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The Quantum Max Cut (QMC) problem has emerged as a test-problem
for designing approximation algorithms for local Hamiltonian problems. In
this paper we attack this problem using the algebraic structure of QMC, in
particular the relationship between the quantum max cut Hamiltonian and the
representation theory of the symmetric group.

The first major contribution of this paper is an extension of non-commutative
Sum of Squares (ncSoS) optimization techniques to give a new hierarchy of
relaxations to Quantum Max Cut. The hierarchy we present is based on op-
timizations over polynomials in the qubit swap operators. This is in contrast
to the “standard” quantum Lasserre Hierarchy, which is based on polynomials
expressed in terms of the Pauli matrices. To prove correctness of this hierarchy,
we exploit a finite presentation of the algebra generated by the qubit swap op-
erators. This presentation allows for the use of computer algebraic techniques
to manipulate and simplify polynomials written in terms of the swap opera-
tors, and may be of independent interest. Surprisingly, we find that level-2
of this new hierarchy is numerically exact (up to tolerance 10−7) on all QMC
instances with uniform edge weights on graphs with at most 8 vertices.

The second major contribution of this paper is a polynomial-time algorithm
that computes (in exact arithmetic) the maximum eigenvalue of the QMC
Hamiltonian for certain graphs, including graphs that can be “decomposed”
as a signed combination of cliques. A special case of the latter are complete bi-
partite graphs with uniform edge-weights, for which exact solutions are known
from the work of Lieb and Mattis [LM62]. Our methods, which use represen-
tation theory of the symmetric group, can be seen as a generalization of the
Lieb-Mattis result.
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1 Intro
The local Hamiltonian problem plays a central role in quantum complexity theory. Given
as input a 2n ×2n Hermitian matrix H, the goal of the problem is to compute its maximum
(or minimum) eigenvalue. The matrix acts on n qubits and can be concisely specified as a
sum of local terms,

H =
∑

S⊆{1,...,n}
|S|=k

HS ,

where each HS acts non-trivially on at most a constant k number of qubits. We call such
an H a k-local Hamiltonian.

The k-local Hamiltonian problem for any k ≥ 2 is known to be hard for the complexity
class QMA [KSV02, KKR06], the quantum analog of NP. Thus, it is unlikely to be effi-
ciently solvable in general. However, specific instances of the local Hamiltonian problem
may be easy, in the sense that they admit exact arithmetic solutions [LM62], or polynomial-
time algorithms to approximate the maximum eigenvalue to high precision [LVV15]. In
other cases, it is interesting to study the best approximation to the maximum eigenvalue
attainable in polynomial time. A number of works have, for example, provided algorithms
to obtain constant-factor approximations to the maximum eigenvalue of local Hamiltoni-
ans [GK12, BH13, BGKT19, HM17]. These can be viewed as quantum analogues of results
about approximation algorithms for NP-hard problems and the hardness of approximation.
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Particularly relevant to us are approaches that address the local Hamiltonian prob-
lem using the tools of semidefinite programming (SDP) relaxations and noncommutative
polynomial optimization. Indeed the local Hamiltonian problem can be formulated as a
maximization problem, where the goal is to compute eigmax(H) = maxρ tr (ρH) subject to
ρ ⪰ 0, tr(ρ) = 1. This defines an SDP involving exponentially large matrices and thus be-
comes intractable as system size grows. However, one can define a hierarchy of efficiently
computable SDP relaxations which provides upper bounds to the maximum eigenvalue
[BH13, BGKT19, GP19, PT21, HO22]. This is in contrast to variational methods using
Ansätze such as tensor networks which give lower bounds by approximating the maximum-
eigenvalue eigenstate from within a subset of the set of quantum states [CPGSV21, BC17].
SDP relaxations, on the other hand, give outer approximations to quantum optimization
problems – their solutions may not correspond to actual quantum states. These relax-
ations are efficiently computable in the sense that at any fixed level of the hierarchy one
can compute the SDP value in polynomial time.

Quantum Max Cut We will focus on the local Hamiltonian problem defined on a
specific family of 2-local Hamiltonians called Quantum Max Cut (QMC) Hamiltonians.
(We sometimes simply call this problem Quantum Max Cut.) Each Quantum Max Cut
Hamiltonian is defined with respect to a graph G on n vertices with edge set E(G) and
for weights wij as

HG =
∑

(i,j)∈E(G)
wij

(
I − σi

Xσ
j
X − σi

Y σ
j
Y − σi

Zσ
j
Z

)
, (1.1)

where σX , σY and σZ are the Pauli matrices, and σi
W = ⊗i−1

j=1 I ⊗ σW ⊗
⊗n

j=i+1 I for
W ∈ {X,Y, Z}. Equivalently, HG can be written in terms of qubit SWAP operators,

Swapij = 1
2

(
I + σi

Xσ
j
X + σi

Y σ
j
Y + σi

Zσ
j
Z

)
, as

HG =
∑

(i,j)∈E(G)
2wij(I − Swapij). (1.2)

Quantum Max Cut was introduced in the context of approximation algorithms by Gharib-
ian and Parekh [GP19] as a quantum generalization of the well-known Max Cut problem.
The Hamiltonian HG has also been studied extensively in physics as the antiferromagnetic
quantum Heisenberg model. Determining the maximum eigenvalue of HG for an arbitrary
graph G is known to be the QMA-hard [PM17], and the Quantum Max Cut problem has
received significant attention as a test-bed for designing approximation algorithms to solve
QMA-hard problems [AGM20, PT21, PT22, Kin23, Lee22]. Additionally, exact arithmetic
solutions are known in a few cases, such as for complete bipartite graphs [LM62] and
one-dimensional chains [LM16].

Max Cut and Sum-of-Squares relaxations As suggested by the name, Quantum Max
Cut is closely related to the classical problem of Max Cut where, given a graph G with edge-
set E(G) and weights wij > 0, the goal is to maximize the objective

∑
(i,j)∈E(G)wij

1−zizj

2
over assignments of the variables zi ∈ {+1,−1} for i = 1, . . . , n. Determining the opti-
mum value of the Max Cut objective is NP-hard, but nontrivial upper-bounds on it can be
obtained from the Lasserre or Sum-of-Squares (SOS) hierarchy of SDP relaxations. Level
d of this hierarchy involves optimizing over “pseudo-expectations” – linear functionals µ
which are defined on polynomials of degree at most 2d in the zi variables and which satisfy
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µ(1) = 1 and µ(f2) ≥ 0 for any polynomial f with degree at most d.1 The set of pseudo-
expectations contains the set of “actual” expectation values which can be obtained from
probability distributions assigning values to the variables zi, and converges to this set as
d → ∞. For this reason, the SoS hierarchy gives a converging series of upper bounds
on the true value of the Max Cut problem. Additionally, for any constant d, the level d
SoS upper bound can be found in polynomial time, though in practice this optimization
quickly becomes infeasible as d grows large.

The best-known approximation algorithm (i.e., constructive lower bound algorithm)
for Max Cut is due to Goemans and Williamson and can be viewed as an algorithm which
“rounds” the pseudo-expectation produced by a level 1 Lasserre relaxation to an actual
expectation [GW95]. In general, Lasserre relaxations in conjunction with rounding have
been powerful techniques for upper bounding and approximating hard constraint satisfac-
tion problems (CSPs) [BRS11]. In fact, assuming the Unique Games Conjecture (UGC)
of Khot [Kho02], Raghavendra [Rag08, Rag09] showed that it is NP-hard to outperform
a canonical approximation algorithm based on rounding from the first level of the SoS
hierarchy for any classical constraint satisfaction problem .

Quantum Lasserre hierarchy The success of SDP relaxations for classical CSPs has
motivated their use in approximations to local Hamiltonian problems [BH13, BGKT19,
HO22] and in particular Quantum Max Cut [GP19, PT21, PT22, Kin23, KPS18]. Formu-
lating these quantum relaxations is non-trivial and builds on results in non-commutative
polynomial optimization [HM04] and its application to problems in quantum information
[DLTW08, NPA08].

The quantum Lasserre relaxation for Quantum Max Cut [GP19, PT22] was defined
with respect to the n-qubit Pauli algebra. A solution to the level-d relaxation assigns
pseudo-expectation values to operators corresponding to Pauli polynomials, i.e., polyno-
mials of degree at most 2d in the non-commuting variables {Xi, Yi, Zi} for i = 1, . . . , n.
In analogy with the classical situation, the pseudo-expectation of the identity is fixed to
be 1 and, for any Pauli polynomial P with degree at most d, the pseudo-expectation of
its square must be non-negative. The relaxation can be viewed as relaxing from operator
algebraic states (positive linear functionals) on the n-qubit Pauli algebra to pseudo-states
that are positive only with respect to squares of degree-d polynomials.

In contrast to the classical case, the relationship between the quantum Lasserre Hi-
erarchy and approximation algorithms for local Hamiltonian problems is much less well
understood. In [GP19], Gharibian and Parekh give an approximation algorithm for Quan-
tum Max Cut based on a rounding from the first level of the quantum Lasserre hierarchy.
Later works then gave algorithms which rounded from the second level of the hierarchy and
lead to better approximation ratios [PT21, PT22]. In [Lee22], a modified Lasserre relax-
ation was introduced, which considered only a subset of degree-2 polynomials sufficient to
recover the Quantum Max Cut objective. Assuming the Unique Games Conjecture along
with a technical conjecture known as the vector valued Borel’s inequality, the authors
of [HNP+22] showed the second level of the quantum Lasserre hierarchy (and therefore
also approximation algorithms building off the second level) could strictly outperform the
first level. Indeed, the second level of the Lasserre hierarchy has been shown to be exact
for certain graphs such as the unweighted star, and capture physically meaningful prop-

1There is some inconsistency in the literature between d and 2d when discussing levels of the SoS
hierarchy. Here we use the convention that level d of this hierarchy involves optimizing over linear functionals
which are positive on squares of degree d polynomials; note these squares may include terms of degree up
to 2d.
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erties of quantum states such as monogamy of entanglement inequalities [PT21]. These
properties have been used to improve the analysis of rounding algorithms [PT21, PT22].

1.1 Results
The first major contribution of this paper is to extend non-commutative Sum of Squares
(ncSoS) optimization techniques to give a new hierarchy of relaxations to the problem
of computing the maximum eigenvalue of the QMC Hamiltonian. This hierarchy is a
non-commutative sum-of-squares hierarchy (ncSoS) which captures the algebraic structure
arising from the swap operators Swapij which define the QMC Hamiltonian objective.

A critical ingredient in our construction of the SDP hierarchy is the ability to ma-
nipulate polynomials in the swap operators and enforce polynomial identities. Towards
this end, we give a fully algebraic charcterization (i.e., finite presentation) of the swap
operators. We note that this presentation follows quickly as a special case of results in
representation theory, cf. [Pro07, §6.1 Theorem]2 but provide a standalone proof for the
sake of completeness. This characterization is necessary for the use of “dimension free”
computer algebraic techniques (e.g. Gröbner bases) for manipulating polynomials in swap
operators. That is to say, we do not need to use the matrix representations of the swap
operators which could be exponentially large. We develop swap algebra theory including
replacement rules useful for identifying polynomial identities in the swaps. These results
may be of independent interest, beyond their use in constructing higher levels of the SDP
hierarchy in swaps.

This new hierarchy of relaxations to Quantum Max Cut is distinct from, and may
sometimes outperform, the usual quantum Lasserre relaxations over Paulis. We show that
this hierarchy is exact on an n-vertex graph at the level ⌈n

2 ⌉, no higher levels are needed
– a consequence of the previously discussed identities for simplifying swap polynomials.
For instance, the first level of this hierarchy enforces relations among the QMC terms
which are not enforced by the first level of the quantum Lasserre relaxation [PT21]. More-
over, tests on small instances indicate that our hierarchy can provide tighter bounds to
Quantum Max Cut compared to the level-1 and level-2 quantum Lasserre relaxations over
Paulis. Specifically, we find that level-2 of this new hierarchy gives a numerically exact
upper bound on the QMC problem for all ≤ 8 vertex graphs with uniform edge weights.
Of course, these small instances can be solved by diagonalization in practice. But our nu-
merical results suggest that the swap hierarchy can give fairly tight upper bounds on the
value of the Quantum Max Cut problem. Thus, it is possible that a better theoretical un-
derstanding of the performance of the swap hierarchy can lead to improved approximation
guarantees for Quantum Max Cut. We leave such an analysis for future work.

The second major contribution of this paper is a polynomial-time algorithm that com-
putes in exact arithmetic the maximum eigenvalue of the QMC Hamiltonian for certain
graphs, including graphs that can be “decomposed” as a signed combination of cliques.
A special case of the latter are complete bipartite graphs with uniform edge-weights, for
which exact arithmetic solutions are known from the work of Lieb and Mattis [LM62]. The
Lieb-Mattis solutions use angular momentum algebra to identify invariant subspaces of
the QMC Hamiltonian. Our methods, which use representation theory of the symmetric
group, can be seen as a generalization of that of Lieb and Mattis.

In closing, we alert the reader that some care has been taken in this paper to distin-
guish between various notions of exactness. When discussing numerical results we use the
phrase numerically exact to mean 10−7 accuracy. When discussing theoretical results we

2[Pro07, §6.1] applies to swaps on qudits, though here we only work with qubits.
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distinguish algorithms which are exact in theory (meaning they give a provably correct
output up to floating point precision) from the stricter notion of algorithms which provide
as output an exact arithmetic representation of the solution.

Note While preparing this manuscript, we became aware of contemporaneous work
[TRZ+] which establishes related results. The main commonality is that both papers
construct hierarchies of semidefinite programs based on the swap matrices which give
convergent series of upper bounds to the maximum eigenvalue of the QMC Hamiltonian.
However, there are significant technical differences between the hierarchies constructed
here and in [TRZ+], cf. Appendix E. More importantly, we focus on developing the al-
gebraic machinery to construct a hierarchy in the swaps, whereas [TRZ+] focuses on
understanding the performance of low levels of SDP hierarchies for Quantum Max Cut
and a number of other many-body physics problems. While both papers in addition touch
upon exact solvability of Quantum Max Cut, the results are quite distinct. We provide
exact arithmetic solutions using representation theory of the symmetric group whereas
[TRZ+] theoretically prove exactness of SDP relaxations for certain graphs. We refer the
reader to Appendix E for a detailed comparison between the two papers.

1.2 Overview of Techniques
We prove both of these results by exploiting a connection between the QMC Hamiltonian
and the representation theory of the symmetric group. More formally, we use the fact
that the QMC Hamiltonian can be written as a sum of swap matrices, which can, in
turn, be viewed as representations of the group algebra of the symmetric group. This
representation can be understood (in particular, the irreducible representations, or irreps,
appearing in this representation can be characterized) via Schur-Weyl duality, and plays a
key role in deriving several important theoretical results in quantum information [Har13].

To construct a hierarchy of semidefinite programming relaxations specific to these swap
matrices, we introduce an abstract ∗-algebra, which we call the Symbolic Swap Algebra.
We give a finite presentation for this algebra, and then, using the characterization of the
swap matrices given by Schur-Weyl, we explain that this algebra is isomorphic to the one
generated by the swap matrices, thereby establishing a special case of [Pro07, Theorem,
§6.1]. Informally, this means that the Symbolic Swap Algebra captures the full behavior of
the swap matrix algebra. Finally, we show how standard non-commutative optimization
techniques (in particular, the non commutative sum of squares, or ncSoS hierarchy) can be
specified to this ∗-algebra to bound the eigenvalues of Quantum Max Cut Hamiltonians.

An important complexity in this process comes from the necessity of finding all linear
relationships between polynomials in the symbolic swap algebra (or equivalently, finding
a system for simplifying expressions written in terms of swap matrices). We solve this
problem in a two ways, depending on the degree of the polynomials considered. First,
for any integer n, we show how to construct a set of linearly independent polynomials
which span all polynomials of degree ≤ 4 in the n-qubit symbolic swap algebra. This lets
us simplify all terms appearing when running the ncSoS hierarchy up to level two in the
symbolic swap algebra. To simplify terms appearing in higher levels of the hierarchy, we
connect to the theory of non-commutative Gröbner bases and show that this lets us find,
in principle, systems of rewrite rules for any swap matrix polynomials of fixed finite degree
in polynomial time. A byproduct of our simplification theory is that to any polynomial p
we can associate a “simpler” polynomial q with the same values on swap matrices.

The polynomial time algorithm for solving in exact arithmetic some QMC Hamiltoni-
ans (and simplifying others) is obtained by building on standard techniques for studying
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representations of the symmetric group. One important concept we introduce to connect
to these techniques is that of the Quantum Max Cut Irrep Hamiltonian – defined to be the
matrix obtained by replacing the swap matrices appearing the the standard Quantum Max
Cut Hamiltonian with the representation of equivalent permutations inside some irrep of
the symmetric group. For any irrep, we then show how an exact arithmetic representation
of the eigenvalues of the QMC Irrep Hamiltonian associated with a clique can be found in
polynomial time using Schur’s Lemma and the Murnaghan-Nakayama rule. (This, com-
bined with the characterization of the swap matrix algebra irreps given by Schur-Weyl,
lets us reproduce a well known characterization of eigenvalues of the QMC Hamiltonian
associated with a clique.)

Then we consider graphs whose associated QMC Hamiltonians decompose as a signed
sum of cliques, and show how the previously discussed exact arithmetic solutions to the
clique irrep Hamiltonians coupled with Young’s branching rule can be used to find the k
max and min eigenvalues of these Hamiltonians. When graphs do not decompose entirely
into a signed sum of cliques, we show similar techniques can be used to bound the max
and min eigenvalues of these graphs in terms of the max and min eigenvalues of smaller
“residual” graphs.

1.3 Reader’s Guide
In Section 2 we introduce some basic definitions related to the Quantum Max Cut problem,
swap matrices, and the representation theory of the symmetric group algebra. We then
introduce the concept of Quantum Max Cut Irrep Hamiltonians and give some basic results
concerning them, including an exact arithmetic formula for the single (integer) eigenvalue
of any Quantum Max Cut Irrep Hamiltonian associated with a clique.

In Section 3 we introduce the symbolic swap algebra, give a presentation for it, and
show it is isomorphic to the swap matrix algebra. We then prove some basic properties
about polynomials in this algebra, to include how one produces a “simple” polynomial q
equivalent to a given polynomial p evaluated on swaps.

In Section 4 we discuss how the non-commutative Sum of Squares (ncSoS) algorithm
can be applied to the symbolic swap algebra to produce a semidefinite programming
hierarchy analogous to the Quantum Lasserre Hierarchy. We also construct an explicit
linear algebra basis for polynomials of degree ≤ 4 in the symbolic swap algebra. This
shows the first two levels of the swap-ncSoS hierarchy can be run in polynomial time.

Then, in Section 5, we discuss the theory of Gröbner bases and show it is possible
to find rewrite rules for polynomials of any fixed degree in the swap variables. This lets
us conclude that any finite level of the swap-ncSoS hierarchy can run in, in principle,
polynomial time.

In Section 6 we discuss graphs for which we can compute, in exact arithmetic, any
constant number of max and min eigenvalues associated to the QMC Hamiltonian using
representation theoretic techniques. We give an algorithm which identifies these graphs,
then we show how to compute their eigenvalues (or bound the eigenvalues of other graphs).
Finally, we give some simple examples of these algorithms in practice.

There are 3 online appendices. Appendix A contains relationships on Swaps, all used
for proofs in the paper. Appendix C gives some examples and properties of Gröbner bases
for ideals involving Swaps. Finally, in Appendix E we compare and contrast this paper
with the independent and simultaneously released paper [TRZ+].
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2 Quantum Max Cut and The Swap Matrix Algebra
In this section we explore a connection between the the Quantum Max Cut Hamiltonian
discussed in the introduction and the representation theory of the symmetric group. We
begin with a brief review of representation theory, particularly concerning irreducible
representations (irreps) of the symmetric group. Then, we consider the algebra generated
by the swap matrices, which we call the Swap Matrix Algebra, and which turns out to
be a representation of the symmetric group algebra. We note that (as has been pointed
out previously [Osb06, PT21]) the QMC Hamiltonian lies inside this algebra. Connecting
these ideas leads to the notation of the QMC Hamiltonian “inside” of an irrep. Finally, we
show how combining all these ideas with some standard results in representation theory
can be used to give a closed form expression for all eigenvalues of the QMC Hamiltonian
on a clique with uniform edge weights.

2.1 Pauli Matrices and the Quantum Max Cut Hamiltonian
Recall the three Pauli matrices,

σX =
(

0 1
1 0

)
, σY =

(
0 −i
i 0

)
, σZ =

(
1 0
0 −1

)
. (2.1)

Together with σI := I these form a basis for M2(C). They satisfy the following relations:

σ2
X = σ2

Y = σ2
Z = I, σXσY = iσZ , σY σX = −iσZ . (2.2)

Fix n ∈ N. For W ∈ {I,X, Y, Z} we shall also consider the matrices

σj
W := I ⊗ · · · ⊗ I︸ ︷︷ ︸

j−1

⊗ σW ⊗ I ⊗ · · · ⊗ I ∈ M2n(C). (2.3)
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Observe that
{σ1

W1σ
2
W2 · · ·σn

Wn
| Wj ∈ {I,X, Y, Z}, j = 1, . . . , n} (2.4)

is a basis of M2n(C). Further, given i ̸= j,

[σi
Wi
, σj

Wj
] = 0,

where [·, ·] denotes the additive commutator

[a, b] := ab− ba.

Let Gn denote the set of all graphs on n vertices. Let E(G) denote its set of edges, and
let V(G) denote its set vertices.

Definition 2.1. Given a graph G with vertex set V(G), edge set E(G) and edge weights
{wij > 0 | (i, j) ∈ E(G)}, the Quantum Max Cut (QMC) Hamiltonian is defined to be

HG =
∑

(i,j)∈E(G)
wij

(
I − σi

Xσ
j
X − σi

Y σ
j
Y − σi

Zσ
j
Z

)
. (2.5)

While the right-hand side of Eq. (2.5) clearly depends on the weights wij , we suppress
this dependence in the notation HG.

2.2 Representations of the Symmetric Group
In this section we review standard facts about representations of the symmetric group
which will be necessary to prove our results.

2.2.1 Preliminary definitions

For any finite-dimensional vector space V , we use GL(V ) to denote the group of invertible
linear transformations from V to itself. We use Sn to denote the symmetric group, the
group of permutations of n objects. We will specify elements group using cycle notation,
with e denoting the identity element. Recall that a representation of Sn is a group homo-
morphism ρ : Sn → GL(V ). The vector space V is also referred to as an Sn-module or
simply a module.

The group algebra C[Sn] can be defined as an Sn-module as follows. Promote the
elements {π1, π2, . . . , πn!} ∈ Sn to basis vectors π1, π2, . . . , πn! with the multiplication rule
πiπj = πk if πiπj = πk. Then C[Sn] is given by

C[Sn] = {c1π1 + c2π2 + · · · + cn!πn! | cj ∈ C} (2.6)

where ci ∈ C for all i, and Sn acts on C[Sn] by left-multiplication. A representation
(ρ, V ) of Sn also gives rise to a representation of the algebra C[Sn] via the homomorphism
ρ̃ : C[Sn] → C[GL(V )] defined by its action

ρ̃

(
n!∑

i=1
ciπi

)
=

n!∑
i=1

ciρ(πi). (2.7)

It is common to use ρ to refer to the representation of both the group and its group
algebra.

A Sn-module in general decomposes into a number of Sn-submodules. A module V
is irreducible if the only submodules of V are itself and the trivial module {0}. For a
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representation (ρ, V ) of any finite group, it follows from Maschke’s Theorem that there
exists a decomposition of V as

V =
⊕

λ

Vλ (2.8)

where each Vλ is an irreducible module.
We will be interested in matrix representations ρ of Sn where V is (C2)⊗n, which is to

say that ρ(π) is a 2n × 2n matrix for each π ∈ Sn. Maschke’s Theorem then implies that
there is an invertible matrix U such that

ρ(π) = U

[⊕
λ

ρλ(π)
]
U−1, π ∈ Sn, (2.9)

where ρλ are irreducible representations or irreps of Sn. The decomposition of Eq. (2.8) into
irreducible modules can thus be seen as a block-diagonalization of matrices in ρ(C[Sn]) ⊆
M2n(C).

2.2.2 Irreducible representations of Sn

Irreducible representations of Sn are in one-to-one correspondence with integer partitions
of n,

λ = [λ1, λ2, . . . , λk], λ1 ≥ λ2 ≥ · · · ≥ λk > 0,
k∑

i=1
λi = n (2.10)

which we will denote as λ ⊢ n. It is convenient to associate the partition λ with the Young
diagram of shape λ, which consists of k rows indexed top to bottom such that the i-th row
contains λi boxes. As an example, the partition [3, 2] corresponds to the shape

(2.11)

Of crucial importance to us later in the paper will be those irreps ρ[n−k,k] that correspond
to two row Young diagrams and the respective modules V[n−k,k], defined for k = 0, . . . , ⌊n

2 ⌋.

2.3 Swap Matrices and Permutations
In order to analyze the QMC Hamiltonian, we introduce the swap matrices Swapij as
permutations on n-qubit states.

Definition 2.2. The swap matrices Swapij are defined by their action on tensor products
of |ψ1⟩ , |ψ2⟩ , . . . , |ψn⟩ ∈ C2 as follows:

Swapij

(
|ψ1⟩ ⊗ · · · ⊗ |ψi⟩ ⊗ · · · ⊗ |ψj⟩ ⊗ · · · ⊗ |ψn⟩

)
= |ψ1⟩ ⊗ · · · ⊗ |ψj⟩ ⊗ · · · ⊗ |ψi⟩ ⊗ · · · ⊗ |ψn⟩ . (2.12)

The connection to Quantum Max Cut is made by noticing that the Swapij is the
following linear combination of the Pauli matrices

Swapij = 1
2
(
I + σi

Xσ
j
X + σi

Y σ
j
Y + σi

Zσ
j
Z

)
. (2.13)
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Proposition 2.3. The QMC Hamiltonian HG of Eq. (2.5) in terms of the Swapij’s defined
in Eq. (2.12) is given by

HG =
∑

(i,j)∈E(G)
2wij

(
I − Swapij

)
(2.14)

Now, observe that we can write the right-hand side of Eq. (2.12) as∣∣∣ψ(i j)−1(1)
〉

⊗ · · · ⊗
∣∣∣ψ(i j)−1(i)

〉
⊗
∣∣∣ψ(i j)−1(j)

〉
⊗ · · · ⊗

∣∣∣ψ(i j)−1(n)
〉
, (2.15)

where (i j) ∈ Sn is the transposition of objects i and j. This is in fact a representation of
Sn on (C2)⊗n defined by

ρn(π) (|ψ1⟩ ⊗ · · · ⊗ |ψn⟩) =
∣∣∣ψπ−1(1)

〉
⊗ · · · ⊗

∣∣∣ψπ−1(n)
〉

(2.16)

Definition 2.4. The algebra ρn(C[Sn]), for the representation
(
ρn, (C2)⊗n

)
in Eq. (2.16),

is called the Swap Matrix Algebra M swap
n .

