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Abstract. The main result of this note is a tracial Nullstellensatz for free noncommuta-

tive polynomials evaluated at tuples of matrices of all sizes: Suppose f1, . . . , fr, f are free

polynomials, and tr(f) vanishes whenever all tr(fj) vanish. Then either 1 or f is a linear

combination of the fj modulo sums of commutators.

1. Introduction

Hilbert’s Nullstellensatz is a classical result in algebraic geometry. Over an algebraically
closed field it characterizes polynomials vanishing on the zero set of a set of polynomials.
Due to its importance it has been generalized and extended in many different directions,
including to free algebras. For instance, Amitsur’s Nullstellensatz [Ami57] describes free
noncommutative polynomials vanishing on the zero set of a given finite set of free polynomials
in a full matrix algebra. In another direction, the Nullstellensatz of Bergman [HM04] studies a
weaker, directional notion of vanishing but in a dimension-independent context (see [CHMN13]
for recent generalizations) allowing for a stronger conclusion. Namely, unlike in Hilbert’s and
Amitsur’s Nullstellensatz, no powers are needed in the obtained algebraic certificate. We also
refer the reader to [BK11] for a survey of free Nullstellensätze.

In this short article we focus on vanishing trace of free noncommutative polynomials. The
relationship between sums of commutators and vanishing trace of a free polynomial is discussed
e.g. in [CGM09, KS08, BK11]. Our main result, Theorem 3.1, characterizes free polynomials
f whose trace vanishes whenever the traces of polynomials f1, . . . , fr vanish. It is presented in
Section 3, after preliminaries in Section 2. The main ingredients in the proof of our main result
are effective degree bounds on Hilbert’s Nullstellensatz due to Kollár [Kol88] (see also Sombra
[Som99] and Jelonek [Jel05]), as well as the theory of polynomial identities [Row80, Pro76].
Finally, in Section 4 we solve a tracial moment problem by dualizing the statement of Theorem
3.1.
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2. Preliminaries

2.1. Notation. Let F be a field of characteristic 0 and let M(F) stand for
⋃

nMn(F). We
denote the free associative algebra in the variables x1, . . . , xg by F〈X〉. The free noncommuta-
tive polynomials in F〈X〉 of degree at most d are denoted by F〈X〉d, while F〈X〉′d is the vector
subspace of F〈X〉d consisting of all elements with zero constant term. We denote by 〈X〉 the
monoid generated by x1, . . . , xg, and by 〈X〉d words in 〈X〉 of degree at most d.

We say that polynomials f, h ∈ F〈X〉 are cyclically equivalent if f − h is a sum of commu-

tators in F〈X〉 and write f
cyc∼ h.

2.2. An effective Nullstellensatz. Let us recall an effective version of Hilbert’s Nullstellen-
satz, giving bounds on the polynomials needed in the Bézout identity. We present a variant
that combines [Kol88, Jel05]. Define

N(n, d1, . . . , dr) =


d1 · · · dr if r ≤ n,
d1 · · · dn−1dr if r > n > 1,
d1 + dr − 1 if r > n = 1,

N ′(n, d1, . . . , dr) =


N(d1, . . . , dr) if r ≤ n,
N(d1, . . . , dr) if r > n ≥ 1 and dr > 2,
2N(d1, . . . , dr)− 1 if r > n > 1 and dr ≤ 2,
2d1 − 1 if r > n = 1 and dr ≤ 2,

for d1 ≥ · · · ≥ dr.

Theorem 2.1 (Kollár–Jelonek). Let F be an algebraically closed field and let f1, ..., fr ∈
F[x1, . . . , xn] be commutative polynomials without a common zero. Let di = deg fi and assume
d1 ≥ · · · ≥ dr. Then there exist h1, . . . , hr ∈ F[x1, ..., xn] satisfying

1 = h1f1 + · · ·+ hrfr,

with deg hifi ≤ N ′(n, d1, . . . , dr) for 1 ≤ i ≤ r.

A core feature of this theorem we shall use is that the obtained degree bounds are indepen-
dent of the number of variables n (for large enough n).

2.3. Trace identities. An algebra with trace is an algebra A equipped with an additional
structure, that is a linear map tr : A→ A satisfying the following properties

tr(ab) = tr(ba), a tr(b) = tr(b) a, tr(tr(a)b) = tr(a)tr(b)

for all a, b ∈ A. A morphism between algebras with trace preserves the trace and such algebras
form a category.

