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Abstract. Motivated by recent progress in quantum information theory, this

article aims at optimizing trace polynomials, i.e., polynomials in noncommut-

ing variables and traces of their products. A novel Positivstellensatz certifying

positivity of trace polynomials subject to trace constraints is presented, and

a hierarchy of semidefinite relaxations converging monotonically to the opti-

mum of a trace polynomial subject to tracial constraints is provided. This

hierarchy can be seen as a tracial analog of the Pironio, Navascués and Aćın

scheme [New J. Phys., 2008] for optimization of noncommutative polynomials.

The Gelfand-Naimark-Segal (GNS) construction is applied to extract optimiz-

ers of the trace optimization problem if flatness and extremality conditions

are satisfied. These conditions are sufficient to obtain finite convergence of

our hierarchy. The results obtained are applied to violations of polynomial

Bell inequalities in quantum information theory. The main techniques used

in this paper are inspired by real algebraic geometry, operator theory, and

noncommutative algebra.

1. Introduction

The goal of this article is to solve the class of polynomial optimization problems

with noncommuting variables (e.g., polynomials in matrices) involving the trace.

Applications of interest arise from quantum theory and quantum information sci-

ence [NPA08, PKRR+19, Hub21] as well as control theory [SIG98, dOHMP09].

Further motivation relates to the generalized Lax conjecture [Lax58], where the goal

is to obtain computer-assisted proofs based on noncommutative sums of squares in

Clifford algebras [NT14]. The verification of noncommutative polynomial trace in-

equalities has also been motivated by a conjecture formulated by Bessis, Moussa and

Villani (BMV) in 1975 [BMV75], which has been recently proved by Stahl [Sta13]

(see also the Lieb and Seiringer reformulation [LS04]). Further efforts focused on

applications arising from bipartite quantum correlations [GdLL18], and matrix fac-

torization ranks in [GdLL19]. In a related analytic direction, there has been recent

progress on multivariate generalizations of the Golden-Thompson inequality and

the Araki-Lieb-Thirring inequality [SBT17, HKT17].
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There is a plethora of prior research in quantum information theory involving

reformulating problems as optimization of noncommutative polynomials. One fa-

mous application is to characterize the set of quantum correlations. Bell inequalities

[Bel64] provide a method to investigate entanglement, which allows two or more

parties to be correlated in a non-classical way, and is often studied through the

set of bipartite quantum correlations. Such correlations consist of the conditional

probabilities that two physically separated parties can generate by performing mea-

surements on a shared entangled state. These conditional probabilities satisfy some

inequalities classically, but violate them in the quantum realm [CHSH69].

Classically, polynomial optimization aims at minimizing a polynomial over a set

defined by a finite conjunction of polynomial inequalities, i.e., a basic closed semi-

algebraic set. Solving this optimization problem is NP-hard in general [Lau09].

Lasserre’s hierarchy [Las01] is a nowadays well established methodology to handle

polynomial optimization in a practical way. This framework consists of approx-

imating the solution of the initial problem by considering a hierarchy of convex

relaxations. Each step of the hierarchy boils down to computing the optimal value

of a semidefinite program [AL12], that is, the optimum of a linear function under

linear matrix inequality constraints. As a consequence of Putinar’s Positivstellen-

satz [Put93], if the quadratic module generated by the polynomials describing the

semialgebraic set is archimedean, the hierarchy of semidefinite bounds converges

from below to the minimum of the polynomial over this semialgebraic set.

In the free noncommutative context (i.e., without traces), a polynomial is pos-

itive semidefinite if and only if it can be written as a sum of hermitian squares

(SOHS) [Hel02, McC01]. One can rely on such SOHS decompositions to per-

form eigenvalue optimization of noncommutative polynomials over noncommutative

semialgebraic sets, i.e., under noncommutative polynomial inequality constraints.

The noncommutative analogues of Lasserre’s hierarchy [HM04, NPA08, PNA10,

CKP12, BCKP13] allow one to approximate as closely as desired the optimal value

of such eigenvalue minimization problems. In [NPA08], Navascués, Pironio and

Aćın provide a way to compute bounds on the maximal violation levels of Bell

inequalities: they first reformulate the initial problem as an eigenvalue optimiza-

tion one and then approximate its solution with a converging hierarchy of semidefi-

nite programs, based on the noncommutative version of Putinar’s Positivstellensatz

due to Helton and McCullough [HM04]. This is the so-called Navascués-Pironio-

Aćın (NPA for short) hierarchy and can be viewed as the “eigenvalue” version of

Lasserre’s hierarchy. This leads to a hierarchy of upper bounds on the maximum

violation level of Bell inequalities (see also [DLTW08, PV09]). Further extensions

[PNA10, CKP12, BCKP13] have been provided to optimize the trace of a given

polynomial under positivity constraints. NCSOStools [CKP11, BKP16] can com-

pute lower bounds on minimal eigenvalues or traces of noncommutative polynomial

objective functions over noncommutative semialgebraic sets.

This work greatly extends these frameworks to the case of optimization prob-

lems involving trace polynomials, i.e., linear combinations of products of matrices

and matrix traces. A very simple example of such polynomial is tr(A1) · tr(A2
2) +

(tr(A1A2))2, where A1 and A2 are noncommutative variables, e.g., A1 and A2 can
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be both quantum physics operators. One important underlying motivation is that

trace polynomials are involved in several problems arising from quantum informa-

tion theory. For instance, [FN14] presents a framework to obtain the limit output

states for a large class of input states having specific sets of parameters. To obtain

these limits, one needs to compute bounds for generalized traces of tensors. One

way to model such generalized traces is to consider a reformulation as an optimiza-

tion problem involving trace polynomials. In this problem, trace polynomials arise

as cost functions but they can also appear in the constraints. Convex relaxations

of trace polynomial problems can be obtained as in the NPA hierarchy: one can

associate a new variable to each word trace (e.g., tr(A1), tr(A1A2) and tr(A2
2) in

the above example), then incorporate the initial constraints into the semidefinite

matrix defined in the NPA hierarchy. Moreover the noncommuting operators, de-

noted by Ai, Bj , Ck in [PKRR+19], fulfill causal constraints, which leads to equality

constraints such as

tr(Ai1Ai2 · · ·AimCk1Ck2 · · ·Ckm)− tr(Ai1Ai2 · · ·Aim) tr(Ck1Ck2 · · ·Ckm) = 0.

This results in a so-called scalar extension of the NPA hierarchy, which allows the

authors to successfully identify correlations not attainable in the entanglement-

swapping scenario. However, [PKRR+19] does not provide a proof of convergence

for this hierarchy. In [Hub21], the author focuses on the multilinear case and ob-

tains a characterization of all multilinear equivariant trace polynomials which are

positive on the positive cone. In contrast with [Hub21], we consider optimization

of nonlinear trace polynomials over trace polynomial inequalities after assuming

that the quadratic module generated by the polynomials involved in the set of

constraints is archimedean. In a closely related work in real algebraic geometry

[KŠV18], the first and third author derive several Positivstellensätze for trace poly-

nomials positive on semialgebraic sets of fixed size matrices. In particular, [KŠV18]

establishes a Putinar-type Positivstellensatz stating that any positive polynomial

admits a weighted SOHS decomposition without denominators. In the dimension-

free setting, finite von Neumann algebras and their tracial states provide a natural

framework for studying tracial polynomial inequalities. This paper characterizes

trace polynomials which are positive on tracial semialgebraic sets, where the initial

polynomials and constraints involve freely noncommutative variables and traces,

and the evaluations are performed on von Neumann algebras.

Contributions. A trace polynomial is a polynomial in symmetric noncommuta-

tive variables x1, . . . , xn and traces of their products. Thus naturally each trace

polynomial has an adjoint. A pure trace polynomial is a trace polynomial that is

made only of traces, i.e., has no free variables xj . For instance, the trace of a trace

polynomial is a pure trace polynomial, e.g.

f = x1x2x
2
1 − tr(x2) tr(x1x2) tr(x2

1x2)x2x1,

tr(f) = tr(x3
1x2)− tr(x2) tr(x1x2)2 tr(x2

1x2),

f? = x2
1x2x1 − tr(x2) tr(x1x2) tr(x2

1x2)x1x2.
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Given a set of symmetric trace polynomials S, let DS be the set of all tuples

(X1, . . . , Xn), where Xj are operators from a finite von Neumann algebra with a

given tracial state, that satisfy s(X1, . . . , Xn) � 0 for all s ∈ S.