Example 2.5. For small n, the swap algebra M swap
n can be explicitly determined. Firstly,

since the swap matrices Swapij are defined in terms of a representation of Sn, there is a
∗-homomorphism

C[Sn] → M swap
n , (i j) 7→ Swapij , (2.17)

whence M swap
n is isomorphic to a semisimple quotient of the group algebra C[Sn] of the

symmetric group Sn. Thus representation theory of Sn can be used to study M swap
n . For

instance, S3 has two one-dimensional representations (the trivial one and the signature),
and one two-dimensional one, hence

C[S3] ∼= C ⊕ C ⊕M2(C).

Since dimM swap
3 = 5, this immediately yields

M swap
3

∼= C ⊕M2(C).

Similarly, classifying irreducible representations for S4 gives

C[S4] ∼= C ⊕ C ⊕M2(C) ⊕M3(C) ⊕M3(C),

which together with dimM swap
4 = 14 implies that

M swap
4

∼= C ⊕M2(C) ⊕M3(C).

The general characterization of the Swap Matrix Algebra follows from Schur-Weyl
duality [EGH+11] of Sn and GL2(C), the group of invertible 2 × 2 complex matrices. The
natural representation of GL2(C) on (C2)⊗n is defined by the diagonal action of the group
elements on tensor products of |ψ1⟩ , |ψ2⟩ , . . . |ψn⟩ ∈ C2,

ζn(g) (|ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψn⟩) = g |ψ1⟩ ⊗ g |ψ2⟩ ⊗ · · · ⊗ g |ψn⟩ , g ∈ GL2(C). (2.18)

The irreducible modules of GL2(C) are indexed by two row Young diagrams with an
unbounded number of boxes. We denote the former by L[n−k,k] for n ∈ N and k =
0, . . . , ⌊n

2 ⌋. In fact, L[n−k,k] is the space of all linear maps from V[n−k,k] to (C2)⊗n that
commute with the action of Sn, that is

L[n−k,k] = HomSn(V[n−k,k], (C2)⊗n). (2.19)

The following lemma is essentially a restatement of Schur-Weyl duality for Sn and GL2(C).
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Lemma 2.6. The algebras M swap
n and ζn (C[GL2(C)]) are centralizers of each other inside

End((C2)⊗n) = M2n(C). Moreover, the space (C2)⊗n decomposes under the action of the
direct product GL2(C) × Sn as

(C2)⊗n ∼=
⌊ n

2 ⌋⊕
k=0

L[n−k,k] ⊗ V[n−k,k]. (2.20)

Proof. See, e.g., [EGH+11, Sec. 5.19] or [Pro07, §6.1].

Since the action of Sn on L[n−k,k] is trivial, as an Sn-module, the space (C2)⊗n decom-
poses by Lemma 2.6 into irreducible modules V[n−k,k] with multiplicities as follows:

(C2)⊗n =
⌊ n

2 ⌋⊕
k=0

(V[n−k,k])dim(L[n−k,k]). (2.21)

The Weyl character formula [EGH+11, Theorem 5.22.1] gives an explicit formula for
dim(L[n−k,k]).

Further, Lemma 2.6 immediately leads to the following characterization of M swap
n in

terms of the irreducible representations of C[Sn]; cf. [Pro21, (1.12)].

Theorem 2.7. The Swap Matrix Algebra decomposes into the direct sum of simple algebras
generated by the two row irreps of the symmetric group. That is, we have

M swap
n

∼=
⌊ n

2 ⌋⊕
k=0

ρ[n−k,k](C[Sn]). (2.22)

Proof. This is immediate from Lemma 2.6 and Eq. (2.21).

2.4 Quantum Max Cut and Irreps
Now we discuss how the decomposition of the Swap Matrix Algebra into irreps described in
the previous section can be applied to calculations related to the eigenvalues of Quantum
Max Cut Hamiltonians. Among other benefits the calculations in this section are essential
to Section 6.

Definition 2.8. Let λ ⊢ n be any partition labeling an irrep of Sn, and let G be an n vertex
graph with edge set E(G) and edge weights wij. Then define the QMC irrep Hamiltonian
Hλ

G by

Hλ
G = ρλ

 ∑
(i,j)∈E(G)

2wij (I − (i j))

 (2.23)

We will frequently use the phrase “all two row irrep Hamiltonians of G” to refer to the
set of irrep Hamiltonians

{H [n−k,k]
G : 1 ≤ k ≤ ⌊n/2⌋}. (2.24)

Now we state a straightforward corollary of Theorem 2.7 which makes the significance of
the two row irrep Hamiltonians clear.
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Corollary 2.9. The spectrum of the QMC Hamiltonian of G is given by the union of the
spectra of all two row irrep Hamiltonians of G. That is

eigs(HG) =
⌊ n

2 ⌋⋃
k=0

eigs(H [n−k,k]
G ) (2.25)

In particular, we have

eigmax(HG) =
⌊ n

2 ⌋
max
k=0

(
eigmax(H [n−k,k]

G )
)

(2.26)

Proof. Immediate from Theorem 2.7.

Corollary 2.9 suggests an immediate technique for computing the max eigenvalue of a
QMC Hamiltonian – rather than computing the maximum eigenvalue of the matrix HG

directly we can instead compute the maximum eigenvalue of each of the H
[n−k,k]
G matri-

ces. When combined with brute force computation this yields a modest computational

advantage, since the dimension of each H
[n−k,k]
G matrix is smaller than that of HG.

3 In the
next lemma we calculate these dimensions. It should be pointed out that the dimension
of these irreps still scales exponentially with n, meaning this approach does not give a
polynomial time algorithm for computing the max eigenvalue of HG. In Section 2.4.1 we
give the results of some simple experiments regarding which irreps provide the maximizing
eigenvalue for QMC Hamiltonians.

We calculate the dimension of each irrep by computing the character (or trace) of
the identity element in the irrep. When working with the symmetric group, we will use
e ∈ Sn denote the identity and χ[n−k,k] : Sn → C denote the character of ρ[n−k,k], so

χ[n−k,k](π) := Tr
(
ρ[n−k,k](π)

)
for all π ∈ Sn. Then, in particular,

χ[n−k,k](e) = Tr
(
ρ[n−k,k](e)

)
(2.27)

is the dimension of the irrep ρ[n−k,k] of Sn.

Lemma 2.10.

χ[n−k,k](e) = n− 2k + 1
n− k + 1

n[k]
k! = n− 2k + 1

n− k + 1

(
n

k

)
. (2.28)

Here we used the falling factorial notation n[k], defined by

n[k] := n!
(n− k)! = n(n− 1) · · · (n− k + 1), (2.29)

and n[0] = 0[k] = 1 by definition.

3This approach also requires computing the form of the H
[n−k,k]
G matrix in some basis. This can be

done, for example, by explicitly computing matrix representations of transpositions in the [n − k, k] irrep via
their action on the Specht basis (see [Jam06] for details), then summing these matrices to obtain H

[n−k,k]
G .

While involved, all these operations have runtime polynomial in the dimension of the [n − k, k] irrep. In
practice, these computations can be also be performed using a convenient software package, for example
[Fon20], which was the approach used in this paper.
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Proof. The dimension of the irrep of the partition [n− k, k] is equal to the trace, or
character, of the identity element in this irrep, that is, χ[n−k,k](e). We compute this
quantity using the well-known hook length formula. Straightforward inspection gives that
the product of the hook lengths of this irrep is given by:

∏
ij

hookλ(i, j) = (n− k + 1)[k](n− 2k)!k! = (n− k + 1)!k!
(n− 2k + 1) . (2.30)

Then the dimension of the [n− k, k] irrep is given by

χ[n−k,k](e) = n!∏
ij hookλ(i, j) = n− 2k + 1

n− k + 1
n[k]
k! = n− 2k + 1

n− k + 1

(
n

k

)
.

From Lemma 2.10 we see that, for any constant k, the irreps ρ[n−k,k] of the symmetric
group Sn have dimension polynomial in k. Then the maximum eigenvalue (and indeed,

entire spectrum) of the H
[n−k,k]
G matrices can be computed in time polynomial in n for

constant k.

2.4.1 Maximizing irreps for 7 and 8 vertex graph Hamiltonians

The following tables give the results of some numerical experiments comparing the maxi-
mum eigenvalue of irrep Hamiltonians and the maximum eigenvalues of the QMC Hamil-
tonian for small graphs. In Table 1 we focus on 7 vertex graphs, n = 7, and the associated
irreps of S7. In Table 2 we focus on 8 vertex graphs, n = 8, and the associated irreps of
S8.

The third column of both of these tables gives the number of graphs for which the
maximum eigenvalue of the QMC Hamiltonian HG is equal to the maximum eigenvalue
of the irrep Hamiltonian Hλ

G for the appropriate irrep λ. The fourth column gives the
minimum over all graphs of the ratio between the max eigenvalue of the irrep Hamiltonian
and the max eigenvalue of the QMC Hamiltonian, that is it is equal to

min
n-vertex
connected
graphs G

eigmaxH
λ
G

eigmaxHG
.

Irrep Irrep Dim # Irrep Max Eig=Swap Max Eig Irrep Max Eig / Swap Max Eig
[6, 1] 6 1 0.413
[5, 2] 14 32 0.766
[4, 3] 14 824 0.714

Table 1: Summary data for all 853 connected graphs on 7 vertices.

Irrep Irrep Dim # Irrep Max Eig=Swap Max Eig Irrep Max Eig / Swap Max Eig
[7, 1] 7 1 0.354
[6, 2] 20 45 0.665
[5, 3] 28 1445 0.75
[4, 4] 14 9114 0.625

Table 2: Summary data for all 11,117 connected graphs on 8 vertices.
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One might wonder why the sum in column 3 does not equal the total number of graphs.
This for two reasons. One: two different irreps can have the same maximum eigenvalue.
Two: equality of eigenvalues was checked inexactly (to a tolerance of 10−13).

2.5 Exact Arithmetic Solution for Clique Hamiltonians
Now we consider the QMC Hamiltonian HKn corresponding to the clique Kn on n vertices.
We will show that it is possible to compute the maximum eigenvalue (and indeed – entire
spectrum) of this Hamiltonian efficiently by using the irreducible representations of Swap
Matrix Algebra. Note that this fact is known in the physics literature, see, e.g., [CMP18,
Lemma 36] and also [Osb06].

Our proof proceeds in two parts: in Lemma 2.11 we show the corresponding QMC
Irrep Hamiltonians Hλ

Kn
are constant multiples of the identity for each irrep λ, that is

Hλ
Kn

= ηλI. (2.31)

Then, in Lemma 2.12 we compute the value of these constants ηλ.

Lemma 2.11. For any integer n and irrep λ of Sn, we have

Hλ
Kn

= ηλI (2.32)

where ηλ is some scalar depending only on the irrep λ and I is an identity matrix of the
appropriate dimension.

Proof. We begin by showing something stronger: let

qKn =
∑

(i,j)∈E(Kn)
(i j) ∈ C[Sn] (2.33)

denote the sum over all transpositions in Sn. Then, for any permutation π ∈ Sn, we have

πqKnπ
−1 = π

∑
i,j=1,...,n

(i j)π−1 =
∑

i,j=1,...,n

(π(i) π(j)) = qKn (2.34)

from which it follows that the element qKn is central in the group algebra C[Sn]. In
particular, for any irrep λ = [n− k, k], we see that ρλ(qKn) is central in the irreducible
algebra of matrices ρλ(C[Sn]) acting on the vector space Vλ as defined in Eq. (2.8).

Similarly for any such ρλ we see ρλ(2
(n

2
)
e− 2qKn) = Hλ

Kn
is an Sn-linear map from the

irreducible module Vλ to itself and hence, by Schur’s lemma, is a scalar multiple of the
identity matrix. This completes the proof.

With a little bit of extra work, we can also compute the scalar multiple ηλ from
Eq. (2.32) associated with Hamiltonian of the clique in each irrep. We do this next.

Lemma 2.12. Let ηλ be as in Lemma 2.11. Then, for any integer n and irrep ρ[n−k,k] we
have

η[n−k,k] = 2k(n+ 1) − 2k2 (2.35)

Proof. We can find the value of ηλ by computing two quantities: the dimension of the
λ irrep (i.e., the trace of ρλ(e)) and the trace of Hλ

Kn
. It is possible to compute both of

these quantities with the Frobenius trace formula, but we shall save some effort by instead
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using the hook length formula and Murnaghan-Nakayama rule. To deal with the many
partial factorials appearing in this calculation, recall the falling factorial notation n[k] from
Eq. (2.29). We shall also use the dimension of the [n− k, k] irrep given in Lemma 2.10.
For ease of future use we also write this formula as

χ[s,t](e) = s− t+ 1
s+ 1

(
s+ t

t

)
=

(s− t+ 1)(s+ t)[t−1]
t! . (2.36)

Next we compute the trace of Hλ
Kn

. We can do this by computing the character χλ((i j))
of a single transposition (i j) in the λ irrep. Since all transpositions belong to the same
conjugacy class, they will also have the same character. We now compute this character.
The Murnaghan-Nakayama rule relates the character of a permutation in some irrep to
the character of smaller permutations in irreps of the symmetric group on fewer elements.
In the special case considered here, it gives

χλ((i j)) =
∑

ξ

(−1)h(ξ)χλ/ξ(e) (2.37)

where the sum runs over all ways of removing two adjacent boxes from the irrep λ while
leaving a valid Young diagram; h(ξ) is one if the boxes removed are stacked vertically, zero
otherwise; and λ/ξ is the resulting partition when the boxes are removed from λ. More
explicitly, we write λ = [n− k, k] and then, for any n > 3:

χ[n−k,k]((i j)) =


χ[n−k−2,k](e) if k = 1
χ[n−k−2,k](e) + χ[n−k,k−2](e) if 2 ≤ k ≤ n/2 − 1
χ[n−k,k−2](e) if k = (n− 1)/2
χ[n−k,k−2](e) − χ[n−k−1,k−1](e) if k = n/2.

(2.38)

By Eq. (2.14) the Hamiltonian for a clique Kn is

HKn = 2
∑

(i,j)∈E(Kn)
I − 2

∑
(i,j)∈E(Kn)

Swapij (2.39)

= 2
(
n

2

)
I − 2

∑
(i,j)∈E(Kn)

ρ[n−k,k]((i j)), (2.40)

and taking the trace of this expression gives

Tr
[
H

[n−k,k]
Kn

]
= 2

(
n

2

)
χ[n−k,k](e) − 2

∑
(i,j)∈E(G)

χ[n−k,k]((i j)) (2.41)

= 2
(
n

2

)(
χ[n−k,k](e) − χ[n−k,k]((1 2))

)
. (2.42)

But we also have

Tr
[
H

[n−k,k]
Kn

]
= Tr

[
η[n−k,k]I

]
= η[n−k,k]χ[n−k,k](e) (2.43)

by definition of the trace. Putting these together gives

η[n−k,k] =
2
(n

2
)
(χ[n−k,k](e) − χ[n−k,k]((1 2)))

χ[n−k,k](e)
= 2

(
n

2

)
− 2η̂[n−k,k] (2.44)
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where

η̂[n−k,k] :=
∑

(i,j)∈E(Kn) χ[n−k,k]((i j))
χ[n−k,k](e)

=
(
n

2

)
χ[n−k,k]((1 2))
χ[n−k,k](e)

. (2.45)

Finally, combining Eqs. (2.36), (2.38) and (2.44) gives a closed form expression for
η[n−k,k]. We do that below and simplify, assuming that n > 5 and treating several cases
separately.

Case k = 1:

η̂[n−k,k] =
(
n

2

)
χ[n−k−2,k](e)/χ[n−k,k](e)

=
(
n(n− 1)

2

)((n− 2k − 1)(n− 2)[k−1]
k!

)(
k!

(n− 2k + 1)n[k−1]

)

= n(n− 3)
2

Case k = 2:

η̂[n−k,k] =
(
n

2

)
(χ[n−k−2,k](e) + χ[n−k,k−2](e))/χ[n−k,k](e)

=
(
n(n− 1)

2

)((n− 2k − 1)(n− 2)[k−1]
k!

)(
k!

(n− 2k + 1)n[k−1]

)

+
(
n(n− 1)

2

)(
k!

(n− 2k + 1)(n)[k−1]

)
= (n− 1)(n− 5)(n− 2)

2(n− 3) + (n− 1)
(n− 3)

= n(n− 5)
2 + 2

Case 3 ≤ k ≤ (n− 1)/2:

η̂[n−k,k] =
(
n

2

)
(χ[n−k−2,k](e) + χ[n−k,k−2](e))/χ[n−k,k](e)

=
(
n(n− 1)

2

)((n− 2k − 1)(n− 2)[k−1]
k!

)(
k!

(n− 2k + 1)(n)[k−1]

)

+
(
n(n− 1)

2

)((n− 2k + 3)(n− 2)[k−3]

(k − 2)!

)(
k!

(n− 2k + 1)(n)[k−1]

)
= (n− 2k − 1)(n− k + 1)(n− k)

2(n− 2k + 1) + (n− 2k + 3)k(k − 1)
2(n− 2k + 1)

= n(n− 1)
2 + k2 − k(n+ 1)

Case k = (n− 1)/2:

η̂[n−k,k] =
(
n

2

)
χ[n−k,k−2](e)/χ[n−k,k](e)

Accepted in Quantum 2024-03-25, click title to verify. Published under CC-BY 4.0. 18



=
(
n(n− 1)

2

)((n− 2k + 3)(n− 2)[k−3]

(k − 2)!

)(
k!

(n− 2k + 1)(n)[k−1]

)
= (n− 2k + 3)k(k − 1)

2(n− 2k + 1)

= (n− 1)(n− 3)
4

Case k = n/2:

η̂[n−k,k] =
(
n

2

)
(χ[n−k,k−2](e) − χ[n−k−1,k−1](e))/χ[n−k,k](e)

=
(
n(n− 1)

2

)((n− 2k + 3)(n− 2)[k−3]
(k − 2)!

)(
k!

(n− 2k + 1)n[k−1]

)

−
(
n(n− 1)

2

)((n− 2k + 1)(n− 2)[k−2]
(k − 1)!

)(
k!

(n− 2k + 1)n[k−1]

)

= (n− 2k + 3)k(k − 1)
2(n− 2k + 1) − (n− k + 1)k

2

= 3n(n− 2)
8 − n(n+ 2)

8

= n(n− 4)
4

Straightforward calculation then shows that all of these cases are consistent with the
formula

η̂[n−k,k] =
(
n

2

)
+ k2 − k(n+ 1) (2.46)

from the 3 ≤ k ≤ (n− 1)/2 case. Hence η[n−k,k] = 2k(n+ 1) − 2k2 and we are done.

Lemma 2.12 gives us a straightforward way to compute the max eigenvalue (and in
fact, all eigenvalues) of the Hamiltonian HKn . In Section 6.1 we show how, with a bit
more work, we can also use this lemma to compute the eigenvalues of graphs other than
the complete graph.

2.6 Identities Satisfied by Swap Matrices
A key tool that will be developed in the subsequent section and then used in the remainder
of this paper is a fully algebraic characterization of the swap matrices. In preparation for
this, we observe some simple algebraic facts about the swap matrices.

Since the transpositions (i j) are generators of Sn, it follows that M
swap
n is generated

by the swap matrices Swapij . The latter must satisfy the relations

Swap2
ij = I, (2.47a)

Swapij Swapjk = Swapik Swapij , (2.47b)
Swapij Swapkl = Swapkl Swapij , (2.47c)

for all i, j, k, l distinct, arising from the relations satisfied by the transpositions (i j). One
can verify using Eq. (2.13) that, in addition to the above relations, the swap matrices
satisfy

Swapij Swapjk + Swapjk Swapij = Swapij + Swapjk + Swapik −I, (△)
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which is in general not true for transpositions (i j), (j k) ∈ C[Sn]. For instance, under the
signature representation π 7→ sgn (π) we have sgn ((i j)) sgn ((j k))+sgn ((j k)) sgn ((i j)) =
2 and sgn ((i j)) + sgn ((j k)) + sgn ((i k)) − 1 = −4.

Remark 2.13. The commutation relations Eq. (2.47c) are (somewhat surprisingly) implied
by Eqs. (2.47a), (2.47b) and (△). To prove this, note Eq. (2.50) below contains a list of
19 triples (fr, gr, ℓr) of noncommutative polynomials in the variables sij , 1 ≤ i, j ≤ 4 such
that

[s12, s34] =
19∑

r=1
fr gr ℓr. (2.48)

Further, when the variables sij are specialized to the matrices Swapij , each gk(Swap)
becomes an expression from either Eq. (2.47) or Eq. (△). Thus

[Swap12,Swap34] =
∑

k

fk(Swap) gk(Swap) ℓk(Swap) = 0. (2.49)

Of course, by reindexing indices in Eq. (2.49) we then obtain Eq. (2.47c).

(1, −s13s23 + s23s12, 1), (−s24, −s13s23 + s23s12, 1),
(1, −s12s13 + s13s23, 1), (−s24, −s12s13 + s13s23, 1),
(−1, s23s34 − s24s23, s12), (−1, −s24s34 + s34s23, s12),
(−1, −s23s24 + s24s34, s12), (1, 1 − s23 − s24 − s34 + s23s34 + s34s23, s12),
(1, −s14s24 + s24s12, 1), (−s23, −s14s24 + s24s12, 1),
(1, −s12s14 + s14s24, 1), (−s23, −s12s14 + s14s24, 1),
(−1, −s14s24 + s24s12, s13), (−1, −s12s14 + s14s24, s13),
(−s12, s14s13 − s34s14, 1), (−s12, 1 − s13 − s14 − s34 + s14s34 + s34s14, 1),
(s12, −s13s14 + s14s34, 1), (−1, −s13s23 + s23s12, s14), (−1, −s12s13 + s13s23, s14) (2.50)

Remark 2.14. There are several sets of relations that could be used to define the symmetric
group. One option is to define this group as being generated by the transpositions (i j)
satisfying relations Equations (2.47a) to (2.47c). Alternately, this group can defined
with generators (i i+ 1) (that is, only the adjacent elements) and relations Eqs. (2.47a)
and (2.47c) along with the relations(

Swapi,i+1 Swapi+1,i+2
)3 = I. (2.51)

3 The Symbolic Swap Algebra
In this section we introduce an abstract ∗-algebra generated by formal variables which
satisfy the same relations as the swap matrices introduced in the previous section. We
call this algebra the Symbolic Swap Algebra, and then show that it is isomorphic to the
Swap Matrix Algebra. The main reason for introducing the Symbolic Swap Algebra comes
from its use in constructing the Non-Commutative Sum of Squares (ncSoS) Hierarchy for
Quantum Max Cut, discussed in Section 4. Specifically, this allows us to formulate rewrite
rules for swap matrix polynomials (see Section 3.4 and Section 5) and express polynomial
identities without explicitly using the matrix representations, which may be of independent
interest.
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An alternate approach to giving a fully algebraic characterization (i.e., a presentation)
of the swap matrix algebra would be to build directly on the results of Section 2.6. There
we identified generators for M swap

n along with a set of relations (i.e., identities) that those
generators had to satisfy. To prove that these generators and relations give a presentation
of the swap matrix algebra all that remains is to show that all identities in the swap
matrix algebra follow from these relations. Indeed, we will see in just a few pages that
this is the case. We prefer the longer and slightly more mathematically involved approach
described in the previous paragraph because it allows us to clearly distinguish elements
of the swap matrix algebra M swap

n , which we view as matrices, from elements of the
isomorphic Symbolic Swap Algebra, which we view as formal non-commuting variables.

3.1 A Presentation of the Symbolic Swap Algebra
Definition 3.1. Define the nth Symbolic Swap Algebra, denoted Aswap

n , to be the ∗-algebra
over C generated by the set of symmetric elements {sij | 1 ≤ i < j ≤ n} satisfying relations:

(1) s2
ij = 1;

(2) sijsjk = siksij,

(3) sijsjk + sjksij = sij + sjk + sik − 1.

for all 1 ≤ i, j, k ≤ n all distinct. In the relations above, for parsimony of notation, we
have sometimes used sij with i > j to mean sji. We will continue to use this sij shorthand
later in the paper. The reason for this abuse of notation is discussed in Remark 3.2.

Equivalently, we could have defined the Symbolic Swap Algebra as a quotient of the
free algebra. Consider the free algebra C⟨sij | 1 ≤ i < j ≤ n⟩ endowed with the involution
∗ that fixes each sij , and is complex conjugation on C. Let Iswap

n be the ideal in this free
algebra generated by Item (1), Item (2) and Item (3). Then

Aswap
n = C⟨sij | 1 ≤ i < j ≤ n⟩/Iswap

n (3.1)

is the nth Symbolic Swap Algebra. We will refer to the elements sij generating the
Symbolic Swap Algebra as the swap variables.

Remark 3.2. The abuse of notation used in Definition 3.1 above avoids a complication
we now describe. Suppose that we rigidly insist that sij must have i < j. Then to define
the Symbolic Swap Algebra we must use more relations, namely

(1) s2
ij − 1

(2) sijsjk = siksij , sijsik = sjksij , siksjk = sjksij ,

(3)
(
sijsjk + sjksij

)
=
(
sij + sjk + sik − 1

)
,
(
sijsik + siksij

)
=
(
sij + sjk + sik − 1

)
,(

siksjk + sjksik

)
=
(
sij + sjk + sik − 1

)
.

To illustrate the issue, we claim that s12s13 = s23s12 is true in the algebra Aswap
n but

does not follow from the equations given in Definition 3.1 had we enforced index ordering
i < j < k. However s12s13 = s23s12 is of the form of the second equation of Item (2).

