 47L07; Secondary 15A22, 26C15, 47A63.

Key words and phrases. Noncommutative rational function, linear pencil, realization theory, regular rational function, positive rational function, Hilbert's 17th problem.

¹Supported by the Marsden Fund Council of the Royal Society of New Zealand. Partially supported by the Slovenian Research Agency grants P1-0222 and L1-6722.

²Supported by a National Science Foundation Mathematical Sciences Postdoctoral Research Fellowship Award No. DMS-1606260.

³Supported by University of Auckland Doctoral Scholarship.

While the interest in noncommutative rational functions originated from the universal property of the free skew field $\&x\},\$ their importance in aforementioned areas derives from properties of their matrix evaluations. Here one evaluates a given noncommutative rational function r on tuples of self-adjoint matrices, which leads to the notion of the domain of r. Minimal factorizations [\[K-VV09\]](#page-19-6) and the extent of matrix convexity [\[HMV06\]](#page-19-4) of a noncommutative rational function r are examples of problems that directly depend on knowing the domain of r. On a more applied side, understanding of the singularities of (non)commutative rational functions is also important in control theory, e.g. for stability questions [\[GK-VVW16\]](#page-19-7) or controllability and observability of linear systems [\[WSCP91\]](#page-20-1). In this paper we analyze two properties of noncommutative rational functions arising from their evaluations, namely regularity and positivity.

A noncommutative rational function \mathbb{r} is *regular* if its domain contains all tuples of like sized self-adjoint matrices. For example, $(1+x_1^2)^{-1}$ and $(1+x_1^2x_2^2)^{-1}$ are regular func-tions^{[1](#page-1-0)}, as well as are all noncommutative polynomials. In general, checking the regularity of \mathbb{r} is harder if the representatives of \mathbb{r} are complicated, e.g. if they contain numerous nested inverses. Furthermore, we note that, as in the commutative case, further difficulties arise because singularities of a given rational expression might be removable. The proper tool for investigating regularity comes from automata and control theory: every noncommutative rational function admits a linear systems realization

$$
\mathbb{T} = \mathbf{c}^* L^{-1} \mathbf{b},
$$

where $\mathbf{b}, \mathbf{c} \in \mathbb{R}^d$ and L is a linear matrix pencil of size d: $L = A_0 + \sum_j A_j x_j$ with $A_j \in M_d(\mathbb{R})$. For the existence we refer to [\[Coh95,](#page-19-0) Sections 4.2 and 6.2] or [\[BGM05\]](#page-18-2) for the case $A_0 = I$. Linear pencils give rise to linear matrix inequalities $L(x) \geq 0$ and are thus ubiquitous in optimization [\[WSV12\]](#page-20-2), systems engineering [\[SIG97\]](#page-20-3) and in real algebraic geometry, see e.g. determinantal representations of polynomials $[Br\ddot{a}11, NT12]$ $[Br\ddot{a}11, NT12]$, the solution of the Lax conjecture [\[HV07\]](#page-19-9), and the solution of the Kadison-Singer paving conjecture [\[MSS15\]](#page-20-5). If the linear pencil L is of minimal size satisfying (1.1) , then the "no hidden singularities" theorem" [\[K-VV09,](#page-19-6) Theorem 3.1] implies that r is regular if and only if every evaluation of L on a tuple of self-adjoint matrices is nonsingular. Characterization of regular functions thus turns into a problem of recognizing everywhere invertible pencils.

After describing regular functions we address their positivity. We say that a noncommutative rational function r is *positive* if $r(X)$ is positive semidefinite for every tuple of selfadjoint matrices X in the domain of r. For example, x_1^{-2} and $x_2^2 - x_2 x_1 (1+x_1^2)^{-1} x_1 x_2$ are positive functions. We solve the analog of Hilbert's 17th problem for regular noncommutative rational functions. The original solution by Artin, stating that a nonnegative commutative polynomial is a sum of squares of rational functions (see e.g. [\[BCR98,](#page-19-10) [Mar08,](#page-20-6) [DAn11\]](#page-19-11)), has been extended to the noncommutative setting in various ways [\[PS76,](#page-20-7) [Hel02,](#page-19-12) [McC01\]](#page-20-8). For example, Helton [\[Hel02,](#page-19-12) Theorem 1.1] showed that every positive noncommutative polynomial is a sum of hermitian squares $\sum_k q_k^*$ $\chi_k^* q_k$, where q_k are noncommutative polynomials. More general results about noncommutative polynomials that are positive semidefinite on certain free semialgebraic sets are now commonly known as noncommutative

¹ If S_1 and S_2 are positive semidefinite matrices, then the eigenvalues of S_1S_2 are real and nonnegative, so $I + S_1S_2$ is invertible.

Positivstellensätze [\[HMP07,](#page-19-13) [Nel,](#page-20-9) [HKM16\]](#page-19-14); for positivity results on free analytic functions see e.g. [\[PT-D,](#page-20-10) [BK-V15\]](#page-18-5).

1.1. Main results and reader's guide. In Section [2](#page-3-0) we characterize everywhere invertible pencils. For example, if A_i are skew-adjoint matrices for $1 \leq j \leq g$ and A_0 is a sum of a positive definite and a skew-adjoint matrix, then $\Lambda(X) = A_0 \otimes I + \sum_{j>0} A_j \otimes X_j$ is clearly nonsingular for every tuple X of self-adjoint matrices. The condition on the coefficients of Λ can be also stated as

$$
\operatorname{Re}(\Lambda) = \operatorname{Re}(\Lambda(0)) > 0,
$$

where Re $Y = \frac{1}{2}$ $\frac{1}{2}(Y+Y^*)$ denotes the real part of a matrix. More generally, we say that a linear pencil L is free elliptic if there exist constant matrices $D_1, \ldots, D_\ell, V_1, \ldots, V_{\ell-1}$ and $V_{\ell} = 0$ of appropriate sizes such that

$$
\operatorname{Re}(D_k L V_1 \cdots V_{k-1}) = \operatorname{Re}(D_k L(0) V_1 \cdots V_{k-1}) \ge 0
$$

for $1 \leq k \leq \ell$ and the columns of V_k form a basis of ker $\text{Re}(D_kL(0)V_1\cdots V_{k-1})$. See also Definition [2.1](#page-3-1) for a recursive version. The pencil Λ described previously is free elliptic with $\ell = 1$ and $D_1 = I$. The name refers to elliptic systems of partial differential equations [\[Mir70,](#page-20-11) [GB83\]](#page-19-15) and is justified in our main result on linear pencils.

Theorem A. A pencil L is free elliptic if and only if $L(X)$ is of full rank for every self-adjoint tuple X.

More precise statements involving size bounds are given in Proposition [2.4](#page-4-0) and Theorem [2.6.](#page-6-0) For square pencils L, $L(X)$ is always invertible if and only if the free locus of L, defined in [\[KV\]](#page-19-16), does not contain any self-adjoint tuples. Theorem [A](#page-2-0) can be therefore seen as a weak real Nullstellensatz for linear pencils. In Section [3](#page-8-0) we apply Theorem [A](#page-2-0) to regular noncommutative rational functions via the realization theory. Among regular functions we also describe *strongly bounded functions* \mathbb{r} , i.e., those for which there exist $\varepsilon, M > 0$ such that for every (not necessarily self-adjoint) tuple X satisfying $||X^* - X|| < \varepsilon$ we have $\|f(X)\| \leq M$.

Theorem B. Let $\mathbf{r} \in \mathbb{k}\langle x \rangle$. Then \mathbf{r} is regular if and only if $\mathbf{r} = \mathbf{c}^* L^{-1} \mathbf{b}$ for some free elliptic pencil L. Furthermore, r is strongly bounded if and only if $\mathbf{r} = \mathbf{c}^*(A_0 + \sum_j A_j x_j)^{-1} \mathbf{b}$, where $\text{Re } A_0$ is positive definite and A_j are skew-adjoint for $j > 0$.

See Theorem [3.7](#page-11-0) for the proof. In Section [4](#page-12-0) we address positivity of noncommutative rational functions. We prove the following analog of Helton's sum of squares theorem [\[Hel02\]](#page-19-12) for regular noncommutative rational functions.

Theorem C. Let $\mathbb{r} \in \mathbb{k} \langle x \rangle$ be regular. Then $\mathbb{r}(X)$ is positive semidefinite for every tuple X of self-adjoint matrices if and only if \mathbb{r} is a sum of hermitian squares of regular functions in $\Bbbk\langle x\rangle$.

This statement is proved as Theorem [4.5](#page-14-0) using a Hahn-Banach separation argument for a convex cone in a finite-dimensional vector space constructed from a noncommutative rational function. Lastly, we discuss the algorithmic perspective and present examples in Section [5.](#page-15-0)

Acknowledgments. The authors thank Bill Helton for drawing the connection to elliptic systems of PDEs to their attention.

2. Full rank pencils

In this section we prove that a linear pencil is free elliptic if and only if it is of full rank on all self-adjoint tuples (Theorem [2.6\)](#page-6-0).

2.1. **Basic notation.** Throughout the paper let $\mathbb{k} \in \{\mathbb{R}, \mathbb{C}\}\$ and fix $g \in \mathbb{N}$. Let $\mathbb{k} < x$ = $k < x_1, \ldots, x_q$ be the free k-algebra of noncommutative polynomials in freely noncommuting variables x_1, \ldots, x_g . We endow k< x > with the involution $*$ satisfying $x_j^* = x_j$ and $\alpha^* = \bar{\alpha}$ for $\alpha \in \mathbb{k}$.

Let $*$ be the involution on $M_n(\mathbb{k})$ given by the transpose (if $\mathbb{k} = \mathbb{R}$) or the conjugate transpose (if $\Bbbk = \mathbb{C}$) and let $M_n(\Bbbk)_{sa} \subseteq M_n(\Bbbk)$ be the R-subspace of self-adjoint matrices. The notation $A > 0$ or $A \ge 0$ for $A \in M_n(\mathbb{k})_{\text{sa}}$ means that A is positive definite or positive semidefinite, respectively, while $\|\cdot\|$ always refers to the operator norm. Furthermore denote

$$
\mathcal{M}^g = \bigcup_n \mathcal{M}_n(\mathbb{k})^g, \qquad \mathcal{M}_{\text{sa}}^g = \bigcup_n \mathcal{M}_n(\mathbb{k})^g_{\text{sa}}
$$

and

$$
\operatorname{Re} X = \frac{1}{2}(X + X^*), \qquad \operatorname{Im} X = \begin{cases} \frac{1}{2}(X - X^*) & \text{if } \mathbb{k} = \mathbb{R} \\ \frac{1}{2i}(X - X^*) & \text{if } \mathbb{k} = \mathbb{C} \end{cases}
$$

for $X \in \mathcal{M}^g$.