In Section 3 we state and prove a pure trace variant of the Helton-McCullough

[HM04] noncommutative version of Putinar’s Positivstellensatz [Put93]: we obtain

a representation of pure trace polynomials positive on a set described by pure

trace polynomial inequalities, using weighted sums of squares. This first (noncylic)

Positivstellensatz is valid under the classical assumption that the quadratic module

generated by the polynomials involved in the set of constraints is archimedean

(Corollary 3.6). Our proof relies on the classical Kadison–Dubois representation

theorem (see e.g. [Mar08]) and the Gelfand-Naimark-Segal (GNS) construction.

Then, we derive in Section 4 a novel, cyclic Positivstellensatz for the more general

case of trace polynomials which are positive on tracial semialgebraic sets. A sub-

set of symmetric trace polynomials Mcyc is a cyclic quadratic module if 1 ∈Mcyc,

Mcyc+Mcyc ⊆Mcyc, tr(Mcyc) ⊆Mcyc and hMcych? ⊆Mcyc for every trace poly-

nomial h. In analogy with the commutative setting we say thatMcyc is archimedean

if N − x2
1 − · · · − x2

n ∈ Mcyc for some N > 0. Observe that each Mcyc contains

all sums of elements of the form tr(h1h
?
1) · · · tr(h`h?` )h0h

?
0 for hi ∈ T. Lemma 4.1

below describes the smallest cyclic quadratic module Mcyc(S) containing a given

set of generators S ⊆ T.

Theorem A (Corollary 4.8). LetMcyc be an archimedean cyclic quadratic module,

and let a be a symmetric trace polynomial. The following are equivalent:

(i) a � 0 on DMcyc ;

(ii) for every ε > 0 there exist univariate sums of squares s1, s2∈ R[t], depend-

ing on ε, such that

a = s1(a)− s2(a), ε− tr(s2(a)) ∈Mcyc.

In Section 5, we rely on this Positivstellensatz to design a converging hierarchy

of semidefinite relaxations to approximate from below the minimum of a pure trace

polynomial under pure trace polynomial inequality constraints. An extension of

this hierarchy to the more general case of trace polynomial constraints is presented

in Section 5.3.

Theorem B (Corollary 5.7). Let S be a set of symmetric trace polynomials, and

a a pure trace polynomial. The Positivstellensatz-induced hierarchy of semidefinite

programs produces a convergent increasing sequence with limit infDS a.

Along the way, we present in Section 5.2 a tracial variant of the finite-dimensional

GNS construction under flatness and extremal assumptions. We use it to obtain

finite convergence of our hierarchy as well as exactness of the relaxed solution,

and design an algorithm to extract minimizers. Finally, in Section 6 we give a

simple example demonstrating our theoretical results, and present an application

of our techniques to quantum information theory: we use tracial optimization to

find upper bounds on violations of polynomial Bell inequalities.
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2. Notation and basic definitions

We begin by introducing basic notions about noncommutative polynomials, trace

polynomials, and semialgebraic sets that will be used throughout the paper.

2.1. Noncommutative polynomials and trace polynomials. Let us denote

by Mk (resp. Sk) the space of all real (resp. symmetric) matrices of order k. The

normalized trace of a matrix A ∈ Mk is given by trA = 1
k

∑k
i=1Ai,i. For a fixed

n ∈ N, we consider a finite alphabet x1, . . . , xn and generate all possible words of

finite length in these letters. The empty word is denoted by 1. The resulting set of

words is the free monoid 〈x〉, with x = (x1, . . . , xn). We denote by R〈x〉 the set of

real polynomials in noncommutative variables, abbreviated as nc polynomials. The

algebra R〈x〉 is equipped with the involution ? that fixes R∪{x1, . . . , xn} point-wise

and reverses words, so that R〈x〉 is the ?-algebra freely generated by n symmetric

letters x1, . . . , xn.

We now introduce some algebraic terminology to deal with the trace, following

[Pro76] (see also [KŠ17, KŠV18]). Two words u, v ∈ 〈x〉 are called ?-cyclically

equivalent (u
cyc?∼ v) if v or v? can be obtained from u by cyclically rotating the

letters in u. For example, all words of length 3 are ?-cyclically equivalent, but

x1x2x3x4
cyc?� x2x1x3x4. We denote by T the commutative polynomial algebra

in infinitely many variables tr(w) with w ∈ 〈x〉, up to ?-cyclic equivalence, that

is, T := R[tr(w) , w ∈ 〈x〉/cyc?]. We also let T := T〈x〉 be the free T-algebra on

x. Elements of T are called pure trace polynomials, and elements of T are trace

polynomials. For example, t = tr(x2
1) − tr(x1)2 ∈ T and x2

1 − tr(x1)x1 − 2t ∈ T =

T〈x1〉. The involution on T, denoted also by ?, fixes {x1, . . . , xn} ∪ T point-wise,

and reverses words from 〈x〉. The set of all symmetric elements of T is defined as

SymT := {f ∈ T : f = f?}. A linear functional L : T → R is said to be tracial if

L(tr(f)) = L(f) for all f ∈ T. We also consider the universal trace map τ defined

by

τ : T→ T ,

f 7→ tr(f) .

A linear functional L : T 7→ R is tracial if and only if L ◦ τ = L. Such an L is

determined by L|T : T → R being an (arbitrary) linear functional. The functional

L is called unital if L(1) = 1 and is called symmetric if L(f?) = L(f), for all f

belonging to the domain of L.

2.2. Tracial semialgebraic sets and von Neumann algebras. Given S ⊆
SymT, the matricial tracial semialgebraic set DS associated to S is defined as

follows:

DS :=
⋃
k∈N
{A = (A1, . . . , An) ∈ Snk : s(A) � 0 for all s ∈ S} .(2.1)

While (2.1) looks like a natural candidate for testing positivity of tracial polyno-

mials, the failure of Connes’ embedding conjecture [JNV+20] hinders the existence

of a reasonable Positivstellensatz for (2.1) by [KS08]. Instead of just matrices of
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all finite sizes, one is thus led to include bounded operators, similarly as in the

trace-free setting [HM04]. Since we deal with tracial constraints, the considered

bounded operators need to admit traces. The natural framework is therefore given

by tracial von Neumann algebras, which we discuss next.

A real von Neumann algebra F [ARU97] is a unital, weakly closed, real, self-

adjoint subalgebra of the (real) algebra of bounded linear operators on a complex

Hilbert space, with the property F ∩ iF = {0}. We restrict ourselves to separable

Hilbert spaces, implying that all von Neumann algebras have separable preduals.

Much of the structure theory of real von Neumann algebras can be transfered

from complex von Neumann algebras [Tak02, Chapter 5]. Namely, the complex-

ification of a real von Neumann algebra yields a complex von Neumann algebra

with an involutory ∗-antiautomorphism; conversely, the fixed set of an involutory

∗-antiautomorphism on a complex von Neumann algebra is a real von Neumann

algebra. A real von Neumann algebra is finite if in its complexification, every isom-

etry is a unitary. By [Tak02, Theorem 2.4], a von Neumann algebra is finite if

and only if it admits sufficiently many normal tracial states, which will play an

important role in this article.

A (real) von Neumann algebra is a factor if its center consists of only the (real)

scalar operators. By [Tak02, Theorem 2.6], a factor is finite if and only if it admits

a faithful normal tracial state; in this case, such a state is unique, and is called

the trace of the factor. Finally, a II1-factor is an infinite-dimensional finite factor

(other finite factors are of type In, which are n×n complex matrices in the complex

setting, and n×n real matrices or n
2 ×

n
2 quaternion matrices in the real setting). In

this article we consider positivity on operator semialgebraic sets. These are defined

as follows (cf. [BKP16, Definition 1.59]):

Definition 2.1. A tracial pair (F , τ) consists of a real finite von Neumann algebra

F and a faithful normal tracial state τ on F [Tak02, Chapter 5].

Given S ⊆ SymT let DF,τS be the set of all self-adjoint tuples X = (X1, . . . , Xn) ∈
Fn making s(X) a positive semidefinite operator for every s ∈ S; here tr is evaluated

as τ . The von Neumann semialgebraic set DvN
S generated by S is defined as

DvN
S :=

⋃
(F,τ)

DF,τS ,

where the union is over all tracial pairs (F , τ). Analogously, we define

DII1
S :=

⋃
F
DFS ,

where the union is over all II1-factors (which come equipped with unique traces).

Note that finiteness of S is not needed at this stage. Unlike in the free case

[HKM11], these tracial semialgebraic sets are closed neither under direct sums nor

reducing subspace compressions; for example, if s = tr(x1) tr(x2), then

s(3, 1) > 0 and s(−1,−2) > 0, but s(3⊕−1, 1⊕−2) < 0;

s(−2⊕ 1, 1⊕−2) > 0, but s(−2, 1) < 0 and s(1,−2) < 0.
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To sidestep this technical problem we make use of the following well-known fact

that is all but stated in [Dyk94, Theorem 2.5].