In Sections 4 and 5 when we turn to more computational aspects of Aswap
n we will

enforce index ordering i < j and encode relations as in Remark 3.2.
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Remark 3.3. As in Remark 2.13, we deduce that swaps on disjoint indices commute, i.e.,

[sij , skℓ] = 0 (3.2)

whenever i, j, k, ℓ are distinct. Similarly we can deduce the relations

(sijsjk)3 = 1 (3.3)

given in the standard presentation of the symmetric group.

We can also understand Aswap
n as a quotient of the symmetric group algebra C[Sn].

Lemma 3.4. Let Ĩswap
n be the two-sided ideal of C[Sn] generated by the elements(
(i j)(j k) + (j k)(i j)

)
−
(
(i j) + (j k) + (i k) − 1

)
(3.4)

for distinct 1 ≤ i, j, k ≤ n. Then there is a natural ∗-homomorphism

C[Sn] → Aswap
n , (i j) 7→ sij , for 1 ≤ i < j ≤ n,

and the kernel of this homomorphism is given by Ĩswap
n .

Proof. We begin by noting the group algebra of the symmetric group C[Sn] can be presented
as the algebra with generators {(i j) | 1 ≤ i ̸= j ≤ n} satisfying relations

(1) (i j)2 = 1;

(2) (i j)(j k) = (i k)(i j);

(3) (i j)(k ℓ) = (k ℓ)(i j)

for all distinct integers i, j, k, ℓ.
The Symbolic Swap Algebra algebra has an equivalent set of generators with the only

additional relations being relations being those given in Eq. (3.4) above, so the proof
follows.

3.2 Relationship Between Symbolic Swap Algebra and Swap Matrix Algebra
Now we relate the Symbolic Swap Algebra to both the Swap Matrices and to the irreps of
the symmetric group, cf. [Pro07, Theorem, §6.1].

Proposition 3.5. The following are characterizations of Aswap
n , the Symbolic Swap Algebra:

(a) The elements in Ĩswap
n are precisely those that vanish under all irreps of Sn corre-

sponding to at most two rows of the Young tableaux.

(b) The polynomials in Iswap
n are exactly the polynomials which annihilate the matrices

Swapij.

Proof. For the sake of completeness, we recall additional terminology necessary for analysing
the irreducible modules Vλ of Sn. A Young tableau of shape λ ⊢ n is a filling of the Young di-
agram λ by integers 1, 2, . . . , n such that each box is assigned a unique integer. The action of
the group Sn on a Young tableau t follows by letting π ∈ Sn act on the entries of t. Permut-
ing entries within each row of a tableau t gives us an equivalence class of tableaux – a tabloid

{t1, t2, . . . , tk} := {t}. (3.5)
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The group action extends to tabloids as π{t} = {π(t1), π(t2), . . . , π(tk)}. The so-called
Specht irreducible module Vλ of C[Sn] is spanned by polytabloids

et =
∑

π∈Ct

sgn (π)π{t} (3.6)

where t ranges over Young tableau of shape λ, and Ct is the set of permutations that
permute elements only within the columns of t.

For a 3-row irrep given by λ = [λ1, λ2, λ3], let T be the Young tableau

T =
1 2 ··· ··· λ1

λ1+1 ... ... λ2

λ2+1 ... λ3.

(3.7)

and eT the corresponding polytabloid. Consider the transpositions (1 λ1 + 1), (1 λ2 + 1),
(λ1 + 1 λ2 + 1) all of which permute elements within the first column of T and are thus
contained in CT . Note that

(1 λ1)eT = e(1 λ1)T (3.8)

and on expanding the right-hand side of Eq. (3.8) we see that T appears with coefficient
sgn ((1 λ1 + 1)) = −1. By the exact same reasoning, the coefficients of T in (1 λ2)eT and
(λ1 λ2)eT also equal −1. Now, each of (1 λ1 + 1)(λ1 + 1 λ2 + 1) = (1 λ2 + 1 λl + 1) and
(λ1 + 1 λ2 + 1)(1 λ1 + 1) = (1 λ1 + 1 λ2 + 1) is an even permutation contained in CT .
Repeating the above for (1 λ1 + 1)(λ1 + 1 λ2 + 1)eT and (λ1 + 1 λ2 + 1)(1 λ1 + 1)eT , we
see that the coefficient of T in these must be +1. It follows that

[(1 λ1 + 1) + (1 λ2 + 1) + (λ1 + 1 λ2 + 1) − 1] eT ̸= {(1 λ1 + 1), (λ1 + 1 λ2 + 1)}eT (3.9)

in the irrep specified by λ, and more generally in any irrep with 3 or more rows. That is,
sijsjk + sjksij − (sij + sjk + sik − 1) does not vanish under the evaluation sij = ρλ(i j) for
the above irrep λ. Thus we have proved that the swap relations are incompatible with a
≥ 3 row Young Tableaux.

For the converse, consider distinct indices i, j, k and a tabloid T of shape [n− k, k].
Let π ∈ CT . We distinguish two cases:

(a) i, j, k lie in the same row of π{T}.
Then each of the terms sij , sjk, sik acts as the identity on π{T}, whence(

sijsjk + sjksij − (sij + sjk + sik − 1)
)
(π{T}) = 0. (3.10)

(b) i, j lie in the same row of π{T}, but k does not.
Then,

sij(π{T}) = π{T}, sijsjk(π{T}) = sik(π{T}), sjksij(π{T}) = sjk(π{T}).

As before, this implies Eq. (3.10).

This shows that for each π ∈ CT , Eq. (3.10) holds, whence sijsjk + sjksij − (sij + sjk +
sik − 1) vanishes under the evaluation sij = ρλ(i j) for any irrep λ = [n− k, k].
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Theorem 3.6 ([Pro07, Theorem, §6.1]). The algebras Aswap
n and M swap

n are isomorphic.
More precisely, the natural map

Aswap
n → M swap

n , sij 7→ Swapij

is an isomorphism.

Proof. An immediate corollary of Proposition 3.5.

The isomorphism between the Symbolic Swap Algebra and Swap Matrix Algebra given
above lets us identify the QMC Hamiltonian associated with a graph G with an element
of the Symbolic Swap Algebra. We make this clear in the following definition.

Definition 3.7. For any graph g define the symbolic QMC Hamiltonian hG by

hG :=
∑

(i,j)∈E(G)
2wij (I − sij) ∈ Aswap

n (3.11)

We end this section by proving some results about the dimension of the Symbolic Swap
Algebra. While the formula for the dimension is not used elsewhere in the paper it does
bring to light a potentially interesting connection between the swap matrix algebra and
the Catalan numbers.

Corollary 3.8. Recall from Lemma 2.10 that χ[n−k,k](e) denotes the dimension of the
module V[n−k,k] of Sn. Then

(a) Aswap
n

∼=
⌊ n

2 ⌋⊕
k=0

Mχ[n−k,k](e)(C).

(b) dimAswap
n =

⌊ n
2 ⌋∑

k=0

(
n− 2k + 1
n− k + 1

(
n

k

))2

= 1
n+ 1

(
2n
n

)
,

which is the n-th Catalan number Cn.

Proof. Item (a) follows from Proposition 3.5.
Item (b): The first equality simply uses the dimension of the full matrix algebra. We

shall give two proofs of the second equality.
Algebraic proof. Observe that

1
n− k + 1

(
n

k

)
= 1
n+ 1

(
n+ 1
k

)

k

(
n+ 1
k

)
= (n+ 1)

(
n

k − 1

)

which simplifies the summand
(
n− 2k + 1
n− k + 1

(
n

k

))2

into

((n+ 1
k

)
− 2

(
n

k − 1

))2
=
((n
k

)
−
(

n

k − 1

))2
=
(
n

k

)2

− 2
(
n

k

)(
n

k − 1

)
+
(

n

k − 1

)2

,
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where we applied the recurrence relation on the binomial coefficients for the middle equality.
Thus

dimAswap
n =

⌊n/2⌋∑
k=0

(
n

k

)2

− 2
(
n

k

)(
n

k − 1

)
+
(

n

k − 1

)2

. (3.12)

By the Chu-Vandermonde identity,
n∑

k=0

(
n

k

)2

=
(

2n
n

)
, (3.13)

whence by symmetry,

⌊n/2⌋∑
k=0

(
n

k

)2

=


1
2
(2n

n

)
n odd

1
2

((2n
n

)
+
( n

n/2
)2)

n even.
(3.14)

Likewise, we obtain

⌊n/2⌋∑
k=0

(
n

k − 1

)2

=


1
2

((2n
n

)
− 2

( n
(n−1)/2

)2)
n odd

1
2

((2n
n

)
−
( n

n/2
)2)

n even.
(3.15)

Similarly, the Chu-Vandermonde identity implies
n∑

k=0

(
n

k

)(
n

k − 1

)
=
(

2n
n+ 1

)
,

whence again by symmetry,

⌊n/2⌋∑
k=0

(
n

k

)(
n

k − 1

)
=


1
2

(( 2n
n+1

)
−
( n

(n−1)/2
)2)

n odd

1
2
( 2n

n+1
)

n even.
(3.16)

Inserting Eq. (3.14), Eq. (3.15), Eq. (3.16) into Eq. (3.12) yields

dimAswap
n =

(
2n
n

)
−
(

2n
n+ 1

)
=
(

2n
n

)
− n

n+ 1

(
2n
n

)
= 1
n+ 1

(
2n
n

)
= Cn,

as desired.
Combinatorial proof. We also provide a slicker but less self-contained combinatorial

proof. It is well-known that the n-th Catalan number Cn counts the number of standard
Young tableaux of the shape [n, n] [Sta99, Exercise 6.19.ww]. Picking out the squares
containing 1, . . . , n and n+ 1, . . . , 2n, respectively, from such a tableaux, we obtain two
Young tableaux of the same shape [n − k, k] for some k ∈ N (see Eq. (3.17) below for a
simple example).

1 3 4 6

2 5 7 8
⇝

( 1 3 4

2
,

6

5 7 8

)

⇝
( 1 3 4

2
,

1 2 4

3

)
. (3.17)

Since standard Young tableaux of the shape [n − k, k] correspond to a basis of the
corresponding irrep of Sn, we are done by (a).
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3.3 The Irrep Symbolic Swap Algebra
Recall HKn denotes the Hamiltonian the swap matrices associate with the clique Kn on n
vertices, hKn denotes the element of the Symbolic Swap Algebra associated to the clique
and that Hλ

Kn
denotes the representation of hKn in the λ irrep of the symmetric group Sn.

Lemma 3.9. The function of k in Eq. (2.35) is strictly increasing for 0 ≤ k ≤ n
2 .

Proof. Simply observe that the function’s derivative w.r.t. k is

2(n+ 1) − 4k ≥ 2(n+ 1) − 2n = 2 > 0.

Proposition 3.10. Let hKn ∈ Aswap
n denote the Hamiltonian polynomial for the n-clique.

Then the ideal In−k,k of polynomials which annihilate ρ[n−k,k], is generated by Iswap together
with hKn − ηn−k,k.

Proof. Let Aλ
n denote the simple algebra of the irrep ρλ of Sn for λ ⊢ n. It is isomorphic

to Mχλ(e)(C). By Corollary 3.8,

Aswap
n

∼=
⌊ n

2 ⌋⊕
k=0
A[n−k,k]

n . (3.18)

With this notation,
Aswap

n /In−k,k
∼= A[n−k,k]

n .

By Lemma 2.11 and Lemma 2.12, hKn −ηn−k,k ∈ In−k,k. Since by Lemma 3.9, the map
k 7→ ηn−k,k is injective for 0 ≤ k ≤ n/2, the image under the isomorphism of Eq. (3.18) of
hKn − ηn−k,k ∈ In−k,k is zero in the k-th entry and a nonzero number in each of the others.
In particular,

Aswap
n /I(hKn − ηn−k,k) ∼= A[n−k,k]

n
∼= Aswap

n /In−k,k.

Since I(hKn − ηn−k,k) ⊆ In−k,k, this concludes the proof.

3.4 Structure of Swap Variable Polynomials
Now we describe some further properties of the Swap Algebra. The main result of this
subsection is a sharp upper bound of ⌈n/2⌉ on the maximum degree of elements in the swap
algebra, along with simplified form for elements in this algebra. Later, we will observe that
this upper bound gives a corresponding upper bound on the level at which the hierarchy
of semidefinite programs constructed in Section 4 gives an exact solution to the Quantum
Max Cut problem. We head in that direction via a lemma.

Define the support graph Gp of a polynomial p in the variables sij to have vertices
corresponding to integers which appear as indices i or j for some sij in p, with (i, j) an
edge iff sij appears in p. A polynomial in Iswap is called degree reducing provided it has
exactly one highest degree term.

3.4.1 Degree reducing polynomials in Iswap

Lemma 3.11. For n ≥ 4 and 1 ≤ i, j, k, ℓ ≤ n with no two indices being equal, there is a
degree reducing polynomial in Iswap whose highest degree term has the form

(1) sjksiksℓk. a term with support graph a three edge star;

(2) sijsjkskℓ, sjksijskℓ, or sjkskℓsij, a term with support graph a three edge line.
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Observe that any of the three edge line monomials equals a star graph monomial modulo
a single triangle pair substitution.

Here a triangle pair relation is a polynomial of the form sijsjk − sjkski. It lies in I
swap

and relates behavior of edge pairs in the triangle which is the support of the polynomial.

Proof. Straightforward matrix multiplication can be used to verify the following matrix
identity:

2 Swapjk Swapik Swapℓk = 1 − Swapij − Swapiℓ − Swapjk − Swapkℓ + Swapij Swapik

+ Swapij Swapiℓ + Swapij Swapkℓ + Swapik Swapiℓ

− Swapik Swapjℓ + Swapiℓ Swapjk + Swapjk Swapjℓ,

which implies the same identity for the sij by Theorem 3.6.
The proof of the three-edge-line case and the final paragraph of the lemma amount to

the identities

sijsjkskℓ = sijsjℓsjk,

sjksijskℓ = siksjksℓk,

sjkskℓsij = sjℓsjksij

so we can always reduce to the first case.

Lemma 3.12. For n ≥ 6 and 1 ≤ i, j, k, a, b, c ≤ n with no two indices being equal, there
is a degree reducing polynomial in Iswap whose highest degree term has the form

sijsjksabsbc, a term whose support graph is two disjoint two edge lines.

Proof. It is straightforward to verify the following identity for 26 × 26 matrices from which
the lemma follows using Theorem 3.6 by reindexing if needed:

4 Swap12 Swap23 Swap45 Swap56 = 3 − 3 Swap12 −3 Swap13 −3 Swap23 −3 Swap45

− 3 Swap46 −3 Swap56 +2 Swap12 Swap13 +3 Swap12 Swap45 +3 Swap12 Swap46

+ 3 Swap12 Swap56 +3 Swap13 Swap45 +3 Swap13 Swap46 +3 Swap13 Swap56

+ Swap14 Swap25 − Swap14 Swap26 − Swap14 Swap35 + Swap14 Swap36

− Swap15 Swap24 + Swap15 Swap26 + Swap15 Swap34 − Swap15 Swap36

+ Swap16 Swap24 − Swap16 Swap25 − Swap16 Swap34 + Swap16 Swap35

+ 3 Swap23 Swap45 +3 Swap23 Swap46 +3 Swap23 Swap56 + Swap24 Swap35

− Swap24 Swap36 − Swap25 Swap34 + Swap25 Swap36 + Swap26 Swap34

− Swap26 Swap35 +2 Swap45 Swap46 −2 Swap12 Swap13 Swap45

− 2 Swap12 Swap13 Swap46 −2 Swap12 Swap13 Swap56

− 2 Swap12 Swap45 Swap46 −2 Swap13 Swap45 Swap46

− 2 Swap14 Swap25 Swap36 +2 Swap14 Swap26 Swap35

+ 2 Swap15 Swap24 Swap36 −2 Swap15 Swap26 Swap34

− 2 Swap16 Swap24 Swap35 +2 Swap16 Swap25 Swap34

− 2 Swap23 Swap45 Swap46 .
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3.4.2 Useful graph properties

Lemma 3.13. Let G be a connected n vertex graph.

(1) If n ≥ 4, then G contains a three edge line or a three edge star graph as a subgraph.

(2) If G has more than three edges, then G contains a three edge line or a three edge star
or a triangle as a subgraph.

Proof. Let G be as above. There exists some spanning tree T of G as G is connected.
Given two points u and v in T , there is a unique path connecting them. The length of
this path is the graph distance from u to v. Now, pick some point in T and call it r. We
define Vi to be the set of vertices in T that are distance i from r. We know that V0 = {r}.
If V1 contains three or more elements, then G must contain a three edge star graph as
a subgraph. If V1 contains fewer than three elements, then as n ≥ 4, we must have an
element in V2. Thus, G contains a three edge line.

The proof of the second assertion is obvious.

Lemma 3.14. Suppose G is an n vertex graph with |E(G)| ≥ ⌈n
2 ⌉ + 1. Then G must have

(1) a single connected component with at least three edges, hence G contains a triangle, a
three edge line, or a three edge star as a subgraph; or

(2) two connected components each containing a 2 edge line.

Proof. To see this, consider G1, . . . , Gk, the connected components of G. The point is that
when |E(G)| is small the number of possible configurations is small:

(a) |E(G)| = n
2 = ⌈n

2 ⌉ with n even implies each Gi has exactly one edge.

(b) |E(G)| = ⌈n
2 ⌉ with n odd implies each Gi except one, say G1, has exactly one edge

and G1 is a 2 edge line.

(c) |E(G)| = n
2 + 1 = ⌈n

2 ⌉ + 1 with n even implies each Gi except two, say G1 and G2,
have 1 edge and G1 and G2 each contain (actually equal) 2 edge lines.

(d) |E(G)| = n
2 + 1 = ⌈n

2 ⌉ + 1 with n odd implies each Gi except one, say G1, has exactly
one edge and G1 has 3 edges, so is a three edge line, a triangle or a three edge star
graph.

Bigger |E(G)| just adds edges to some of these components, thereby justifying inequality
in the theorem statement.

3.4.3 Monomials associated to their support graphs

Lemma 3.15. Any monomial in the n-vertex swap variables of the form p = qsij can be
written in the form p = sijq

′, for deg(q′) ≤ deg(q).

Proof. For any skℓ and sij , we have skℓsij = sijse for some edge e. Indeed, we consider 5
cases: (1) if {i, j} ∩ {k, ℓ} = ∅, then se = skℓ; (2) if j = k, then se = sik; (3) if i = k, then
se = sjℓ; (4) if i = ℓ, then se = skj ; (5) if j = ℓ, then se = sik. Thus, applying the above
inductively, we get qsij = sijq

′ for deg(q) ≥ deg(q′).

Lemma 3.16. Any monomial in the n-vertex swap variables of the form p = sijqsij can be
written as a monomial of degree at most deg(q). In particular, for fixed i, j any monomial
in the n-vertex swap variables can be assumed to contain at most a single sij.
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Proof. Applying Lemma 3.15, we get sijqsij = s2
ijq

′ = q′ for deg(q) ≥ deg(q′).
The second statement follows from the first by induction.

Lemma 3.17. A monomial in the n-vertex swap variables of the form p = q0
∏k

j=1

(
sejqj

)
with the ej being distinct edges equals a monomial

(∏k
j=1 sej

)
q of the same degree or

smaller.

Proof. Suppose p = q0
∏k

j=1

(
sejqj

)
as above. Then one application of Lemma 3.15 gives

us p = se1q
′
0q1

∏k
j=2

(
sejqj

)
. Two more applications yield p = se1se2q

′′
0q

′
1q2

∏k
j=3

(
sejqj

)
.

Repeating this process inductively, we obtain p =
(∏k

j=1 sek

)
q

(n)
0 q

(n−1)
1 · · · q′

n−1qn. Note
that at each step, the degree did not increase, so taking q = q

(n)
0 q

(n−1)
1 · · · q′

n−1qn we obtain
the desired result.

3.4.4 Polynomials in swap variables

After considerable preparation we now give and prove any polynomial p in swaps can be
reduced to a simple form q. The proof is constructive (and does not use Gröbner bases).

Theorem 3.18. Any polynomial p in the n-vertex swap variables, is mod Iswap equal to
some polynomial q with deg(q) ≤ ⌈n

2 ⌉.
Moreover, one can take q to have each of its terms a monomial of the form

m = m1m2...mr mod Iswap (3.19)

where m1,m2, . . . ,mr are commuting monomials of all of degree one except possibly one
has degree two. Also each pair mi, mj with i ̸= j are supported on vertex disjoint graphs.

Proof. Let p̃ be a polynomial of minimum degree within p+ Iswap. By Lemma 3.16 we
may assume that in any term τ of p̃ the degree of any particular sij is at most 1. Suppose
that deg(τ) ≥ ⌈n

2 ⌉ + 1. Then |E(Gτ )| ≥ ⌈n
2 ⌉ + 1, so by Lemma 3.14 the graph Gτ contains

(1) three edges e1, e2, e3 which form a 3 edge line, or 3 edge star, or triangle; or

(2) two vertex disjoint 2 edge lines.

In the first case we can use Lemma 3.17 to obtain τ = se1se2se3q
′ where e1, e2, e3 are the

three edges in the three edge subgraph described above. By Lemma 3.11 we have a degree
reducing relation for monomials supported on three edge lines, three edge star graphs, and
triangles which combined with τ produce a polynomial equivalent to it mod Iswap but of
degree less than deg(τ). This contradicts τ having minimal degree.

To prove the second case Lemma 3.12 works similarly to give a degree drop contradiction.
This proves the first part of the theorem.

Proof of the second part of the theorem. Since deg(q) ≤ ⌈n
2 ⌉ we see Lemma 3.14

Item (a), Item (b) and Lemma 3.17 imply that each term m of q has the asserted form.

We end this section with a proof that the upper bound given in the preceding theorem
is tight when n is even.

Theorem 3.19. For any even integer n, the monomial s12s34...sn−1,n ∈ Aswap
n cannot be

written as a sum of monomials of degree less than n/2.
Thus, for any n, we require polynomials of degree at least ⌊n/2⌋ to express all elements

in the n qubit swap algebra Aswap
n .
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Proof. Consider the case where n is even. We prove the result for swap matrices, from which
the theorem is immediate by Theorem 3.6. Consider the matrix Swap12 Swap34 ...Swapn−1,n.
Expanding in the Pauli basis we see that it is supported on Pauli matrices of weight n
(i.e. it’s expansion contains degree n products of Pauli matrices). But any product of at
most n/2 − 1 swaps acts on at most n− 2 qubits, and so is supported on Pauli matrices
of weight at most n− 2. Since the Pauli matrices form a orthogonal basis for M2(C)⊗n,
this shows the matrix Swap12 Swap34 ...Swapn−1,n cannot be equal to a sum of products
of swap matrices with degree at most n/2 − 1.

The result for odd n is immediate by considering the monomial Swap12 Swap34 ...Swapn−2,n−1.

4 The Swap Algebra and the Non-Commutative Sum of Squares Hierarchy
In this section we construct an ncSoS hierarchy for the Symbolic Swap Algebra. We begin
by reviewing the general ncSoS technique in Section 4.2 and then show how it can be
applied specifically to the swap algebra in Section 4.3.

Previously an ncSoS hierarchy applied over the Pauli algebra, the Quantum Lasserre
Hierarchy, has been to used to upper (or lower) bound the maximum (or minimum)
eigenvalue of local Hamiltonians [BH13, GP19]. The Quantum Lasserre Hierarchy is
general and capable of addressing any qubit Hamiltonian problem. Our hierarchy is distinct
in that it is specific to the swap algebra. But in principle, an ncSoS hierarchy can be
constructed for any suitably presented algebra. Hamiltonian problems studied in physics
have algebraic structures associated with them. Thus, a message here is that ncSoS
techniques can be adapted to the algebra of Hamiltonians and potentially give improved
bounds to eigenvalue problems.

4.1 A Monomial Order – grlex
In computations with an algebra and their presentation via ideals we often need to place
an order on monomials. In our situation the variables are {sij | 1 ≤ i < j ≤ n} and we
define a graded lexicographic order (grlex) < on them as follows.

(1) Order the alphabet as

s11 < s12 < · · · < s1n < s23 < s24 < · · · < s2n < · · · < snn;

(2) for any two monomials a and b in the sij , take a < b if deg(a) < deg(b);

(3) if deg(a) = deg(b), then look at them as words in the sij and sort them as you would
in a dictionary according to alphabetical order.

4.2 Non-Commutative Sum Of Squares Hierarchy
Let I be a ∗-ideal in C⟨s⟩. Suppose h is a symmetric polynomial, by which we mean that
under the involution ∗, we have h∗ = h. Define νd(h) to be the lower limit of upper bounds
ν making

ν − h ∈ SOS2d + I, (4.1)

where SOS2d denotes the set of all sums of squares of polynomials in the variables sij each
having degree ≤ d.
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Note that if ν − h ∈ SOS2d + I for any d we must also have that π(ν − h) ≥ 0 for all
representations π : C⟨s⟩/I → B(H ). Thus, we have that any such ν, and in particular any
νd(h), gives an upper bound on the max eigenvalue of h under all representations of C⟨s⟩/I.
For a fixed I we call this process the dth relaxation and the least upper bound νd(h) we
call the dth relaxed value. Key to analyzing and computing this bound is expressing SOS2d

and membership in I succinctly.
Applying this formalism with I = Iswap gives an upper bound

νd(h) ≥ eigmax(h(Swap)), (4.2)

where h(Swap) denotes the matrix obtained by substituting each element sij in the polyno-
mial h with the corresponding swap matrix Swapij

4, and we will investigate this particular
situation more in the following section. For now we return to the case of a general ideal I.

The Veroneses are column vectors, denoted Vd(n), which consist of degree d monomials
in the n(n− 1)/2 variables sij , i < j, ordered w.r.t. grlex. This makes it possible to test
membership in SOS2d with the help of semidefinite programming (SDP).

Lemma 4.1. Let h = h∗ ∈ C⟨s⟩ be of degree ≤ 2d. Then h ∈ SOS iff there is a positive
semidefinite matrix Γ such that

h = Vd(n)∗ΓVd(n). (4.3)

Finding such a Γ can be done with an SDP.

Proof. This is well-known and routine [BKP16]. Eq. (4.3) yields a system of linear equations
on the entries of Γ, so finding a positive semidefinite Γ satisfying these linear constraints
amounts to a feasibility SDP.