The free algebra in this category is the algebra of free noncommutative polynomials in
the variables x1, . . . , xg over the polynomial algebra T in the infinitely many variables tr(w),
where w runs over all representatives of the cyclic equivalence classes of words in the variables
x1, . . . , xg. Its elements are trace polynomials and elements of T are pure trace polynomials.
The degree of a trace monomial tr(w1) · · · tr(wm)v, wi, v ∈ 〈X〉, equals |v| +

∑
i |wi|, where

|u| denotes the length of a word u. The degree of a trace polynomial is the maximum of the
degrees of its trace monomials.
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Trace identities of the matrix algebra Mn(F) are the elements in the kernel of the evaluation
map from the free algebra with trace to Mn(F). Pure trace identities are trace identities that
belong to T . By [Pro76, Theorem 4.5], there are no trace identities of Mn(F) of degree less
than n and no pure trace identities of degree less than n+ 1.

3. Main Result

Throughout this section let F be an algebraically closed field of characteristic 0. The
following is the main result of this paper. It is proved in Subsection 3.1 below. We remark
that a very special case of Theorem 3.1 was obtained in [BK11] by different means.

Theorem 3.1 (Spurnullstellensatz). Let f1, . . . , fr, f ∈ F〈X〉. The implication

(1) tr(f1(A)) = · · · = tr(fr(A)) = 0 =⇒ tr(f(A)) = 0

holds for every n and all A ∈ Mn(F)g if and only if f is cyclically equivalent to a linear
combination of fi’s or a linear combination of fi’s is cyclically equivalent to a nonzero scalar.

Remark 3.2. Note
∑
λifi

cyc∼ 1 for some λi ∈ F does not necessarily imply that f
cyc∼
∑
µifi

for some µi ∈ F. For example, take f1 = 1, f = x1.

Example 3.3. Theorem 3.1 fails in the dimension-dependent context: For each n ∈ N we
give an example of polynomials f1, f2 such that tr(f1), tr(f2) do not have a common zero on
Mn(F), but for which there do not exist λ1, λ2 ∈ F and a polynomial identity p of Mn(F) such
that

(2) λ1f1 + λ2f2
cyc∼ 1 + p.

Let c be a homogeneous central polynomial of Mn(F), which means that c(A) ∈ F for all
A ∈Mn(F)g and c does not vanish identically on Mn(F) (see e.g. [Row80]). Take

f1 = c, f2 = 1 + c2.

Then tr(f1), tr(f2) do not have a common zero on Mn(F). If (2) holds for some λ1, λ2 ∈ F
and a polynomial identity p of Mn(F), then

λ1tr(c) + λ2

( 1

n
tr(c)2 + n

)
= n.

As c is homogeneous, say of degree k, then

(3) λ1α
ktr(c) + λ2

( 1

n
α2ktr(c)2 + n

)
= n

for every α ∈ F. But F is infinite, so (3) cannot hold for every α ∈ F.

3.1. Proof of Theorem 3.1. As a first step towards the proof of Theorem 3.1 we prove
its weaker variant, characterizing sets of polynomials fi whose traces do not have a common
vanishing point.

Lemma 3.4. Let f1, . . . , fr ∈ F〈X〉. If the equations

(4) tr(fi(x1, . . . , xg)) = 0, 1 ≤ i ≤ r,

do not have a common solution in M(F)g, then
∑
λifi

cyc∼ 1 for some λi ∈ F.



4 I. KLEP AND Š. ŠPENKO

Proof. We can assume that tr(fi)’s are linearly independent as elements in the free algebra
with trace and we also assume that tr(fi) cannot be written as tr(f ′i) for a polynomial f ′i with
deg(f ′i) < deg(fi).

For every fixed n we can evaluate a noncommutative polynomial f on the symbolic n × n
matrices ξk = (x

(k)
ij ), 1 ≤ k ≤ g, and the trace of f(ξ1, . . . , ξg) is a commutative polynomial in

the variables x
(k)
ij , 1 ≤ i, j ≤ n, 1 ≤ k ≤ g. Note that deg(tr(f)) ≤ deg(f) for every f ∈ F〈X〉,

where deg(tr(f)) denotes the degree of the commutative polynomial tr(f(ξ1, . . . , ξg)). By