Proposition 2.2. Every tracial pair embeds into a II1-factor.

Proof. Let (F , τ) be a tracial pair and (F̃ , τ̃) its complexification. If L(Z) is the

complex von Neumann group algebra of Z [Tak02, Definition 7.4], the free product

construction (see e.g. [Dyk94, Section 1]) along τ̃ and the trace on L(Z) yields

the von Neumann algebra F̃ ∗ L(Z) with a normal faithful tracial state whose

restriction to F̃ equals τ̃ . Also, both L(Z) and F̃ admit natural involutory ?-

antiautomorphisms, which induce an involutory ?-antiautomorphism F̃ ∗ L(Z). Its

fixed set is a real von Neumann algebra algebra containing (F , τ), and it is a (real)

II1-factor if F̃ ∗ L(Z) is a (complex) II1-factor. If dim F̃ ≤ 2, then F̃ ∈ {C,C⊕C}
and F̃ ∗ L(Z) ∈ {L(Z), L(Z2 ∗ Z)} is a II1-factor. if dim F̃ ≥ 3, then F̃ ∗ L(Z) is a

II1-factor by [Dyk94, Theorem 2.5] (and the proof of [Dyk94, Lemma 2.9]). �

Remark 2.3. A reader might rightfully wonder why the setup is restricted to re-

als instead of complexes. Since every complex von Neumann algebra is a real von

Neumann algebra and the real part of a complex tracial state is a real tracial state,

all the conclusions in this paper also hold for evaluations in complex von Neu-

mann algebras. Likewise one could consider complex trace polynomials, but the

corresponding formalism for trace symbols would be more intricate (namely, trace

symbols would not be fixed under the involution, so they would need to be split in

real and imaginary part, and relations connecting both with respect to ? would need

to be imposed). However, with the view towards optimization and implementation

using the standard semidefinite programming solvers it is more convenient to derive

results within the real framework.

3. Non-cyclic Positivstellensatz for pure trace polynomials

In this section we provide our first Positivstellensatz, Theorem 3.5, for pure trace

polynomials based on quadratic modules from real algebraic geometry [Mar08]. A

subsetM⊆ T is called a quadratic module if 1 ∈M,M+M⊆M and a2M for all

a ∈ T. Given an archimedean quadratic moduleM⊆ T (in the usual commutative

sense, meaning that for each f ∈ T there is m > 0 such that m ± f ∈ M), we

consider the real points of the real spectrum SperMT, namely the set χM defined by

χM := {ϕ : T→ R | ϕ homomorphism, ϕ(M) ⊆ R≥0, ϕ(1) = 1}.(3.1)

The next proposition is the well-known Kadison-Dubois representation theorem,

see e.g. [Mar08, Theorem 5.4.4].

Proposition 3.1. Let M⊆ T be an archimedean quadratic module. Then, for all

a ∈ T, one has

∀ϕ ∈ χM ϕ(a) ≥ 0 ⇔ ∀ε > 0 a+ ε ∈M.

A homomorphism ϕ : T → R is determined by the “tracial moments” ϕ(tr(w))

for w ∈ 〈x〉. In this sense, the following variant of [Had01, Theorem 1.3] is a solution
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of the tracial moment problem. In the given formulation, it is the dimension-free

analog of the extension theorem [KŠV18, Theorem 4.8].

Proposition 3.2. Let ϕ : T → R be a homomorphism. Then there are a tracial

pair (F , τ) and X = X∗ ∈ Fn such that ϕ(a) = a(X) for all a ∈ T if and only if

the following holds:

(a) ϕ(tr(pp?)) ≥ 0 for all p ∈ R〈x〉;
(b) lim infk→∞ 2k

√
ϕ(tr(x2k

j )) <∞ for j = 1, . . . , n.

Proof. (⇒) This is trivial since τ(AA∗) ≥ 0 and |τ(A2k)| ≤ ‖A‖2k for every A ∈ F
and k ∈ N.

(⇐) Denote

α = max

{
1,max

j
lim inf
k→∞

2k

√
ϕ(tr(x2k

j ))

}
.

Let φ : R〈x〉 → R be a linear functional defined by

φ(w) :=
ϕ(tr(w))

α|w|

for w ∈ 〈x〉. Then φ is a symmetric tracial functional on R〈x〉, φ(pp?) ≥ 0 for every

p ∈ R〈x〉 and maxj lim infk→∞ φ(x2k
j ) < ∞. By [Had01, Theorem 1.3] (or rather

its real version) there is a tracial pair (F , τ) and a tuple of self-adjoint contractions

Y ∈ Fn such that φ(p) = τ(p(Y )) for all p ∈ R〈x〉. Then X = αY satisfies

ϕ(tr(p)) = τ(p(X)) for p ∈ R〈x〉 and thus ϕ(a) = a(X) for a ∈ T. �

Definition 3.3. Given S ⊆ T and N > 0 let

S(N) := S ∪ {tr(pp?) | p ∈ R〈x〉} ∪ {Nk − tr(x2k
j ) | 1 ≤ j ≤ n, k ∈ N} ⊆ T.(3.2)

For S ⊆ SymT let

S[N ] := S ∪ {N − x2
j | j = 1, . . . , n} ⊆ T.(3.3)

Lemma 3.4. The quadratic module M(S(N)) ⊆ T is archimedean for every S,N .

Proof. We need to show that for every w ∈ 〈x〉 there exists m > 0 such that

(3.4) m± tr(w) ∈M(S(N)).

Write w = xk1i1 · · ·x
k`
i`

for i1 6= i2 6= · · · 6= i`; we prove (3.4) by induction on `. If

` = 1, (3.4) holds because

Nk + 1± 2 tr(xkj ) =
(
Nk − tr(x2k

j )
)

+ tr
(
(xkj ± 1)2

)
.

For ` > 1 denote λ = b `2c, and let w1 = xk1i1 · · ·x
kλ
iλ

and w2 = x
kλ+1

iλ+1
· · ·xk`i` . Then

tr(w1w
?
1) = tr

(
x2k1
i1
xk2i2 · · ·x

kλ−1

iλ−1
x2kλ
iλ

x
kλ−1

iλ−1
· · ·xk2i2

)
and similarly for tr(w2w

?
2); note that 2(λ−1), 2(`−λ−1) < `. Hence by the induc-

tion hypothesis there exist m1,m2 > 0 such that mi− tr(wiw
?
i ) ∈M(S(N)). Then

(m1+m2)±2 tr(w) = (m1 − tr(w1w
?
1))+(m2 − tr(w2w

?
2))+tr ((w1 ± w?2)(w?1 ± w2))

lies in M(S(N)). �
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Recall that the Helton-McCullough archimedean Positivstellensatz [HM04] states

that any polynomial in noncommutative variables positive on a basic semialgebraic

set belongs to the quadratic module generated by the polynomials describing this

set, under the assumption that this module is archimedean. We are now ready to

prove our first theorem, the purely tracial analog of this noncommutative Helton-

McCullough Positivstellensatz.

Theorem 3.5. Let S ⊆ T and N > 0 be given. Then for a ∈ T the following are

equivalent:

(i) a(X) ≥ 0 for all X ∈ DvN
S[N ];

(ii) a(X) ≥ 0 for all X ∈ DII1
S[N ];

(iii) a+ ε ∈M(S(N)) for all ε > 0.

Proof. (i)⇔(ii) holds by Proposition 2.2. (iii)⇒(i) If X ∈ DF,τS[N ], then

s(X) ≥ 0, τ(p(X)p(X)∗) ≥ 0, τ(X2k
j ) ≤ Nk

for all s ∈ S, p ∈ R〈x〉, 1 ≤ j ≤ n and k ∈ N, so a(X) ≥ 0.

(i)⇒(iii) Suppose a + ε /∈ M(S(N)) for some ε > 0. By Proposition 3.1, there

exists a unital homomorphism ϕ : T→ R with ϕ(M(S(N))) ⊆ R≥0 and ϕ(a) < 0.

Hence

ϕ(tr(pp?)) ≥ 0, ϕ(tr(x2k
j )) ≤ Nk

for all p ∈ R〈x〉, 1 ≤ j ≤ n and k ∈ N. Hence by Proposition 3.2 there exist a

tracial pair (F , τ) and X ∈ Fn such that ϕ(b) = b(X) for all b ∈ T. Moreover,

the proof of Proposition 3.2 implies ‖Xj‖ ≤
√
N for 1 ≤ j ≤ n. Furthermore,

s(X) = ϕ(s) ≥ 0 for every s ∈ S implies X ∈ DF,τS[N ]. Finally, a(X) = ϕ(a) < 0. �

Since M(S(N1)) ⊆M(S(N2)) for N1 ≥ N2, we obtain the following:

Corollary 3.6. Let S ⊆ T and a ∈ T. The following are equivalent:

(i) a(X) ≥ 0 for all X ∈ DvN
S ;

(ii) a(X) ≥ 0 for all X ∈ DII1
S ;

(iii) a+ ε ∈M(S(N)) for all ε > 0 and N ∈ N.