2.1.1. Linear matrix pencils. If $A_0, \ldots, A_q \in M_{d \times e}(\mathbb{k})$, then

(2.1)
$$
L = A_0 + \sum_{j=1}^{g} A_j x_j \in M_{d \times e}(\mathbb{k}) \otimes \mathbb{k} \langle x \rangle
$$

is a (rectangular) pencil of size $d \times e$. It can be naturally evaluated on \mathcal{M}^g as

$$
L(X) = A_0 \otimes I + \sum_{j=1}^{g} A_j \otimes X_j \in \mathcal{M}_{dn \times en}(\mathbb{k})
$$

for $X \in M_n(\mathbb{k})^g$.

2.2. Free elliptic pencils.

Definition 2.1. Let $d \ge e$ and $L = A_0 + \sum_j A_j x_j$ with $A_j \in M_{d \times e}(\mathbb{k})$.

(1) L is strongly free elliptic if there exists $D \in M_{\epsilon \times d}(\mathbb{k})$ such that

 $Re(DA_0) > 0$, $Re(DA_j) = 0$ for $j > 0$.

(2) With respect to e we recursively define L to be free elliptic if

(a) it is strongly free elliptic; or

(b) there exists $D \in M_{exd}(\mathbb{k})$ such that

$$
0 \neq \text{Re}(DA_0) \ge 0, \qquad \text{Re}(DA_j) = 0 \quad \text{for } j > 0
$$

and LV is free elliptic, where columns of V form a basis for ker $\text{Re}(DA_0)$. Note that LV is a pencil of size $d \times e'$ with $e' < e$.

A pencil of size $d \times e$ with $d \lt e$ is (strongly) free elliptic if and only if L^* is (strongly) free elliptic.

Example 2.2. Let $\mathbb{k} = \mathbb{R}$, $q = 2$ and

$$
L = \begin{pmatrix} 1 & x_1 - x_2 & x_1 - 1 \\ x_2 - x_1 & 1 & 1 \\ 1 - x_1 & -1 & 0 \end{pmatrix} = A_0 + A_1 x_1 + A_2 x_2.
$$

It is easy to check that every 3×3 matrix D satisfying $\text{Re}(DA_1) = \text{Re}(DA_2) = 0$ is a scalar multiple of I , so L is not strongly free elliptic. However, we have

$$
Re(A_0) = diag(1, 1, 0), \qquad Re(A_1) = Re(A_2) = 0.
$$

Restricting to the kernel of $\text{Re}(A_0)$ we obtain

$$
V = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \qquad L' = LV = \begin{pmatrix} x_1 - 1 \\ 1 \\ 0 \end{pmatrix}.
$$

Choosing $D' = (0 \ 1 \ 0)$ we get $D'L' = 1$, hence L' is strongly free elliptic and L is free elliptic.

Remark 2.3. The terminology of Definition [2.1](#page-3-1) refers to the ellipticity of partial differential equations [\[Nir59,](#page-20-12) [Mir70,](#page-20-11) [GB83\]](#page-19-15). For example, a first order system

$$
\sum_{j=1}^{g} P_j(x) \frac{\partial u}{\partial x_j} = f(x, u),
$$

where P_i are $d \times e$ matrices with $d \geq e$, is elliptic at the point x if the matrix

$$
P(x,\xi) = \sum_{j}^{g} P_j(x)\xi_j
$$

has rank e for all $\xi \in \mathbb{R}^g \setminus \{0\}$; see [\[GB83,](#page-19-15) Section 4.7]. The analogy between free elliptic pencils and elliptic systems becomes clear in Theorem [2.6](#page-6-0) where we prove that a pencil L is free elliptic if and only if $L(X)$ is of full rank for all $X \in \mathcal{M}_{sa}^g$.

Proposition 2.4. A pencil L of size $d \times e$ with $d \geq e$ is strongly free elliptic if and only if for some $\varepsilon > 0$,

(2.2)
$$
L(X)^* L(X) > \varepsilon I \quad \text{for all } X \in \mathcal{M}_{\text{sa}}^g.
$$

Furthermore, it suffices to test [\(2.2\)](#page-4-1) for X of size at most $(g+1)e^2$.

Proof. Let $L = A_0 + \sum_j A_j x_j$ with $A_j \in M_{d \times e}(\mathbb{k})$ and $d \geq e$.

(⇒) Let D be a matrix with Re(DA_0) = R^{*}R for R $\in GL_d(\mathbb{k})$ and Re(DA_i) = 0 for j > 0. Denote $K = R^{-*} \operatorname{Im}(DL) R^{-1}$ and let $\kappa = 1$ if $\mathbb{k} = \mathbb{R}$ and $\kappa = i$ if $\mathbb{k} = \mathbb{C}$. If $X \in M_n(\mathbb{k})^g$ and $\mathbf{v} \in \mathbb{R}^{en}$, then

$$
||D||^2 \langle L(X)\mathbf{v}, L(X)\mathbf{v} \rangle \ge \langle (DL)(X)\mathbf{v}, (DL)(X)\mathbf{v} \rangle
$$

\n
$$
= \langle (R^*R + \kappa R^*KR)(X)\mathbf{v}, (R^*R + \kappa R^*KR)(X)\mathbf{v} \rangle
$$

\n
$$
\ge ||R^{-*}||^{-2} \langle (I + \kappa K)(X)(R \otimes I)\mathbf{v}, (I + \kappa K)(X)(R \otimes I)\mathbf{v} \rangle
$$

\n
$$
\ge ||R^{-*}||^{-2} \langle (R \otimes I)\mathbf{v}, (R \otimes I)\mathbf{v} \rangle
$$

\n
$$
\ge ||R^{-*}||^{-4} \langle \mathbf{v}, \mathbf{v} \rangle
$$

since κK is skew-adjoint on $\mathcal{M}_{\text{sa}}^g$. Hence we can take $\varepsilon = ||R^{-1}||^{-4}||D||^{-2}$.

(←) Since A_0 is of full rank, there exists $R \in GL_d(\mathbb{k})$ such that RA_0 is an isometry, i.e., $(RA_0)^*(RA_0) = I$. Since

$$
\langle (RL)(X)\mathbf{v}, (RL)(X)\mathbf{v} \rangle \geq ||R^{-1}||^{-2} \langle L(X)\mathbf{v}, L(X)\mathbf{v} \rangle
$$

for every $X \in M_n(\Bbbk)_{\text{sa}}^g$ and $\mathbf{v} \in \mathbb{k}^{en}$, we have $(RL)(X)^*(RL)(X) > \varepsilon \|R^{-1}\|^{-2}I$.

Without loss of generality we can thus assume that A_0 is an isometry. Also let

$$
\mathcal{K} = \left(\sum_{j>0} \operatorname{im} A_j\right)^{\perp}.
$$

Because $L^*L - \varepsilon I$ is a positive polynomial (on matrices of size at most $(g+1)e^2$), it is a sum of hermitian squares of matrix-valued polynomials of degree at most 1 by [\[McC01,](#page-20-8) Theorem 0.2] or [\[MP05,](#page-20-13) Theorem 1.1]:

$$
L^*L - \varepsilon I = \sum_{k=1}^N \left(C_{k,0} + \sum_j C_{k,j} x_j \right)^* \left(C_{k,0} + \sum_j C_{k,j} x_j \right), \qquad C_{k,j} \in M_e(\mathbb{R}).
$$

If $\mathbf{C} = (C_{k,j})_{j,k} \in M_e(\mathbb{R})^{N \times (g+1)}$ and $\ell^* = (1, x_1, \dots, x_g)$, then

 $L^*L - \varepsilon I = \ell^*{\bf C}^*{\bf C}\ell.$

By looking at the coefficients of L we conclude that the positive semidefinite matrix $\mathbf{A} = \mathbf{C}^* \mathbf{C}$ is of the form

(2.3)
$$
\mathbf{A} = \begin{pmatrix} I - \varepsilon I & B_1 & B_2 & \cdots & B_g \\ B_1^* & A_1^* A_1 & A_1^* A_2 & \cdots & A_1^* A_g \\ B_2^* & A_2^* A_1 & A_2^* A_2 & \cdots & A_2^* A_g \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ B_g^* & A_g^* A_1 & A_g^* A_2 & \cdots & A_g^* A_g \end{pmatrix}
$$

where $B_j \in \mathcal{M}_e(\Bbbk)$ satisfy

(2.4)
$$
B_j + B_j^* = A_0^* A_j + A_j^* A_0.
$$

Let $\mathbf{v} \in \mathbb{R}^{gd}$ be arbitrary and set $\mathbf{w} = 0 \oplus \mathbf{v} \in \mathbb{R}^{(g+1)d}$. If \mathbf{v} satisfies

$$
(A_1 \cdots A_g) \mathbf{v} = 0,
$$

then $\mathbf{w}^* \mathbf{A} \mathbf{w} = 0$ and therefore $\mathbf{A} \mathbf{w} = 0$, so

$$
(B_1 \cdots B_g) \mathbf{v} = 0.
$$

Hence the rows of a block matrix $(B_1 \cdots B_g)$ lie in the linear span of the rows of $(A_1 \cdots A_g)$, so there exists $T \in M_{exd}(\mathbb{k})$ such that

(2.5)
$$
(B_1 \cdots B_g) = T(A_1 \cdots A_g), \qquad T\mathcal{K} = 0.
$$

Since $L(0)^*L(0) - \varepsilon I > 0$ and $\mathbf{A} \geq 0$, the Schur complement of $I - \varepsilon I$ in \mathbf{A}

(2.6)
$$
\begin{pmatrix} A_1^* \\ \vdots \\ A_g^* \end{pmatrix} (A_1 \cdots A_g) - (1 - \varepsilon)^{-1} \begin{pmatrix} B_1^* \\ \vdots \\ B_g^* \end{pmatrix} (B_1 \cdots B_g)
$$

is also positive semidefinite. Combining (2.5) and (2.6) yields

$$
(2.7) \tI - (1 - \varepsilon)^{-1} T^* T \ge 0.
$$

Let $D = A_0^* - T$. Now [\(2.4\)](#page-5-2) and [\(2.5\)](#page-5-0) imply $\text{Re}(DA_j) = 0$ for $j > 0$, while [\(2.7\)](#page-5-3) together with $A_0^*A_0 = I$ yields

$$
0 \le A_0^* \left(\left(1 - \varepsilon \right) I - T^* T \right) A_0 = 2 \operatorname{Re} (DA_0) - \left(\varepsilon I + A_0^* D^* D A_0 \right),
$$

and therefore $\text{Re}(DA_0) > 0$.

Lemma 2.5. Let $\mathbf{u}_1, \ldots, \mathbf{u}_n \in \mathbb{R}^d$ and $\mathbf{v}_1, \ldots, \mathbf{v}_n \in \mathbb{R}^m$. If $(\mathbf{w}^* \otimes I)(\sum_k \mathbf{u}_k \otimes \mathbf{v}_k) = 0$ for all $\mathbf{w} \in \mathbb{R}^d$, then $\sum_k \mathbf{u}_k \otimes \mathbf{v}_k = 0$.