Corollary 4.2. Let h = h∗ ∈ C⟨s⟩. Then h ∈ SOS2d +I iff there is a positive semidefinite
matrix Γ such that

h− Vd(n)∗ΓVd(n) ∈ I. (4.4)

Assuming a linear algebra basis for C⟨s⟩/I or a “good” generating set5 for I is known,
finding such a Γ can be done with an SDP.

Proof. The first part of the statement follows as in Lemma 4.1. Then, to translate Eq. (4.4)
into a linear system on the entries of Γ, we need to solve the ideal membership problem
for I; this can be done using a linear algebraic basis for the space C⟨s⟩/I or via Gröbner
bases. For a longer discussion of this issue see Section 4.2.1.

With this, Eq. (4.1) can be expressed as the SDP

νd(h) = inf ν
s.t. Γ ⪰ 0

ν − h− Vd(n)∗ΓVd(n) ∈ I.
(4.5)

Remark 4.3. One can approximate Eq. (4.5) by using truncated ideals. Given generators
g1, . . . , ge for the ideal I, form the degree 2d truncation of I as follows:

I2d := span{ugkv | u, v words in sij , k = 1, . . . , e, deg(ugkv) ≤ 2d}.

4So, in particular, observe that we have hG(Swap) = HG for any graph G.
5i.e., a Gröbner basis, cf. Section 5 below
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(Beware, frequently, I2d ⊊ I ∩ C⟨s⟩2d!) Membership in I2d can be expressed as a linear
system on the coefficients in the linear combination. This yields the following approximation
to Eq. (4.5):

νd(h) = inf ν
s.t. Γ ⪰ 0

ν − h− Vd(n)∗ΓVd(n) ∈ I2d.

(4.6)

Since I2d ⊊ I ∩ C⟨s⟩2d in general, νd(h) of Eq. (4.6) can be strictly greater than νd(h) of
Eq. (4.5).

Typically to solve a noncommutative sos SDP problem one applies standard duality
and solves the associated dual SDP. We give its interpretation as an SDP involving pseu-
domoments. Following a standard Lagrangian duality argument, the dual SDP to the one
in Eq. (4.5) is

ν

d(h) = sup L(h)
s.t. L ∈ (SOS2d + I)∨

L(1) = 1.
(4.7)

Here (SOS2d + I)∨ denotes the dual cone to the cone SOS2d + I,

(SOS2d +I)∨ =
{
L : C⟨s⟩2d → C | L ∗-linear with L(SOS2d) ⊆ R≥0, L(I∩C⟨s⟩2d) = {0}

}
.

As above, by replacing I in Eq. (4.7) by its truncation I2d, we obtain the approximation
ν

d(h) = sup L(h)
s.t. L ∈ (SOS2d + I2d)∨

L(1) = 1.
(4.8)

Remark 4.4. Weak duality always holds for a primal-dual SDP pair, i.e.,

νd(h) ≥ ν

d(h), (4.9)

and under natural mild conditions, strong duality holds, that is, we have equality in
Eq. (4.9). This holds, for example, in the presence of so-called Slater points, a condition
that is satisfied for I = Iswap, cf. Proposition 4.9 below.

Consider the pseudomoment matrix pattern M with symbolic entries

Mn
d := Vd(n)Vd(n)∗.

Lemma 4.5. For L : C⟨s⟩2d → C ∗-linear , L(SOS2d) ⊆ R≥0 iff (I ⊗ L)(Mn
d ) ⪰ 0.

Proof. For p ∈ SOS2d, assume p = ∑
j p

∗
jpj , and write each pj = Vd(n)∗p⃗j , where p⃗j is the

(column) vector of coefficients of pj . Then

L(p) =
∑

j

L(p∗
jpj) =

∑
j

L(p⃗ ∗
j Vd(n)Vd(n)∗p⃗j) =

∑
j

p⃗ ∗
j (I ⊗ L)(Md(n))p⃗j ,

from which the conclusion follows.
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We call the entries of Md(L) := (I ⊗ L)(Mn
d ) the pseudomoments (of degree ≤ 2d) of

L. We can now rewrite Eq. (4.7) as an SDP as follows:

ν

d(h) = sup L(h)
s.t.Md(L) ⪰ 0
Md(L)1,1 = 1
L(I ∩ C⟨s⟩2d) = {0}.

(4.10)

The objective function L(h) can be equivalently presented as

L(h) = ⟨Md(L),Γh⟩, (4.11)

where Γh is a (not necessarily positive semidefinite) Gram matrix for h, i.e., h =
Vd(n)∗ΓhVd(n). We note that the right-hand side of Eq. (4.11) is independent of the
Gram representation Γh chosen.

Remark 4.6. In general the supremum above, e.g. in Eq. (4.7) is taken all ∗-linear function-
als L : C⟨s⟩2d → C. However in the case where h∗ = h ∈ R⟨s⟩ and I∗ = I is generated by
polynomials in R⟨s⟩, we can simplify this supremum and only consider ∗-linear functionals L :
R⟨s⟩2d → R. To see why, assume we are in this case and note that for any function L achiev-
ing this supremum, we also have that the function L′ defined by L′(p) = 1

2

(
L(p) + L(p)

)
also achieves this supremum. Since L′ : R⟨s⟩2d → R this simplification is justified.

Example 4.7. Consider the case where I = {0}. In this case the constraint L(I∩C⟨s⟩2d) =
{0} is automatically satisfied.
Take n = 3, d = 1. Then V1(3) = (1, s12, s13, s23)∗ and an arbitrary degree one polynomial
p ∈ C⟨s⟩ has the form

p = p0 + p1s12 + p2s13 + p3s23 = V1(3)∗p⃗ with p⃗ := (p0, p1, p2, p3)T and (4.12)

p∗p = p⃗ ∗M3
1 p⃗ with M3

1 =


1 s12 s13 s23
s12 s2

12 s12s13 s12s23
s13 s13s12 s2

13 s13s23
s23 s23s12 s23s13 s2

23

 (4.13)

If L : R⟨s⟩2 → R is ∗-linear, then

M1(L) =


L(1) L(s12) L(s13) L(s23)
L(s12) L(s2

12) L(s12s13) L(s12s23)
L(s13) L(s13s12) L(s2

13) L(s13s23)
L(s23) L(s23s12) L(s23s13) L(s2

23)



=


L(1) L(s12) L(s13) L(s23)
L(s12) L(s2

12) L(s12s13) L(s12s23)
L(s13) L(s12s13) L(s2

13) L(s13s23)
L(s23) L(s12s23) L(s13s23) L(s2

23)


is a self-adjoint matrix.

Consider the Hamiltonian given by the polynomial h = s12 + s13 + s23. The classical
first relaxation Eq. (4.10) when the ideal I is {0} (noting that we can restrict to linear
functionals L : R⟨s⟩2d → R by Remark 4.6) becomes:

ν

1(h) = max ℓ12 + ℓ13 + ℓ23
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s.t. 
1 ℓ12 ℓ13 ℓ23
ℓ12 ℓ12,12 ℓ12,13 ℓ12,23
ℓ13 ℓ12,13 ℓ13,13 ℓ13,23
ℓ23 ℓ12,23 ℓ13,23 ℓ23,23

 ⪰ 0

= ∞

where ℓ12, ℓ13, ℓ23, ℓ12,12, ℓ12,13, ℓ12,23, ℓ13,23 ∈ R are arbitrary, and should be thought of as
giving the value of the linear functional L applied to the variables sij and monomials in
them in the matrix M1(L) above.

This gives an upper bound on the eigenvalues of the sum of three (arbitrary) self-adjoint
matrices which is vacuous. However, we soon see other ideals where the first relaxation
bound has substance, for example in Example 4.8.

Example 4.8. We repeat Example 4.7 but with I changed. We now take I = ISn , which
we define to be the ideal generated by the elements

s2
ij − 1, sijsjk − siksij , sijskl − sklsij i, j, k, l all distinct (4.14)

which we can think of as enforcing the defining relations

s2
ij = 1, sijsjk = siksij , sijskl = sklsij i, j, k, l all distinct (4.15)

of the symmetric group Sn. We will see in a moment how enforcing the condition
L(I ∩ C⟨s⟩2d) = {0} leads to linear constraints on the pseudomoment matrix pattern.

We begin with the pseudomoment matrix pattern

M3
1 =


1 s12 s13 s23
s12 s2

12 s12s13 s12s23
s13 s13s12 s2

13 s13s23
s23 s23s12 s23s13 s2

23

 (4.16)

obtained in Example 4.7. Now viewing these elements as elements of the algebra C⟨s⟩/ISn

(or, equivalently, applying the identities given in Equation (4.15) and recalling that sij = sji

for any i, j) we see this pseudomoment matrix pattern is equivalent to the pseudomoment
matrix pattern

M3
1 =


1 s12 s13 s23
s12 1 s12s13 s13s12
s13 s13s12 1 s12s13
s23 s12s13 s13s12 1

 =


1 s12 s13 s23
s12 1 s12s13 (s12s13)∗

s13 (s12s13)∗ 1 s12s13
s23 s12s13 (s12s13)∗ 1

 (4.17)

Writing M3
1 in this way we see that the first relaxation is:

ν

1(h) = max ℓ12 + ℓ13 + ℓ23

s.t. 
1 ℓ12 ℓ13 ℓ23
ℓ12 1 ℓ12,13 (ℓ12,13)∗

ℓ13 (ℓ12,13)∗ 1 ℓ12,13
ℓ23 ℓ12,13 (ℓ12,13)∗ 1

 ⪰ 0.
(4.18)

Where we can take ℓ12, ℓ13, ℓ23, ℓ12,13 to be real valued by Remark 4.6. But then we also
have ℓ12,13 = (ℓ12,13)∗ and the relaxation simplifies slightly further to

ν

1(h) = max ℓ12 + ℓ13 + ℓ23

Accepted in Quantum 2024-03-25, click title to verify. Published under CC-BY 4.0. 34



s.t. 
1 ℓ12 ℓ13 ℓ23
ℓ12 1 ℓ12,13 ℓ12,13
ℓ13 ℓ12,13 1 ℓ12,13
ℓ23 ℓ12,13 ℓ12,13 1

 ⪰ 0

= 3.

We refer the reader to Appendix D for the second relaxation.

In the example above we simplified the pseudomoment matrix pattern in a somewhat ad-
hoc manner. In that case it is not too difficult to verify that that simplification was complete,
i.e. that there were no linear constraints amongst entries of the pseudomoment matrix pat-
tern that were missed when translating to the SDP. But for larger moment matrices or more
complicated ideals it is not always obvious when the pseudomoment matrix pattern is fully
reduced. In the next section (Section 4.2.1) we will discuss some techniques that can be used
to find all the linear constraints amongs entries of an SDP that are enforced by a given ideal.

4.2.1 Finding Linear Constrains in the Moment Matrix

We now illustrate some terminology and discuss possible approaches to finding all the linear
constraints in the SDP computing the dth relaxed value ν

d(h) of some element h ∈ C⟨s⟩/I
when working with a general ∗-ideal I. For concreteness, we will frequently refer back to
the example in the previous section where we computed these linear constraints at level
d = 1 for the ideal IS3 .

There are two general approaches that will be discussed in this paper.

(1) Equations become rules. Every element of I can be thought of as enforcing equality
between sums of monomials. A particularly nice case is when the equality is just
between pairs of monomials – as occurred in Equation (4.15). Given two equivalent
monomials, we want to pick a suitable representative. We can use the grlex monomial
order of Section 4.1 to do this: the larger monomial in grlex order are replaced by
the smaller. This procedure applied to the equalities in Equation (4.15) yields the
following “replacement rules”

s2
ij → 1, s23s13 → s12s23, s13s12 → s12s23, (4.19)

s23s12 → s12s13, s13s23 → s12s13. (4.20)

When we apply the rules to a polynomial p, for example, take p = s23s12s
2
13 + s2

12,
then we get another polynomial p̃ = s12s13 + 1, having the key property p− p̃ ∈ ISn .
Applying these rules to the monomials in the initial moment matrix pattern of
Example 4.8 clearly gives M1

3 of Eq. (4.16) above.
For general ideals and their defining equations (or generators) we can similarly asso-
ciate a list grlex based of rules. Then for some p, after applying rules, p̃ may depend
on the order in which the rules are applied and even worse p ∈ I might not reduce
to p̃ = 0. Later, in Section 5, we show how this problem can be fixed by selecting
rules corresponding to a set of generators for I called a Gröbner Basis (GB). Indeed
the rules Equation (4.19) do correspond to a GB for S3 w.r.t. the grlex monomial
order. A longer discussion of Gröbner Basis can be found in Section 5.

(2) Linear algebra basis. An alternate approach is possible if a good understanding of the
quotient algebra AIS3

3 := C⟨s⟩/IS3 is available. Namely, if a linear basis for the quo-
tient space can be obtained (at least for images of polynomials up to a certain degree),
then simple linear algebra allows us to form (lower) levels of the relaxation hierarchy.
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For instance, a basis for the image of C⟨s⟩2 in AIS3
3 is

1, s12, s13, s12s13, s13s12,

since all monomials in C⟨s⟩2 are a linear combination of these modulo the IS3 , as can
be derived from Equation (4.14). Thus producing a moment matrix pattern for the
ideal S3 is done by using the trivial linear expansion of monomials in terms of this basis,

s23s13 = s12s23, s13s12 = s12s23, s23s12 = s12s13, s13s23 = s12s13.

The symmetric group S3 is so simple that the distinction between the rule approach
and the linear basis approach is merely semantic. However, for swaps the difference has
substance. Indeed, Section 4.3 takes the linear basis approach while Section 5 takes the
Gröbner Basis approach.

4.3 Non-Commutative Sum Of Squares Hierarchy for the Swap algebra
In this section we restrict our attention to the swap algebra. We begin with a brief
discussion of convergence of Sum of Squares relaxations in this algebra. Then we turn
our attention to implementations of the 1st and 2nd relaxations in the swap algebra using
linear algebraic bases. We begin in Section 4.3.1 with an example of the 1st relaxation
using a linear algebraic basis, then in Section 4.3.2, construct a linear algebraic basis for
monomials of degree at most two in the swap algebra. In Section 4.3.3 we discuss an
implementation of the 2nd swap relaxation using a linear algebraic basis for swap algebra
monomials of degree at most four which we construct in Appendix B. We end this section
with a discussion of some numerical results obtained using the 2nd swap relaxation.

Proposition 4.9. Strong duality holds between the primal-dual pair of SDPs in Eq. (4.5)
and Eq. (4.10).

Proof. It suffices to find a strictly feasible point L for the dual SDP in Eq. (4.10). Equiv-
alently, a strictly positive linear functional ℓ on the Swap algebra Aswap

n , or equivalently,
on M swap

n . But this is easy: simply take the trace.

Theorem 4.10. For h = h∗ ∈ Aswap
n , the sequences νd(h) and ν

d(h) defined in Eq. (4.5)
and Eq. (4.10) converge monotonically to eigmax(h(Swap)). More precisely, for d ≥ ⌈n

2 ⌉,

νd(h) = eigmax(h(Swap)) = ν

d(h).

Proof. The convergence statement follows from the Helton-McCullough Positivstellen-
satz [HM04] since the algebra Aswap

n is finite-dimensional and hence archimedean. The
convergence is finite by Theorem 3.18.

4.3.1 First relaxation for the Swap algebra

We now present in some detail the SDP arising from the first noncommutative sum of
squares relaxation for the Swap algebra. We proceed as in Example 4.7 and Example 4.8 and
define V1(n) = (1, s12, s13, . . . , s1n, s23, . . . , sn−1 n)∗ and consider M1(L) for some ∗-linear
functional L : C⟨s⟩2 → C which satisfies L(R⟨s⟩2) ⊆ R.

To encode the constraint L(Iswap ∩ C⟨s⟩2) = {0}, we need to understand the linear
space spanned by monomials of degree at most two in the swap algebra. We construct a
basis B2 for this space together with expansions for all the other products in terms of this
basis to encode Eq. (4.10). This follows the approach outined in Item (2) of Section 4.2.1.

Accepted in Quantum 2024-03-25, click title to verify. Published under CC-BY 4.0. 36



Example 4.11. Swap Algebra, n = 3. A basis B2 for the linear space spanned by mono-
mials of degree at most two in the swap algebra is given by the entries of V1(3) together
with one element, e.g., s12s13. All the other quadratic terms in the sij can be expressed
with these as follows:

s2
ij = 1

s12s23 = −1 + s12 + s13 + s23 − s12s13

s13s12 = −1 + s12 + s13 + s23 − s12s13

s13s23 = s12s13

s23s12 = s12s13

s23s13 = −1 + s12 + s13 + s23 − s12s13

With this a unital ∗-linear L with L(Iswap ∩ C⟨s⟩2) = {0} is determined by 3 real numbers
ℓij = L(sij) and a complex number q = L(s12s13). Thus M1(L) simplifies into

M1(L) =


L(1) L(s12) L(s13) L(s23)
L(s12) L(s2

12) L(s12s13) L(s12s23)
L(s13) L(s12s13)∗ L(s2

13) L(s13s23)
L(s23) L(s12s23)∗ L(s13s23)∗ L(s2

23)



=


1 ℓ12 ℓ13 ℓ23
ℓ12 1 q −1 + ℓ12 + ℓ13 + ℓ23 − q
ℓ13 q∗ 1 q
ℓ23 −1 + ℓ12 + ℓ13 + ℓ23 − q∗ q∗ 1

 .
Conversely, eachM1(L) of this form yields a unital ∗-linear L with L(Iswap ∩ C⟨s⟩2) = {0}.
This makes it straightforward to write down the SDP of Eq. (4.10) for the objective function
L(h) for h = ℓ12 + ℓ13 + ℓ23 in this case.

max ℓ12 + ℓ13 + ℓ23

s.t. 
1 ℓ12 ℓ13 ℓ23
ℓ12 1 q −1 + ℓ12 + ℓ13 + ℓ23 − q
ℓ13 q 1 q
ℓ23 −1 + ℓ12 + ℓ13 + ℓ23 − q q 1

 ⪰ 0

= 3.

Here ℓij ∈ R, and as explained in Remark 4.6, we have without loss of generality assumed
that q = L(s12s13) ∈ R.

The examples illustrate SDP relaxations using linear algebra constraints to capture
Iswap when n = 3. The rest of this section and related appendices give the machinery
needed, namely B3,B4, for any n and for 2nd swap relaxations.

4.3.2 Linear space spanned by the products of at most two swap matrices

Proposition 4.12. A basis B2 for the linear space spanned by monomials of degree at
most two in the swap algebra M swap

n is given by

I

Swapij i < j

Swapij Swapik i < j < k

Swapij Swapkℓ i < j, i < k < ℓ.
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Proof. Let us first prove the spanning property ob B2. Since two swap matrices with
disjoint indices commute, it suffices to consider products of two swap matrices, where one
of the indices repeats. Letting i < j < k, there are six such products, namely

Swapij Swapik, Swapik Swapij , Swapij Swapjk, Swapjk Swapij , Swapik Swapjk,

Swapjk Swapik .

The first of these has been included in B2. The second product can be expressed with the first
one and linear terms in Swappq using Eq. (△). Further, by a routine calculation we have6

Swapij Swapjk = −1 + Swapij + Swapij + Swapjk − Swapij Swapik ∈ spanB2

Swapjk Swapij = Swapij Swapik ∈ B2

Swapik Swapjk = Swapij Swapik ∈ B2

Swapjk Swapik = −1 + Swapij + Swapij + Swapjk − Swapij Swapik ∈ spanB2.

We now turn to the linear independence of B2. Assume there are scalars α, βij , γijk, δijkℓ

satisfying

αI +
∑
i<j

βij Swapij +
∑

i<j<k

γijk Swapij Swapik +
∑
i<j

i<k<ℓ

δijkℓ Swapij Swapkℓ = 0. (4.21)

Before expanding the left-hand side of Eq. (4.21) in terms of the Pauli σW , note that for
i < j < k,

4 Swapij Swapik = 1 + σi
Xσ

j
X + σi

Xσ
k
X + σj

Xσ
k
X + σi

Y σ
j
Y + σi

Y σ
k
Y + σj

Y σ
k
Y + σi

Zσ
j
Z + σi

Zσ
k
Z + σj

Zσ
k
Z

+ i
(
σi

Xσ
j
Y σ

k
Z − σi

Xσ
j
Zσ

k
Y − σi

Y σ
j
Xσ

k
Z + σi

Y σ
j
Zσ

k
X + σi

Zσ
j
Xσ

k
Y − σi

Zσ
j
Y σ

k
X

)
.

Likewise, letting i < j < k < ℓ, we have

4 Swapij Swapkℓ = 1 + σi
Xσ

j
X + σk

Xσ
ℓ
X + σi

Y σ
j
Y + σk

Y σ
ℓ
Y + σi

Zσ
j
Z + σk

Zσ
ℓ
Z

+ σi
Xσ

j
Xσ

k
Xσ

ℓ
X + σi

Xσ
j
Xσ

k
Y σ

ℓ
Y + σi

Xσ
j
Xσ

k
Zσ

ℓ
Z + σi

Y σ
j
Y σ

k
Xσ

ℓ
X

+ σi
Y σ

j
Y σ

k
Y σ

ℓ
Y + σi

Y σ
j
Y σ

k
Zσ

ℓ
Z + σi

Zσ
j
Zσ

k
Xσ

ℓ
X + σi

Zσ
j
Zσ

k
Y σ

ℓ
Y + σi

Zσ
j
Zσ

k
Zσ

ℓ
Z .

If i < k < j < ℓ, then

4 Swapij Swapkℓ = 1 + σi
Xσ

j
X + σk

Xσ
ℓ
X + σi

Y σ
j
Y + σk

Y σ
ℓ
Y + σi

Zσ
j
Z + σk

Zσ
ℓ
Z

+ σi
Xσ

k
Xσ

j
Xσ

ℓ
X + σi

Xσ
k
Y σ

j
Xσ

ℓ
Y + σi

Xσ
k
Zσ

j
Xσ

ℓ
Z + σi

Y σ
k
Xσ

j
Y σ

ℓ
X

+ σi
Y σ

k
Y σ

j
Y σ

ℓ
Y + σi

Y σ
k
Zσ

j
Y σ

ℓ
Z + σi

Zσ
k
Xσ

j
Zσ

ℓ
X + σi

Zσ
k
Y σ

j
Zσ

ℓ
Y + σi

Zσ
k
Zσ

j
Zσ

ℓ
Z

Finally, when i < k < ℓ < j, then

4 Swapij Swapkℓ = 1 + σi
Xσ

j
X + σk

Xσ
ℓ
X + σi

Y σ
j
Y + σk

Y σ
ℓ
Y + σi

Zσ
j
Z + σk

Zσ
ℓ
Z

+ σi
Xσ

k
Xσ

ℓ
Xσ

j
X + σi

Xσ
k
Y σ

ℓ
Y σ

j
X + σi

Xσ
k
Zσ

ℓ
Zσ

j
X + σi

Y σ
k
Xσ

ℓ
Xσ

j
Y

+ σi
Y σ

k
Y σ

ℓ
Y σ

j
Y + σi

Y σ
k
Zσ

ℓ
Zσ

j
Y + σi

Zσ
k
Xσ

ℓ
Xσ

j
Z + σi

Zσ
k
Y σ

ℓ
Y σ

j
Z + σi

Zσ
k
Zσ

ℓ
Zσ

j
Z

6While the identities given in this section can be easily verified since they involve matrices of small to
moderate size, we have in fact discovered many of them with the help of noncommutative Gröbner bases;
cf. Section 5 below.
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We are now ready to expand Eq. (4.21). We shall make heavy use of the Pauli basis
as given in Eq. (2.4). Consider the term Swapij Swapkℓ next to δijkℓ. If i < j < k < ℓ,
then the expansion will contain σi

Xσ
j
Xσ

k
Y σ

ℓ
Y , a term that cannot appear anywhere else

in Eq. (4.21). If i < k < j < ℓ, then the expansion contains σi
Xσ

k
Y σ

j
Xσ

ℓ
Y , again a term

that cannot appear anywhere else in Eq. (4.21). Finally, if i < k < ℓ < j, then the same
conclusion holds for σi

Xσ
k
Y σ

ℓ
Y σ

j
X . Thus δijkℓ = 0 for all i, j, k, ℓ.

We next consider γijk Swapij Swapik. Here the expansion contains σi
Xσ

j
Y σ

k
Z that is

again a term that cannot appear elsewhere in Eq. (4.21). Thus all γijk = 0.
Similar but easier reasoning will also imply βij = 0 and finally α = 0 proving linear

independence of B2.

Remark 4.13. The set B2 has

1 +
(
n

2

)
+
(
n

3

)
+ 3

(
n

4

)
= 1

24
(
3n4 − 14n3 + 33n2 − 22n+ 24

)
elements.

4.3.3 Second relaxation for the Swap algebra

We continue our discussion of relaxation by describing the second relaxation. This requires
sets of monomials B3,B4 (to be described later in Appendices B.1 and B.2 which are degree
3 and 4 analogs of B2.

In order to build the second relaxation, we replace V2(n) by the vector B⃗2 consisting
of the swap basis B2 determined in Proposition 4.12. The corresponding symbolic pseu-
domoment matrix B⃗2B⃗

∗
2 will contain products of up to four swaps. To form the SDPs in

Eq. (4.5) or Eq. (4.10) we need to understand the linear space spanned by all products
of up to four Swap matrices, a topic we describe in some detail below in Appendix B.

Algorithm 1: 2nd relaxation of the quantum max-cut
Input : Graph G = (V,E) on n vertices
Output : Solution to the 2nd relaxation of quantum max-cut for hG. Alternately,

“upper bound on the minimum eigenvalue of the QMC Hamiltonian”
Form B⃗2;
Form the symbolic pseudomoment matrix M2 := B⃗2B⃗

∗
2 ;

Express each entry in M2 as a linear combination of elements of B4 (see
Appendix B.2) to obtain M′

2;
Replace each distinct term appearing in M′

2 with a new (scalar) variable; call the
resulting matrix M′′

2 ;
Solve the SDP

ν

2(hG) = sup{⟨M′′
2 ,ΓG⟩ |M′′

2 ⪰ 0, (M′′
2)1,1 = 1}, (4.22)

where ΓG is any matrix satisfying hG = B⃗∗
2ΓGB⃗2;

return ν

2(hG)

4.3.4 Swap relaxation behaves well in experiments

We implemented Algorithm 1 in Mathematica (using the out-of-the-box semidefinite
optimization module in Mathematica) on all graphs with ≤ 8 vertices:

Accepted in Quantum 2024-03-25, click title to verify. Published under CC-BY 4.0. 39



Proposition 4.14. For n ≤ 8 the 2nd relaxed value of an n vertex Quantum Max Cut
Hamilton with uniform edge weights is up to the tolerance of 10−7 equal to the max
eigenvalue of that Hamiltonian.