4. Cyclic Positivstellensatz for trace polynomials

In this section we prove a Positivstellensatz for trace polynomials that is less

inspired by the commutative theory than the one from Section 3 and relies more on

the tracial structure of trace polynomials. First we introduce the notion of a cyclic

quadratic module. A subset Mcyc ⊆ SymT is called a cyclic quadratic module if

1 ∈Mcyc, Mcyc +Mcyc ⊆Mcyc, a?Mcyca ⊆Mcyc ∀a ∈ T, tr(Mcyc) ⊆Mcyc.

Given S ⊆ T let Mcyc(S) be the cyclic quadratic module generated by S, i.e., the

smallest cyclic quadratic module in T containing S. A cyclic quadratic module

Mcyc is called archimedean if for all a ∈ SymT there exists N > 0 such that

N − a ∈Mcyc. We start with a few preliminary results.

Lemma 4.1. Let S ⊆ T.
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(1) Elements of Mcyc(∅) are precisely sums of

tr(h1h
?
1) · · · tr(h`h?` )h0h

?
0

for hi ∈ T.

(2) Elements of Mcyc(S) are precisely sums of

q1, h1s1h
?
1, tr(h2s2h

?
2)q2

for hi ∈ T, qi ∈Mcyc(∅), si ∈ S.

(3) Elements of tr(Mcyc(S)) =Mcyc(S) ∩ T are precisely sums of

tr(h1h
?
1) · · · tr(h`h?` ) tr(h0sh

?
0)

for hi ∈ T and s ∈ S.

Proof. Straightforward. �

Note that expressions such as tr(h1s1h
?
1) tr(h2s2h

?
2) for hi ∈ T and si ∈ S do not

belong toMcyc(S). We emphasize that computing such product representations in

our context would be very hard in practice. Indeed, even if one bounds the degrees

of the hj , computing their coefficients boils down to solving a nonlinear semidef-

inite program, which is impractical. Second, even in the classical commutative

case quadratic modules (such as those appearing in Putinar’s Positivstellensatz)

are not closed under multiplication, by contrast with Schmügden type represen-

tations [Sch91] in which one allows multiplication of polynomials involved in the

set of constraints. Admitting products of constraints in sums of squares positiv-

ity certificates increases computational cost only modestly, but from a theoretical

viewpoint yields little to no advantages (in the archimedean case), which is why

quadratic modules are preferred from a practical point of view.

Proposition 4.2. A cyclic quadratic module Mcyc is archimedean if and only if

there exists N ∈ N such that N −
∑n
i=1 x

2
j ∈Mcyc.

Proof. (⇒) is obvious. For the converse assume N −
∑n
i=1 x

2
j ∈ Mcyc for some

N ∈ N. Then the set Mcyc ∩ R〈x〉 is an archimedean quadratic module. Thus, for

all a = a? ∈ R〈x〉 there exists N ∈ N such that

N − a ∈Mcyc ∩ R〈x〉 .(4.1)

In addition, the set H of bounded elements, defined by

H = {a ∈ T | ∃N ∈ N s.t. N − a?a ∈Mcyc} ,

is closed under involution, addition, subtraction and multiplication, i.e., is a ?-

subalgebra of T [Vid59]. A symmetric element b ∈ T is in H if and only if there is

some N ∈ N with N ± b ∈Mcyc.

For every a ∈ 〈X〉 we have

(4.2) tr(aa?)− tr(a)2 = tr((a− tr(a))(a− tr(a))?) ∈Mcyc.

By (4.1) and the fact that Mcyc is cyclic, there is some N ∈ N with N − tr(aa?) ∈
Mcyc. Adding this to (4.2) yields N − tr(a)2 ∈ Mcyc. Thus, by the definition of

H, tr(a) ∈Mcyc. The desired result now follows since H is a subalgebra of T. �
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Proposition 4.3. Let (F , τ) be a tracial pair and X = X∗ ∈ F . The following are

equivalent:

(i) X � 0;

(ii) τ(XY ) ≥ 0 for all positive semidefinite contractions Y ∈ F ;

(iii) τ(Xp(X)2) ≥ 0 for all p ∈ R[t].

Proof. (i)⇒(ii) is clear and (ii)⇒(iii) holds since for p(X) 6= 0,

τ(Xp(X)2) = ‖p(X)‖2 τ
(
X
(
‖p(X)‖−2p(X)2

) )
and ‖p(X)‖−2p(X)2 is a positive semidefinite contraction. To prove (iii)⇒(i), let

F1 ⊆ F be the weak operator topology closure of the algebra generated by X. Then

F1 is an abelian von Neumann algebra and therefore (F1, τ |F1) ∼= (L∞(X , µ),
∫
· dµ)

for some standard measure space (X , µ) by [Tak02, Theorem III.1.18]. For f ∈
L∞(X , µ) we have f � 0 if and only if

∫
fg2 dµ ≥ 0 for all g ∈ L∞(X , µ). If f is

the image of X under the above isomorphism, then {p(f) | p ∈ R[t]} is dense in F1.

Hence
∫
fp(f)2 dµ ≥ 0 for all univariate polynomials p implies f � 0, so (iii)⇒(i)

holds. �

The following is the cyclic version of the Helton-McCullough theorem [HM04].

Note that while the constraints in Theorem 4.4 are arbitrary trace polynomials,

the objective function needs to be a pure trace polynomial. A direct analog for

non-pure trace objective polynomials fails, see Example 4.6 below.

Theorem 4.4. Let Mcyc ⊆ SymT be an archimedean cyclic quadratic module and

a ∈ T. The following are equivalent:

(i) a(X) ≥ 0 for all X ∈ DvN
Mcyc ;

(ii) a(X) ≥ 0 for all X ∈ DII1
Mcyc ;

(iii) a+ ε ∈Mcyc for all ε > 0.

Proof. Implications (iii)⇒(i)⇒(ii) are straightforward, so consider (ii)⇒(iii). By

Proposition 4.3 we have DII1
Mcyc = DII1

tr(Mcyc). Since Mcyc is archimedean, there

exists N > 0 such that N − x2
j ∈Mcyc for j = 1, . . . , n. Consequently

DII1
Mcyc = DII1

Mcyc[N ] = DII1
tr(Mcyc)[N ].

For every j, k we have

Nk − tr(x2k
j ) = tr

((
k−1∑
i=0

Nk−1−ix2i
j

)
(N − x2

j )

)
∈Mcyc.

Consequently tr(Mcyc)(N) ⊆ Mcyc and thus M(tr(Mcyc)(N)) ⊆ Mcyc. Then

a+ ε ∈Mcyc for all ε > 0 by Theorem 3.5. �

For the reader unfamiliar with real algebraic geometry and noncommutative mo-

ment problems, we present a self-contained proof of Theorem 4.4 relying only on

convex separation results and basic properties of von Neumann algebras in Appen-

dix A.

Having reached this point, it is tempting to think that membership in Mcyc is

also enough to characterize all positive tracial polynomials, not just the pure ones.
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As it turns out, this intuition is wrong: in the following lines, we provide a simple

counterexample. Given a set of symmetric polynomials S ⊆ R〈x〉 letM(S) denote

the (free) quadratic module generated by S [BKP16, Section 1.4]. Hence M(S)

is the smallest set that contains S ∪ {1}, is closed under addition, and f ∈ M(S)

implies hfh? ∈M(S) for every h ∈ R〈x〉.

Lemma 4.5. Let S1 ⊆ T and S2 ⊆ R〈x〉. If s(0) ≥ 0 for all s ∈ S1, then

Mcyc(S1 ∪ S2) ∩ R〈x〉 =M(S2).

Proof. Let π1 : T→ R be given by π1(a) = a(0), and consider the homomorphism

π = π1 ⊗ idR〈x〉 : T → R〈x〉. Then π(Mcyc(S1 ∪ S2)) = M(S2) because π1(S1) ⊆
R≥0 and π|R〈x〉 = idR〈x〉. So the statement follows. �

Example 4.6. Let n = 1. Let Mcyc be the archimedean cyclic quadratic module

in SymT generated by

{1− x2
1} ∪ {tr(x1p

2(x1)) | p ∈ R[t]}.