Proof. Without loss of generality we can assume that v_k are linearly independent. If

$$
\sum_k (\mathbf{w}^* \mathbf{u}_k) \mathbf{v}_k = 0,
$$

then $\mathbf{w}^* \mathbf{u}_k = 0$ for all k. Since this holds for every \mathbf{w} , we have $\mathbf{u}_k = 0$ and hence $\sum_k \mathbf{u}_k \otimes \mathbf{v}_k =$ $0.$

The proof of the following theorem applies a specialized GNS construction that is inspired by a more general and intricate version in the proof of the matricial real Nullstellensatz in [\[Nel\]](#page-20-9).

Theorem 2.6. For a pencil $L = A_0 + \sum_j A_j x_j$ with $A_j \in M_{d \times e}(\mathbb{k})$ and $d \ge e_j$, the following are equivalent:

- (i) L is free elliptic;
- (ii) L is of full rank on $\mathcal{M}_{\text{sa}}^g$;
- (iii) $L(X)$ is of full rank for all $X \in \mathcal{M}_{sa}^g$ of size at most $(g+1)e^2$.

Remark 2.7. Square linear pencils that are nonsingular on whole \mathcal{M}^g been characterized in [\[KV,](#page-19-16) Corollary 3.4]: if $L = A_0 + \sum_j A_j x_j$, then $\det L(X) \neq 0$ for all $X \in \mathcal{M}^g$ if and only if $A_0^{-1}A_1, \ldots, A_0^{-1}A_g$ are jointly nilpotent matrices.

Remark 2.8. In the opposite direction, square linear pencils L with det $L(X) = 0$ for all $X \in \mathcal{M}_{sa}^g$ are precisely those that are not invertible as matrices over $\Bbbk \{\pmb{x}\}\.$ By [\[Coh95,](#page-19-0) Corollary 6.3.6], a linear pencil $A_0 + \sum_j A_j x_j$ with $A_j \in M_d(\mathbb{k})$ is not invertible over $\mathbb{k}\langle x \rangle$ if and only if there exist matrices $U, V \in GL_d(\mathbb{k})$ such that for $0 \leq j \leq g$ we have a block decomposition

$$
UA_jV = \begin{pmatrix} * & 0 \\ * & * \end{pmatrix},
$$

where the zero block is of size $d_1 \times d_2$ with $d_1 + d_2 > d$. A linear bound on size of X for testing det $L(X) = 0$ has been given in [\[DM\]](#page-19-17).

Proof of Theorem [2.6.](#page-6-0) We prove (i)⇒(ii) and (iii)⇒(i) by induction on e, while (ii)⇒(iii) is obvious.

 $(i) \Rightarrow (ii)$ By Proposition [2.4,](#page-4-0) the claim holds if L is strongly free elliptic. If L is free elliptic but not strongly free elliptic there exists $D \in M_{\epsilon \times d}(\mathbb{k})$ such that $0 \neq \text{Re}(DA_0) \geq 0$, $\text{Re}(DA_i) = 0$ for $j > 0$ and LV is free elliptic, where columns of V constitute a basis of ker Re(DA_0). Let $X \in M_n(\mathbb{k})_{sa}^g$ and consider the decomposition

$$
\ker L(X) \subseteq \mathbb{k}^{en} = \mathbb{k}^e \otimes \mathbb{k}^n = ((\ker \text{Re}(DA_0))^{\perp} \otimes \mathbb{k}^n) \oplus (\ker \text{Re}(DA_0) \otimes \mathbb{k}^n).
$$

If \mathfrak{u} \mathfrak{v} = ker $L(X)$, then

$$
(\mathbf{u}^* \quad \mathbf{v}^*) \operatorname{Re}(DL)(X) \begin{pmatrix} \mathbf{u} \\ \mathbf{v} \end{pmatrix} = 0
$$

and so $\mathbf{u}^*(\text{Re}(DA_0) \otimes I)\mathbf{u}^* = 0$. Hence $\mathbf{u} = 0$ and $(LV)(X)\mathbf{v} = 0$, therefore the induction hypothesis implies $\mathbf{v} = 0$. Thus L is of full rank on \mathcal{M}_{sa}^g .

(iii)⇒(i) Assume that L is not free elliptic. Therefore for every D such that 0 \neq $\text{Re}(DA_0) \geq 0$ and $\text{Re}(DA_i) = 0$ for $j > 0$, LV is not free elliptic, where V consists of a basis of ker Re(DA_0). By assumption there exists $X \in \mathcal{M}_{sa}^g$ such that $(LV)(X)$ is not of full rank, so $L(X)$ is not of full rank. Hence we need to consider the situation when L satisfies

(2.8)
$$
\forall D: \quad \text{Re}(DA_0) \ge 0 \text{ and } \text{Re}(DA_j) = 0 \text{ for } j > 0 \implies \text{Re}(DA_0) = 0.
$$

For $k \in \{0, 1, 2\}$ define

$$
\mathcal{V}_k = \{ p \in \mathcal{M}_e(\mathbb{k}) \otimes \mathbb{k} < \mathbf{x} > : \deg \le k \}, \quad \mathcal{U} = \mathcal{M}_{e \times d}(\mathbb{k})L + L^* \mathcal{M}_{d \times e}(\mathbb{k}),
$$
\n
$$
\mathcal{V}_2^{\text{sa}} = \{ p \in \mathcal{V}_2 : p^* = p \}, \quad \mathcal{S}_2 = \left\{ \sum_j p_j^* p_j : p_j \in \mathcal{V}_1 \right\}.
$$

Here \mathcal{V}_k and \mathcal{U} are k-linear spaces, while $\mathcal{V}_2^{\text{sa}}$ and \mathcal{S}_2 are a R-linear space and a convex cone, respectively. It is easy to verify that S_2 is closed in \mathcal{V}_2 (see e.g. the proofs of [\[MP05,](#page-20-13) Proposition 3.4] or Proposition [4.1](#page-12-1) below). Observe that (2.8) implies $\mathcal{U} \cap \mathcal{S}_2$ = {0}. Indeed, if $DL + L^*E^* \in S_2$, then $(DL + L^*E^*) + (EL + L^*D^*) \in S_2$ and so $\text{Re}((D + E)A_0) \ge 0$ and $\text{Re}((D+E)A_i) = 0$ for $j > 0$. Hence (2.8) implies $\text{Re}((D+E)A_0) = 0$ and consequently $DL + L^*E^* = 0.$

By [\[Kle55,](#page-19-18) Theorem 2.5] there exists a R-linear functional $\lambda : \mathcal{V}_2^{sa} + \mathcal{U} \to \mathbb{R}$ such that $\lambda(S_2 \setminus \{0\}) \subseteq \mathbb{R}_{>0}$ and $\lambda(U) = \{0\}$, which we extend to a k-linear functional $\Lambda : \mathcal{V}_2 \to \mathbb{R}$ by setting $\Lambda(p) = \lambda(\text{Re } p) + i\lambda(\text{Im } p)$ if $\Bbbk = \mathbb{C}$ and $\Lambda(p) = \lambda(\text{Re } p)$ if $\Bbbk = \mathbb{R}$. Consequently we obtain a scalar product $\langle p_1, p_2 \rangle \coloneqq \Lambda(p_2^* p_1)$ on \mathcal{V}_1 . Note that

$$
\langle ap,q\rangle = \Lambda(q^*ap) = \langle p,a^*q\rangle
$$

for all $a \in V_0$ and $p, q \in V_1$. Let $\pi : V_1 \to V_0$ be the orthogonal projection. For every $a, b \in V_0$ and $1 \leq j \leq g$ we have

$$
\langle \pi(ax_j), b \rangle = \langle ax_j, b \rangle = \langle x_j, a^*b \rangle = \langle \pi(x_j), a^*b \rangle = \langle a\pi(x_j), b \rangle,
$$

so

(2.9)
$$
\pi(ap) = a\pi(p) \qquad \forall a \in \mathcal{V}_0, \ p \in \mathcal{V}_1.
$$

Now define

$$
X_j: \mathcal{V}_0 \to \mathcal{V}_0, \qquad b \mapsto \pi(x_j b),
$$

$$
\ell_a: \mathcal{V}_0 \to \mathcal{V}_0, \qquad b \mapsto ab.
$$

It is easy to check that X_j is a self-adjoint operator that commutes with ℓ_a by [\(2.9\)](#page-7-1). Let $D \in M_{\epsilon \times d}(\mathbb{k})$ be arbitrary and consider $I \in M_{\epsilon}(\mathbb{k})$ as a vector in \mathcal{V}_0 . Then DL determines a linear operator $(DL)(X): \mathcal{V}_0 \to \mathcal{V}_0$ and

$$
\langle (DL)(X)I, b \rangle = \langle \pi (DL), b \rangle = \langle DL, b \rangle = \Lambda((b^*D)L) = 0
$$

for every $b \in V_0$ by (2.9) and the definition of Λ . Therefore $(DL)(X)I = 0$ and consequently $L(X)I = 0$ by Lemma [2.5.](#page-6-1)

Finally, the bound from the statement follows from Proposition [2.4](#page-4-0) and the fact that dim $V_0 = e^2 < (g+1)e^2$.

Remark 2.9. Let $L = A_0 + \sum_{i>0} A_i x_i$ be given and assume D satisfies

(2.10) Re(DA0) ⪰ 0, Re(DAj) = 0 for j > 0.

If $\text{Re}(DA_0) \neq 0$, then Theorem [2.6](#page-6-0) implies that L is free elliptic if and only if LV is free elliptic, where V comprises a basis of ker $\text{Re}(DA_0)$. This fact simplifies the ellipticity testing: we can do the recursion with an arbitrary D which non-trivially solves (2.10) in the sense that $\text{Re}(DA_0) \neq 0$.

3. Regular rational functions

In this section we turn our attention to regular nc rational functions, i.e., those without singularities. The main result, Theorem [3.7,](#page-11-0) shows that $r \in \mathbb{k}\langle x \rangle$ is regular (strongly bounded) if and only if it admits a realization with a (strongly) free elliptic pencil.

3.1. Preliminaries. We introduce noncommutative rational functions using matrix evaluations of formal rational expressions following [\[HMV06,](#page-19-4) [K-VV12\]](#page-19-3). Originally they were defined ring-theoretically, cf. [\[Ami66,](#page-18-0) [Coh95\]](#page-19-0). Noncommutative (nc) rational expressions are syntactically valid combinations of elements in k, freely noncommuting variables $\{x_1, \ldots, x_g\}$, arithmetic operations +, \cdot, \cdot ⁻¹ and parentheses (,). For example, $(1+x_2^{-1}x_1)^{-1}+1$, $x_1+(-1)x_1$ and 0^{-1} are nc rational expressions. Their set is $\mathcal{R}_k(x)$.