It would be interesting to find the smallest graph on which the second relaxation is
not exact.

Remark 4.15. Proposition 4.14 is surprising when compared to classical (commutative)
max cut relaxation which performs much worse.

For example, the second Lasserre relaxation is not exact for the 5 cycle. Also, while
we do not give comparative statistics, the first classical relaxation is worse than the one
for swaps, e.g., even the triangle is classically not first Lasserre exact.

4.3.5 Segue

Since, clearly, it is not feasible to find linear algebra bases for linear spaces spanned by
products of d > 4 swaps by hand, we turn to Gröbner bases in next.

5 Gröbner Bases
This section gives a few observations about Gröbner Bases (GB) with an eye toward
computation.

5.1 Our Gröbner Basis Set Up
Our presentation is aimed at readers who have a basic familiarity with GBs; a standard
reference in the commutative setting is [CLO15], while [Mor86, Gre00, Xiu12] describe
the appropriate nc analogs. Noncommutative GBs have properties similar to those of
commutative GB with the dramatic exception that a noncommutative GB might not be
finite. However, we start with some conceptual motivation to provide a little context for
readers who are unfamiliar with GBs.

5.1.1 Motivation for why we need Gröbner generators vs any old set of generators for an ideal

The reader is advised to review Example 4.8 which foreshadowed some of the ideas here.
Now we describe precisely the two big drawbacks of doing calculations on an ideal I

using a set of generators for I which is too small. Let B be a set of generators for I a
two sided ideal in the free algebra C⟨s⟩, and let A := C⟨s⟩/I. A basic question is: how do
we tell if two elements a, ã of A are the same? Equivalently, do two given nc polynomials
p, p̃ have difference δ := p− p̃ in I?

The simplest näıve approach is to use the graded lexicographic (grlex) monomial order
introduced in Section 4.1. Then each polynomial b ∈ B is a weighted sum of monomials;
one of these monomials is bigger than the rest in the monomial order. Denote it by LT(b)
and construct a replacement rule, denoted rb via

LT(b) → b− LT(b)
Now apply the rules rB gotten from the polynomials in B repeatedly to a polynomial p
until they no longer cause any changes7; this leaves us with a polynomial decomposition

p = pB + δ.

7the fact that we are using grlex – an “admissible monomial order” – implies that the successive
application of rules will stop
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where δ ∈ I.
All of this does not tell us if p actually is in the ideal I and the remainder pB might even

depend on the order in which the rules are applied. This is extremely unsatisfying. Next,
Gröbner Bases to the rescue: B is called a Gröbner Bases if the remainder pB of a polynomial
p is 0 iff p ∈ I. Equivalently, pB can be looked at as the remainder of the division of p by B.
Hence, pB is uniquely determined, independent of how the rules are applied, and is called
the canonical form of p modulo I (w.r.t. the grlex order). So far we only have established
semantics to the effect that GBs solve our main difficulties, but the next theorem has impact.

Theorem 5.1 ([Mor86]). A finitely generated ideal I in C⟨s⟩ has a Gröebner Basis GBI
w.r.t. grlex, which may be infinite.

Comments on proof. Loosely speaking, the noncommutative Buchberger criterion [Mor86,
Theorem 5.1] states that B is a GB iff each S-polynomial built off B can be expressed in
terms of the elements of B with control on the grlex order of multipliers. Thus algorithms
for building GBs work by producing S-polynomials for pairs ai, aj of (not necessarily
distinct) polynomials which are generators of I. Here, S-polynomials are ones of the form

Si,j(wi, w
′
i, wj , w

′
j) = 1

LC(ai)
wiaiw

′
i − 1

LC(aj)wjajw
′
j (5.1)

for words wi, w
′
i, wj , w

′
j in x satisfying

wi LT(ai)w′
i = wj LT(aj)w′

j . (5.2)

Here LC(a) denotes the coefficient of the leading term of a.
At each step in construction of a GB, one considers a collection of polynomials B̂. If the

“remainder” of an S-polynomial after division by B̂ is nonzero, one adds it to B̂ and repeats
the process. Ultimately (maybe in an infinite number of steps) B̂ grows to B, a GB.

Remark 5.2. (1) In this exposition we used the grlex monomial order. However, many
(but not all) monomial orders would work in the same way with the same properties.
A linear order on monomials is a monomial order if Item (a) holds, and is called
admissible if Item (b) holds as well:

(a) m1 < m2 implies mm1m
′ < mm2m

′ for all monomials m,m′,m1,m2;
(b) the given ordering is a well-ordering on the set of monomials, i.e., every descend-

ing chain of monomials becomes eventually stationary.

We refer the reader to [Mor86, Gre00] for details.

(2) An equivalent characterization of B being a GB is: the set of leading terms LT(B)
of elements of B generates the same monomial ideal LT(I) as all leading terms of I.

(3) While we do not go into this, given an admissible monomial order, to every ideal and
we can associate a “reduced” GB [Xiu12], and these are unique. Loosely speaking, a
reduced GB is one in which no polynomial is redundant and none of the monomials
appearing in a polynomial of the GB are redundant.
The standard GB packages output a reduced GBs as the default.

(4) Any maximal set of linearly independent remainders among {pB | p ∈ C⟨s⟩} for a
GB B forms a basis for the quotient algebra C⟨s⟩/I.
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(5) GB algorithms are very time and memory consuming both in the commutative and
the non-commutative case. For the complexity analysis of the state-of-the-art F5
algorithm for commutative GBs see [BFS15].

5.2 Gröbner Bases for the Paulis
The purpose of this subsection is to demonstrate Gröbner bases in action in a toy example,
namely for the Paulis, where it leads to the expected result. However, the choice of the
monomial order matters as we illustrate in Example 5.5.

Consider the free algebra C⟨x1, . . . , xn, y1, . . . , yn, z1, . . . , zn⟩ and its quotient by the
ideal IPauli generated by

x2
j = y2

j = z2
j = 1, xjyj = izj , yjxj = −izj ,

[uj , wk] = 0 for j ̸= k and u,w ∈ {x, y, z}
(5.3)

for j, k = 1, . . . , n. The quotient algebra C⟨x, y, z⟩/IPauli is isomorphic to the algebra
generated by the Paulis {σj

W | 1 ≤ j ≤ n, W ∈ {X,Y, Z, I}}, that is, to M2n(C).

Example 5.3. With the aid of a computer algebra system we computed the GB in the
case n = 4. With respect to the graded lex order with x1 < y1 < z1 < x2 < · · · < z4 it is
given by the following 90 polynomials, all of which come from Eq. (5.3):

− 1 + x2
1, −1 + x2

2, −1 + x2
3, −1 + x2

4, −1 + y2
1, −1 + y2

2, −1 + y2
3, −1 + y2

4,

− 1 + z2
1 , −1 + z2

2 , −1 + z2
3 , −1 + z2

4 , −iz1 + x1y1, −iz2 + x2y2,

− iz3 + x3y3, −iz4 + x4y4, iz1 + y1x1, iz2 + y2x2, iz3 + y3x3, iz4 + y4x4,

x1x2 − x2x1, x1y2 − y2x1, x1z2 − z2x1, −x2y1 + y1x2, y1y2 − y2y1, y1z2 − z2y1,

− x2z1 + z1x2, −y2z1 + z1y2, z1z2 − z2z1, x1x3 − x3x1, x1y3 − y3x1, x1z3 − z3x1,

− x3y1 + y1x3, y1y3 − y3y1, y1z3 − z3y1, −x3z1 + z1x3, −y3z1 + z1y3, z1z3 − z3z1,

x1x4 − x4x1, x1y4 − y4x1, x1z4 − z4x1, −x4y1 + y1x4, y1y4 − y4y1, y1z4 − z4y1,

− x4z1 + z1x4, −y4z1 + z1y4, z1z4 − z4z1, −x1x2 + x2x1, x2y1 − y1x2, x2z1 − z1x2,

− x1y2 + y2x1, −y1y2 + y2y1, y2z1 − z1y2, −x1z2 + z2x1, −y1z2 + z2y1,

− z1z2 + z2z1, x2x3 − x3x2, x2y3 − y3x2, x2z3 − z3x2, −x3y2 + y2x3, y2y3 − y3y2,

y2z3 − z3y2, −x3z2 + z2x3, −y3z2 + z2y3, z2z3 − z3z2, x2x4 − x4x2, x2y4 − y4x2,

x2z4 − z4x2, −x4y2 + y2x4, y2y4 − y4y2, y2z4 − z4y2, −x4z2 + z2x4, −y4z2 + z2y4,

z2z4 − z4z2, −x1x3 + x3x1, x3y1 − y1x3, x3z1 − z1x3, −x1y3 + y3x1, −y1y3 + y3y1,

y3z1 − z1y3, −x1z3 + z3x1, −y1z3 + z3y1, −z1z3 + z3z1, −x2x3 + x3x2, x3y2 − y2x3,

x3z2 − z2x3, −x2y3 + y3x2, −y2y3 + y3y2, y3z2 − z2y3, −x2z3 + z3x2, −y2z3 + z3y2,

− z2z3 + z3z2, x3x4 − x4x3, x3y4 − y4x3, x3z4 − z4x3, −x4y3 + y3x4, y3y4 − y4y3,

y3z4 − z4y3, −x4z3 + z3x4, −y4z3 + z3y4, z3z4 − z4z3, −x1x4 + x4x1, x4y1 − y1x4,

x4z1 − z1x4, −x1y4 + y4x1, −y1y4 + y4y1, y4z1 − z1y4, −x1z4 + z4x1, −y1z4 + z4y1,

− z1z4 + z4z1, −x2x4 + x4x2, x4y2 − y2x4, x4z2 − z2x4, −x2y4 + y4x2, −y2y4 + y4y2,

y4z2 − z2y4, −x2z4 + z4x2, −y2z4 + z4y2, −z2z4 + z4z2, −x3x4 + x4x3, x4y3 − y3x4,

x4z3 − z3x4, −x3y4 + y4x3, −y3y4 + y4y3, y4z3 − z3y4, −x3z4 + z4x3, −y3z4 + z4y3,

− z3z4 + z4z3

Thus the “natural generators” for IPauli are themselves a GB.
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Proposition 5.4. With respect to the graded lex order under which

x1 < y1 < z1 < x2 < · · · < zn,

polynomials arising from Eq. (5.3) together with

xjzj + iyj , zjxj − iyj , yjzj − ixj , zjyj + ixj , 1 ≤ j ≤ n (5.4)

form a Gröbner basis for IPauli. It has 9
2n(n+ 1) elements.

Proof. Firstly, note that the polynomials in Eq. (5.4) belong to IPauli. For instance,

xjzj + iyj = −iyj(z2
j − 1) − yj(xjyj − izj)zj + (xjyj − izj)yjzj

+ (yjxj + izj)yjyj − xj(y2
j − 1)zj .

We now apply the noncommutative Buchberger algorithm (see, e.g., [Mor86]), to check
that the constructed set B of polynomials is a GB. Firstly, self-obstructions. Given one
of the polynomials p ∈ B it involves at most two indices i, j. Hence all its nontrivial
self-obstructions can also involve only these two indices. But modulo the GB these all
reduce to 0 (by Example 5.3). Likewise, given polynomials p1, p2 ∈ B, they involve at most
four distinct indices. These same indices are the only ones that can appear in a nontrivial
S-polynomial constructed from p1, p2. But, again by Example 5.3, these must reduce to
0 since p1, p2 appear in the GB associated to the chosen four indices.

To count the number of elements in this GB, note there are 3n polynomials of the form
w2

j = 1 for w ∈ {x, y, z} and 1 ≤ j ≤ n. There are 6n polynomials of the form wjuj ± ivj

with {w, u, v} = {x, y, z}. Finally, there are 32 ·
(n

2
)

commutators in B. Adding these
numbers we get the desired count.

Example 5.5. Changing the monomial order to grlex under which

x1 < x2 < · · · < xn < y1 < · · · < zn,

the obtained GB is much more complicated. For instance, with n = 2 the GB contains
the degree three polynomial y2z1z2 − ix2z1, with n = 3 the GB contains the degree four
polynomial y3z1z2z3 − ix3z1z2, etc.

5.2.1 The dth relaxation of the quantum max-cut can be computed in polynomial time

Proposition 5.4 makes it possible to compute the dth relaxation of the quantum max-cut
in polynomial time.
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Algorithm 2: dth relaxation of the quantum max-cut supported by Paulis
Input : Graph G = (V,E) on n vertices, level of relaxation d
Output : Solution to the dth relaxation of quantum max-cut for hG

Find the Veronese vector Vd(n) ontaining all monomials of degree ≤ in the swap
variables, and express them in terms of symbolic Paulis xj , yj , zj ;

Replace each entry of Vd(n) by its remainder upon division with the GB of IPauli;
Compute a basis for the span of all the entries of Vd(n);
Form the vector Vd(n) with the basis as its entries;
Find Md(n) := Vd(n)Vd(n)∗;
Replace each entry of Md(n) by its remainder upon division with the GB of IPauli;
Replace each distinct term appearing in Md(n) with a new (scalar) variable; call
the resulting matrix Md(L);

Solve the SDP

ν

d(hG) = sup{⟨Md(L),ΓG⟩ |Md(L) ⪰ 0, Md(L)1,1 = 1}, (5.5)

where ΓG is any matrix satisfying hG = Vk(n)∗ΓGVk(n);
return ν

d(hG)

Theorem 5.6. Algorithm 2 computes the value of the dth relaxation of the quantum
max-cut in polynomial time.

Proof. Each step takes polynomial time. The only argument required is to establish that
the constructed SDP of Eq. (5.5) can be solved in polynomial time using standard interior
point solvers. But this follows from SDP complexity theory (see, e.g., [dK02, Section
1.9]); we only need the existence of Slater points (which we established in the proof of
Proposition 4.9) together with bounds on the feasible region of the SDP. Since our variables
sij are involutions, the diagonal of Md(L) in Eq. (5.5) is constantly 1 yielding a bound
of 2 on each positive semidefinite Md(L).

Remark 5.7. As pointed to us by Claudio Procesi, an alternative method for providing
a polynomial time SDP hierarchy for the quantum max-cut can be based on the notion
of good permutations [Pro21]. For d ∈ N, a permutation σ ∈ Sn is d-bad if there are
1 ≤ i1 < i2 < · · · < id ≤ n with σ(i1) > σ(i2) > · · · > σ(id). Otherwise it is d-good. Since
each permutation is a product of transpositions, this notion can also be applied to certain
elements of the swap algebra, e.g., to products of the sij . Procesi [Pro21, Theorem 8]
shows that 3-good permutations form a basis of the swap algebra. Further, the proof of
his theorem gives a recursive method for expressing an element of the swap algebra as a
linear combination w.r.t. this basis.

Hence providing an ordering for the set of 3-good permutations one can build increasing
size Veronese vectors to be used in the ncSoS hierarchy. (Note that the transposition
(i j) with j − i > 1 is not 3-good, but an induction on j − i together with Item (3) of
Definition 3.1 can be used to express sij in terms of 3-good permutations.) It would be
interesting to investigate this further and compare the performance of this method with
the one presented here.

5.3 Gröbner Bases for the Swap Algebra
Ideally one would want to simplify Algorithm 2 to avoid expanding everything in terms
of Paulis. This is indeed possible if one computes the Gröbner basis for the Swap algebra.
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Unfortunately, the GB for the Swap algebra appears more involved that the one for the
Paulis, and we were unable to identify its form in general. However, for small n it can be
explicitly computed.

Consider the lex order on pairs (i, j), i.e., (i, j) < (k, ℓ) if i < k or i = k and j < ℓ, and
order swaps sij w.r.t. lex order on the indices. We used Magma [BCP97] to bootstrap the
computation of the GBs. Namely, we computed GB for some small n, say n = 4. Then
replace indices (1, 2, 3, 4) with any increasing 4-subset of (1, 2, 3, 4, 5) to obtain a generating
set for Iswap

5 . On this generating set we next run the GB algorithm to obtain a GB. Then
rinse and repeat. The GB for n = 4 is given in Appendix C.

Proposition 5.8. The GB for Iswap
3 is given by the following eight polynomials:

−1 + s2
12, 1 − s12 − s13 − s23 + s12s13 + s12s23,

1 − s12 − s13 − s23 + s12s13 + s13s12, −1 + s2
13,

−s12s13 + s13s23, −s12s13 + s23s12,

1 − s12 − s13 − s23 + s12s13 + s23s13, −1 + s2
23

(5.6)

Proof. Verifying this is a straightforward, though tedious calculation. Alternately, this can
be obtained with the help of a computer algebra system such as Magma or NCAlgebra
under Mathematica.

5.4 dth Swap Relaxation
Finally, we have all the ingredients needed to give the algorithm for computing the dth
relaxation based purely in terms of the swaps. It generalizes Algorithm 1 from d = 2 to
arbitrary d.

Algorithm 3: dth relaxation of the quantum max-cut
Input : Graph G = (V,E) on n vertices, level of relaxation d,

GBn=Gröbner basis for Iswap
n

Output : Solution to the dth relaxation of quantum max-cut for hG

Find Vd(n);
Replace each entry of Vd(n) by its remainder upon division with GBn;
Compute a basis for the span of all the entries of Vd(n);
Form the vector Vd(n) with the basis as its entries;
Find Md(n) := Vd(n)Vd(n)∗;
Replace each entry of Md(n) by its remainder upon division with GBn;
Replace each distinct term appearing in Md(n) with a new (scalar) variable; call
the resulting matrix Md(L);

Solve the SDP

ν

d(hG) = sup{⟨Md(L),ΓG⟩ |Md(L) ⪰ 0, Md(L)1,1 = 1}, (5.7)

where ΓG is any matrix satisfying hG = Vd(n)∗ΓGVd(n);
return ν

d(hG)

This algorithm, like Algorithm 2 runs in finite time with similar justifications. However,
this algorithm requies as input a Gröbner basis for Iswap

n . Finding such a Gröbner basis
for finite d and arbitrary n may not be possible in polynomial time.
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5.5 Irrep Swap Relaxations

As seen in Corollary 2.9, eigmax(HG) =
⌊ n

2 ⌋
max
k=0

(
eigmax(H [n−k,k]

G )
)
. In this section we explain

how to form SDP relaxations to find eigmax(H [n−k,k]
G ) for a given graph G on n vertices

and k ≤ n/2.
From the proof of Lemma 2.12 (in particular Eq. (2.46)) we have that the following

constraint is satisfied inside the [n− k, k] irrep

∑
(i,j)∈E(Kn)

ρ[n−k,k]((i j)) = η̂[n−k,k]I =
((

n

2

)
+ k2 − k(n+ 1)

)
I. (5.8)

Enforcing this constraint is equivalent to enforcing that

hKn = ηn−k,k ⇐⇒ hKn − ηn−k,k = 0. (5.9)

and so, by Proposition 3.10 the algebra formed by the sij variables satisfying this extra
relation is isomorphic to the relevant Irrep Symbolic Swap Algebra. Stated differently,
Proposition 3.10 shows that all constraints in the [n − k, k] irrep can be derived from
Equation (5.8) above along with the relations given in Definition 3.1.

We can force the swap variables to satisfy the same constraint by requiring that one of
them, namely sn−1 n, (the last one in our chosen monomial order) can be written in terms
of the others:

sn−1 n = −
∑

i<j≤n, i ̸=n−1
sij + η̂[n−k,k]. (5.10)

We can now adapt Algorithm 3 to find a relaxation for eigmax(H [n−k,k]
G ).
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5.5.1 Using the Gröbner basis for swaps

Algorithm 4: dth relaxation for eigmax(H [n−k,k]
G )

Input : Graph G = (V,E) on n vertices, k ≤ n/2, level of relaxation d
GBn=Gröbner basis for Iswap

n

Output : Solution to the dth relaxation for eigmax(H [n−k,k]
G )

Find Vd(n);
while Vd(n) has not stabilized do

Replace each entry of Vd(n) by its remainder upon division with GBn;
In each of the entries replace sn−1 n with the expression derived from Eq. (5.10)

end
Compute a basis for the span of all the entries of Vd(n);
Form the vector Vd(n) with the basis as its entries;
Find Md(n) := Vd(n)Vd(n)∗;
while Md(n) has not stabilized do

Replace each entry of Md(n) by its remainder upon division with GBn;
In each of the entries replace sn−1 n with the expression derived from Eq. (5.10)

end
Replace each distinct term appearing in Md(n) with a new (scalar) variable; call
the resulting matrix Md(L);

Solve the SDP

ν

d(H [n−k,k]
G ) = sup{⟨Md(L),ΓG⟩ |Md(L) ⪰ 0, Md(L)1,1 = 1}, (5.11)

where ΓG is any matrix satisfying h′
G = Vd(n)∗ΓGVd(n); here h′

G is hG, where
sn−1 n was replaced as before;

return ν

d(H [n−k,k]
G )

We now discuss the runtime of Algorithm 4. Replacing sn−1 n with the expression
derived from Eq. (5.8) produces monomials in the sij that are all smaller than the original
one in the monomial order. We also note that there are

(n
2
)

= n(n−1)/2 distinct monomials
of degree one in the swap algebra, and hence at most (n(n− 1)/2)d monomials of degree
at most d. Thus, the two while loops in Algorithm 4 terminate after at most (n(n− 1)/2)d

many steps. For finite d Algorithm 4 then runs in polynomial time, provided a Gröbner
basis is supplied as input to the algorithm.

5.5.2 Using the Gröbner basis for irreps

To avoid having to deal with the two loops in Algorithm 4, we can find a GB for the
ideal In−k,k. Recall from Proposition 3.10 that In−k,k is generated by Iswap together with
hKn − ηn−k,k. So we can either find the Gröbner basis GBn for Iswap, then add the ‘clique
polynomial’, hKn − ηn−k,k, and run the GB algorithm again. Or, one takes the generating
set of polynomials in Remark 3.2 for Iswap, adds the clique polynomial, and runs a GB.
Once the Gröbner basis GBn−k,k for In−k,k is available, one simple adapts Algorithm 3
by replacing GBn by GBn−k,k. Thus we obtain Algorithm 5.
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Algorithm 5: dth relaxation for eigmax(H [n−k,k]
G )

Input : Graph G = (V,E) on n vertices, k ≤ n/2, level of relaxation d
GBn−k,k=Gröbner basis for In−k,k

Output : Solution to the dth relaxation for eigmax(H [n−k,k]
G )

Find Vd(n);
Replace each entry of Vd(n) by its remainder upon division with GBn−k,k;
Compute a basis for the span of all the entries of Vd(n);
Form the vector Vd(n) with the basis as its entries;
Find Md(n) := Vd(n)Vd(n)∗;
Replace each entry of Md(n) by its remainder upon division with GBn−k,k;
Replace each distinct term appearing in Md(n) with a new (scalar) variable; call
the resulting matrix Md(L);

Solve the SDP

ν

d(hG) = sup{⟨Md(L),ΓG⟩ |Md(L) ⪰ 0, Md(L)1,1 = 1}, (5.12)

where ΓG is any matrix satisfying hG ≡ Vd(n)∗ΓGVd(n) mod GBn−k,k;

return ν

d(H [n−k,k]
G )

As in the case of Algorithms 3 and 4 this algorithm has polynomial runtime provided
a Gröbner basis is provided as input for the Algorithm. The Gröbner bases GB4−k,k for
k ∈ {1, 2} are given in Appendix C.

6 Finding Eigenvalues via Clique Decompositions of Graphs
The QMC problem is dramatically easier to solve on smaller graphs. So, it would be ideal
if we could cheaply compute the solution to QMC on a large graph G from the solutions
to QMC on a number of smaller graphs. There is an obvious way this can be implemented
if the graph G is not connected. In this case, we can solve QMC on each of the connected
components of G and add up the solutions to obtain the solution for G.

Less obvious is that a similar decomposition is possible when the complement of a graph
G is disconnected. Suppose, for instance, that an n vertex graph G has a complement Gc

with two connected components Gc
1 and Gc

2. In this case, the QMC Hamiltonian for G can
be written as

HG = HKn −HGc
1

−HGc
2
,

where Kn denotes an n-vertex clique. Lemma 2.11 gives that HK(G) on the [n− k, k] irrep
is equal to ηn−k,kI, and since Gc

1 and Gc
2 are disjoint we obtain

eigs(H [n−k,k]
G ) = {η[n−k,k]} − eigs(H [n−k,k]

Gc
1

) − eigs(H [n−k,k]
Gc

2
),

where the addition and subtraction is the Minkowski sum of sets. Combining this obser-
vation with the Young branching rule for irreps, we can solve the QMC problem on G by
first solving the problem on the smaller graphs Gc

1 and Gc
2.

In this section we fill in details above and develop this type of graph decomposition
“to its fullest.” As a result, we obtain algorithms for approximating eigenvalues and even
computing them in exact arithmetic in some special cases. We begin by doing a simple
example in more detail.

Accepted in Quantum 2024-03-25, click title to verify. Published under CC-BY 4.0. 48



6.1 The Star Graph
As a first example, we consider the n-vertex star graph, which we denote ⋆n. Eigenvalues
of the corresponding QMC Hamiltonian H⋆n have been computed previously [LM62]. Here
we re-derive these results using the methods of this section.

Lemma 6.1. For any n and k ≤ n/2 the matrix H
[n−k,k]
⋆n

has two eigenvalues, whose
values are given by

e1 = 2(n− k + 1), e2 = 2k. (6.1)

If n is even and k = n/2, then H
[n/2,n/2]
⋆n

is (n+ 2) times the identity matrix.