By Proposition 4.3, X1 ∈ DF,τMcyc implies X1 � 0 for any tracial pair (F , τ). On the

other hand, if ε ∈ [0, 1) then x1 + ε /∈M({1− x2
1}) and therefore x1 + ε /∈Mcyc by

Lemma 4.5.

We emphasize that Example 4.6 shows that Theorem 4.4 does not hold in general

for non-pure objectives. To mitigate the absence of a non-pure analog of Theorem

4.4, we require the following technical lemma.

Lemma 4.7. Let ε > 0 and n = d1/εe. If s2 = ε
2 (t− 1)2n and s1 = s2 + t, then

(a) s1 is positive on R, and thus a sum of (two) squares in R[t];

(b) ε
2 − s2 is nonnegative on [0, 1], and thus an element of M({t, 1− t}).

Proof. (a) Clearly s1(α) > 0 for α ≥ 0. Since ds2
dα (α) = εn(α − 1)2n−1 < −1 for

every α ≤ 0, we also have s2(α) > −α for α ≤ 0. So s1 is positive on R and thus a

sum of two squares by an easy application of the fundamental theorem of algebra

(see e.g. [Mar08, Proposition 1.2.1]).

(b) ε
2 − s2 is nonnegative on [0, 1] because (α − 1)2n ≤ 1 for α ∈ [0, 1]. Since

t(1 − t) = (1 − t)2t + t2(1 − t) ∈ M({t, 1 − t}), a result of Fekete [PS98, Problem

VI.46] (see [Mar08, Proposition 2.7.3] for a modern treatment) implies ε
2 − s2 ∈

M({t, 1− t}). �

Although the tracial version of the Helton-McCullough Positivstellensatz [HM04]

fails, we have the following positivity certificate for non-pure trace polynomials.

Corollary 4.8. LetMcyc ⊆ SymT be an archimedean cyclic quadratic module and

a ∈ SymT. The following are equivalent:

(i) a(X) � 0 for all X ∈ DvN
Mcyc ;

(ii) a(X) � 0 for all X ∈ DII1
Mcyc ;

(iii) for every ε > 0, there exist sums of (two) squares s1, s2 ∈ R[t] such that

(4.3) a = s1(a)− s2(a), ε− tr(s2(a)) ∈Mcyc;
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(iv) for every ε > 0, there exist sums of (two) squares s1, s2 ∈ R[t] and q ∈Mcyc

such that

(4.4) tr(ay) + ε = tr(s1(a)y + s2(a)(1− y)) + q

where y is an auxiliary symmetric free variable. That is, tr(ay) + ε is in

the cyclic quadratic module generated byMcyc, y, 1−y (inside the free trace

ring generated by x, y).

Proof. (ii)⇔(i) holds by Proposition 2.2. To prove (iii)⇒(iv), note that (4.3) implies

(after multiplication by y and taking the trace) that tr(ay) + ε = tr(s1(a)y +

s2(a)(1− y)) + ε− tr(s2(a)). The implication follows by taking q = ε− tr(s2(a)) ∈
Mcyc. (iv)⇒(i) Let (F , τ) be a tracial pair. If tr(ay) + ε belongs to the cyclic

quadratic module generated by Mcyc, y, 1− y for every ε > 0, then tr(a(X)Y ) ≥ 0

for all X ∈ DF,τMcyc and positive semidefinite contractions Y ∈ F . Therefore a(X) �
0 for all X ∈ DF,τMcyc by Proposition 4.3.

(i)⇒(iii) SinceMcyc is archimedean, there exists N > 0 such that N−a ∈Mcyc.

After rescaling a we can without loss of generality assume that 1 − a ∈ Mcyc.

Suppose that (i) holds. Given an arbitrary ε > 0 let s1, s2 ∈ R[t] be sums of

squares as in Lemma 4.7. Then there are sums of squares s3, s4, s5 ∈ R[t] such that

s1 − s2 = t, ε
2 − s2 = s3 + s4t+ s5(1− t).

By Proposition 4.3 and Theorem 4.4 we have tr(s4(a)a) + ε
2 ∈M

cyc. Hence(
s3(a) + tr(s4(a)a) + ε

2

)
+ s5(a)(1− a) ∈Mcyc

and therefore

a = s1(a)− s2(a), ε− tr(s2(a)) ∈Mcyc. �

5. SDP hierarchy for trace optimization

In this section we apply Theorem 3.5 to optimization of pure trace objective

functions subject to (pure) trace constraints and a norm boundedness condition.

Doing so, we obtain a converging hierarchy of SDP relaxations in Section 5.1. When

flatness occurs in this hierarchy, one can extract a finite-dimensional minimizer as

shown in Section 5.2. Finally, we apply Proposition 4.3 to handle the more general

case of trace polynomials subject to trace constraints and a norm boundedness

condition in Section 5.3.

We define the set of tracial words (abbreviated as T-words) by {
∏
i tr(ui)v |

ui, v ∈ 〈x〉}, which is a subset of T. The set of pure trace words (abbreviated as

T-words) is the subset of T-words belonging to T. For instance, tr(x1)2 is a T-word

and tr(x1)x1 is a T-word. For ui, v ∈ 〈x〉, we define the tracial degree of
∏
i tr(ui)v

as the sum of the degrees of the ui and the degree of v. The tracial degree of a

trace polynomial f ∈ T is the length of the longest tracial word involved in f up

to cyclic equivalence. Let us denote by WT
d (resp. WT

d ) the vector of all T-words

(resp. T-words) of tracial degree at most d w.r.t. to the degree lexicographic order.

Finally, let Td (resp. Td) denote the span of entries of WT
d (resp. WT

d ) in T (resp.

T), and let σT(n, d) (resp. σT(n, d)) the dimension of Td (resp. Td), that is, the

length of WT
d (resp. WT

d ).
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Precise values of σT(n, d) ≤ σT(n, d) are related to bracelet counting in combi-

natorics. To get a crude estimate, notice that the number of tracial words of degree

d is at least nd and at most nd · 2d. Thus

nd+1 − 1

n− 1
≤ σT(n, d) ≤ (2n)d+1 − 1

2n− 1
.

We introduce the notion of trace Hankel and (pure) trace localizing matrices,

which can be viewed as tracial analogs of the noncommutative localizing and Hankel

matrices (see e.g. [BKP16, Lemma 1.44]). Given s ∈ T, let us denote ds :=

ddeg s/2e. To s and a linear functional L : T2d → R, one associates the following

three matrices:

(a) the tracial Hankel matrix MT
d(L) is the symmetric matrix of size σT(n, d),

indexed by T-words u, v ∈ Td, with (MT
d(L))u,v = L(tr(u?v));

(b) if s ∈ T, then the pure trace localizing matrix MT
d−ds(sL) is the symmet-

ric matrix of size σT(n, d − ds), indexed by T-words u, v ∈ Td−ds , with

(MT
d−ds(sL))u,v = L(uvs);

(c) the trace localizing matrix MT
d−ds(sL) is the symmetric matrix of size

σT(n, d − ds), indexed by T-words u, v ∈ Td−ds , with (MT
d−ds(sL))u,v =

L(tr(u?sv)).

Definition 5.1. A matrix M indexed by T-words of degree ≤ d satisfies the tracial

Hankel condition if and only if

Mu,v = Mw,z whenever tr(u?v) = tr(w?z) .(5.1)

Remark 5.2. Linear functionals on T2d and matrices from SσT(n,d) satisfying the

tracial Hankel condition (5.1) are in bijective correspondence. To a linear func-

tional L : T2d → R, one can assign the matrix MT
d(L), defined by (MT

d(L))u,v =

L(tr(u?v)), satisfying the tracial Hankel condition, and vice versa.

One can relate the positivity of L and the positive semidefiniteness of its tracial

Hankel matrix MT
d(L). The proof of the following lemma is straightforward and

analogous to its free counterpart [BKP16, Lemma 1.44].

Lemma 5.3. Given a linear functional L : T2d → R, one has L(tr(f?f)) ≥ 0 for

all f ∈ Td, if and only if, MT
d(L) � 0. Given s ∈ T, one has L(a2s) ≥ 0 for all

a ∈ Td−ds , if and only if, MT
d−ds(sL) � 0. Given s ∈ T, one has L(tr(f? s f)) ≥ 0

for all f ∈ Td−ds , if and only if, MT
d−ds(sL) � 0.

5.1. SDP hierarchy for pure trace polynomial optimization. For a finite

S ⊆ T, N > 0 and d ∈ N define

(5.2) M(S(N))d :=

{
K∑
i=1

a2
i si | K ∈ N, ai ∈ T, si ∈ S(N), deg(a2

i si) ≤ 2d

}
.