Given $r \in \mathcal{R}_{\mathbb{k}}(x)$ and $X \in M_n(\mathbb{k})^g$, the evaluation $r(X)$ is defined in the obvious way if all inverses appearing in r exist at X. The set of all $X \in \mathcal{M}^g$ such that r is defined at X is is called the **domain of** r and denoted dom r. Note that dom $r \n\cap M_n(\mathbb{k})^g \subseteq M_n(\mathbb{k})^g$ is a Zariski open set for every $n \in \mathbb{N}$ and therefore either empty or dense in $M_n(\mathbb{k})^g$ with respect to Euclidean topology. A nc rational expression r is **non-degenerate** if dom $r \neq \emptyset$. On the set of all non-degenerate nc rational expressions we define an equivalence relation $r_1 \sim r_2$ if and only if $r_1(X) = r_2(X)$ for all $X \in \text{dom } r_1 \cap \text{dom } r_2$. The equivalence classes with respect to this relation are called **noncommutative** (nc) rational functions. By [\[K-VV12,](#page-19-3) Proposition 2.1] they form a skew field denoted $\Bbbk\langle x\rangle$, which is the universal skew field of fractions of $\< x$ by [\[Coh95,](#page-19-0) Section 4.5]. The equivalence class of a nc rational expression $r \in \mathcal{R}_k(x)$ is written as $r \in k(x)$. The previously defined involution on $\Bbbk \ll z$ naturally extends to $\Bbbk \ll z$.

We define the **domain** of a nc rational function $\mathbf{r} \in \mathbb{k} \langle x \rangle$ as the union of dom r over all representatives $r \in \mathcal{R}_{\mathbb{k}}(x)$ of r. Lastly, let

> $\text{dom}_{\text{sa}} r = \text{dom } r \cap \mathcal{M}_{\text{sa}}^g$ s_{sa}^g , dom_{sa} r = dom r ∩ $\mathcal{M}_{\text{sa}}^g$.

For a non-degenerate $r \in \mathcal{R}_k(\boldsymbol{x})$ we have dom_{sa} $r \neq \emptyset$ if and only if dom $r \neq \emptyset$, see e.g. [\[Vol,](#page-20-14) Remark 6.8].

3.1.1. Realizations of nc rational functions. For every $\mathbf{r} \in \mathbb{k} \langle x \rangle$ there exist $d \in \mathbb{N}$, $\mathbf{b}, \mathbf{c} \in \mathbb{k}^d$ and a linear pencil L of size d such that

$$
\mathbb{r} = \mathbf{c}^* L^{-1} \mathbf{b},
$$

cf. [\[Coh95,](#page-19-0) Section 4.2]. We say that (3.1) is a **realization** of r of size d; we refer to [\[Coh95,](#page-19-0) [BR11\]](#page-19-2) for good expositions on classical realization theory.

Fix $r \in \mathbb{k} \& x \&$ and suppose $0 \in \text{dom } r$. In general, r admits various realizations. A realization of r whose size is smallest among all realizations of r is called **minimal**. These are unique up to basis change [\[BR11,](#page-19-2) Theorem 2.4], and if $c^*L^{-1}b$ is a minimal realization of r, then dom $r \in \{X \in \mathcal{M}^g : \det L(X) \neq 0\}$, see [\[K-VV09,](#page-19-6) Theorem 3.1].

3.2. Regularity.

Definition 3.1. We say that $\mathbf{r} \in \mathbb{k} \langle x \rangle$ is:

- (1) regular if dom_{sa} $r = \mathcal{M}_{\text{sa}}^g$;
- (2) **bounded** if there exists $M > 0$ such that $||\mathbf{r}(X)|| \leq M$ for all $X \in \text{dom}_{\text{sa}} \mathbf{r}$.
- (3) strongly bounded if there exist $\varepsilon > 0$ and $M > 0$ such that $||\mathbf{r}(X)|| \leq M$ for all $X \in \text{dom }\mathbb{r}$ with $\|\operatorname{Im} X\| < \varepsilon$.

Analogously, we say that $r \in \mathcal{R}_k(\boldsymbol{x})$ is regular if dom_{sa} $r = \mathcal{M}_{sa}^g$.

This definition is naturally extended to matrices over $\kappa(x)$. Obviously a regular expression yields a regular function and (3) implies (2). Using Riemann's removable singularities theorem [\[Kra01,](#page-19-19) Theorem 7.3.3] it is not hard to deduce that (3) implies (1) ; however, this is also a consequence of Theorem [3.7.](#page-11-0)

Example 3.2. Examples of regular but not bounded nc rational functions are nonconstant nc polynomials. An example of a bounded but not regular (and hence also not strongly bounded) function is $\mathbb{r} = (1 + x_1 x_2^{-2} x_1)^{-1}$: indeed, we have $\|\mathbb{r}(X_1, X_2)\| \leq 1$ for all $(X_1, X_2) \in$ dom_{sa} r and $(0,0) \notin \text{dom } r$. On the other hand, $\left(\frac{1}{2}\right)$ $\frac{1}{2} + x_1^2 + x_2^2 + x_1^2 x_2^2$ $\big)$ ⁻¹ is an example of a strongly bounded rational function.

Proposition 3.3. Let M be a square matrix over $\&\{\mathbf{x}\}\$ and assume each of its entries admits a regular rational expression. If $M(X)$ is nonsingular for every $X \in \mathcal{M}_{\text{sa}}^g$, then every entry of M^{-1} admits a regular expression.

Proof. We prove the statement by induction on the size d of M. If $d = 1$, then $M = r$ is an everywhere invertible regular rational function with a corresponding regular expression r ; hence M^{-1} is given by r^{-1} .

Assume the statement holds for matrices of size $d-1$ and let **m** be the first column of M. Then $m(X)$ is of full rank for every $X \in \mathcal{M}_{sa}^g$, so the regular rational function m^*m is everywhere invertible and its inverse is given by a regular expression. Hence the entries of the Schur complement of $\mathbf{m}^*\mathbf{m}$ in M^*M admit regular rational expressions. Since M^*M is nonsingular on \mathcal{M}_{sa}^g , the same holds for the Schur complement, which is a matrix of size $d-1$. By the induction hypothesis, the entries of the inverse of this Schur complement admit regular rational expressions, hence the same holds for the inverse of M^*M . Finally, the entries of $M^{-1} = (M^*M)^{-1}M^*$ admit regular rational expressions.

Corollary 3.4. If $r \in \mathbb{k} \langle x \rangle$ is regular, then it arises from a regular rational expression.

Proof. Let $\mathbf{r} = \mathbf{c}^* L^{-1} \mathbf{b}$ be a minimal realization of \mathbf{r} . Since \mathbf{r} is regular, L is nonsingular on \mathcal{M}_{sa}^g by [\[K-VV09,](#page-19-6) Theorem 3.1]. Since L is a matrix of polynomials, entries of L^{-1} admit regular rational expressions by Proposition [3.3.](#page-9-0) Hence r admits a regular rational expression.

Lemma 3.5. Let L be a square linear pencil. The following are equivalent:

- (i) L^{-1} is strongly bounded;
- (ii) L^{-1} is bounded;
- (iii) There exists $\eta > 0$ such that $L(X)^* L(X) > \eta^2 I$ for all $X \in \mathcal{M}_{sa}^g$.

Proof. (i)⇒(ii) Trivial.

(ii)⇒(iii). Assume that $||L^{-1}(X)|| \leq M$ for $X \in \text{dom}_{sa} L^{-1}$; this means that the largest eigenvalue of $(L^*L)^{-1}(X)$ is at most M^2 , so the smallest eigenvalue of $(L^*L)(X)$ is at least $\frac{1}{M^2}$. Since $\text{dom}_{\text{sa}} L^{-1} \cap M_n(\kappa)_{\text{sa}}^g$ is dense in $M_n(\kappa)_{\text{sa}}^g$ for infinitely many $n \in \mathbb{N}$, we conclude that the smallest eigenvalue of $(L^*L)(X)$ is at least $\frac{1}{M^2}$ for every $X \in \mathcal{M}_{sa}^g$ and hence $L(X)^* L(X) > \frac{1}{M^2} I$ for all $X \in \mathcal{M}_{\text{sa}}^g$.

(iii)⇒(i) Let $L = A_0 + \sum_j A_j x_j$ and assume $L(X)^* L(X) > \eta^2 I$ for all $X \in \mathcal{M}_{\text{sa}}^g$. Choose $\varepsilon = \frac{\eta}{2}$ $\frac{\eta}{2}(\sum_{j>0} ||A_j||)^{-1}$. If X ∈ dom L⁻¹ and $||\text{Im }X|| < \varepsilon$, then

$$
\left\| L(\operatorname{Re} X)^{-1} \sum_{j>0} A_j \otimes \operatorname{Im} X_j \right\| \leq \frac{1}{\eta} \left(\sum_{j>0} \|A_j\| \right) \varepsilon = \frac{1}{2},
$$

so

$$
L(X) = L(\operatorname{Re} X)^{-1} \left(I + L(\operatorname{Re} X)^{-1} \sum_{j>0} A_j \otimes \operatorname{Im} X_j \right)
$$

$$
L(X)^{-1} \| \leq \frac{2}{n}.
$$

is invertible and $||L(X)^{-1}|| \leq \frac{2}{n}$ η

Lemma 3.6. A nc rational function is strongly bounded if and only if the inverse of the pencil from its minimal realization is strongly bounded.

Proof. The implication (\Leftarrow) is clear, so consider (\Rightarrow) . For $1 \leq j \leq g$ let

$$
\Delta_j: \Bbbk\{x\} \to \Bbbk\{x\} \otimes \Bbbk\{x\}
$$

be the difference-differential operator as in [\[K-VV12,](#page-19-3) Section 4]; this is the noncommutative counterpart of both the partial finite difference and partial differential operator. If $X, X' \in \text{dom } \mathbb{r} \cap M_n(\mathbb{k})^g$ and $\Delta(\mathbb{r})(X, X')$ is interpreted as an element of $\text{End}_{\mathbb{k}}(\mathcal{M}_n(\mathbb{k})) \cong \mathcal{M}_n(\mathbb{k}) \otimes \mathcal{M}_n(\mathbb{k}),$ then

$$
\begin{pmatrix} X & W \\ 0 & X' \end{pmatrix} \in \text{dom}\, \mathbb{r} \cap M_{2n}(\mathbb{k})^g
$$

for every $W \in M_n(\mathbb{R})^g$ and

$$
\mathbb{T}\begin{pmatrix} X & W \\ 0 & X' \end{pmatrix}
$$

is up to conjugation by a permutation matrix equal to

$$
\begin{pmatrix} \mathbb{r}(X) & \sum_j \Delta(\mathbb{r})(X, X') (W_j) \\ 0 & \mathbb{r}(X') \end{pmatrix}
$$

by [\[K-VV12,](#page-19-3) Theorem 4.8]. In particular, if r is strongly bounded, then $(\Delta_i r)(x, 0)$ and $(\Delta_i\mathbb{r})(0,x)$ are also strongly bounded nc rational functions. Indeed, suppose $\|\mathbb{r}(X)\| \leq M$ for all $X \in \text{dom } \mathbb{r}$ with $|| \text{Im } X || < \varepsilon$. Then for every $X \in \text{dom } \mathbb{r}$ with $|| \text{Im } X || < \frac{\varepsilon}{2}$ we have

$$
\left\| \operatorname{Im} \begin{pmatrix} X & \varepsilon I \\ 0 & 0 \end{pmatrix} \right\| < \varepsilon
$$

and therefore

$$
\left\| \begin{pmatrix} \mathbf{r}(X) & \varepsilon(\Delta_j \mathbf{r})(X,0) \\ 0 & \mathbf{r}(0) \end{pmatrix} \right\| \le M
$$

by assumption. Consequently

$$
\|(\Delta_j \mathbf{r})(X,0)\| \leq \frac{M}{\varepsilon}.
$$

Since dom r is dense in dom $(\Delta_i r)(x, 0)$, we conclude that $(\Delta_i r)(x, 0)$ is strongly bounded.