Proof. Consider first the case k < n/2. Label the vertices of the star graph so that
the n-th vertex corresponds to the center of the star. Then ⋆n

c = Kn−1 which yields
⋆n = Kn −Kn−1, so

h⋆n = hKn − hKn−1 . (6.2)

Apply the [n− k, k] irrep to get

H
[n−k,k]
⋆n

= H
[n−k,k]
Kn

−H
[n−k,k]
Kn−1

. (6.3)

Now we consider the matrices H [n−k,k]
Kn

and H
[n−k,k]
Kn−1

.
Lemmas 2.11 and 2.12 immediately give

H
[n−k,k]
Kn

= η[n−k,k]I =
(
2k(n+ 1) − 2k2

)
I. (6.4)

However, these results do not immediately say anything about the matrix H [n−k,k]
Kn−1

. To deal
with this element we invoke Young’s branching rule, which states that the restriction of an
irrep λ of Sn to Sn−1 corresponds to a direct sum over all irreps which can be obtained by
removing a single cell from the partition corresponding to λ. In the case considered here,
that means that H [n−k,k]

Kn−1
can be decomposed into a direct sum of the matrices H [n−k−1,k]

Kn−1

and H
[n−k,k−1]
Kn−1

. The matrices H [n−k,k]
Kn

and H
[n−k,k]
Kn−1

also commute (since H [n−k,k]
Kn

is just
a multiple of the identity), hence are simultaneously diagonalizable. Then the possible
eigenvalues of H [n−k,k]

⋆n
are given by a difference of the single eigenvalue of H [n−k,k]

Kn
and

the two possible eigenvalues of H [n−k,k]
Kn−1

. This gives

e1 = η[n−k,k] − η[n−k,k−1]

=
(
2k(n+ 1) − 2k2

)
−
(
2(k − 1)n− 2(k − 1)2

)
= 2k + 2n− 2k2 + 2(k − 1)2

= 2(n− k + 1)

and

e2 = η[n−k,k] − η[n−k−1,k]

=
(
2k(n+ 1) − 2k2

)
−
(
2kn− 2k2

)
= 2k.
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Now assume n is even, and let k = n/2. Applying Eq. (6.3) we have

H
[n/2,n/2]
⋆n

= H
[n/2,n/2]
Kn

−H
[n/2,n/2]
Kn−1

, (6.5)

and by Eq. (6.4),
H

[n/2,n/2]
Kn

= η[n/2,n/2]I = 1
2n(n+ 2)I. (6.6)

The difference to the first case occurs when applying the branching rule to compute
H

[n/2,n/2]
Kn−1

. Since there is only one valid way to remove a box from a rectangular 2 × n/2
Young tableaux, we obtain

H
[n/2,n/2]
Kn−1

= H
[n/2,n/2−1]
Kn−1

= η[n/2,n/2−1]I = 1
2(n2 − 4)I. (6.7)

Combining Eq. (6.7) with Eq. (6.6) in Eq. (6.5) yields

H
[n/2,n/2]
⋆n

= (n+ 2)I.

6.2 Graph Clique Decomposition and Simpler Hamiltonians
In the previous example we showed how to compute the eigenvalues of the star graph
Hamiltonian by writing it as a difference of cliques and then using Young’s Branching
Rule. In that example, the cliques considered differed in size by one vertex. But the same
techniques also apply generally to any graph whose corresponding Hamiltonian can be de-
composed as an arbitrary signed sum of clique Hamiltonians. In this section, we provide an
algorithm which computes such a sum for a given graph G whenever such a decomposition
is possible. Then we show how to speed up the computation of some QMC Hamiltonian’s
eigenvalues using this decomposition. While this algorithm is straightforward, we do not
know of an occurrence of it elsewhere in the literature, and so for completeness prove
correctness of the algorithm and runtime guarantees in this paper. We also note that a
similar, but distinct, decomposition of a graphs is considered in [BPR22, PKT22]. These
papers investigate ways in which graphs can be decomposed into sums of cliques over F2
(i.e. decompositions where existence of an edge in the original graph corresponds to the
parity of the number of cliques containing that edge). These decomposition can be applied
more generally than the decomposition considered in this paper.

6.2.1 The Tree Clique Decomposition

To keep track of how the QMC Hamiltonian associated with a graph G decomposes into a
sum of signed cliques we introduce an object which we call the Tree Clique Decomposition
of G. This is introduced formally in the next definition. In that definition and throughout
the remainder of the paper we assume that all trees discussed are rooted (or equivalently
directed) trees.

Definition 6.2 (Tree Clique Decomposition). For any connected graph G, the tree clique
decomposition of G, denoted T (G) consists of an m-vertex tree T and set of n connected
graphs {G(v1), ..., G(vm)}, where each graph G(vi) is associated with a vertex vi of T and
the following properties hold:

(1) For the root vertex v1 of T , we have G(v1) = G.
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(2) For any vertex vi of T which is not a leaf vertex, let c1, ..., ck be its children. Then
we have

G(vi)c =
⋃

j∈{1,2,...,k}
G(cj), (6.8)

where we understand the union of graphs to be their disjoint union.

(3) For any leaf vertex vj of T we have that G(vj)c is connected or G(vj)c is totally
disconnected.

Given a graph G it is reasonably straightforward to compute the tree clique decom-
position of G by iteratively taking complements of graphs and then breaking them into
their connected components. We make this process formal in Algorithm 6.

Algorithm 6: Tree Clique Decomposition
Input : A graph G to be decomposed.
Output : A tree clique decomposition T (G) = {T, {G(v1), ..., G(vm)}}
Initialize T as the singleton graph with vertex v1;
activeTLeaves:= {v1};
i:= 0 ;
G(v1) := G;
while activeTLeaves is non-empty do

i:= i + 1 ;
remove a vertex from activeTLeaves, call it vi ;
if G(vi)c is disconnected and G(vi)c is not totally disconnected then

foreach connected component H of G(vi)c do
Add a vertex c as a child to vertex vi in the tree T ;
G(c) := H;
Add c to activeTLeaves;

end
end

end
return {T, {G(v1), G(v2), ..., G(vm)}}
Now we prove some simple properties of the tree clique decomposition, then prove

correctness and bound the runtime of Algorithm 6.

Theorem 6.3. The tree clique decomposition T (G) of an n-vertex graph G is unique (up
to permutations amongst siblings in T ). Additionally:

(1) The associated tree T has depth at most n.

(2) For any i ≤ n the total number of vertices contained in graphs indexed by vertices
at depth i in T is at most n, that is∑

w:depth(w)=i

|V(G(w))| ≤ n. (6.9)

Proof. We first show uniqueness of the tree clique decomposition. Assume not. Then there is
a graph G with two tree clique decompositions T (G) = {T, {G(v1), G(v2), ..., G(vm)}} and
T (G)′ = {T ′, {G(w1)′, G(w2)′, ..., G(wm′)′}}. Because both are tree clique decompositions
we must have

G(v1) = G(w1)′ = G (6.10)
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where w1 and v1 are the root vertices of T and T ′ respectively. Now, let v∗ and w∗ be min-
imal vertices (in terms of depth) at which the child structure of the clique decompositions
T (G) and T (G)′ differ, meaning that either v∗ and w∗ have different numbers of children
or that sets of graphs associated with these children are not identical. Either way, letting
C(v∗) be the children of v∗ and C ′(w∗) be the children of w∗, we must have⋃

c∈C(v∗)
G(c) ̸=

⋃
c′∈C′(w∗)

G(c′). (6.11)

But because this was a minimal occurrence with respect to depth, we must also have

G(v∗) = G(w∗). (6.12)

But then finally, because T (G) and T (G)′ are both tree clique decompositions we have

G(v∗)c =
⋃

c∈C(v∗)
G(c) ̸=

⋃
c′∈C′(w∗)

G(c′) = G(w∗)c (6.13)

and this contradiction proves the result.
Next, we prove Item (1), that is we show the tree T appearing in the tree clique

decomposition T (G) = {T, {G(v1), ..., G(vm)}} of an n-vertex graph G has depth at most
n. By definition of the tree clique decomposition, for any non-leaf vertex w ∈ T with
child c we must have that G(w)c is disconnected with G(c) corresponding to a connected
component of G(w)c. But then G(c) is necessarily a graph on fewer vertices than G(w).
It follows that the number of vertices in a graph G(v) is a strictly decreasing function of
the depth of of the vertex v in the tree T . Then, since the root vertex v1 of T corresponds
to the n vertex graph (v1) = G, the bound on the depth of T follows.

To prove Item (2) we first observe that, for any vertex w ∈ T with children c1, ..., ck

we have ∑
i

|V(G(ci))| = |V(G(w))|, (6.14)

since ⋃iG(ci) = G(w)c. Then we also have that the total number of vertices involved in
graphs indexed at depth i of the tree T is a non-increasing function of i and, in particular,
letting v1 be the root vertex of T we have∑

w:depth(w)=i

|V(G(w))| ≤ |V(G(v1))| = n ∀i, (6.15)

as desired.

Corollary 6.4. Algorithm 6 computes the tree clique decomposition of the input graph G
in time O(n3).

Proof. By inspection, the tree T and associated graphs G(v1), ..., G(vm) returned by the
algorithm satisfy all the properties of the tree clique decomposition outlined in Definition 6.2
so correctness of Algorithm 6 is immediate. To bound the runtime of the algorithm first
note that an n-vertex graph can be decomposed into its connected components in time
O(n2) (using depth first or breadth first search). This is the dominant step in the inner
loop of the algorithm, so the algorithm takes time at most O(|V(G(w))|2) to complete the
inner loop that removes vertex w from activeTleaves. Next, note that every vertex in T
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appears in activeTleaves at most once. Then, letting d denote the depth of T , the total
runtime of the algorithm is bounded by:

O

 ∑
w∈V(T )

|V(G(w))|2
 = O

 d∑
i=1

∑
w:depth(w)=i

|V(G(w))|2
 (6.16)

≤ O

(
d∑

i=1
n2
)

≤ O(n3), (6.17)

where the first inequality follows from Item (2) of Theorem 6.3 and the second inequality
follows from Item (1).

6.2.2 Clique decompositions and Hamiltonians

Finally we show how the tree graph decomposition can be used to write the QMC Hamil-
tonian associated with a graph G as a signed sum of clique Hamiltonians and smaller
“residual” graph Hamiltonians.

Theorem 6.5. Let G be a graph and T (G) = {T, {G(v1), ..., G(vn)}} be the tree-clique
decomposition of G. Also, for any graph G, let K(G) denote the complete graph on the
vertices of G. Then the following claims hold:

(1) For any vertex v ∈ T with children c1, ..., ck we have

HG(v) = HK(G(v)) −
∑

j∈{1,...,k}
HG(cj) (6.18)

(2) Let L denote the set of leaf vertices in T , and R be all non-leaf vertices. Also, for
any vertex v ∈ T , let d(v) denote the depth of vertex v in the the tree, with the root
vertex having depth d(v1) = 0. Then we have

HG =
∑
r∈R

(−1)d(r)HK(G(r)) +
∑
l∈L

(−1)d(l)HG(l) (6.19)

Proof. Part (1) of the theorem follows from Item (2) in Definition 6.2 which gives

G(v)c =
⋃

j∈{1,...,k}
G(cj) (6.20)

and hence

HG(v) = HK(G(v)) −HG(v)c = HK(G(v)) −
∑

j∈{1,...,k}
HG(cj). (6.21)

Part (2) then follows from repeated application of (1), beginning with the root vertex
of T .
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6.2.3 Example of clique decomposition, Algorithm 6

Before giving an explicit example of Algorithm 6 we note any complete k-partite graph
has a particularly simple tree clique decomposition which Algorithm 6 finds in one step.
This is because a complete k-partite graph is by definition the complement of the disjoint
union of k different complete graphs; these are the output of the algorithm.

Now we give an explicit illustration of Algorithm 6 on a graph which is not a complete
k-partite graph.

7

8

9

10

3 2

1

65

4

Figure 1: This is the input graph to the algorithm. The outputtree T is in Section 6.2.3
and the graphs G(vj) are in Figure 3.

v1

v2 v5

v3 v4

Figure 2: This is the output T from Algorithm 6 run on the graph in Figure 1.
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7

8

9

10

3 2

1

65

4

G(v1)

7

8

9

3 2

1

65

4

G(v2)

3 2

1

65

4

G(v3)

7

7

7

8

9

G(v4)

7

7

10

G(v5)

Figure 3: This is the list of graphs which are output. The leaf graph, the graphs on which the algorithm
terminates, correspond to v3, v4, and v5. The first of these is a clique, the second does not decompose
further and the last is an isolated point.

6.3 Computing Eigenvalues from Clique Decomposition
Now we show how we can use the tree clique decomposition to speed up the computation
of the eigenvalues of some QMC graph Hamiltonians.

A key part of this argument will be a use of Young’s branching rule to characterize
the irreps that can arise when considering restriction of an Sn irrep to Sm for some m < n.
We introduce notation for this situation and prove its correctness in the next lemma.

Lemma 6.6. Given any two row partition [n− k, k] with n boxes and positive integer
m < n let Rstrct (m, [n− k, k]) be the set of all two row Young diagrams with m boxes total,
at most n−k boxes in the first row, and at most k boxes in the second. Stated in notation:

Rstrct (m, [n− k, k]) = {Irrep[m− j, j]}j∈J (6.22)

with J := {j : m+ k − n ≤ j ≤ min(k,m/2)}.
Then the restriction of an irrep [n− k, k] of Sn to Sm (i.e., the action of that irrep on

just the elements of Sm) is isomorphic to a direct sum over all irreps in Rstrct (m, [n− k, k])
where each irrep occurs with some non-zero multiplicity.

Proof. A single application of Young’s Branching rule tells us that the restriction of the
irrep λ to Sn−1 is isomorphic to a direct sum over the irreps that can be obtained by
removing one box from λ while leaving a valid Young diagram. Applying the branching
rule again to each of these irreps gives a set of irreps whose direct sum is isomorphic to the
restriction of λ to Sn−2. Continuing this process inductively, we see the restriction of λ
to Sm is isomorphic to a direct sum over all the irreps which can be obtained by removing
n−m boxes from λ while leaving a valid Young diagram (with each irrep occurring with
some non-zero multiplicity). Since we can only remove boxes in this process (and not add
any) this is equivalent to a direct sum over all valid irreps with m boxes total, at most
n− k boxes on the first row, and at most k boxes on the second. But this is exactly the
set of irreps in Rstrct (m, [n− k, k]), and we are done.

Lemma 6.7. Let G and R be vertex-disjoint graphs on n vertices and assume we know
the spectra eigs(Hn−k,k

G ) and eigs(Hn−k,k
R ), then the following hold:

(1) The spectrum of Hn−k,k
Kn

−Hn−k,k
G is {ηn−k,k − α : α ∈ eigs(Hn−k,k

G )};

(2) The spectrum of Hn−k,k

G
⋃

R
= Hn−k,k

G +Hn−k,k
R for G and R disjoint is the Minkowski sum

{α+ β : α ∈ eigs(Hn−k,k
G ), β ∈ eigs(Hn−k,k

R )}.
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Proof. Item (1) is an immediate corollary of Lemma 2.11, but remains useful to state
outright.

To show Item (2), we begin with a toy example. Suppose that A0 is an n by n matrix
with α ∈ eigs(A0) and B0 is an m by m matrix with β ∈ eigs(B0). Hence, A0u = αu and
B0v = βv. Then, if A = A0 ⊗ Im and B = In ⊗B0, we have that

A(u⊗ v) = (A0u) ⊗ (Imv) = α(u⊗ v) (6.23)
B(u⊗ v) = (Inu) ⊗ (B0v) = β(u⊗ v). (6.24)

Thus u ⊗ v is an eigenvector of A + B corresponding to the eigenvalue α + β. Thus,
eigs(A) + eigs(B) ⊆ eigs(A+B). If the spectra are viewed as multi-sets with multiplicity,
there are mn many element in each multi-set. Thus eigs(A) + eigs(B) = eigs(A+B).

Going back to the definition of the swap matrices Definition 2.2, it is clear that if G
and R are vertex-disjoint, then up to a canonical shuffle which (effectively) relabels the
vertices we can reduce to the case of the toy example Eq. (6.23) to show that the spectrum
of Hn−k,k

G +Hn−k,k
R equals the Minkowski sum eigs(Hn−k,k

G ) + eigs(Hn−k,k
R ).

Next, we consider a connected graph G and show we can characterize the eigenvalues
of the irrep Hamiltonian Hλ

G of this graph in terms of the eigenvalues of irrep Hamiltonians
of the connected graphs appearing in the complement of G.

Lemma 6.8. Let G be a connected graph on n vertices, and let Gc denote its complement.
Further, let Gc

1, ..., G
c
L denote the connected components of the graph Gc and let ν1, . . . , νL

be the number of vertices in each of these connected components.
Then, for any two row irrep λ of Sn we have

eigs(Hλ
G) =

{ηλ} −
L∑

j=1

 ⋃
ξ∈Rstrct(νj ,λ)

eigs(Hξ
Gc

j
)


 (6.25)

where we understand addition and subtraction between sets to be Minkowski addition, so

{A} ± {B} = {a± b}a∈A, b∈B. (6.26)

Proof. First note that we can write

Hλ
G = Hλ

K(G) −
L∑

j=1
Hλ

Gc
j

(6.27)

by definition of the graph complement. Additionally Lemma 2.11 gives that

Hλ
K(G) = ηλI. (6.28)

Combining this with Eq. (6.27) above immediately gives

eigs(Hλ
G) =

{ηλ} − eigs

 L∑
j=1

Hλ
Gc

j

 (6.29)

where subtraction between sets again denotes Minkowski subtraction. Then, to prove the
claim, all that remains is to show

eigs

 L∑
j=1

Hλ
Gc

j

 =
L∑

j=1

 ⋃
ξ∈Rstrct(νj ,λ)

eigs(Hξ
Gc

j
)

 . (6.30)
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We do this in two steps. First, note that because the graphs Gc
1, ..., G

c
L are disjoint, we have

eigs

 L∑
j=1

Hλ
Gc

j

 =
L∑

j=1

{
eigs

(
Hλ

Gc
j

)}
. (6.31)

by Lemma 6.7.
Next, consider the irrep Hamiltonian Hλ

Gc
j

corresponding to a single connected compo-
nent of Gc. Recall that G has n vertices and Gc

j has νj vertices, and note that λ specifies a
two row irrep of Sn. For concreteness say this is the [n− k, k] irrep. Then Hλ

Gc
j

corresponds
to a representation of an element of Sνj inside the λ irrep of Sn, i.e., the restriction of a
Sn irrep to an element of Sνj . But, by Lemma 6.6, this restriction is isomorphic to a direct
sum over all irreps in Rstrct (νj , λ) (each occurring with some nonzero multiplicity). Then
we conclude

eigs
(
Hλ

Gc
j

)
=

⋃
ξ∈Rstrct(νj ,λ)

eigs(Hξ
Gc

j
). (6.32)

Combining Eqs. (6.31) and (6.32) proves the result, and we are done.

The dimension of an irrep Hamiltonian’s Hλ
G can scale exponentially with the number

of vertices in the graph G. Thus, in general we should not expect to be able to keep track
of the full spectra of Hλ

G. However a straightforward corollary of Lemma 6.8 is that we
can also keep track of the r maximum and minimum values of a irrep Hamiltonian Hλ

G

provided we know the r maximum and minimum eigenvalues of the irrep Hamiltonians
of the graphs appearing in the complement of G.

Corollary 6.9. Define G, Gc, Gc
1, ..., G

c
L and Rstrct (ν, [n− k, k]) as in Lemma 6.8. Also,

for any integer r and finite set S ⊂ R, let r−max(S) denote the r largest elements of S
and r−min(S) denote the r smallest elements of S. Then we have

r−max
(
eigs(Hλ

G)
)

= r−max

{ηλ} −
L∑

j=1

 ⋃
ξ∈Rstrct(νj ,λ)

r−min
(

eigs(Hξ
Gc

j
)
)


 .
(6.33)

In particular:

eigmax(Hλ
G) = max

{ηλ} −
L∑

j=1

 ⋃
ξ∈Rstrct(νj ,λ)

eigmin(Hξ
Gc

j
)



 (6.34)

= ηλ −
L∑

j=1

(
min

ξ∈Rstrct(νj ,λ)

(
eigmin(Hξ

Gc
j
)
))

. (6.35)

Corollary 6.9 shows that we can compute the maximum (resp. minimum) eigenvalues
of the irrep Hamiltonian Hλ

G of a connected graph G provided we know the minimum
(resp. maximum) eigenvalues of the irrep Hamiltonian’s of each connected component in
the complement of G. We make this observation formally in Algorithm 7.

Before stating this algorithm, we remind the reader of the use the phrase “all two
row irrep Hamiltonians of G” introduced in Section 2.4, which refers to the set of irrep
Hamiltonians

{H [n−k,k]
G : 1 ≤ k ≤ ⌊n/2⌋}. (6.36)
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This convention is particularly important in the following algorithms, where the graphs
G̃ (and hence the set of corresponding irreps) considered vary throughout the algorithm.

Algorithm 7: Inductive Step in an Eigenvalue Computation
Input : An n-vertex connected graph G whose complement Gc has connected

components Gc = {Gc
1, ...G

c
k}.

Min and max eigenvalues of all two row irrep Hamiltonians of G̃ for each
G̃ ∈ Gc.

Output : Min and max eigenvalues all two row irrep Hamiltonians of G.
foreach two row irrep λ of Sn do

eigmax(Hλ
G) := ηλ −

∑
G̃∈Gc

(
minξ∈Rstrct(|V(G̃)|,λ)

(
eigmin(Hξ

G̃
)
))

;

eigmin(Hλ
G) := ηλ −

∑
G̃∈Gc

(
maxξ∈Rstrct(|V(G̃)|,λ)

(
eigmax(Hξ

G̃
)
))

;
end
Now by applying Algorithm 7 repeatedly we can compute the maximum and minimum

eigenvalues of an irrep Hamiltonian Hλ
G (and hence the maximum and minimum eigenvalues

of the QMC Hamiltonian HG) provided we know the maximum and minimum eigenvalues
of all the irrep Hamiltonians of all graphs G corresponding to the leaves in the tree clique
decomposition of G. We make this process formal in Algorithm 8.

Algorithm 8: Tree Clique Eigenvalue Computation
Input : An n-vertex graph G along with its tree clique decomposition T (G) =

{T, {G(v1), ..., G(vm)}}.
Min and max eigenvalues of all two row irrep Hamiltonians of G(l) for
every leaf vertex l of T .

Output : Min and Max eigenvalues of all two row irrep Hamiltonians of G.
d := depth(T );
foreach i in (d− 1, d− 2, ..., 1) do

foreach non-leaf vertex w ∈ T at depth i do
Assert that we know the max and min eigenvalues of all two row irrep
Hamiltonians of G(c) for each child c of w;

Use Algorithm 7 to compute the max and min eigenvalues of all two row
irrep Hamiltonians of G(w) from the irrep Hamiltonians of all children
G(c);

end
end
Next we prove correctness and bounding the runtime of Algorithms 7 and 8, then giving

some remarks concerning generalizations and consequences of these algorithms.

Theorem 6.10. Algorithms 7 and 8 both correctly compute the irrep eigenvalues of their
input graph G. Algorithm 7 runs in time O(n2) and Algorithm 8 runs in time O(n3).

Proof. Correctness of Algorithm 7 follows immediately from Corollary 6.9. To bound its
runtime, first note that there are at most m/2 ∈ O(m) different two row irreps corre-
sponding to any m-vertex graph G̃. Additionally, we have ⋃G̃∈Gc = Gc by construction
and |V(Gc)| = n by assumption. So the inner loop of Algorithm 7 involves maximiz-
ing/minimizing over partitions of at most n elements and then summing over the results
of that maximization/minimization, all of which can be done in time O(n). The graph
G has at most n vertices, hence at most O(n) two row irreps, and so the outer loop of
Algorithm 7 is repeated at most O(n) times. The runtime of O(n2) follows.
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Correctness of Algorithm 8 follows from the observation that the assert statement in the
inner loop of the algorithm is always satisfied, since we know the max and min eigenvalues
of the irrep Hamiltonians for graphs corresponding to leaf vertices by assumption, and all
other graph irrep Hamiltonians are computed from the “bottom up” by construction. To
bound the runtime of Algorithm 8 note that, by Item (2) of Theorem 6.3 and the bound
on the runtime of Algorithm 7 given above, for any i ∈ {d− 1, ..., 1}, Algorithm 8 requires
time at most O(n2) to compute the max and min irrep eigenvalues of all graphs G(w)
corresponding to vertices w at depth i in the tree clique decomposition of G. Then Item (1)
of Theorem 6.3 gives that d ≤ n and the upper bound of O(n3) follows.

Remark 6.11. A straightforward generalization of Algorithms 7 and 8 using Corollary 6.9
gives us an algorithm computing the r highest and lowest eigenvalues of all irrep Hamilto-
nians of G given the r highest and lowest eigenvalues of all irrep Hamiltonians of all graphs
indexed by leaves in the clique tree decomposition of G. The runtime of this algorithm
remains polynomial in r and n.

Remark 6.12. If all the graphs indexed by leaves in the clique tree decomposition of G
are cliques, then we can compute all eigenvalues of all irrep Hamiltonians of those graphs
in exact arithmetic by Lemmas 2.11 and 2.12. In this case all the eigenvalues of G will
be obtained by taking sums and differences of clique eigenvalues ηλ for different values of
λ and, in particular, all eigenvalues will be integer.

We give an example of a graph G admitting such a decomposition in the next section.

Remark 6.13. If we apply the same procedure as described in Algorithm 8 but take
as input approximate eigenvalues of the irrep Hamiltonians of the graphs indexed by
leaves in the clique tree decomposition of G we obtain approximate eigenvalues of G. It
is straightforward to show that the error in this approximation is at worst the sum of
the approximation errors for the eigenvalues of each input graph. Additionally, if the
algorithm is given upper/lower bounds on the minimum/maximum eigenvalues of all irrep
Hamiltonians of graphs indexed by leaves in the tree clique decomposition of G, it produces
upper/lower bounds on the maximum/minimum eigenvalues of G.

One way to obtain these bounds is by running the ncSoS algorithm inside all two row
irreps of the graphs indexed by leaves in the tree clique decomposition of G. Details of
this use of ncSoS is given in Section 5.5.

6.4 Example of Clique Decomposition, its Hamiltonians and their Eigenvalues
In this subsection we apply the algorithms discussed previously in this section to analyze
the graph G shown in Figure 4.