Theorem 2.1, the condition (4) implies that there exist h
(n)
1 , . . . , h

(n)
r ∈ F[x

(k)
ij : 1 ≤ i, j ≤

n, 1 ≤ k ≤ g] such that

(5) 1 =
∑

h
(n)
i tr(fi)

with

(6) deg(tr(fi)) deg(h
(n)
i ) ≤ N ′(d1, . . . , dr, n

2g),

where di = deg(fi) and d1 ≥ · · · ≥ dr. Applying the Reynolds operator (for the usual action

of GLn on the polynomial ring F[x
(k)
ij : 1 ≤ i, j ≤ n, 1 ≤ k ≤ g]; i.e., σ ∈ GLn sends a variable

x
(k)
ij into the (i, j)-entry of the matrix σ−1 (x

(k)
ij ) σ) to the equality (5) we can assume that

the h
(n)
i are invariant, and thus pure trace polynomials by [Pro76, Theorem 1.3]. The above

bound (6) is independent of n for r ≤ n2g (see Theorem 2.1). Thus, the degree of h
(n)
i tr(fi)

can be in this case bounded above by d1 · · · dr.
We thus get for every sufficiently large n; i.e, for n ≥ d1 · · · dr and n ≥

√
r
g , a trace identity

for Mn(F),

(7) 1 =
∑

h
(n)
i tr(fi),

where deg(h
(n)
i tr(fi)) ≤ n. Let us fix n with these properties. Since any nontrivial pure trace

identity on n×n matrices has degree at least n+1 by [Pro76, Theorem 4.5], the above identity
(7) must be trivial, which means that it holds in the free algebra with trace. A little care is
needed at this point. If f1, . . . , fr do not all have zero constant term, then (7) is an identity
in the free algebra with trace if we replace tr(fi) by

τi = tr(fi) + αin, 1 ≤ i ≤ r,

where fi is the sum of all nonconstant terms of fi, and αi is its constant term, and thus obtain
an identity

(8) 1 =
∑

h
(n)
i τi.

Since all polynomials that appear in (8) are pure trace polynomials, they belong to the commu-
tative subalgebra T of the free algebra with trace, which is generated by the trace monomials
tr(xi1 · · ·xit) modulo the relations tr(xi1xi2 · · ·xit) = tr(xi2 · · ·xitxi1). Let w1, w2, . . . be the
representatives of the cyclic equivalence classes of words in the variables x1, . . . , xg. Then T
is the free commutative algebra generated by t1, t2, . . . , where ti = tr(wi).
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Let us denote by t0 the empty word; i.e., the identity of T , and write

τi =

m∑
j=1

αijtj + αim+1t0.

Note that αim+1 = αin. As we assumed that tr(fi) are linearly independent, also τi are linearly
independent. Indeed, assume that

∑
λiτi = 0 for some λi ∈ F. Then

∑
λitr(fi) = 0 on Mn(F)

for the chosen n ≥ deg(fi). Thus,
∑
λifi has zero trace on Mn(F), so it is cyclically equivalent

to a polynomial identity on Mn(F) [BK09, Theorem 4.5]. As n ≥ deg(fi) we can conclude
that

∑
λitr(fi) = 0 is an identity in the free algebra with trace and due to the assumption,

λi = 0 for all i.
Note that this implies that the matrix (αij) has linearly independent rows and can be

brought to the reduced row echelon form. In particular, we can express ti1 , . . . , tir as linear
combinations of τ1, . . . , τr and tir+1 , . . . , tim , for some {i0, i1, . . . , im} = {0, 1, . . . ,m}. If the
last row in the reduced echelon form of this matrix has all zeros except for the last entry, then
1 =

∑
λiτi. In this case tr(

∑
λifi − 1

n) = 0 on Mn(F), which implies that
∑
λifi is cyclically

equivalent to a nonzero scalar. Otherwise we can choose (free) generators of T that include
τ1, . . . , τr and the above identity (8) cannot hold since it does not hold in the free commutative
algebra.

Proof of Theorem 3.1. To prove the nontrivial direction, assume that no linear combination of
fi’s is cyclically equivalent to a nonzero scalar. The condition (1) implies that the equations

tr(fi(x1, . . . , xg)) = 0 (1 ≤ i ≤ r), tr(f(x1, . . . , xg) + 1) = 0

do not have a common solution in M(F). Hence∑
λifi + λ(1 + f)

cyc∼ 1

for some λi, λ ∈ F by Lemma 3.4. By our assumption, λ 6= 0. Thus,

f
cyc∼
∑

µifi + µ

for some µi, µ ∈ F. If µ 6= 0, then the initial condition (1) is violated again by our assumption

and Lemma 3.4. Hence µ = 0 and f
cyc∼
∑
µifi.