Now let $\mathbf{r} \in \mathbb{k} \langle x \rangle$ be a strongly bounded nc rational function with minimal realization $\mathbf{r} = \mathbf{c}^* L^{-1} \mathbf{b}$ which can be chosen such that $L(0) = I$. By [\[K-VV12,](#page-19-3) Example 4.7] we have

$$
\Delta_j(\mathbf{r})(x,0) = \mathbf{c}^* L^{-1} A_j \mathbf{b}, \qquad \Delta_j(\mathbf{r})(0,x) = \mathbf{c}^* A_j L^{-1} \mathbf{b}.
$$

Minimality of the realization implies

$$
\operatorname{span}_{\mathbb{k}}\{A^w \mathbf{b}: w \in \langle x \rangle\} = \mathbb{k}^d, \qquad \operatorname{span}_{\mathbb{k}}\{(A^*)^w \mathbf{c}: w \in \langle x \rangle\} = \mathbb{k}^d
$$

by [\[BR11,](#page-19-2) Proposition 2.1]. Therefore we conclude that every entry of L^{-1} is strongly bounded. \Box

3.3. Free elliptic realizations and regular rational functions.

Theorem 3.7. Let $\mathbb{r} \in \mathbb{k} \langle x \rangle$.

- (1) r is strongly bounded if and only if it admits a (minimal) realization with a strongly free elliptic pencil.
- (2) r is regular if and only if it admits a (minimal) realization with a free elliptic pencil.

Proof. (1) If r is strongly bounded and $\mathbf{c}^* L^{-1} \mathbf{b}'$ is its minimal realization, then L^{-1} is strongly bounded by Lemma 3.6 . Hence L is strongly free elliptic by Lemma 3.5 and Proposition [2.4.](#page-4-0) Conversely, if r admits a realization with a strongly free elliptic pencil L , then L^{-1} is bounded by Proposition [2.4](#page-4-0) and hence strongly bounded by Lemma [3.5.](#page-10-1) Therefore \mathbb{r} is strongly bounded.

(2) Let $\mathbf{c}^* L^{-1} \mathbf{b}$ be a minimal realization of r. Then L is invertible on \mathcal{M}_{sa}^g by [\[K-VV09,](#page-19-6) Theorem 3.1] and hence free elliptic by Theorem [2.6.](#page-6-0) The converse implication also follows by Theorem [2.6.](#page-6-0)

Remark 3.8. One may also ask an analogous question about functions $\mathbf{r} \in \mathbb{k} \mathcal{L}$ satisfying dom $r = \mathcal{M}^g$. The answer to this question is much simpler [\[KV,](#page-19-16) Theorem 4.2]: a nc rational function is defined at every point in \mathcal{M}^g if and only if it is a nc polynomial.

3.4. Functions in x and x^* . We briefly discuss nc rational functions in x and x^* , i.e., elements of the free skew field with involution $\mathbb{C}\langle x, x^*\rangle$. They are naturally evaluated at g-tuples of matrices X by replacing x_j with X_j and x_j^* with X_j^* . We refer to [KŠ] for analytic properties of these \ast -evaluations. On the other hand, if y is a copy of x, then we have skew field isomorphisms

$$
\mathbb{C}\{\boldsymbol{x},\boldsymbol{x}^*\}\rightarrow\mathbb{C}\{\boldsymbol{x},\boldsymbol{y}\},\qquad x_j\mapsto x_j+iy_j,\ \ x_j^*\mapsto x_j-iy_j\\ \mathbb{C}\{\boldsymbol{x},\boldsymbol{y}\}\rightarrow\mathbb{C}\{\boldsymbol{x},\boldsymbol{x}^*\},\qquad x_j\mapsto\frac{1}{2}(x_j+x_j^*),\ \ y_j\mapsto\frac{1}{2i}(x_j-x_j^*).
$$

Thus we get a natural correspondence between \ast -evaluations of elements in $\mathbb{C}\langle x, x^*\rangle$ and Hermitian evaluations of elements in $\mathbb{C}\langle x,y\rangle$. Our main results on rational functions and pencils in self-adjoint variables can be easily adapted to this setup. We leave this as an exercise for the reader.

4. Positive rational functions

In this section we solve a noncommutative analog of Hilbert's 17th problem: every positive regular nc rational function is a sum of hermitian squares, see Theorem [4.5.](#page-14-0) For this we shall require a description of complexity of nc rational expressions. A sub-expression of $r \in \mathcal{R}_{\mathbb{k}}(x)$ is any nc rational expression which appears during the construction of r. For example, if $r = ((2 + x_1)^{-1}x_2)x_1^{-1}$, then all its sub-expressions are

$$
2, x_1, 2+x_1, (2+x_1)^{-1}, x_2, (2+x_1)^{-1}x_2, x_1^{-1}, ((2+x_1)^{-1}x_2)x_1^{-1}
$$

We recursively define a complexity-measuring function $\tau : \mathcal{R}_k(\boldsymbol{x}) \to \mathbb{N}_0$ as follows:

- (a) $\tau(\alpha) = 0$ for $\alpha \in \mathbb{k}$;
- (b) $\tau(x_i) = 1$ for $1 \leq j \leq q$;
- (c) $\tau(r_1 + r_2) = \max{\tau(r_1), \tau(r_2)}$ for $r_1, r_2 \in \mathcal{R}_k(\bm{x})$;
- (d) $\tau(r_1r_2) = \tau(r_1) + \tau(r_2)$ for $r_1, r_2 \in \mathcal{R}_k(\bm{x})$;
- (e) $\tau(r^{-1}) = 2\tau(r)$ for $r \in \mathcal{R}_k(\boldsymbol{x})$.

Note that there is also a well-defined map $r \mapsto r^*$ on $\mathcal{R}_k(x)$ that mimics the involution on $\Bbbk\{\boldsymbol{x}\}\$ and $\tau(r^*) = \tau(r)$ for all $r \in \mathcal{R}_{\Bbbk}(\boldsymbol{x})$.

4.1. A sum of squares cone associated with a rational expression. Throughout the rest of this section fix a non-degenerate expression $r \in \mathcal{R}_k(\boldsymbol{x})$ and the following notation. Let $Q \in \mathcal{R}_{k}(\boldsymbol{x})$ be the finite set of all sub-expressions of r and their images under the map $q \mapsto q^*$. Then define $\tilde{Q} = \{q : q \in Q\} \subset \mathbb{k}\langle x \rangle$ and

$$
\mathcal{V}_k = \sum_{j=0}^k \overbrace{\tilde{Q} \cdots \tilde{Q}}^j, \qquad \mathcal{V}_k^{\text{sa}} = \{ \mathbf{s} \in \mathcal{V}_k : \mathbf{s} = \mathbf{s}^* \}, \qquad \mathcal{S}_{2k} = \left\{ \sum_j \mathbf{s}_j^* \mathbf{s}_j : \mathbf{s}_j \in \mathcal{V}_k \right\}
$$

for $k \in \mathbb{N}$. Then $S_{2k} \subseteq V_{2k}$ are a convex cone, R-linear space and k-linear space, respectively. Since \mathcal{V}_{2k}^{sa} is finite-dimensional, every norm on \mathcal{V}_{2k}^{sa} yields the usual Euclidean topology. We note that Q and Q are rational analogs of Newton chips [\[BKP16\]](#page-19-21) for free polynomials.

Proposition 4.1. S_{2k} is closed in $\mathcal{V}_{2k}^{\text{sa}}$.

Proof. Since $\mathcal{V}_{2k}^{\text{sa}}$ is finite-dimensional, there exists $X \in \text{dom}_{\text{sa}} r$ such that

$$
\forall s \in \mathcal{V}_{2k}^{sa}: s(X) = 0 \implies s = 0
$$

by the CHSY Lemma ([\[CHSY03,](#page-19-22) Corollary 3.2] or [\[BPT13,](#page-19-5) Corollary 8.87]). Hence we can define a norm on \mathcal{V}_{2k}^{sa} by $||s||_{\bullet} = ||s(X)||$. Also, finite-dimensionality of \mathcal{V}_{2k}^{sa} implies that every element of S_{2k} can be written as a sum of $N = 1 + \dim \mathcal{V}_{2k}^{\text{sa}}$ hermitian squares by Carathéodory's theorem [\[Bar02,](#page-18-6) Theorem I.2.3]. Assume that a sequence $\{\mathbf{r}_n\}_n \subset \mathcal{S}_{2k}$ converges to $\mathbbm{s}\in\mathcal{V}_{2k}^{\operatorname{sa}}$ with respect to $\|\cdot\|_{\bullet}.$ If

$$
\mathbb{r}_n = \sum_{j=1}^N \mathbf{s}_{n,j}^* \mathbf{s}_{n,j}, \qquad \mathbf{s}_{n,j} \in \mathcal{V}_k,
$$

then the definition of our norm implies $||\mathbf{s}_{n_j}||^2 \le ||\mathbf{r}_n||$. In particular, the sequences $\{\mathbf{s}_{n,j}\}_n \subset$ V_k for $1 \leq j \leq N$ are bounded. Hence, after restricting to subsequences, we may assume that they are convergent: $s_j = \lim_n s_{n,j}$ for $1 \le j \le N$. Consequently we have

$$
\mathbf{s} = \lim_{n} \mathbf{r}_n = \sum_{j=1}^{N} \lim_{n} \left(\mathbf{s}_{n,j}^* \mathbf{s}_{n,j} \right) = \sum_{j=1}^{N} \mathbf{s}_j^* \mathbf{s}_j \in \mathcal{S}_{2k}.
$$

4.2. Moore-Penrose evaluations. In this subsection we generalize our notion of an evaluation of a nc rational expression. For $A \in M_n(\mathbb{k})$ let $A^{\dagger} \in M_n(\mathbb{k})$ be its Moore-Penrose pseudoinverse [\[HJ85,](#page-19-23) Section 7.3]. Its properties that will be used in this section are

$$
(A^{\dagger})^* = (A^*)^{\dagger}, \qquad A^* = A^{\dagger} A A^*.
$$

Given $r \in \mathcal{R}_{\mathbb{k}}(x)$ and $X \in \mathcal{M}^g$ we recursively define the **Moore-Penrose evaluation** of r at X, denoted $r^{\text{mp}}(X)$:

- (a) $\alpha^{\text{mp}}(X) = \alpha I$ for $\alpha \in \mathbb{k}$;
- (b) x_i^{mp} $j^{\text{mp}}(X) = X_j \text{ for } 1 \le j \le g;$
- (c) $(r_1 + r_2)^{mp}(X) = r_1^{mp}$ $f_1^{\text{mp}}(X) + r_2^{\text{mp}}$ $2^{\text{mp}}(X)$ and $(r_1r_2)^{\rm mp}(X) = r_1^{\rm mp}$ $\mathbb{Z}_1^{\text{mp}}(X)r_2^{\text{mp}}$ $\mathbb{Z}_2^{\text{mp}}(X)$ for $r_1, r_2 \in \mathcal{R}_\mathbb{k}(\bm{x});$ (d) $(r^{-1})^{\text{mp}}(X) = (r^{\text{mp}}(X))^{\dagger}$ for $r \in \mathcal{R}_{\mathbb{k}}(\boldsymbol{x})$.