1

2

4

6

3

5

Figure 4: The graph G to be analyzed in this example.
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6.4.1 The tree clique decomposition of G and the Hamiltonian decomposition

v1

v2v9

v3 v8

v4 v7

v5 v6

Figure 5: The output tree, T

1

2

4

6

3

5

G(v1)

1

2

4 3

5

G(v2)

1

2

4 3

G(v3)

1

2

3

G(v4)

1

2

G(v5)

3

G(v6)

4

G(v7)

5

G(v8)

6

G(v9)

Figure 6: The output graphs. The second row of graphs corresponds to the leaves L of T , the first
row to R. Note G(v1)c is the union of its children, the two depth 1 graphs G(v9) and G(v2). Likewise
G(v2)c is the union of two depth 2 graphs and G(v3)c is the union of two depth 3 graphs and G(v4)c is
the union of two depth 4 graphs. This can be read off from the tree.

To write down the Hamiltonian clique decomposition for G, first see that the leaves of
tree T are L := {v9, v5, v6, v7, v8} and the rest are R := {v1, v2, v3, v4}. The corresponding
depths d(vj) are read off from T and listed in Table 3

G(v1) G(v2) G(v3) G(v4) G(v5)
Depth in T 0 1 2 3 4
SignHam + - + -

Dim K(G(v)) 6 5 4 3 2

Table 3: Clique decomposition of graph G, ignoring single vertex graphs

and force the signs of the decomposing Hamiltonians in the table. By Theorem 6.5 Item (2)
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the Hamiltonian HG has the decomposition:

HG = +HK(G(v1)) −HK(G(v2)) +HK(G(v3)) −HK(G(v4)) (6.37)
+HG(v5) +HG(v6) −HG(v7) +HG(v8) −HG(v9) (6.38)

Next use that G(vj) for j = 6, 7, 8, 9 are singletons, to see the corresponding Hamil-
tonians are 0; also K(G(v5)) = G(v5). Thus

HG = +HK(G(v1)) −HK(G(v2)) +HK(G(v3)) −HK(G(v4)) +HK(G(v5)), (6.39)

a sum/difference of clique Hamiltonians.
We mention that for this special example, one sees from Figure 4 the containments

V (G(vj)) ⊇ V (G(vj+1) for j = 1, 2, 3, 4, so

K(G(v1)) ⊇ K(G(v2)) ⊇ K(G(v3)) ⊇ K(G(v4)) ⊇ K(G(v5)) = K(G(v5)). (6.40)

6.4.2 Eigenvalues

Now we see how one can use Algorithm 8 to compute max/min eigenvalues of HG; we re-
strict to one case eigmax(H [3,3]

G ), since the min eigenvalues and other irreps behave similarly.
Firstly, we list the data needed for eigenvalues (and also above).

K6 K5 K4 K3 K2
Sign + , max − , min + , max − , min + , max

η[3,3] = 24 η[3,2] = 16 η[2,2] = 12 η[2,1] = 6 η[2,0] = 0
x x η[3,1] = 8 η[2,1] = 6 η[1,1] = 4
x x x η[3,0] = 0 η[2,0] = 0

Table 4: G and Irrep[3, 3]. Data for computing eigmax(H [3,3]
G ). The number next to [m, k] is ηm,k.

Entries to the right are needed in light of those to the left because of Young’s Branching Rule.

We shall apply Algorithm 7 repeatedly to compute eigmax(H [3,3]
G ).

eigmax(H [3,3]
G ) = η[3,3] −

(
min

ξ∈Rstrct(5,[3,3])

(
eigmin(Hξ

G(v2)

))
. (6.41)

= η[3,3] − eigmin(H [3,2]
G(v2)) and (6.42)

eigmin(H [3,2]
G(v2)) = η[3,2] − max

ξ∈Rstrct(4,[3,2])

(
eigmax(Hξ

G(v3)

)
(6.43)

= η[3,2] − max
(
eigmax(H [3,1]

G(v3), eigmax(H [2,2]
G(v3))

)
(6.44)

Combine these to get

eigmax(H [3,3]
G ) = η[3,3] − η[3,2] + max

(
eigmax(H [3,1]

G(v3), eigmax(H [2,2]
G(v3))

)
(6.45)

Next

eigmax(H [3,1]
G(v3)) = η3,1 − min

(
eigmin(H [3,0]

G(v4), eigmin(H [2,1]
G(v4))

)
(6.46)

eigmax(H [2,2]
G(v3)) = η2,2 − eigmin(H [2,1]

G(v4)) (6.47)

Before combining again we compute the eigmax ingredients of these formulas:

eigmin(H [3,0]
G(v4)) = η3,0 − eigmax(H [2,0]

G(v5)) = η3,0 − η[2,0]
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eigmin(H [2,1]
G(v4)) = η2,1 − max

(
eigmax(H [2,0]

G(v5), eigmax(H [1,1]
G(v5)

)
= η2,1 − max

(
η[2,0], η[1,1]

)
The last step in each line uses that G(v5) is a clique. Now we combine all these, working
backward to get

eigmax(H [3,1]
G(v3)) = η3,1 − min

(
η3,0 − η[2,0] , (η2,1 − max

(
η[2,0], η[1,1]

))
eigmax(H [2,2]

G(v3)) = η2,2 − (η2,1 − max
(
η[2,0], η[1,1]

)
)

and finally substituting these into Eq. (6.45) gives

eigmax(H [3,3]
G ) = η[3,3] − η[3,2]

+ max
(
η3,1 − min

(
η3,0 − η[2,0], η2,1 − max

(
η[2,0], η[1,1]

))
, η2,2 − η2,1 + max

(
η[2,0], η[1,1]

) )
.

Now we substitute numbers in for the ηm,k and get

eigmax(H [3,3]
G ) = 24 − 16 + max (8 − min (0 − 0, 6 − max (0, 4)) , 12 − 6 + max (0, 4) ) = 18,

which by our theory is eigmax(H [3,3]
G ), as can be independently checked. We note that this

“working backwards” step we just worked through is essentially the algorithm for computing
max eigenvalues outlined in Algorithm 8.
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A Identities for the Proof of Lemma B.1
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Swap23 Swap24
2

+
Swap23 Swap25

2
+

Swap23 Swap45
2

−
Swap24 Swap25

2
+
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Swap24 Swap35
2

+
Swap25

2
−

Swap25 Swap34
2

+
Swap34

2
−

Swap34 Swap35
2

+
Swap45

2
Swap24 Swap2

35 = Swap24

Swap24 Swap35 Swap45 =
−1
2

+
Swap23

2
+

Swap23 Swap24
2

−
Swap23 Swap25

2
−

Swap23 Swap45
2

−
Swap24 Swap25

2
+

Swap24 Swap35
2

+
Swap25

2
+

Swap25 Swap34
2

−
Swap34

2
+

Swap34 Swap35
2

+
Swap45

2
Swap25 Swap34 Swap12 = Swap12 Swap15 Swap34
Swap25 Swap34 Swap13 = Swap13 Swap14 Swap25
Swap25 Swap34 Swap14 = − Swap13 Swap14 Swap25 + Swap13 Swap25 + Swap14 Swap25 − Swap25 + Swap25 Swap34
Swap25 Swap34 Swap15 = − Swap12 Swap15 Swap34 + Swap12 Swap34 + Swap15 Swap34 + Swap25 Swap34 − Swap34

Swap25 Swap34 Swap23 =
−1
2

+
Swap23

2
+

Swap23 Swap24
2

−
Swap23 Swap25

2
−

Swap23 Swap45
2

−
Swap24 Swap25

2
+

Swap24 Swap35
2

+
Swap25

2
+

Swap25 Swap34
2

−
Swap34

2
+

Swap34 Swap35
2

+
Swap45

2

Swap25 Swap34 Swap24 =
−3
2

+
Swap23

2
−

Swap23 Swap24
2

−
Swap23 Swap25

2
+

Swap23 Swap45
2

−
Swap24 Swap25

2
+

−
Swap24 Swap35

2
+

Swap25
2

+
Swap25 Swap34

2
+

Swap34
2

−
Swap34 Swap35

2
+

Swap45
2

+

Swap24 + Swap35
Swap25 Swap34 Swap25 = Swap34

Swap25 Swap2
34 = Swap25

Swap25 Swap34 Swap35 =
1
2

−
Swap23

2
+

Swap23 Swap24
2

+
Swap23 Swap25

2
+

Swap23 Swap45
2

+
Swap24 Swap25

2
+

−
Swap24 Swap35

2
−

Swap25
2

+
Swap25 Swap34

2
−

Swap34
2

+
Swap34 Swap35

2
−

Swap45
2

Swap25 Swap34 Swap45 =
−1
2

+
Swap23

2
−

Swap23 Swap24
2

+
Swap23 Swap25

2
−

Swap23 Swap45
2

+
Swap24 Swap25

2
+

Swap24 Swap35
2

−
Swap25

2
+

Swap25 Swap34
2

+
Swap34

2
−

Swap34 Swap35
2

+
Swap45

2
Swap34 Swap35 Swap12 = Swap12 Swap34 Swap35

Swap34 Swap35 Swap13 =
1
2

−
Swap13

2
+

Swap13 Swap14
2

+
Swap13 Swap15

2
+

Swap13 Swap45
2

+
Swap14 Swap15

2
+

−
Swap14 Swap35

2
−

Swap15
2

+
Swap15 Swap34

2
−

Swap34
2

+
Swap34 Swap35

2
−

Swap45
2

Swap34 Swap35 Swap14 =
−1
2

+
Swap13

2
−

Swap13 Swap14
2

−
Swap13 Swap15

2
+

Swap13 Swap45
2

+
Swap14 Swap15

2
+

Swap14 Swap35
2

+
Swap15

2
−

Swap15 Swap34
2

+
Swap34

2
+

Swap34 Swap35
2

−
Swap45

2

Swap34 Swap35 Swap15 =
−1
2

+
Swap13

2
+

Swap13 Swap14
2

−
Swap13 Swap15

2
−

Swap13 Swap45
2

−
Swap14 Swap15

2
+

Swap14 Swap35
2

+
Swap15

2
+

Swap15 Swap34
2

−
Swap34

2
+

Swap34 Swap35
2

+
Swap45

2

Swap34 Swap35 Swap23 =
1
2

−
Swap23

2
+

Swap23 Swap24
2

+
Swap23 Swap25

2
+

Swap23 Swap45
2

+
Swap24 Swap25

2
+

−
Swap24 Swap35

2
−

Swap25
2

+
Swap25 Swap34

2
−

Swap34
2

+
Swap34 Swap35

2
−

Swap45
2

Swap34 Swap35 Swap24 =
−1
2

+
Swap23

2
−

Swap23 Swap24
2

−
Swap23 Swap25

2
+

Swap23 Swap45
2

+
Swap24 Swap25

2
+

Swap24 Swap35
2

+
Swap25

2
−

Swap25 Swap34
2

+
Swap34

2
+

Swap34 Swap35
2

−
Swap45

2

Swap34 Swap35 Swap25 =
−1
2

+
Swap23

2
+

Swap23 Swap24
2

−
Swap23 Swap25

2
−

Swap23 Swap45
2

−
Swap24 Swap25

2
+

Swap24 Swap35
2

+
Swap25

2
+

Swap25 Swap34
2

−
Swap34

2
+

Swap34 Swap35
2

+
Swap45

2
Swap34 Swap35 Swap34 = Swap45

Swap34 Swap2
35 = Swap34

Swap34 Swap35 Swap45 = Swap35

B Linear space spanned by the products of at most three or four swap
matrices

In this appendix we construct linear algebraic bases B3 and B4 which are analogues of the
basis B2 constructed in Section 4.3.2. These bases are used in Algorithm 1, our degree
2 SDP relaxation in the swap matrices.
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B.1 Linear space spanned by the products of at most three swap matrices
Lemma B.1. A basis B3 for the linear span of all products of at most three swap matrices
in the case n = 5 is B2 together with

Swap12 Swap13 Swap45, Swap12 Swap14 Swap35, Swap12 Swap15 Swap34,

Swap13 Swap14 Swap25, Swap13 Swap15 Swap24, Swap14 Swap15 Swap23,

Alternately, Swap14 Swap15 Swap23 could be replaced by Swap12 Swap34 Swap35 in B3.

Proof. The add-on statement follows from the equality

2 Swap14 Swap15 Swap23 = Swap12 − Swap14 − Swap23 + Swap24 − Swap25 + Swap35

− Swap12 Swap34 − Swap12 Swap35 − Swap12 Swap45

+ Swap13 Swap14 − Swap13 Swap15 − Swap13 Swap24

+ Swap13 Swap25 + Swap14 Swap15 + Swap14 Swap23

+ Swap14 Swap25 + Swap15 Swap23 − Swap15 Swap24

+ Swap23 Swap45 − Swap24 Swap35 + Swap25 Swap34

− Swap34 Swap35 +2 Swap12 Swap34 Swap35

− 2 Swap13 Swap14 Swap25 +2 Swap13 Swap15 Swap24 .

For the spanning property it suffices to consider products of three swap matrices of
the form bSwappq for some quadratic b ∈ B2, leaving us with 25 · 10 − 6 = 244 cases to
treat. The identities needed are given in Appendix A.

Finally, to establish linear independence, assume there is a linear combination of el-
ements of B3 that vanishes. Now consider the six cubic terms expanded in terms of the
Paulis. Then σ1

Xσ
2
Zσ

3
Y σ

4
Xσ

5
X only appears in Swap12 Swap13 Swap45, whence the coefficient

next to it has to be 0. Next, σ1
Xσ

2
Y σ

3
Xσ

4
Zσ

5
X only appears in Swap12 Swap14 Swap35, so

the latter also cannot appear in a linear dependence relation. Similarly, σ1
Xσ

2
Y σ

3
Xσ

4
Xσ

5
Z

eliminates Swap12 Swap15 Swap34. Next, σ1
Xσ

2
Y σ

3
Y σ

4
Zσ

5
Y appears in Swap13 Swap14 Swap25,

but not it Swap13 Swap15 Swap24 or Swap14 Swap15 Swap23, thus also eliminating Swap13 Swap14 Swap25.
Next, σ1

Xσ
2
Y σ

3
Y σ

4
Y σ

5
Z appears in Swap13 Swap15 Swap24 but not in Swap14 Swap15 Swap23,

so Swap13 Swap15 Swap24 also cannot appear in a linear dependence relation. Since
Swap13 Swap15 Swap24 contains degree five terms in the Paulis which cannot appear in an
element of B2, we conclude that B3 is linearly independent.

Proposition B.2. A basis B3 for the linear space spanned by monomials of degree at most
three in the swap algebra M swap

n consists of B2 and two types of cubics,

(Type 6) Swapij Swapkℓ Swappq, i < j, k < ℓ, p < q, (i, j) < (k, ℓ) < (p, q)8;

(Types 5) Swapij Swapik Swappq, Swapij Swapip Swapkq, Swapij Swapiq Swapkp,
Swapik Swapip Swapjq, Swapik Swapiq Swapjp, Swapip Swapiq Swapjk,

i < j < k < p < q.

Proof. The spanning property follows from Lemma B.1, so it suffices to establish linear
independence of B3.

We shall mimic the proof of Proposition 4.12. Assume there is a linear dependence
among elements of B3. Consider the cubic terms in the swap matrices in this dependence.

8Pairs are compared w.r.t. the lex ordering.

Accepted in Quantum 2024-03-25, click title to verify. Published under CC-BY 4.0. 79



Firstly, let us look at the (Type 6) terms. The expansion of Swapij Swapkℓ Swappq in terms
of the Paulis will yield a term σi

Xσ
j
Xσ

k
Y σ

ℓ
Y σ

p
Zσ

q
Z that only occurs in one of the (Type 6)

elements. Thus the linear dependence cannot contain any (Type 6) elements.
Next, consider (Type 5) elements. Since given i < j < k < p < q, not each of the six

corresponding (Type 5) cubics has unique degree 5 terms in terms of the Paulis (cf. proof
of Lemma B.1), some care is needed. As in Lemma B.1, for each i < j < k < p < q,
uniqueness of degree five terms eliminates the first four in each list of associated (Type
5) cubics, namely Swapij Swapik Swappq, Swapij Swapip Swapkq, Swapij Swapiq Swapkp,
Swapik Swapip Swapjq. Once these are eliminated, we can as in Lemma B.1 also eliminate
the remaining two (Type 5)s for each i < j < k < p < q. We are thus left with only terms
from B2 which are linearly independent by Proposition 4.12.

Remark B.3. The cardinality of B3 is

#B3 = #B2 + 1
3!

(
n

2

)(
n− 2

2

)(
n− 4

2

)
+ 6

(
n

5

)

= 1
240

(
5n6 − 63n5 + 335n4 − 845n3 + 1100n2 − 532n+ 240

)
.

B.2 Linear space spanned by the products of at most four swap matrices
While we shall not bore the reader with the full details, the situation does change a bit
in degree four products of the swap matrices. Namely, products of four swap matrices on
disjoint indices cease to be linearly independent over smaller products, as shown by the
following identity:

Swap18 Swap27 Swap36 Swap45 =
Swap18 Swap27 Swap34 Swap56 + Swap18 Swap25 Swap36 Swap47 − Swap18 Swap25 Swap34 Swap67

− Swap18 Swap23 Swap47 Swap56 + Swap18 Swap23 Swap45 Swap67 + Swap16 Swap27 Swap38 Swap45

− Swap16 Swap27 Swap34 Swap58 − Swap16 Swap25 Swap37 Swap48 + Swap16 Swap25 Swap34 Swap78

− Swap16 Swap24 Swap38 Swap57 + Swap16 Swap24 Swap37 Swap58 + Swap16 Swap23 Swap48 Swap57

− Swap16 Swap23 Swap45 Swap78 − Swap15 Swap26 Swap38 Swap47 + Swap15 Swap26 Swap37 Swap48

+ Swap15 Swap24 Swap38 Swap67 − Swap15 Swap24 Swap37 Swap68 − Swap15 Swap23 Swap48 Swap67

+ Swap15 Swap23 Swap47 Swap68 − Swap14 Swap27 Swap38 Swap56 + Swap14 Swap27 Swap36 Swap58

+ Swap14 Swap26 Swap38 Swap57 − Swap14 Swap26 Swap37 Swap58 + Swap14 Swap25 Swap37 Swap68

− Swap14 Swap25 Swap36 Swap78 − Swap14 Swap23 Swap57 Swap68 + Swap14 Swap23 Swap56 Swap78

− Swap13 Swap26 Swap48 Swap57 + Swap13 Swap26 Swap47 Swap58 + Swap13 Swap25 Swap48 Swap67

− Swap13 Swap25 Swap47 Swap68 − Swap13 Swap24 Swap58 Swap67 + Swap13 Swap24 Swap57 Swap68

+ Swap12 Swap38 Swap47 Swap56 − Swap12 Swap38 Swap45 Swap67 − Swap12 Swap36 Swap47 Swap58

+ Swap12 Swap36 Swap45 Swap78 + Swap12 Swap34 Swap58 Swap67 − Swap12 Swap34 Swap56 Swap78

−
1
2

Swap38 Swap47 Swap56 +
1
2

Swap38 Swap45 Swap67 +
1
2

Swap36 Swap47 Swap58 −
1
2

Swap36 Swap45 Swap78

−
1
2

Swap34 Swap58 Swap67 +
1
2

Swap34 Swap56 Swap78 +
1
2

Swap27 Swap38 Swap56 −
1
2

Swap27 Swap38 Swap45

−
1
2

Swap27 Swap36 Swap58 +
1
2

Swap27 Swap36 Swap45 +
1
2

Swap27 Swap34 Swap58 −
1
2

Swap27 Swap34 Swap56

+
1
2

Swap26 Swap48 Swap57 −
1
2

Swap26 Swap47 Swap58 −
1
2

Swap26 Swap38 Swap57 +
1
2

Swap26 Swap38 Swap47

+
1
2

Swap26 Swap37 Swap58 −
1
2

Swap26 Swap37 Swap48 −
1
2

Swap25 Swap48 Swap67 +
1
2

Swap25 Swap47 Swap68

−
1
2

Swap25 Swap37 Swap68 +
1
2

Swap25 Swap37 Swap48 +
1
2

Swap25 Swap36 Swap78 −
1
2

Swap25 Swap36 Swap47
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−
1
2

Swap25 Swap34 Swap78 +
1
2

Swap25 Swap34 Swap67 +
1
2

Swap24 Swap58 Swap67 −
1
2

Swap24 Swap57 Swap68

−
1
2

Swap24 Swap38 Swap67 +
1
2

Swap24 Swap38 Swap57 +
1
2

Swap24 Swap37 Swap68 −
1
2

Swap24 Swap37 Swap58

+
1
2

Swap23 Swap57 Swap68 −
1
2

Swap23 Swap56 Swap78 +
1
2

Swap23 Swap48 Swap67 −
1
2

Swap23 Swap48 Swap57

−
1
2

Swap23 Swap47 Swap68 +
1
2

Swap23 Swap47 Swap56 +
1
2

Swap23 Swap45 Swap78 −
1
2

Swap23 Swap45 Swap67

+
1
2

Swap18 Swap47 Swap56 −
1
2

Swap18 Swap45 Swap67 −
1
2

Swap18 Swap36 Swap47 +
1
2

Swap18 Swap36 Swap45

+
1
2

Swap18 Swap34 Swap67 −
1
2

Swap18 Swap34 Swap56 −
1
2

Swap18 Swap27 Swap56 +
1
2

Swap18 Swap27 Swap45

+
1
2

Swap18 Swap27 Swap36 −
1
2

Swap18 Swap27 Swap34 +
1
2

Swap18 Swap25 Swap67 −
1
2

Swap18 Swap25 Swap47

−
1
2

Swap18 Swap25 Swap36 +
1
2

Swap18 Swap25 Swap34 −
1
2

Swap18 Swap23 Swap67 +
1
2

Swap18 Swap23 Swap56

+
1
2

Swap18 Swap23 Swap47 −
1
2

Swap18 Swap23 Swap45 −
1
2

Swap16 Swap48 Swap57 +
1
2

Swap16 Swap45 Swap78

+
1
2

Swap16 Swap38 Swap57 −
1
2

Swap16 Swap38 Swap45 −
1
2

Swap16 Swap37 Swap58 +
1
2

Swap16 Swap37 Swap48

−
1
2

Swap16 Swap34 Swap78 +
1
2

Swap16 Swap34 Swap58 +
1
2

Swap16 Swap27 Swap58 −
1
2

Swap16 Swap27 Swap45

−
1
2

Swap16 Swap27 Swap38 +
1
2

Swap16 Swap27 Swap34 −
1
2

Swap16 Swap25 Swap78 +
1
2

Swap16 Swap25 Swap48

+
1
2

Swap16 Swap25 Swap37 −
1
2

Swap16 Swap25 Swap34 −
1
2

Swap16 Swap24 Swap58 +
1
2

Swap16 Swap24 Swap57

+
1
2

Swap16 Swap24 Swap38 −
1
2

Swap16 Swap24 Swap37 +
1
2

Swap16 Swap23 Swap78 −
1
2

Swap16 Swap23 Swap57

−
1
2

Swap16 Swap23 Swap48 +
1
2

Swap16 Swap23 Swap45 +
1
2

Swap15 Swap48 Swap67 −
1
2

Swap15 Swap47 Swap68

−
1
2

Swap15 Swap38 Swap67 +
1
2

Swap15 Swap38 Swap47 +
1
2

Swap15 Swap37 Swap68 −
1
2

Swap15 Swap37 Swap48

−
1
2

Swap15 Swap26 Swap48 +
1
2

Swap15 Swap26 Swap47 +
1
2

Swap15 Swap26 Swap38 −
1
2

Swap15 Swap26 Swap37

+
1
2

Swap15 Swap24 Swap68 −
1
2

Swap15 Swap24 Swap67 −
1
2

Swap15 Swap24 Swap38 +
1
2

Swap15 Swap24 Swap37

−
1
2

Swap15 Swap23 Swap68 +
1
2

Swap15 Swap23 Swap67 +
1
2

Swap15 Swap23 Swap48 −
1
2

Swap15 Swap23 Swap47

+
1
2

Swap14 Swap57 Swap68 −
1
2

Swap14 Swap56 Swap78 −
1
2

Swap14 Swap38 Swap57 +
1
2

Swap14 Swap38 Swap56

−
1
2

Swap14 Swap37 Swap68 +
1
2

Swap14 Swap37 Swap58 +
1
2

Swap14 Swap36 Swap78 −
1
2

Swap14 Swap36 Swap58

−
1
2

Swap14 Swap27 Swap58 +
1
2

Swap14 Swap27 Swap56 +
1
2

Swap14 Swap27 Swap38 −
1
2

Swap14 Swap27 Swap36

+
1
2

Swap14 Swap26 Swap58 −
1
2

Swap14 Swap26 Swap57 −
1
2

Swap14 Swap26 Swap38 +
1
2

Swap14 Swap26 Swap37

+
1
2

Swap14 Swap25 Swap78 −
1
2

Swap14 Swap25 Swap68 −
1
2

Swap14 Swap25 Swap37 +
1
2

Swap14 Swap25 Swap36

−
1
2

Swap14 Swap23 Swap78 +
1
2

Swap14 Swap23 Swap68 +
1
2

Swap14 Swap23 Swap57 −
1
2

Swap14 Swap23 Swap56

+
1
2

Swap13 Swap58 Swap67 −
1
2

Swap13 Swap57 Swap68 −
1
2

Swap13 Swap48 Swap67 +
1
2

Swap13 Swap48 Swap57

+
1
2

Swap13 Swap47 Swap68 −
1
2

Swap13 Swap47 Swap58 −
1
2

Swap13 Swap26 Swap58 +
1
2

Swap13 Swap26 Swap57

+
1
2

Swap13 Swap26 Swap48 −
1
2

Swap13 Swap26 Swap47 +
1
2

Swap13 Swap25 Swap68 −
1
2

Swap13 Swap25 Swap67

−
1
2

Swap13 Swap25 Swap48 +
1
2

Swap13 Swap25 Swap47 −
1
2

Swap13 Swap24 Swap68 +
1
2

Swap13 Swap24 Swap67

+
1
2

Swap13 Swap24 Swap58 −
1
2

Swap13 Swap24 Swap57 −
1
2

Swap12 Swap58 Swap67 +
1
2

Swap12 Swap56 Swap78

+
1
2

Swap12 Swap47 Swap58 −
1
2

Swap12 Swap47 Swap56 −
1
2

Swap12 Swap45 Swap78 +
1
2

Swap12 Swap45 Swap67

+
1
2

Swap12 Swap38 Swap67 −
1
2

Swap12 Swap38 Swap56 −
1
2

Swap12 Swap38 Swap47 +
1
2

Swap12 Swap38 Swap45
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−
1
2

Swap12 Swap36 Swap78 +
1
2

Swap12 Swap36 Swap58 +
1
2

Swap12 Swap36 Swap47 −
1
2

Swap12 Swap36 Swap45

+
1
2

Swap12 Swap34 Swap78 −
1
2

Swap12 Swap34 Swap67 −
1
2

Swap12 Swap34 Swap58 +
1
2

Swap12 Swap34 Swap56 .