3.2. Bounds on the size of matrices in Theorem 3.1. The proof of Lemma 3.4 reveals
a bound on the size of matrices for which it suffices to test the condition of this lemma and of
Theorem 3.1 in order to draw the conclusion. If the implication (1) holds for all A ∈MN (F)g

for N = max
{
d1 · · · drd,

√
g
r

}
, where di = deg fi, d = deg f , then it holds for all A ∈Mn(F)g

for all n ∈ N. In view of Theorem 2.1 we can sometimes sharpen this bound in the case that

there exists m satisfying d1 · · · dm2gdr ≤ m <
√

g
r .

3.3. Passing between a real closed field and its algebraic closure.

Proposition 3.5. Let R be a real closed field (e.g. R = R) and let C be its algebraic closure.
For polynomials f1, . . . , fr, f ∈ R〈X〉 the following conditions are equivalent:

(i) For every n ∈ N and all A ∈ Mn(C)g we have tr(f1(A)) = · · · = tr(fr(A)) = 0 implies
tr(f(A)) = 0;
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(ii) There exist λi ∈ C such that
∑
λifi

cyc∼ 1 or
∑
λifi

cyc∼ f ;

(iii) There exist λi ∈ R such that
∑
λifi

cyc∼ 1 or
∑
λifi

cyc∼ f ;
(iv) For every n ∈ N and all A ∈ Mn(R)g we have tr(f1(A)) = · · · = tr(fr(A)) = 0 implies

tr(f(A)) = 0.

Proof. By Theorem 3.1, (i) is equivalent to (ii). By taking real parts, it is easy to see that (ii)
implies (iii). The implication (iii) to (iv) is trivial. We will prove that (ii) follows by assuming
(iv). To obtain a contradiction suppose first that the equations

(9) tr(fi(x1, . . . , xg)) = 0, 1 ≤ i ≤ r

do not have a common solution in M(R) but do have one in M(C). Let a1, . . . , ag ∈ Mn(C)
be such that tr(fi(a1, . . . , ag)) = 0 for 1 ≤ i ≤ r. Write aj = bj + i cj , where bj , cj ∈ Mn(R),
and define

ãj =

(
bj cj
−cj bj

)
.

We have

tr(fi(ã1, . . . , ãg)) = 2Re(tr(fi(a1, . . . , ag))) = 0

for every 1 ≤ i ≤ r. Thus, ã1, . . . , ãg is a common solution of the equations (9) in M(R), a

contradiction. By Lemma 3.4 we therefore have
∑
λifi

cyc∼ 1 for some λi ∈ C.
If the system (9) does have a solution in M(R), then (iv) implies that the equations

tr(fi(x1, . . . , xg)) = 0, tr(1 + f(x1, . . . , xg)) = 0

do not have a common solution in M(R), and by the previous step, applied to polynomials

f1, . . . , fr, 1 + f , they also do not have a solution in M(C). By Lemma 3.4, f
cyc∼
∑
λifi + λ1

for some λi, λ ∈ C. Since we are assuming that the equations (9) have a common solution in
M(R), (iv) implies λ = 0.

4. A tracial moment problem

The main result of this section, Corollary 4.2, solves a constrained truncated tracial moment
problem. For its proof we dualize the statement of Theorem 3.1. We refer the reader to [Bur11]
and the references therein for more details on tracial moment problems.

Let F ∈ {R,C}. We say that a linear functional L : F〈X〉d → F is tracial if it vanishes on

sums of commutators, or equivalently, if L(v) = L(w) for v
cyc∼ w. The simplest examples of

such L are obtained as follows. For A ∈Mn(F)g define

φA : F〈X〉d → F, φA(p) = tr(p(A)),

and let

C = span{φA | A ∈Mn(F)g, n ∈ N} ⊆ F〈X〉∗d.
Tracial linear functionals can be described in terms of moment sequences. A sequence

(αw)w∈〈X〉d in F is a truncated tracial moment sequence if αw = αv for v
cyc∼ w. Note that any

element in C is tracial and defines a (truncated) tracial moment sequence.

Proposition 4.1. If L is a tracial linear functional on F〈X〉d, then L ∈ C.
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Proof. If L 6∈ C, then there exists a linear functional p ∈ (F〈X〉∗d)∗ ∼= F〈X〉d such that p(φ) = 0
for every φ ∈ C and p(L) = 1. By definition of C we have tr(p(A)) = 0 for all A ∈ Mn(F)g,

n ∈ N, which implies p
cyc∼ 0 (see e.g. [Pro76, Corollary 4.4]). As L is tracial, p(L) = L(p) = 0,

a contradiction.

To give an explicit representation for the tracial linear functional L as a linear combination
of the φA with g-tuples A of d × d matrices, we present an alternative constructive proof of
Proposition 4.1.