Loosely speaking, with this kind of evaluation we replace all the inverses in an expression with Moore-Penrose pseudoinverses and the evaluation is then defined at any matrix point. Moore-Penrose evaluations of nc rational expressions frequently appear in control theory; see e.g. [\[BEFB94\]](#page-19-24). We warn the reader that in general these evaluations do not respect the equivalence relation defining nc rational functions; also, Moore-Penrose evaluation is defined even for degenerate expressions. For example, $(0^{-1})^{mp}(X) = 0$ for all $X \in \mathcal{M}^g$. However, if $r \in \mathcal{R}_{\mathbb{k}}(x)$ is non-degenerate and $X \in \text{dom } r$, then

$$
r^{\text{mp}}(X) = r(X) = r(X).
$$

Proposition 4.2. Let r be a non-degenerate expression and assume the notation from the beginning of the section. If $\lambda : \mathcal{V}_{2k+2}^{sa} \to \mathbb{R}$ is a \mathbb{R} -linear functional satisfying $\lambda(\mathcal{S}_{2k+2}\setminus\{0\}) \subseteq$ $\mathbb{R}_{>0}$, then there exists a scalar product $\langle \cdot, \cdot \rangle$ on \mathcal{V}_k and self-adjoint operators X_i on \mathcal{V}_k such that

$$
\lambda(q) = \langle q^{\text{mp}}(X)1, 1 \rangle
$$

for every $q = q^* \in Q$ with $4\tau(q) \leq k$.

Proof. Let $\Lambda : \mathcal{V}_{2k+2} \to \mathbb{k}$ be the k-linear functional given by $\Lambda(s) = \lambda(\text{Res}) + i\lambda(\text{Im } s)$ if $\Bbbk = \mathbb{C}$ and $\Lambda(s) \coloneqq \lambda(\text{Re } s)$ if $\Bbbk = \mathbb{R}$. Now $\langle s_1, s_2 \rangle \coloneqq \Lambda(s_2^* s_1)$ defines a scalar product on \mathcal{V}_{k+1} . Let $\pi : \mathcal{V}_{k+1} \to \mathcal{V}_k$ be the orthogonal projection. If $x_j \in Q$, then define

$$
X_j: \mathcal{V}_k \to \mathcal{V}_k, \qquad s \mapsto \pi(x_j s).
$$

It is clear that X_j is a self-adjoint operator. We claim the following:

(*) if
$$
q \in Q
$$
, then $q^{mp}(X)s = qs$ holds for $s \in \bigcup_{j=0}^{k} \overbrace{Q \cdots Q}^{j}$ satisfying $4\tau(q) + \tau(s) \le k$.

We prove (\star) by the induction on the construction of q. Firstly, (\star) obviously holds for $q \in \mathbb{k}$ or $q \in Q \cap \{x_1, \ldots, x_q\}$. Next, if (\star) holds for $q_1, q_2 \in Q$ such that $q_1 + q_2 \in Q$ or $q_1q_2 \in Q$,

then it also holds for the latter. Finally, suppose that (\star) holds for $q \in Q$ and assume $q^{-1} \in Q$. If $s \in \bigcup_{j=0}^{k} Q \cdots Q$ and $4\tau(q^{-1}) + \tau(s) \leq k$, then $4\tau(q) + (\tau(q^{-*}) + \tau(q^{-1}) + \tau(s)) \leq k$ and $q^{-*}q^{-1}s \in \bigcup_{j=0}^{k} Q \cdots Q$, so

(4.1)
$$
q^{mp}(X)^{*}(q^{-*}q^{-1}s) = (q^{*})^{mp}(X)(q^{-*}q^{-1}s) = q^{*}q^{-*}q^{-1}s = q^{-1}s,
$$

(4.2) $q^{mp}(X)(q^{-1}s) = qq^{-1}s = s.$

Since q^{-1} s lies in the image of $q^{mp}(X)^*$ by (4.1) , we have

$$
\mathbf{q}^{-1}\mathbf{s} = (q^{\mathrm{mp}}(X)^{\dagger}q^{\mathrm{mp}}(X))(\mathbf{q}^{-1}\mathbf{s}) = (q^{\mathrm{mp}}(X))^{\dagger}\mathbf{s} = (q^{-1})^{\mathrm{mp}}(X)\mathbf{s}
$$

by [\(4.2\)](#page-14-2).

In particular, if $q = q^*$ satisfies $4\tau(q) \leq k$, then

$$
\langle q^{\text{mp}}(X)1, 1 \rangle = \Lambda \left(q^{\text{mp}}(X)1 \right) = \lambda(q)
$$

by (\star) .

Proposition 4.3. Let $r \in \mathcal{R}_k(x)$ be a non-degenerate expression and $t = \tau(r)$. If $r \notin \mathcal{S}_{8t+2}$, then there exists $X \in \mathcal{M}_{sa}^g$ of size dim \mathcal{V}_{4t} such that $r^{mp}(X)$ is not positive semidefinite.

Proof. If $r \neq r^*$, then there clearly exists $X \in \mathcal{M}_{sa}^g$ such that $r(X)$ is not self-adjoint; hence we assume that $r = r^*$. By Proposition [4.1](#page-12-1) and the Hahn-Banach separation theorem [\[Bar02,](#page-18-6) Theorem III.1.3] there exists a R-linear functional $\lambda : \mathcal{V}_{8t+2}^{sa} \to \mathbb{R}$ such that $\lambda(\mathcal{S}_{8t+2} \setminus$ $\{0\}\subseteq \mathbb{R}_{>0}$ and $\lambda(\mathbb{r}) < 0$. By Proposition [4.2](#page-13-0) there exists $X \in \mathcal{M}_{sa}^g$ and a vector **v** of size $\dim \mathcal{V}_{4t}$ such that

$$
\langle r^{\rm mp}(X) \mathbf{v}, \mathbf{v} \rangle = \lambda(\mathbf{r}) < 0. \Box
$$

Remark 4.4. The converse of Proposition [4.3](#page-14-3) does not hold. For example, if $r = x^{-1}x - 1$, then $r = 0$ is a sum of hermitian squares, but $r^{mp}(0) = -1$ is not positive semidefinite.

4.3. Regular positive rational functions. As a consequence of Proposition [4.3](#page-14-3) we obtain the following version of Artin's theorem. It is a rational function analog of Helton's sum of hermitian squares theorem [\[Hel02\]](#page-19-12).

Theorem 4.5. Let $\mathbb{r} \in \mathbb{k} \langle x \rangle$ be regular. Then $\mathbb{r}(X) \geq 0$ for all $X \in \mathcal{M}_{sa}^g$ if and only if

$$
\mathbb{r} = \sum_j \mathbf{s}_j^* \mathbf{s}_j
$$

for some regular $s_i \in \mathbb{k} \langle x \rangle$.

Proof. The implication (\Leftarrow) is clear, so consider (\Rightarrow) . Since r is regular, it admits a regular rational expression r by Corollary [3.4.](#page-9-1) If r is not a sum of hermitian squares, then there exists $X \in \mathcal{M}_{sa}^g$ such that $r^{mp}(X)$ is not positive semidefinite by Proposition [4.3.](#page-14-3) Since $X \in \text{dom}_{sa} r$, we have $r^{\text{mp}}(X) = r(X)$.

Remark 4.6. Let $\mathbf{r} \in \mathbb{k} \langle x \rangle$ be a regular rational function that is not a sum of hermitian squares. If $r \in \mathcal{R}_{\mathbb{k}}(x)$ is its regular representative and $t = \tau(r)$, then there exists $X \in \mathcal{M}_{sa}^g$ of size dim \mathcal{V}_{2t} such that $r^{\text{mp}}(X)$ is not positive semidefinite. Indeed, this improved bound follows by replacing 4 with 2 in Proposition 4.2 since (4.1) becomes unnecessary when dealing with proper inverses.

For strictly positive regular nc rational functions also see Remark [5.1.](#page-15-1) Moreover, by the same reasoning as in Subsection [3.4,](#page-11-1) a suitably modified version of Theorem [4.5](#page-14-0) holds for nc rational functions in x and x^* over \mathbb{C} .

5. Examples and algorithms

In this section we present efficient algorithms to check whether $r \in \mathbb{k} \langle x \rangle$ is regular and whether it is a sum of hermitian based on semidefinite programming. We finish the section with worked out examples.

5.1. Testing regularity. Our main results are effective and enable us to devise an algorithm to check for regularity of a nc rational function.

5.1.1. Free elliptic pencils. Let $L = A_0 + \sum_{j>0} A_j x_j \in M_{d \times e}(\mathbb{k}) \otimes \mathbb{k} \langle x \rangle$ with $d \ge e$. (If $d < e$, simply replace L by L^* .) Now solve the following feasibility semidefinite program (SDP) for $D \in M_{e \times d}(\mathbb{k})$:

(5.1)
$$
\operatorname{Re}(DA_0) \ge 0
$$

$$
\operatorname{tr}(DA_0) = 1
$$

$$
\operatorname{Re}(DA_j) = 0 \quad \text{for } j > 0.
$$

(See e.g. [\[WSV12,](#page-20-2) [BPT13\]](#page-19-5) for more on SDPs.) If (5.1) is infeasible, then L is not free elliptic. If the output is a D with $\text{Re}(DA_0) > 0$, then L is (strongly) free elliptic. Otherwise replace L by the linear pencil LV, where the columns of V form a basis for ker $\text{Re}(DA_0)$, and repeat the algorithm. Since LV is of smaller size than L , the procedure will eventually terminate.