To form a basis B4 for the linear space spanned by products of at most four swap
matrices, one takes B3 and adds

(Types 7) For each 7-tuple i < j < k < ℓ < p < q < r a select 36 products of four swap matrices
involving these seven indices;

(Type 8) a certain selection of 91 out of the 105 distinct products of four swap matrices on
distinct indices i < j < k < ℓ < p < q < r < s.

Thus

#B4 = #B3 + 36
(
n

7

)
+ 91

105
1
4!

(
n

2

)(
n− 2

2

)(
n− 4

2

)(
n− 6

2

)

= 1
40320

(
91n8 − 2260n7 + 24094n6 − 138544n5 + 460579n4

− 869260n3 + 865956n2 − 340656n+ 40320
)
.

C Gröbner basis for the Swap algebra Aswap
4

Example C.1 (n = 4). The GB for Iswap
4 has 34 elements, namely

−1 + s2
12, 1 − s12 − s13 − s23 + s12s13 + s12s23, 1 − s12 − s14 − s24 + s12s14 + s12s24,

1 − s12 − s13 − s23 + s12s13 + s13s12, −1 + s2
13, −s12s13 + s13s23, 1 − s13 − s14 − s34 + s13s14 + s13s34,

1 − s12 − s14 − s24 + s12s14 + s14s12, 1 − s13 − s14 − s34 + s13s14 + s14s13, −1 + s2
14,

−s12s14 + s14s24, −s13s14 + s14s34, −s12s13 + s23s12,

1 − s12 − s13 − s23 + s12s13 + s23s13, −s14s23 + s23s14, −1 + s2
23,

1 − s23 − s24 − s34 + s23s24 + s23s34, −s12s14 + s24s12, −s13s24 + s24s13,

1 − s12 − s14 − s24 + s12s14 + s24s14, 1 − s23 − s24 − s34 + s23s24 + s24s23, −1 + s2
24,

−s23s24 + s24s34, −s12s34 + s34s12, −s13s14 + s34s13,

1 − s13 − s14 − s34 + s13s14 + s34s14, −s23s24 + s34s23, 1 − s23 − s24 − s34 + s23s24 + s34s24, −1 + s2
34,

−1/2 + s12/2 + s14/2 + s23/2 + s34/2 − s12s13/2 − s12s14/2 − s12s34/2 − s13s14/2 + s13s24/2 − s14s23/2 − s23s24/2 + s12s13s14,

1/2 − s12/2 − s14/2 + s23/2 − s34/2 − s12s13/2 + s12s14/2 + s12s34/2 + s13s14/2 − s13s24/2 − s14s23/2 − s23s24/2 + s12s13s24,

1/2 − s12/2 + s14/2 − s23/2 − s34/2 + s12s13/2 − s12s14/2 + s12s34/2 − s13s14/2 − s13s24/2 − s14s23/2 + s23s24/2 + s12s14s23,

−1/2 + s12/2 + s14/2 + s23/2 + s34/2 − s12s13/2 − s12s14/2 − s12s34/2 − s13s14/2 + s13s24/2 − s14s23/2 − s23s24/2 + s13s14s23,

−1/2 + s12/2 + s14/2 + s23/2 + s34/2 − s12s13/2 − s12s14/2 − s12s34/2 − s13s14/2 + s13s24/2 − s14s23/2 − s23s24/2 + s14s23s24

Notice that unlike in the n = 3 case of Proposition 5.8 also higher degree polynomials,
namely cubics, appear.

Example C.2. The following table gathers some data about GBs for Aswap
n for small

values of n.

highest degree number of highest
n size(GB) polynomial in GB degree polynomials in GB
5 110 3 35
6 305 4 10
7 620 4 102
8 1665 5 37
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C.1 Gröbner bases for irreps [4 − k, k]
Under the irrep [3, 1] the image of hK4 is 8 I. Under the irrep [2, 2] the image is 12 I.
With this we can easily compute GB3,1 and GB2,2 with the help of a computer algebra
system. The former is given in Eq. (C.1), and the latter in Eq. (C.2).

− 2 + s12 + s13 + s14 + s23 + s24 + s34, −1 + s2
12,

1 − s12 − s13 − s23 + s12s13 + s12s23, 1 − s12 − s14 − s24 + s12s14 + s12s24,

1 − s12 − s13 − s23 + s12s13 + s13s12, −1 + s2
13, −s12s13 + s13s23,

1 − s13 − s24 + s13s24, 1 − s12 − s14 − s24 + s12s14 + s14s12,

− 1 + s12 + s23 + s24 + s13s14 + s14s13, −1 + s2
14, 1 − s14 − s23 + s14s23,

− s12s14 + s14s24, −s12s13 + s23s12, 1 − s12 − s13 − s23 + s12s13 + s23s13,

1 − s14 − s23 + s23s14, −1 + s2
23, s13 − s24 − s12s13 + s12s14 − s13s14+

s23s24, −s12s14 + s24s12, 1 − s13 − s24 + s24s13,

1 − s12 − s14 − s24 + s12s14 + s24s14, −1 + s12 + s14 + s24 + s12s13−

s12s14 + s13s14 + s24s23, −1 + s2
24, s13 − s12s13 − s13s14 + s12s13s14 (C.1)

s12 + s13 + s14, s12 + s13 + s23, −s13 + s24, −s12 + s34, −1 + s2
12, 1 + s12s13 + s13s12, −1 + s2

13 (C.2)

D Example 4.82

We present the second relaxation of Example 4.8. Let n = 3 and d = 2. Then

V2(3) = (1, s12, s13, s23, s
2
12, s12s13, s12s23, s13s12, s

2
13, s13s23, s23s12, s23s13, s

2
23)∗.

Thus M3
2 is the following 13 × 13 matrix



1 s12 s13 s23 s2
12 s12s13 s12s23 s13s12 s2

13 s13s23 s23s12 s23s13 s2
23

s12 s2
12 s12s13 s12s23 s3

12 s2
12s13 s2

12s23 s12s13s12 s12s
2
13 s12s13s23 s12s23s12 s12s23s13 s12s

2
23

s13 s13s12 s2
13 s13s23 s13s

2
12 s13s12s13 s13s12s23 s2

13s12 s3
13 s2

13s23 s13s23s12 s13s23s13 s13s
2
23

s23 s23s12 s23s13 s2
23 s23s

2
12 s23s12s13 s23s12s23 s23s13s12 s23s

2
13 s23s13s23 s2

23s12 s2
23s13 s3

23
s2

12 s3
12 s2

12s13 s2
12s23 s4

12 s3
12s13 s3

12s23 s2
12s13s12 s2

12s
2
13 s2

12s13s23 s2
12s23s12 s2

12s23s13 s2
12s

2
23

s13s12 s13s
2
12 s13s12s13 s13s12s23 s13s

3
12 s13s

2
12s13 s13s

2
12s23 s13s12s13s12 s13s12s

2
13 s13s12s13s23 s13s12s23s12 s13s12s23s13 s13s12s

2
23

s23s12 s23s
2
12 s23s12s13 s23s12s23 s23s

3
12 s23s

2
12s13 s23s

2
12s23 s23s12s13s12 s23s12s

2
13 s23s12s13s23 s23s12s23s12 s23s12s23s13 s23s12s

2
23

s12s13 s12s13s12 s12s
2
13 s12s13s23 s12s13s

2
12 s12s13s12s13 s12s13s12s23 s12s

2
13s12 s12s

3
13 s12s

2
13s23 s12s13s23s12 s12s13s23s13 s12s13s

2
23

s2
13 s2

13s12 s3
13 s2

13s23 s2
13s

2
12 s2

13s12s13 s2
13s12s23 s3

13s12 s4
13 s3

13s23 s2
13s23s12 s2

13s23s13 s2
13s

2
23

s23s13 s23s13s12 s23s
2
13 s23s13s23 s23s13s

2
12 s23s13s12s13 s23s13s12s23 s23s

2
13s12 s23s

3
13 s23s

2
13s23 s23s13s23s12 s23s13s23s13 s23s13s

2
23

s12s23 s12s23s12 s12s23s13 s12s
2
23 s12s23s

2
12 s12s23s12s13 s12s23s12s23 s12s23s13s12 s12s23s

2
13 s12s23s13s23 s12s

2
23s12 s12s

2
23s13 s12s

3
23

s13s23 s13s23s12 s13s23s13 s13s
2
23 s13s23s

2
12 s13s23s12s13 s13s23s12s23 s13s23s13s12 s13s23s

2
13 s13s23s13s23 s13s

2
23s12 s13s

2
23s13 s13s

3
23

s2
23 s2

23s12 s2
23s13 s3

23 s2
23s

2
12 s2

23s12s13 s2
23s12s23 s2

23s13s12 s2
23s

2
13 s2

23s13s23 s3
23s12 s3

23s13 s4
23



leading to the second relaxation which would be a 13×13 SDP. However, the Veronese V2(3)
has redundancies. For instance, s2

12 = 1, etc. Eliminating redundancies (more precisely,
picking a basis for the image of R⟨s⟩2 in R⟨s⟩/IS3) leads to the reduced Veronese, which
we shall by abuse of notation still call V2(3):

V2(3) = (1, s12, s13, s23, s12s13, s12s23)∗.

This yields a significantly smaller moment matrix pattern,

M3
2 =



1 s12 s13 s23 s12s13 s12s23

s12 s2
12 s12s13 s12s23 s2

12s13 s2
12s23

s13 s13s12 s2
13 s13s23 s13s12s13 s13s12s23

s23 s23s12 s23s13 s2
23 s23s12s13 s23s12s23

s13s12 s13s
2
12 s13s12s13 s13s12s23 s13s

2
12s13 s13s

2
12s23

s23s12 s23s
2
12 s23s12s13 s23s12s23 s23s

2
12s13 s23s

2
12s23.
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Applying the replacement rules of Example 4.8 simplifies this matrix further,

M3
2 =



1 s12 s13 s23 s12s13 s12s23

s12 1 s12s13 s12s23 s13 s23

s13 s12s23 1 s12s13 s23 s12

s23 s12s13 s12s23 1 s12 s13

s12s23 s13 s23 s12 1 s12s13

s12s13 s23 s12 s13 s12s23 1


We thus obtain a smaller second level hierarchy SDP:

ν

2(h) = max ℓ12 + ℓ13 + ℓ23

s.t. 

1 ℓ12 ℓ13 ℓ23 ℓ12,13 ℓ12ℓ23

ℓ12 1 ℓ12,13 ℓ12,23 ℓ13 ℓ23

ℓ13 ℓ12,23 1 ℓ12,13 ℓ23 ℓ12

ℓ23 ℓ12,13 ℓ12,23 1 ℓ12 ℓ13

ℓ12,23 ℓ13 ℓ23 ℓ12 1 ℓ12ℓ13

ℓ12,13 ℓ23 ℓ12 ℓ13 ℓ12,23 1


⪰ 0.

(D.1)

Since the matrix in Eq. (D.1) must be symmetric, we obtain ℓ12,23 = ℓ12,13, reducing the
number of unknowns by one,

ν

2(h) = max ℓ12 + ℓ13 + ℓ23

s.t. 

1 ℓ12 ℓ13 ℓ23 ℓ12,13 ℓ12ℓ23

ℓ12 1 ℓ12,13 ℓ12,13 ℓ13 ℓ23

ℓ13 ℓ12,13 1 ℓ12,13 ℓ23 ℓ12

ℓ23 ℓ12,13 ℓ12,13 1 ℓ12 ℓ13

ℓ12,13 ℓ13 ℓ23 ℓ12 1 ℓ12ℓ13

ℓ12,13 ℓ23 ℓ12 ℓ13 ℓ12,13 1


⪰ 0

= 3.

(D.2)

Finally, since dim C[S3] = 6 is equal to the size of the reduced Veronese, the second
relaxation ν

2(h) is automatically exact.

Example D.1. Now consider n = 4, and I = IS4 . In this case the replacement rules are9

s2
12 → 1, s13s12 → s12s23, s

2
13 → 1, s13s23 → s12s13, s14s12 → s12s24, s14s13 → s13s34,

s2
14 → 1, s14s24 → s12s14, s14s34 → s13s14, s23s12 → s12s13, s23s13 → s12s23,

s23s14 → s14s23, s
2
23 → 1, s24s12 → s12s14, s24s13 → s13s24, s24s14 → s12s24,

s24s23 → s23s34, s
2
24 → 1, s24s34 → s23s24, s34s12 → s12s34, s34s13 → s13s14,

s34s14 → s13s34, s34s23 → s23s24, s34s24 → s23s34, s
2
34 → 1. (D.3)

9In order to obtain a Gröbner basis (cf. Section 5) for the grlex order w.r.t. s12 < s13 < s14 < s23 <
s24 < s34, one needs to add three additional replacement rules to the ones given in Eq. (D.3), namely
s13s14s23 → s12s13s14, s14s23s24 → s12s13s14, s14s23s34 → s12s14s23.
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Then V1(4) = (1, s12, s13, s14, s23, s24, s34)∗, and

M4
1 =



1 s12 s13 s14 s23 s24

s12 1 s12s13 s12s14 s12s23 s12s24

s13 s12s23 1 s13s14 s12s13 s13s24

s14 s12s24 s13s34 1 s14s23 s12s14

s23 s12s13 s12s23 s14s23 1 s23s24

s24 s12s14 s13s24 s12s24 s23s34 1


leading to the SDP constraint

1 ℓ12 ℓ13 ℓ14 ℓ23 ℓ24

ℓ12 1 ℓ12,13 ℓ12,14 ℓ12,23 ℓ12,24

ℓ13 ℓ12,23 1 ℓ13,14 ℓ12,13 ℓ13,24

ℓ14 ℓ12,24 ℓ13,34 1 ℓ14,23 ℓ12,14

ℓ23 ℓ12,13 ℓ12,23 ℓ14,23 1 ℓ23,24

ℓ24 ℓ12,14 ℓ13,24 ℓ12,24 ℓ23,34 1


⪰ 0.

As before, symmetry of this matrix yields a few additional linear constraints, namely

ℓ12,13 = ℓ12,23, ℓ12,14 = ℓ12,24, ℓ13,14 = ℓ13,34.

The full V2(4) has 43 entries, and its reduced form is

V2(4) =
(
1, s12, s13, s14, s23, s24, s34, s12s13, s12s14, s12s23, s12s24, s12s34, s13s14,

s13s24, s13s34, s14s23, s23s24, s23s34
)∗
,

leading to the 18 × 18 moment matrix pattern


1 s12 s13 s14 s23 s24 s34 s12s13 s12s14 s12s23 s12s24 s12s34 s13s14 s13s24 s13s34 s14s23 s23s24 s23s34

s12 1 s12s13 s12s14 s12s23 s12s24 s12s34 s13 s14 s23 s24 s34 s12s13s14 s12s13s24 s12s13s34 s12s14s23 s12s23s24 s12s23s34

s13 s12s23 1 s13s14 s12s13 s13s24 s13s34 s23 s12s14s23 s12 s12s23s24 s12s23s34 s14 s24 s34 s12s13s14 s12s13s24 s12s13s34

s14 s12s24 s13s34 1 s14s23 s12s14 s13s14 s12s13s24 s24 s12s23s34 s12 s12s23s24 s34 s12s13s34 s13 s23 s12s13s14 s12s14s23

s23 s12s13 s12s23 s14s23 1 s23s24 s23s34 s12 s12s13s14 s13 s12s13s24 s12s13s34 s12s14s23 s12s23s24 s12s23s34 s14 s24 s34

s24 s12s14 s13s24 s12s24 s23s34 1 s23s24 s12s13s34 s12 s12s14s23 s14 s12s13s14 s12s23s24 s13 s12s13s24 s12s23s34 s34 s23

s34 s12s34 s13s14 s13s34 s23s24 s23s34 1 s12s13s14 s12s13s34 s12s23s24 s12s23s34 s12 s13 s12s14s23 s14 s12s13s24 s23 s24

s12s23 s13 s23 s12s14s23 s12 s12s23s24 s12s23s34 1 s13s14 s12s13 s13s24 s13s34 s14s23 s23s24 s23s34 s12s14 s12s24 s12s34

s12s24 s14 s12s13s24 s24 s12s23s34 s12 s12s23s24 s13s34 1 s14s23 s12s14 s13s14 s23s24 s12s13 s13s24 s23s34 s12s34 s12s23

s12s13 s23 s12 s12s13s14 s13 s12s13s24 s12s13s34 s12s23 s14s23 1 s23s24 s23s34 s12s14 s12s24 s12s34 s13s14 s13s24 s13s34

s12s14 s24 s12s13s34 s12 s12s14s23 s14 s12s13s14 s13s24 s12s24 s23s34 1 s23s24 s12s34 s13s34 s12s13 s12s23 s13s14 s14s23

s12s34 s34 s12s13s14 s12s13s34 s12s23s24 s12s23s34 s12 s13s14 s13s34 s23s24 s23s34 1 s12s13 s14s23 s12s14 s13s24 s12s23 s12s24

s13s34 s12s23s34 s14 s34 s12s13s24 s12s13s34 s13 s14s23 s23s34 s12s24 s12s34 s12s23 1 s12s14 s13s14 s23s24 s12s13 s13s24

s13s24 s12s14s23 s24 s12s23s24 s12s13s34 s13 s12s13s24 s23s34 s12s23 s12s14 s13s14 s14s23 s12s24 1 s23s24 s12s34 s13s34 s12s13

s13s14 s12s23s24 s34 s13 s12s13s14 s12s14s23 s14 s23s24 s13s24 s12s34 s12s23 s12s24 s13s34 s23s34 1 s12s13 s14s23 s12s14

s14s23 s12s13s24 s12s23s34 s23 s14 s12s13s14 s12s14s23 s12s24 s23s24 s13s34 s12s13 s13s24 s23s34 s12s34 s12s23 1 s12s14 s13s14

s23s34 s12s13s34 s12s14s23 s12s23s34 s24 s34 s23 s12s14 s12s34 s13s24 s13s34 s12s13 s12s23 s13s14 s14s23 s12s24 1 s23s24

s23s24 s12s13s14 s12s23s24 s12s13s24 s34 s23 s24 s12s34 s12s13 s13s14 s14s23 s12s14 s13s24 s12s23 s12s24 s13s34 s23s34 1



We leave the construction of the corresponding SDP constraint to the interested reader.

E Comparison with [TRZ+]
An independent and simultaneously released work ([TRZ+]) gives results that share some
commonalities with those presented in this paper. These include construction of a new
semidefinite programming hierarchy based on the swap matrices and exact solutions to Quan-
tum Max Cut on specific graphs. Here we briefly compare and contrast these two papers.

First we outline key differences in notation between the two papers. Before defining a
new semidefinite programming hierarchy, both papers introduce some additional formalism
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in order to focus on the algebraic structure of the swap matrices. However, the authors
of [TRZ+] state their results primarily in terms of operator programs, while we work
with ∗-algebras and positive linear functionals (operator algebraic states) defined on them.
Moving back and forth between these two concepts is straightforward. In the language of
operator programs, one considers maximizing (or minimizing) an expression of the form

⟨ψ|θ({ai})|ψ⟩ (E.1)

where the {ai} are non-commuting and self-adjoint operator variables, the ψ are arbitrary
vectors satisfying |ψ⟩⟨ψ| = 1, and the {ai} satisfy constraints

ηj({ai}) = 0 ∀j (E.2)

for some set of constraint polynomials {ηj}. In the language of ∗-algebras, one first defines
a ∗-algebra A to be the algebra generated by self adjoint nc variables {ai} which satisfy
relations

ηj({ai}) = 0 ∀j (E.3)

then computes the maximum over positive linear functionals L : A → C with L(1) = 1 of
the expression

L(θ({ai})). (E.4)

That these two formulations are equivalent follows from the GNS construction.
Both this paper and [TRZ+] give a set of constraints {ηj} which characterize the swap

matrices. Formally, the papers prove that maximizing an expression of the form given
in Equation (E.1) (equivalently Equation (E.4)) subject to these constrains is equivalent
to computing the max eigenvalue of the matrix θ(SWAP) obtained by replacing the {ai}
variables in θ({ai}) with explicit swap matrices. In [TRZ+] the operator program obtained
when the {ai} variables (instead denoted {pij}) are subject to these constraints is denoted
Perm(V,w). In this paper the ∗-algebra obtained when the {ai} variables (instead denoted
{sij}) are subject to these constraints is call the Symbolic Swap Algebra.

Both papers also introduce hierarchies of semidefinite programs which give a converging
series of upper bounds on Equation (E.1) (equivalently Equation (E.4)). At each finite
level both hierarchies construct a linear “pseudoexpectation”, denoted here by Ẽ, which
assigns values (“pseudomoments”) to all polynomials of degree ≤ 2d in the variables {ai}.
In both papers, these pseudoexpectations satisfy

Ẽ(1) = 1 and Ẽ(q∗q) ≥ 0 (E.5)

for any nc polynomial q of degree at most d. However, there is an important difference
between how strictly the pseudoexpectations constructed in the two papers enforce the
constraints {ηj}. The pseudoexpectation for the d-th level hierarchy constructed in this
paper – which we call the d-th swap relaxation to Quantum Max Cut– satisfies Ẽ[p] = 0
for any degree ≤ 2d polynomial in the two sided ideal generated by {ηj}, so,

Ẽ[p] = 0 if deg(p) ≤ 2d and ∃ monomials {βij}, {γij} s.t. p =
∑
i,j

βijηjγij . (E.6)

Contrastingly, the pseudoexpectation for the d-th level hierarchy constructed in [TRZ+]
only enforces the constraints in the truncated ideal generated by {ηj}, meaning

Ẽ[p] = 0 if deg(p) ≤ 2d and ∃ monomials {βij}, {γij} s.t. p =
∑
ij

βijηjγij
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with deg(βijηjγij) ≤ 2d for all i, j. (E.7)

In the case of swaps the polynomials p defined in Equation (E.6) above could also be
defined to be those p of degree ≤ 2d which annihilate all of the swap matrices, namely the
set of polynomials p in the variables sij such that

p({Swapij}) = 0 (E.8)

where Swapij is the matrix obtained by replacing each sij variable with the corresponding
Swap matrix. This follows from Proposition 3.5 in our paper or [TRZ+, Theorem 3.8]. The
ideal corresponding to the swaps can be defined by different sets of constraint polynomials.
Equation (E.8) implies the value obtained by our dth relaxation depends only on the ideal
and does not depend on the choice of defining constraints {ηj}. On the other hand, this
property may not be shared by d-th relaxed value of [TRZ+].

Further discussion of this difference is given in Remark 4.3 in this paper, where the
bound obtained at level d of our hierarchy is denoted νd(h) and the bound obtained by
the hierarchy in [TRZ+] is denoted νd. While both hierarchies converge after finitely many
steps, this difference means that at each level the hierarchy presented in this paper gives
an upper bound that may be tighter than the one presented in [TRZ+].

We found numerically (up to SDP accuracy in Mathematica, 10−7) for graphs with up
to 8 vertices and uniform edge weights the value of our second swap relaxation equals the
numerically exact max/min eigenvalue of the QMC Hamiltonian. In contrast, [TRZ+] do an
impressive numerical study on a sampling of these same graphs and find the performance of
their first relaxation in swaps is not numerically exact (to the same tolerance) on numerous
graphs with 6, 7 and 8 vertices, for details see [TRZ+, Figure 4 of Section 5].

As mentioned in Section 1.2, computing all constraints of the form given in Equa-
tion (E.6) at higher levels d requires considerable technical work. This is the content of
the later part of Section 4 of our paper (which gives an explicit linear algebraic basis
for the degree d monomials in the Symbolic Swap Algebra when d ≤ 4) and of Section 5
(which applies Gröbner Basis to swap polynomials). These techniques for simplifying swap
polynomials are not present in [TRZ+]. One consequence of our swap algebra theory, see
Theorem 4.10, is that the level ⌈n

2 ⌉ swap relaxation in our hierarchy solves the quantum
max cut problem exactly. The corresponding result for the hierarchy present in [TRZ+]
is stated as an open question after Proposition 3.13 in [TRZ+], which gives the bound

(n
2
)
.

The present paper and [TRZ+] both theoretically analyze specific instances where the
highest eigenvalue of Quantum Max Cut can be computed exactly, but with diverging aims.
We provide a method to compute (in exact arithmetic) the maximum eigenvalue of the QMC
Hamiltonian on a certain family of graphs with uniform edge-weights, extending previously
known results on exact solutions to Quantum Max Cut [LM62]. This result builds on the
characterization of the QMC Hamiltonian in terms of irreducible representations of the
symmetric group via Schur-Weyl duality, and is largely independent of our construction
of the swap relaxations.

[TRZ+], on the other hand, is concerned with understanding instances where the SDP
relaxations exactly solve the Quantum Max Cut problem as this can improve the analysis
of approximation algorithms. Specifically, [TRZ+] investigates whether either the first
swap relaxation or the second quantum Lasserre relaxation over Paulis are exact or not on
a number of graphs. Interestingly, there are cases where the SDP hierarchies considered by
[TRZ+] are proven to be inexact (see Section 4 of [TRZ+]) but for which exact arithmetic
solutions are known. An example of this is the QMC Hamiltonian with uniform edge-weights
on a clique with an odd number of vertices, which have exact solutions via representation
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theory (see, for example, Section 2.5 of this paper). One special class of graphs solved by
our methods are complete k-partite graphs for any constant k, special cases of which include
the clique and the crown graph. These latter graphs are shown to be exactly computable
by the SDPs in [TRZ+]. In other cases, such as a uniformly weighted double-star graph
and a star graph with positive weights, the SDP relaxations are shown to be numerically
exact but our representation theoretic method is unable to provide an exact solution.
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