Given b ∈ T and p ∈ R〈x〉, note that b2 tr(pp?) = tr((bp)(bp)?). Therefore, elements

of M(S(N))d correspond to sums of elements of the form

a2
1s , a2

2

(
Nk − tr(x2k

j )
)
, tr(ff?) ,(5.3)
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which are of degree at most 2d, for ai ∈ T, s ∈ S, 1 ≤ j ≤ n, k ∈ N, f ∈ T.

Given a pure trace polynomial a ∈ T, one can then use M(S(N))d for d =

1, 2, . . . to design a hierarchy of semidefinite relaxations for minimizing a ∈ T over

the von Neumann semialgebraic sets DvN
S[N ] or DII1

S[N ].

Let us define amin and aII1
min as follows:

amin := inf{a(A) | A ∈ DS[N ]} ,(5.4)

aII1
min := inf{a(A) | A ∈ DII1

S[N ]} = inf{a(A) | A ∈ DvN
S[N ]} .(5.5)

Here the equality in (5.5) holds by Proposition 2.2. Since DS[N ] is a subset of

DvN
S[N ], one has aII1

min ≤ amin. Let dmin := max{ds : s ∈ {a} ∪ S(N)}. Then, one can

under-approximate aII1
min via the following hierarchy of SDP programs, indexed by

d ≥ dmin:

amin,d = sup{m | a−m ∈M(S(N))d} .(5.6)

Lemma 5.4. The dual of (5.6) is the following SDP problem:

(5.7)

inf
L:T2d→R
L linear

L(a)

s.t. (MT
d(L))u,v = (MT

d(L))w,z , whenever tr(u?v) = tr(w?z) ,

(MT
d(L))1,1 = 1 ,

MT
d(L) � 0 ,

MT
d−ds(sL) � 0 , for all s ∈ S ,

MT
d−k((Nk − tr(x2k

j ))L) � 0 , for all j = 1, . . . , n , k ≤ d .

Proof. Let us denote by (M(S(N))d)
∨ the dual space of M(S(N))d. From (5.3),

one has

(M(S(N))d)
∨ = {L : T2d → R | L linear,

L(a2s) ≥ 0 ,∀s ∈ S , ∀a ∈ Td−ds ,

L(a2(Nk − tr(x2k
j )) ≥ 0 ,∀j = 1, . . . , n ,∀k ≤ d ,∀a ∈ Td−k ,

L(tr(ff?)) ≥ 0 ,∀f ∈ Td}

By using a standard Lagrange duality approach, we obtain the dual of SDP (5.6):

amin,d = sup
a−m∈M(S(N))d

m = sup
m

inf
L∈(M(S(N))d)∨

(m+ L(a−m))(5.8)

≤ inf
L∈(M(S(N))d)∨

sup
m

(m+ L(a−m))(5.9)

= inf
L∈(M(S(N))d)∨

(L(a) + sup
m
m(1− L(1)))(5.10)

= inf
L
{L(f) | L ∈ (M(S(N))d)

∨ , L(1) = 1} ,(5.11)

The second equality in (5.8) comes from the fact that the inner minimization prob-

lem gives minimal value 0 if and only if a−m ∈M(S(N))d. The inequality in (5.9)

trivially holds. The inner maximization problem in (5.10) is bounded with maxi-

mum value 0 if and only L(1) = 1. Eventually, (5.11) is equivalent to SDP (5.7) by

Remark 5.2 and Lemma 5.3. �
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Before proving that SDP (5.6) satisfies strong duality, we recall that an ε-

neighborhood of 0 is the set Nε defined for a given ε > 0 by:

Nε :=
⋃
k∈N

{
A := (A1, . . . , An) ∈ Snk : ε2 −

n∑
i=1

A2
i � 0

}
.

Lemma 5.5. If f ∈ T vanishes on an ε-neighborhood of 0, then f = 0.

Proof. We rely on the standard multilinearization trick and the fact that a trace

polynomial f ∈ Td cannot be a trace identity on (d + 1) × (d + 1) matrices, as

a consequence of [Pro76, Theorem 4.5 (b)]. Since f vanishes on all n-tuples of

(d+ 1)× (d+ 1) matrices A ∈ Nε, one has f = 0. �

Theorem 5.6. Let S[N ] be as in (3.3) and suppose that DS contains an ε-neighbor-

hood of 0. Then SDP (5.6) satisfies strong duality, i.e., there is no duality gap

between SDP (5.7) and SDP (5.6).

Proof. The strong duality statement is proved as in [CKP12, Proposition 4.4]. For

this, we construct a linear map L : T2d → R which is a strictly feasible solution

of SDP (5.7), namely L(1) = 1, L(a2s) > 0 for all s ∈ S and for all nonzero

a ∈ Td−ds , L(a2(Nk − tr(x2k
j )) > 0 for all j, k ≤ d and for all nonzero a ∈ Td−k,

and L(tr(ff?)) > 0 for all nonzero f ∈ Td. Let us pick m > d and consider the set

U of m×m matrices from DS[N ] with rational entries, written as

U = {A(k) | k ∈ N, A(k) ∈ DmS[N ]} .

Note that U contains a dense subset of m×m matrices in Nε. Let us define

L :=

∞∑
k=1

2−k
LA(k)

‖LA(k)‖
,

with

LA : T2d → R , f 7→ tr f(A) ,

for allA ∈ U . This functional L is obviously linear and unital. One has L(tr(ff?)) ≥
0 for all f ∈ Td. Now let us assume that L(tr(ff?)) = 0 for some f ∈ Td. This im-

plies that for all k ∈ N one has tr(f(A(k))f?(A(k))) = 0, thus f(A(k))f?(A(k)) = 0,

which in turn implies that f(A(k)) = 0. By density of U in Nε ∩ Snm, f(A) = 0 for

all A ∈ Nε ∩ Snm. As m was arbitrary, f vanishes on Nε. By Lemma 5.5, one has

f = 0. The two other positivity conditions are proved in a similar fashion. �

Corollary 5.7. The hierarchy of SDP programs (5.6) provides a sequence of lower

bounds (amin,d)d≥dmin
monotonically converging to aII1

min.

Proof. As M(S(N))d ⊆ M(S(N))d+1, one has amin,d ≤ amin,d+1. Furthermore,

Theorem 3.5 implies that for each each m ∈ N, there exists d(m) ∈ N such that

a− aII1
min + 1

m ∈M(S(N))d(m). Thus one has

aII1
min −

1

m
≤ amin,d(m) ,

which implies that

lim
d→∞

amin,d = aII1
min . �
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5.2. Finite-dimensional GNS representations and minimizer extraction.

The goal of this section is to derive an algorithm to extract minimizers of pure

trace polynomial optimization problems. The forthcoming statements can be seen

as “pure trace” variants of the results derived in the context of commutative poly-

nomials [CF98], eigenvalue optimization of noncommutative polynomials [McC01,

Lemma 2.2] (see also [PNA10], [AL12, Chapter 21] and [BKP16, Theorem 1.69]),

and trace optimization of noncommutative polynomials [BCKP13].

Definition 5.8. Suppose L : T2d+2δ → R is a tracial linear functional with restric-

tion L̃ : T2d → R. We associate to L and L̃ the Hankel matrices MT
d+δ(L) and

MT
d(L̃) respectively, and get the block form

MT
d+δ(L) =

[
MT

d(L̃) B

BT C

]
.

We say that L is δ-flat or that L is a δ-flat extension of L̃, if MT
d+δ(L) is flat over

MT
d(L̃), i.e., if rank MT

d+δ(L) = rank MT
d(L̃).

Suppose L is δ-flat and let r := rank MT
d(L) = MT

d+δ(L). Since MT
d+δ(L) � 0,

we obtain the Gram matrix decomposition MT
d+δ(L) = [〈u,w〉]u,w with vectors

u,w ∈ Rr, where the labels u, v are T-words of degree at most d + δ. Then, we

define the following finite-dimensional Hilbert space

H := span {w | degw ≤ d+ δ} = span {w | degw ≤ d},

where the equality is a consequence of the flatness assumption. Afterwards, one can

follow the steps performed in Appendix A (see (A.4)) and consider, for each p ∈ T,

the multiplication operator χ̂p on H and the ?-representation π : T→ B(H) defined

by π(p) = χ̂p. Let v be the vector representing 1 in H; then L(p) = 〈π(p)v,v〉
for all p ∈ T. In general, elements of π(T) are central in π(T); if they are actually

scalar multiples of the identity on H, then π is not just a ?-representation, but it

respects trace in the sense that π(f) = f(π(x1), . . . , π(xn)) for every f ∈ T. This

fact applies to our SDP hierarchy as follows.