5.1.2. Regular nc rational functions. Given $\mathbb{r} \in \mathbb{k} \langle x \rangle$, we use an efficient (linear-algebrabased) algorithm, cf. [\[BR11,](#page-19-2) Section II.3], to construct a realization of r and then reducing it to a minimal one, say $\mathbf{r} = \mathbf{c}^* L^{-1} \mathbf{b}$, where L is a $d \times d$ pencil. Now use the algorithm in Subsection [5.1.1](#page-15-3) below to check whether L is free elliptic. By Theorem [3.7,](#page-11-0) \bf{r} is regular if and only if L is free elliptic.

Remark 5.1. This algorithm also yields a procedure to check whether a regular rational function is strictly positive everywhere: for a regular $r \in \kappa(x)$ we have $r(X) > 0$ for all X $\in \mathcal{M}_{\text{sa}}^g$ if and only if $\mathbb{r}(0) > 0$ and \mathbb{r}^{-1} is regular. In particular, this can be applied for testing whether a nc polynomial is positive everywhere.

5.2. Testing positivity. In this subsection we present an efficient algorithm based on SDP to check whether a regular rational function is a sum of hermitian squares, i.e., whether it is positive everywhere. We point out this is in sharp contrast to the classical commutative case [\[BCR98\]](#page-19-10) where no efficient algorithms exist (in > 2 variables) to check whether a rational function $r \in \mathbb{R}(X)$ is globally positive.

Let $\mathbb{r} \in \mathbb{k}\langle x \rangle$. A positively free elliptic realization is one of the form

$$
\mathbb{r} = \mathbf{b}^* \left(A_0 + \sum_j A_j x_j \right)^{-1} \mathbf{b}, \qquad \text{Re}\,A_0 \ge 0, \qquad \text{Re}\,A_j = 0 \quad \text{for } j > 0.
$$

Proposition 5.2. A nc rational function $\mathbf{r} = \mathbf{r}^* \in \mathbb{k}\langle x \rangle$ is a sum of hermitian squares if and only if it admits a positively free elliptic realization.

Proof. (⇒) Let $\mathbb{r} = \sum_j \mathbb{s}_j^* \mathbb{s}_j$ and $\mathbb{s}_j = \mathbf{c}_j^* L_j^{-1} \mathbf{b}_j$. Then

$$
\mathbf{s}_j^* \mathbf{s}_j = \begin{pmatrix} 0 & b_j^* \end{pmatrix} \begin{pmatrix} \mathbf{c}_j \mathbf{c}_j^* & L_j^* \\ -L_j & 0 \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ b_j \end{pmatrix}
$$

is a positively free elliptic realization and the direct sum of these pencils and vectors yields a positively free elliptic realization of r.

 (\Leftarrow) Let r = **b**^{*}L⁻¹**b** be a positively free elliptic realization. Then

$$
Re(L^{-1}) = L^{-*} Re(L)L^{-1} = L^{-*}R^*RL^{-1}
$$

for some constant matrix R by assumption. Since \mathbb{r} is self-adjoint we have

$$
\mathbb{r} = \text{Re}(\mathbf{b}^* L^{-1} \mathbf{b}) = \mathbf{b}^* \text{Re}(L^{-1}) \mathbf{b} = (RL^{-1} \mathbf{b})^* (RL^{-1} \mathbf{b}),
$$

so \mathbb{r} is a sum of hermitian squares.

Remark 5.3. If $\Bbbk = \mathbb{R}$, then a positively free elliptic realization automatically yields a symmetric nc rational function.

5.2.1. Sum of squares testing. Retain the notation of Section [4.](#page-12-0) Let $t = \tau(r)$ and suppose that $r = r^*$. To test whether r is a sum of hermitian squares, we proceed as follows. Pick a basis for \mathcal{V}_{2t+1} and stack the elements of the basis into a vector, say W. Then r is a sum of squares if and only if the SDP (5.2) is feasible.

(5.2)
$$
G \ge 0
$$

s.t.
$$
\mathbb{r} = W^*GW.
$$

To implement the equality in (5.2) we evaluate r and W^*GW at sufficiently many tuples of random self-adjoint matrices $X \in \mathcal{M}_{sa}^g$ of size

(5.3)
$$
\kappa(r)(1+(2t+1)(\dim \mathcal{V}_{2t+1})^2),
$$

where

$$
\kappa(r)
$$
 = $\#$ (constant terms in r) + 2 · $\#$ (symbols in r) + $\#$ (inverses in r).

We refer to [\[Vol,](#page-20-14) Subsection 6.1] for the bound (5.3) .

Each solution G to (5.2) yields a sum of squares decomposition of r. Namely, letting $G = H^*H$ and $\mathbf{s} = HW$, we have $\mathbf{r} = \mathbf{s}^* \mathbf{s} = \sum_j \mathbf{s}^*_j \mathbf{s}_j$, where \mathbf{s}_j are the entries of the vector s. Finally, as in the proof of Proposition [5.2,](#page-15-4) such a sum of squares decomposition can be employed to construct a positively free elliptic realization for r.

Example 5.4. A sum of hermitian squares does not necessarily admit a positively free elliptic realization that is also a minimal one. For example, x_1 has a realization of size 2, so x_1^2 has a positively free elliptic realization of size 4 by the proof of Proposition [5.2.](#page-15-4) However, it can be checked that x_1^2 admits a realization of size 3 but does not admit a positively free elliptic realization of size 3.

5.3. Examples.

Example 5.5. Let $\mathbb{k} = \mathbb{R}$ and

$$
\mathbb{r} = ((1 - x_1 x_2)(1 - x_2 x_1) + x_1^2)^{-1}.
$$

While one can show that \mathbb{r} is regular using elementary arguments, we demonstrate this fact by applying our algorithm. Firstly we take a minimal realization of \mathbb{r} with the corresponding pencil

$$
L = \begin{pmatrix} 1 & 0 & 0 & -x_2 \\ 0 & 1 & -x_2 & 0 \\ 0 & -x_1 & 1 & -x_1 \\ -x_1 & 0 & x_1 & 1 \end{pmatrix} = A_0 + A_1 x_1 + A_2 x_2.
$$

The system $\text{Re}(DA_1) = \text{Re}(DA_2) = 0$ has a solution space of dimension 2. Adding the constraint Re(DA_0) ≥ 0 we obtain a one-dimensional salient convex cone C. For every $D \in \mathcal{C}$ we have $rk \text{Re}(DA_0) = 2$, so r is not strongly bounded. By choosing

$$
D = \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix}
$$

we get

$$
Re(DA_1) = Re(DA_2) = 0
$$
, $Re(DA_0) = diag(0, 0, 1, 1)$.

Hence let

$$
L' = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -x_1 \\ -x_1 & 0 \end{pmatrix}.
$$

By choosing

$$
D' = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}
$$

we verify that L' is free elliptic. Therefore L is free elliptic and so r is regular.

Example 5.6. The rational function

$$
\mathbb{r} = (2 + (x_1x_2 - x_1 - 2x_2) (1 + x_2^2)^{-1} + (x_1 + x_2 - 1) (1 + x_2^2)^{-1} x_1)^{-1}
$$

is strongly bounded since it admits a realization with the strongly free elliptic pencil

$$
\begin{pmatrix} 1 & -x_2 & 0 \ x_2 & 1 & -x_1 - x_2 + 1 \ 0 & x_1 + x_2 - 1 & 1 \end{pmatrix}.
$$

Example 5.7. Let $\mathbb{k} = \mathbb{C}$ and consider

$$
\mathbb{r} = \left(1 + x_2^2 - \left(\left(1 - i\right)x_1 + x_2\right)\left(1 + 2x_1^2\right)^{-1}\left(\left(1 + i\right)x_1 + x_2\right)\right)^{-1}.
$$

Note that (X_1, X_2) \in dom_{sa}r for every pair of commuting hermitian matrices X_1 and X_2 . It can be checked that r admits a minimal realization with the pencil

$$
L = \begin{pmatrix} 1 & (-1-i)x_1 & -x_1 & 0 \\ 0 & 1 & 0 & -x_1 \\ (-1+i)x_2 & 0 & 1 & -x_2 \\ 0 & (-1-i)x_2 & 0 & 1 \end{pmatrix} = A_0 + A_1x_1 + A_2x_2.
$$

If

$$
D = \begin{pmatrix} 0 & 0 & 0 & i \\ 0 & 1+i & i & 0 \\ 0 & i & 0 & 0 \\ i & 0 & 0 & \frac{1}{2} + \frac{i}{2} \end{pmatrix},
$$

then

$$
Re(DA_1) = Re(DA_2) = 0,
$$
 $Re(DA_0) = diag(0, 1, 0, \frac{1}{2}).$

Therefore we are left with

$$
L' = \begin{pmatrix} 1 & -x_1 \\ 0 & 0 \\ (-1+i)x_2 & 1 \\ 0 & 0 \end{pmatrix} = A'_0 + A'_1 x_1 + A'_2 x_2.
$$

But for every D' satisfying $\text{Re}(D'A'_1) = \text{Re}(D'A'_2) = 0$ we have $\text{Re}(D'A'_0) = \left(\frac{0}{\alpha} \frac{\alpha}{0}\right)$ for $\alpha \in \mathbb{C}$, so L' and L are not free elliptic. Hence r is not regular. To find $X \in \mathcal{M}_{sa}^2 \setminus \text{dom } r$ consider the structure of L'. We see that if $\frac{1}{2} + \frac{i}{2}$ $\frac{i}{2}$ is an eigenvalue of X_2X_1 , then $(X_1, X_2) \notin \text{dom}_{\text{sa}} \mathbb{r}$. For a concrete example, take

$$
X_1 = \begin{pmatrix} 0 & 1+i \\ 1-i & 0 \end{pmatrix}, \qquad X_2 = \begin{pmatrix} 0 & \frac{i}{2} \\ -\frac{i}{2} & 0 \end{pmatrix}.
$$

Example 5.8. Again let $\mathbb{k} = \mathbb{R}$. Another nontrivial example is the following inverse of a sum of hermitian squares:

$$
\mathbb{r} = ((1 + (x_2x_1)^2x_2^2)(1 + x_2^2(x_1x_2)^2) - (x_1x_2 - x_2x_1)^2)^{-1}.
$$

The size of its minimal realization is 15. With routine computation one observes that

$$
\operatorname{Re}(DA_1) = \operatorname{Re}(DA_2) = 0 \text{ and } \operatorname{Re}(DA_0) \ge 0 \implies \operatorname{Re}(DA_0) = 0,
$$

so r is not regular. However, it is not apparent which concrete tuple of symmetric matrices is not contained in dom_{sa} \mathbb{r} ; using brute force one can check that dom_{sa} $\mathbb{r} = M_2^{\text{sa}}(\mathbb{R})$ and dom_{sa} $\mathbb{r} \neq M_3^{\text{sa}}(\mathbb{R})$.