Alternative proof. Given a tracial moment sequence (L(w))w∈〈X〉d we show how to find g-
tuples A` such that L(p) =

∑
λ`φA`

. We proceed inductively. Assume that there exist A`,
1 ≤ ` ≤ `m, such that L(p) =

∑
φA`

for all p ∈ F〈X〉′m. We want to find an element of C
which coincides with L on F〈X〉′m+1. Define Lm+1 = L −

∑`m
`=1 φA`

. It is enough to choose
matrices a`1, . . . , a`g ∈ Mm+1(F), `m + 1 ≤ ` ≤ `m+1, such that tr(p(a`1, . . . , a`g)) = 0 for

p ∈ F〈X〉′m and Lm+1(p) =
∑`m+1

`=`m+1 tr(p(a`1, . . . , a`g)) for p homogeneous of degree m+ 1.
Choose representatives w`m+1, . . . , w`m+1 of cyclic equivalence classes of words in the vari-

ables x1, . . . , xg of degree m + 1. Let w` = xj1i1 · · ·x
js
is

, where
∑

k jk = m + 1. We denote

sk =
∑k

i=1 ji. Setting a`i = 0 at the beginning, we define matrices a`i ∈Mm+1(F) (1 ≤ i ≤ g)
as follows. We let k vary from 1 to s, and at step k we replace a`ik bya`ik +

∑sk
u=sk−1+1 eu,u+1 if k < s,

a`ik +
∑sk−1

u=sk−1+1 eu,u+1 + Lm+1(w`)em+1,1 if k = s.

Here eij are the standard (m+ 1)× (m+ 1) matrix units.
We claim that the only word in a`1, . . . , a`g of degree ≤ m+1 with nonzero trace is cyclically

equivalent to w`. A necessary condition for a word w in a`1, . . . , a`g, w = ar1`p1 · · · a
rs
`ps

, of degree

m′, 1 ≤ m′ ≤ m + 1, to have nonzero trace is the existence of a sequence (ẽj)
m+1
j=1 of matrix

units from the set E = {eu,u+1, em+1,1 | 1 ≤ u ≤ m} such that tr(ẽ1 · · · ẽm+1) = 1, and

if
∑k−1

i=1 ri < j ≤
∑k

i=1 ri then ẽj appears in a`pk . The product of the elements in E has
nonzero trace only in a unique order (up to cyclic permutations). Since every element in E
appears only in one a`i, this order determines p1, . . . , ps. Thus, tr(w(a`1, . . . , a`g)) = Lm+1(w)

for w
cyc∼ w` and 0 otherwise. Therefore, a`1, . . . , a`g, `m + 1 ≤ ` ≤ `m+1, have the desired

properties.
We have thus found g-tuples A` ∈Mn`

(F)g, 1 ≤ ` ≤ `d, such that L(p) =
∑
φA`

(p) for every
p ∈ F〈X〉′d. Take A0 = (0, . . . , 0) ∈ Fg, and notice that L(p) =

∑
φA`

(p) + (L(∅)− n)φA0(p),
where n =

∑
φA`

(1) =
∑
n`, for every p ∈ F〈X〉d.

Let us fix polynomials f1, . . . , fr ∈ F〈X〉d and write fi =
∑
λijwj . We say that a sequence

(L(w))w∈〈X〉d is a constrained truncated tracial moment sequence if it is a truncated tracial
moment sequence and if L(fi) =

∑
j λijL(wj) = 0 for 1 ≤ i ≤ r. We define a constrained

analog of C,
S = span{φA ∈ C | φA(fi) = 0, 1 ≤ i ≤ r}.

Note that every element of S defines a constrained truncated tracial moment sequence.
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Corollary 4.2 (Constrained truncated tracial moment problem). If (L(w))w∈〈X〉d is a con-
strained tracial moment sequence with L(1) = 1, then L ∈ S.

Proof. If L 6∈ S then there exists an element p ∈ (F〈X〉∗d)∗ such that p(φ) = 0 for all φ ∈ S and
p(L) = 1. We have tr(p(A)) = 0 for all A ∈ Mn(F)g with the property tr(fi(A)) = 0 for all

1 ≤ i ≤ r. Thus, Theorem 3.1 and Proposition 3.5 imply that p
cyc∼
∑
λifi or

∑
λifi

cyc∼ 1 for
some λi ∈ F. In the former case we have L(p) =

∑
λiL(fi) = 0, which contradicts L(p) = 1,

in the last case L(1) =
∑
λiL(fi) = 0, which is contrary to the assumption L(1) = 1.
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