Proposition 5.9. Given S ∪ {a} ⊆ T2d, let S[N ] be as in (3.3). Set δ :=

max{ddeg s/2e : s ∈ S[N ]}. Assume that L is a δ-flat optimal solution of SDP (5.7),

and assume that π(T) = R, where π : T→ B(H) is the ?-representation constructed

above. Then, one has

(5.12) amin,d+δ = L(a) = aII1
min .

Moreover, there are finitely many n-tuples A(j) of symmetric matrices, and positive

scalars λj with
∑
j λj = 1, such that aII1

min = a(
⊕

j A
(j)), where the tracial state is

given by

w

⊕
j

A(j)

 7→∑
j

λj tr(w(A(j)))

for w ∈ 〈x〉.
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Proof. For i = 1, . . . , n let Ai = χ̂xi be the left multiplication by xi on H, i.e., for

each T-word w ∈ Td, Aiw is the vector from H corresponding to the label xiw. The

operators Ai are well-defined (thanks to the flatness assumption) and symmetric.

After choosing an orthonormal basis of H we can view Ai as r × r symmetric

matrices. Let A := (A1, . . . , An), and let A ⊆ Mr be the algebra generated by

A1, . . . , An. Since π(T) = R, the map τ : A → R given by q(A) 7→ π(tr q) = L(q)

for q ∈ R〈x〉 is a well-defined faithful tracial state on A. For each s ∈ S, one

has s(A) = 〈π(s)v,v〉 = L(s) ≥ 0, where the last inequality follows from the fact

that MT
d−ds(sL) � 0 as L is a feasible solution of SDP (5.7). Similarly, one has

Nk − τ(A2k
j ) ≥ 0, for all j = 1, . . . , n , k ≤ d. Therefore, A ∈ DvN

S[N ].

Eventually, amin,d+δ = L(a) ≤ aII1
min, where the first equality is the strong duality

statement from Theorem 5.6. In addition, one has aII1
min ≤ a(A) = L(a), yielding

the desired result (5.12).

We get a tracial representation of the optimizer for aII1
min by performing the

Artin-Wedderburn block diagonalization on the algebra A. This step relies on the

Wedderburn theorem [Lam13, Chapter 1]. By [BKP16, Proposition 1.68], there

are finitely many tuples of symmetric matrices A(j) and positive scalars λj with∑
j λj = 1 such that

τ(q(A)) =
∑
j

λj tr(q(A(j)))

for all q ∈ R〈x〉. �

Remark 5.10. The condition π(T) = R in Proposition 5.9 in particular holds if L

is an extreme optimal solution of (5.7) (cf. the last part of the proof in Appendix A).

In practice modern SDP solvers rely on interior-point methods using the so-called

“self-dual embedding” technique [WSV12, Chapter 5]. Therefore, they will always

converge towards an optimum solution of maximum rank, yielding an extreme linear

functional; see [LLR08, §4.4.1] for more details.

Remark 5.11. Proposition 5.9 guarantees that in the presence of a flat extension,

there is an optimizer for aII1
min arising from a finite-dimensional tracial pair (F , τ);

furthermore, the dimensions of A(j) and the scalars λj explicitly determine F and

τ , respectively. It is sensible to ask whether amin = aII1
min, that is, whether the

optimum can be approximated arbitrarily well with a finite-dimensional factor, i.e.,

from DS[N ]. If there exist sequences of positive rational numbers (λ
(m)
j )m such

that
∑
j λ

(m)
j = 1 for all m ∈ N, limm λ

(m)
j = λj for all j, and

⊕
j A

(j) ∈ DvN
S[N ]

whenever the tracial state is given by

(5.13) w

⊕
j

A(j)

 7→∑
j

λ
(n)
j tr(w(A(j))) for w ∈ 〈x〉,

then amin = aII1
min. Indeed, a finite-dimensional tracial pair with the rational-

coefficient tracial state as in (5.13) embeds into a finite-dimensional factor. How-

ever, in general amin 6= aII1
min even if DS contains an ε-neighborhood of 0 and aII1

min

admits a finite-dimensional optimizer; see the following example.
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Example 5.12. Fix n = 1, i.e., T = R[tr(xi1) | i ∈ N]. For k ∈ N let

sk := 1 + (
√

2 + 1)2 −
(

tr
(
(x2

1 − 2x1)2
)

+
(√

2− tr(x1)
)2
)

tr(x2k
1 ) ∈ T.

Let X be a symmetric matrix. Then X2 6= 2X or tr(X) 6=
√

2. Furthermore, if X

is a contraction, then

0 � 2X −X2 � I, |
√

2− tr(X)| ≤
√

2 + 1, tr(X2k) ≤ 1 for all k ∈ N.

On the other hand, if X is not a contraction, then there is k ∈ N such that

tr(X2k) >
1 + (

√
2 + 1)2

tr ((X2 − 2X)2) +
(√

2− tr(X)
)2 .

Let S = {sk | k ∈ N} and a = − tr(x1). Then DS = D1−x2
1

by the above obser-

vations, and consequently amin = −1. On the other hand, consider the tracial pair

(R2, τ) with τ(ξ1, ξ2) = 1√
2
ξ1 +(1− 1√

2
)ξ2. Then Y = (2, 0) ∈ R2 satisfies Y 2 = 2Y

and τ(Y ) =
√

2, so Y ∈ DvN
S . Therefore aII1

min < a(Y ) = −
√

2.

The proof of Proposition 5.9 gives the following procedure for minimizer extrac-

tion.

Algorithm 5.13. PureTraceGNS

Input: an extreme δ-flat linear L : T2d+2δ → R solution of (5.7).

1: Let us consider the set of T-words {wi} of degree at most 6 d, such that C , the

matrix consisting of columns of M(L) indexed by the words w1, . . . , wr, has full

rank. Assume w1 = 1.

2: Let M(L̂) be the principal submatrix of M(L) of columns and rows indexed by

w1, . . . , wr.

3: Let C be the Cholesky factor of M(L̂), i.e., CTC = M(L̂).

4: for i ∈ {1, . . . , n} do
5: Let Ci be the matrix consisting of columns of M(L) indexed by xiw1, . . . , xiwr.

6: Compute Āi as a solution of the system C Āi = Ci.

7: Let Ai = CĀiC
−1.

8: end for

9: Compute v = Ce1. . e1 = (1, 0, . . . , 0)

10: Let A ⊆ Mr be the algebra generated by A1, . . . , An. Compute an orthogonal

matrix Q performing the simultaneous block-diagonalization of A1, . . . , An by

[MKKK10, Algorithm 4.1]. . QTAQ = {Diag(B(1), . . . , B(k)) | B(i) ∈ Ai}
where A1, . . . ,Ak are simple ?-algebras over R

11: Compute QTAiQ = Diag(A
(1)
i , . . . , A

(k)
i ) for each i = 1, . . . , n, and QTv =

((v1)T , . . . , (vk)T )T .

12: Compute λj = ‖vj‖, and A(j) = (A
(j)
1 , . . . , A

(j)
n ), for all j = 1, . . . , k.

Output: (A(1), . . . , A(k)) and (λ1, . . . , λk).

The correctness of the procedure PureTraceGNS follows from the proof of Propo-

sition 5.9.

Corollary 5.14. The procedure PureTraceGNS described in Algorithm 5.13 is sound

and returns the n-tuples A(j) and λj from Proposition 5.9.
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Remark 5.15. Note that when flatness occurs, Proposition 5.9 guarantees conver-

gence (actually stabilization) of our SDP hierarchy even if there is no ε-neighborhood

of 0 in the feasible set. Moreover, while a flat extension is evasive from a numerical

point of view, an “almost” flat extension, which is a much more viable output of an

SDP solver, is likely sufficient [KPV18].

5.3. SDP hierarchy for trace polynomial optimization. Here we describe the

reduction from the general trace setting to the pure trace setting.

Let S ⊆ SymT and N > 0. Denote

S̃ = {tr(fsf?) | s ∈ S, f ∈ T} ⊆ T.(5.14)

Proposition 5.16. Let S ⊆ SymT, N > 0, and let S̃ be as in (5.14). Then

DF,τ
S̃[N ]

= DF,τS[N ] for any tracial pair (F , τ). Furthermore, the following are equivalent

for a ∈ T:

(i) a(X) ≥ 0 for all X ∈ DvN
S[N ];

(ii) a(X) ≥ 0 for all X ∈ DII1
S[N ];

(iii) a+ ε ∈M(S̃(N)) for all ε > 0.