REFERENCES

- [AM15] J. Agler, J. E. McCarthy: Global holomorphic functions in several noncommuting variables Canad. J. Math. 67 (2015) 241–285. [1](#page-0-0)
- [Ami66] S.A. Amitsur: Rational identities and applications to algebra and geometry, J. Algebra 3 (1966) 304–359. [1,](#page-0-0) [9](#page-8-3)
- [BGM05] J. A. Ball, G. Groenewald, T. Malakorn: Structured noncommutative multidimensional linear systems, SIAM J. Control Optim. 44 (2005) 1474–1528. [1,](#page-0-0) [2](#page-1-2)
- [BK-V15] J. A. Ball, D. S. Kaliuzhnyi-Verbovetskyi: Schur-Agler and Herglotz-Agler classes of functions: positive-kernel decompositions and transfer-function realizations, Adv. Math. 280 (2015) 121–187. [3](#page-2-1)
- [Bar02] A. Barvinok: A course in convexity, Graduate Studies in Mathematics 54, American Mathematical Society, Providence, RI, 2002. [13,](#page-12-2) [15](#page-14-4)
- [BMS16] S. T. Belinschi, T. Mai, R. Speicher: Analytic subordination theory of operator-valued free additive convolution and the solution of a general random matrix problem, to appear in J. Reine Angew. Math. [1](#page-0-0)
- [Ber76] G. M. Bergman: Rational relations and rational identities in division rings. I, J. Algebra 43 (1976) 252–266. [1](#page-0-0)
- [BR11] J. Berstel, C. Reutenauer: Noncommutative rational series with applications, Encyclopedia of Mathematics and its Applications 137, Cambridge University Press, Cambridge, 2011. [1,](#page-0-0) [10,](#page-9-2) [12,](#page-11-2) [16](#page-15-5)
- [BPT13] G. Blekherman, P. A. Parrilo, R. R. Thomas (eds.): Semidefinite optimization and convex algebraic geometry, MOS-SIAM Ser. Optim. 13, SIAM, Philadelphia, PA, 2013. [1,](#page-0-0) [13,](#page-12-2) [16](#page-15-5)
- [BCR98] J. Bochnak, M. Coste, M.F. Roy: Real algebraic geometry, Results in Mathematics and Related Areas (3) 36, Springer-Verlag, Berlin, 1998. [2,](#page-1-2) [16](#page-15-5)
- [BEFB94] S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan: Linear matrix inequalities in system and control theory, SIAM Studies in Applied Mathematics 15, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994. [14](#page-13-1)
- [Brä11] P. Brändén: Obstructions to determinantal representability, Adv. Math. 226 (2011) 1202-1212. [2](#page-1-2)
- [BKP16] S. Burgdorf, I. Klep, J. Povh: Optimization of polynomials in non-commuting variables, SpringerBriefs in Mathematics, Springer International Publishing, 2016. [13](#page-12-2)
- [CHSY03] J. F. Camino, J. W. Helton, R. E. Skelton, J. Ye: Matrix inequalities: a symbolic procedure to determine convexity automatically, Integral Equations Operator Theory 46 (2003) 399–454. [13](#page-12-2)
- [Coh95] P. M. Cohn: Skew fields. Theory of general division rings, Encyclopedia of Mathematics and its Applications 57, Cambridge University Press, Cambridge, 1995. [1,](#page-0-0) [2,](#page-1-2) [7,](#page-6-2) [9,](#page-8-3) [10](#page-9-2)
- [DAn11] J. P. D'Angelo: Hermitian analogues of Hilbert's 17-th problem, Adv. Math. 226 (2011) 4607– 4637. [2](#page-1-2)
- [DM] H. Derksen, V. Makam: Polynomial degree bounds for matrix semi-invariants, preprint [arXiv:1512.03393](http://arxiv.org/abs/1512.03393). [7](#page-6-2)
- [GB83] R. P. Gilbert, J. L. Buchanan: First order elliptic systems: a function theoretic approach, Mathematics in Science and Engineering 163, Academic Press, Inc., Orlando, FL, 1983. [3,](#page-2-1) [5](#page-4-2)
- [GKLLRT95] I. M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V. S. Retakh, J.-Y. Thibon: Noncommutative symmetric functions, Adv. Math. 112 (1995) 218–348. [1](#page-0-0)
- [GK-VVW16] A. Grinshpan, D. S. Kaliuzhnyi-Verbovetskyi, V. Vinnikov, H. J. Woerdeman: Contractive determinantal representations of stable polynomials on a matrix polyball, Math. Z. 283 (2016) 25–37. \mathcal{D}
- [Hel02] J. W. Helton: "Positive" noncommutative polynomials are sums of squares, Ann. of Math. (2) 156 (2002) 675–694. [2,](#page-1-2) [3,](#page-2-1) [15](#page-14-4)
- [HKM16] J. W. Helton, I, Klep, S. McCullough: The Tracial Hahn-Banach Theorem, Polar Duals, Matrix Convex Sets, and Projections of Free Spectrahedra, to appear in J. Eur. Math. Soc. [3](#page-2-1)
- [HMP07] J. W. Helton, S. McCullough, M. Putinar: Strong majorization in a free ∗-algebra, Math. Z. 255 (2007) 579–596. [3](#page-2-1)
- [HMV06] J. W. Helton, S. McCullough, V. Vinnikov: Noncommutative convexity arises from linear matrix inequalities, J. Funct. Anal. 240 (2006) 105–191. [1,](#page-0-0) [2,](#page-1-2) [9](#page-8-3)
- [HV07] J. W. Helton, V. Vinnikov: Linear matrix inequality representation of sets, Comm. Pure Appl. Math. 60 (2007) 654–674. [2](#page-1-2)
- [HJ85] R. A. Horn, C. R. Johnson: Matrix analysis, Cambridge University Press, Cambridge, 1985. [14](#page-13-1)
- [K-VV09] D. S. Kaliuzhnyi-Verbovetskyi, V. Vinnikov: Singularities of rational functions and minimal factorizations: the noncommutative and the commutative setting, Linear Algebra Appl. 430 (2009) 869–889. [2,](#page-1-2) [10,](#page-9-2) [12](#page-11-2)
- [K-VV12] D. S. Kaliuzhnyi-Verbovetskyi, V. Vinnikov: Noncommutative rational functions, their difference-differential calculus and realizations, Multidimens. Syst. Signal Process. 23 (2012) 49–77. [1,](#page-0-0) [9,](#page-8-3) [11,](#page-10-2) [12](#page-11-2)
- [Kle55] V. L. Klee: Separation properties of convex cones, Proc. Amer. Math. Soc. 6 (1955) 313–318. [8](#page-7-2)
- $[K\check{S}]$ I. Klep, \check{S} . Špenko: *Free function theory through matrix invariants*, to appear in Canad. J. Math., <http://dx.doi.org/10.4153/CJM-2015-055-7>. [12](#page-11-2)
- [KV] I. Klep, J. Volčič: Free loci of matrix pencils and domains of noncommutative rational functions, to appear in Comment. Math. Helv., [arXiv:1512.02648](http://arxiv.org/abs/1512.02648). [3,](#page-2-1) [7,](#page-6-2) [12](#page-11-2)
- [Kra01] S. G. Krantz: Function theory of several complex variables, AMS Chelsea Publishing, Providence, RI, 2001. [10](#page-9-2)
- [MSS15] A. W. Marcus, D. A. Spielman, N. Srivastava: Interlacing families II: Mixed characteristic polynomials and the Kadison-Singer problem, Ann. of Math. 182 (2015) 327–350. [2](#page-1-2)
- [Mar08] M. Marshall: Positive polynomials and sums of squares, Mathematical Surveys and Monographs 146, American Mathematical Society, Providence, RI, 2008. [2](#page-1-2)
- [Mir70] C. Miranda: *Partial differential equations of elliptic type*, 2nd revised edition (translated from the Italian by Z. C. Motteler), Ergebnisse der Mathematik und ihrer Grenzgebiete Band 2, Springer-Verlag, New York-Berlin, 1970. [3,](#page-2-1) [5](#page-4-2)
- [McC01] S. McCullough: Factorization of operator-valued polynomials in several non-commuting variables, Linear Algebra Appl. 326 (2001) 193–203. [2,](#page-1-2) [6](#page-5-4)
- [MP05] S. McCullough, M. Putinar: Noncommutative sums of squares, Pacific J. Math. 218 (2005) 167– 171. [6,](#page-5-4) [8](#page-7-2)
- [Nel] C. S. Nelson: A Real Nullstellensatz for Matrices of Non-Commutative Polynomials, preprint [arXiv:1305.0799](http://arxiv.org/abs/1305.0799). [3,](#page-2-1) [7](#page-6-2)
- [NT12] T. Netzer, A. Thom: *Polynomials with and without determinantal representations*, Linear Algebra Appl. 437 (2012) 1579–1595. [2](#page-1-2)
- [Nir59] L. Nirenberg: On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa (3) 13 (1959) 115–162. [5](#page-4-2)
- [PT-D] J. E. Pascoe, R. Tully-Doyle: Free Pick functions: representations, asymptotic behavior and matrix monotonicity in several noncommuting variables, preprint $arXiv:1309.1791.3$ $arXiv:1309.1791.3$ $arXiv:1309.1791.3$
- [PS76] C. Procesi, M. Schacher: A non-commutative real Nullstellensatz and Hilbert's 17th problem, Ann. of Math. 104 (1976) 395–406. [2](#page-1-2)
- [Reu96] C. Reutenauer: Inversion height in free fields, Selecta Math. (N.S.) 2 (1996) 93–109. [1](#page-0-0)
- [SIG97] R. E. Skelton, T. Iwasaki, D. E. Grigoriadis: A unified algebraic approach to linear control design, The Taylor & Francis Systems and Control Book Series, Taylor & Francis, Ltd., London, 1998. [2](#page-1-2)
- [Vol] J. Volčič: Matrix coefficient realization theory of noncommutative rational functions, preprint [arXiv:1505.07472](http://arxiv.org/abs/1505.07472). [9,](#page-8-3) [17](#page-16-2)
- [WSV12] H. Wolkowicz, R. Saigal, L. Vandenberghe (editors): Handbook of semidefinite programming: theory, algorithms, and applications, vol. 27, Springer Science & Business Media, 2012. [2,](#page-1-2) [16](#page-15-5)
- [WSCP91] B. F. Wyman, M. K. Sain, G. Conte, A. M. Perdon: Poles and zeros of matrices of rational functions, Linear Algebra Appl. 157 (1991) 113–139. [2](#page-1-2)

Igor Klep, Department of Mathematics, University of Auckland Email address: igor.klep@auckland.ac.nz

James Eldred Pascoe, Department of Mathematics, Washington University in St. Louis Email address: pascoej@wustl.edu

JURIJ VOLČIČ, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF AUCKLAND Email address: jurij.volcic@auckland.ac.nz

NOT FOR PUBLICATION

CONTENTS