Proof. The equality DF,τ
S̃[N ]

= DF,τS[N ] follows from Proposition 4.3. Consequently,

(i)⇔(ii)⇔(iii) holds by Theorem 3.5. �

For all d ∈ N, one has

M(S̃(N))d =

{
K∑
i=1

a2
i si | K ∈ N, ai ∈ T, si ∈ S̃(N), deg(a2

i si) ≤ 2d

}
.

Therefore, elements of M(S̃(N))d corresponds to sums of elements of the form

tr(f1 s f
?
1 ) , a2

(
Nk − tr(x2k

j )
)
, tr(f2f

?
2 ) ,(5.15)

which are of degree at most 2d, for fi ∈ T, a ∈ T, s ∈ S, 1 ≤ j ≤ n, k ∈ N.

As in Section 5.1, given a ∈ T, one can under-approximate aII1
min via the following

hierarchy of SDP programs, indexed by d ≥ dmin:

ãmin,d = sup{m | a−m ∈M(S̃(N))d} .(5.16)

The dual of (5.16) is obtained by replacing the pure trace localizing matrix con-

straints in SDP (5.7) by trace localizing matrix constraints associated to each s ∈ S:

(5.17)

inf
L:T2d→R
L linear

L(a)

s.t. (MT
d(L))u,v = (MT

d(L))w,z , whenever tr(u?v) = tr(w?z) ,

(MT
d(L))1,1 = 1 ,

MT
d(L) � 0 ,

MT
d−ds(sL) � 0 , for all s ∈ S ,

MT
d−k((Nk − tr(x2k

j ))L) � 0 , for all j = 1, . . . , n , k ≤ d .
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As in Theorem 5.6, one can prove that if DS contains an ε-neighborhood of 0, then

there is no duality gap between SDP (5.17) and SDP (5.16). In addition, the hier-

archy of SDP programs (5.16) provides a sequence of lower bounds monotonically

converging to aII1
min.

Remark 5.17. There are several variations of (5.17) that lead to aII1
min. For ex-

ample, one can replace the d matrix inequalities MT
d−k((Nk − tr(x2k

j ))L) � 0 (for

a fixed j) with a single matrix inequality MT
d−1((N − x2

j )L) � 0 since

Nk − tr(x2k
j ) = tr

(
k−1∑
i=1

(
√
N
k−1−i

xij)(N − x2
j )(
√
N
k−1−i

xij)

)
.

While this modification produces a somewhat simpler-looking SDP, note that the

new matrix constraint has size σT(n, d− 1), while the combined size of the replaced

constraints equals
∑d
k=1 σ

T(n, k), which is less than σT(n, d− 1).

In practice, when given a concrete set of constraints S, one should attempt to

simplify (5.17) before solving it, since its most general form can contain superfluous

inequalities with respect to S.

Finally, the next result provides an alternative characterization of (not neces-

sarily pure) trace polynomials positive on tracial semialgebraic sets (cf. Corollary

4.8).

Proposition 5.18. Let S ⊆ SymT, N > 0, and let S̃ be as in (5.14). For a ∈
SymT, the following are equivalent:

(i) a(X) � 0 for all X ∈ DvN
S[N ];

(ii) a(X) � 0 for all X ∈ DII1
S[N ];

(iii) for every ε > 0, there exist sums of (two) squares s1, s2 ∈ R[t] such that

(5.18) a = s1(a)− s2(a), ε− tr(s2(a)) ∈M(S̃(N));

(iv) for every ε > 0, there exist sums of (two) squares s1, s2 ∈ R[t] and q ∈
M(S̃(N)) such that

(5.19) tr(ay) + ε = tr(s1(a)y + s2(a)(1− y)) + q

where y is an auxiliary symmetric free variable.

Proof. (i)⇔(ii) holds by Proposition 2.2, and (iii)⇒(iv) follows by taking q = ε −
tr(s2(a)) ∈M(S̃(N)). Furthermore, (iv)⇒(i) holds by Propositions 4.3 and 5.16.

(i)⇒(iii) There is N ′ > 0, dependent on N and a, such that N ′ − a � 0 on

DvN
S[N ]. After rescaling a we can without loss of generality assume that 1−a � 0 on

DvN
S[N ]. Suppose that (i) holds. Given an arbitrary ε > 0 let s1, s2 ∈ R[t] be sums

of squares as in Lemma 4.7. Then there are sums of squares s3, s4, s5 ∈ R[t] such

that

s1 − s2 = t, ε
2 − s2 = s3 + s4t+ s5(1− t).

By Propositions 4.3 and 5.16 we have

tr(s3(a) + s4(a)a+ s5(a)(1− a)) + ε
2 ∈M(S̃(N)).
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Therefore

a = s1(a)− s2(a), ε− tr(s2(a)) ∈M(S̃(N)). �

Note that Proposition 5.18 allows one to certify that a given trace polynomial is

positive semidefinite on a tracial semialgebraic set. Constructing a hierarchy of SDP

programs converging to the minimal eigenvalue of trace polynomials is postponed

for future work. As Example 4.6 indicates, it cannot be simply derived from our

scheme for the pure trace polynomial objective function; namely, the norm of an

operator cannot be uniformly estimated with traces in a dimension-free way.

6. Examples and applications

In this section we present some experimental results indicating the strength and

computational aspects of the SDP hierarchy in Section 5. First we give a toy

example of optimizing a pure trace polynomial over all projections in tracial von

Neumann algebras (Section 6.1). Next we describe how our algorithms can be used

for finding upper bounds on quantum violations of polynomial Bell inequalities

in quantum information theory (Section 6.2). While the SDPs were solved using

SeDuMi in Matlab, the sparse input matrices were constructed with Mathematica.

6.1. A toy example. Consider the optimization problem

(6.1)
inf τ(X1X2X3) + τ(X1X2)τ(X3)

s.t. X2
j = X∗j = Xj for j = 1, 2, 3.

over triples (X1, X2, X3) of operators in tracial pairs (F , τ). Note that if F is a

commutative von Neumann algebra with a tracial state τ and X1, X2, X3 ∈ F are

projections, then τ(X1X2X3), τ(X1X2), τ(X3) ≥ 0. Hence if (6.1) were restricted

only to commutative von Neumann algebras, the solution would be 0. On the other

hand, the projections

X1 =

(
1 0

0 0

)
, X2 =

(
1
16

√
15

16√
15

16
15
16

)
, X3 =

(
3
8 −

√
15
8

−
√

15
8

5
8

)
give

tr(X1X2X3) + tr(X1X2) tr(X3) = − 1

32
.

We next show that − 1
32 is actually the solution of (6.1).

Let n = 3, a = tr(x1x2x3)+tr(x1x2) tr(x3) and S = {x2
j−xj , xj−x2

j : j = 1, 2, 3}.
By Section 5.3, the solution of (6.1) equals limn→∞ ǎmin,d, where ǎmin,d is the

solution of (5.7) for d ≥ 2. In this particular example, the constraints can be

used to vastly simplify (5.7). Namely, it suffices to consider only tracial words

without consecutive repetitions of xj ; furthermore, the last two lines in (5.7) are

then superfluous. To state this concretely, let us introduce some auxiliary notation.

A T-word is square–reduced if no proper powers of x1, x2, x3 appear in it. To each

T-word w we can assign the square–reduced T-word r(w) by repeatedly replacing

x2
j with xj . Let Wr

d be the vector of all square–reduced T-words of tracial degree

at most d, and let Rd be the span of entries of Wr
d. Given a linear functional
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L : R2d → R, the square–reduced tracial Hankel matrix Mr
d(L) is indexed by Wr

d

and (Mr
d(L))u,v = L(tr(r(u?v))). Then ǎmin,d is the solution of the SDP

(6.2)

inf
L:R2d→R
L linear

L(a)

s.t. (Mr
d(L))u,v = (Mr

d(L))w,z , whenever tr(u?v) = tr(w?z) ,

(Mr
d(L))1,1 = 1 ,

Mr
d(L) � 0.

We start with d = 2. The matrix Mr
2(L) is indexed by reduced tracial words

1, x1, x2, x3, tr(x1), tr(x2), tr(x3),

x1x2, x2x1, x1x3, x3x1, x2x3, x3x2, tr(x1x2), tr(x1x3), tr(x2x3),

tr(x1)x1, tr(x1)x2, tr(x1)x3, tr(x2)x1, tr(x2)x2, tr(x2)x3, tr(x3)x1, tr(x3)x2, tr(x3)x3,

tr(x1)2, tr(x2)2, tr(x3)2, tr(x1) tr(x2), tr(x1) tr(x3), tr(x2) tr(x3).

The SDP (6.2) minimizes over 31×31 positive semidefinite matrices subject to 881

linear equations in their entries. By solving it we get ǎmin,2 = −0.0467.

In the next step we have d = 3, and Mr
3(L) is a 108 × 108 matrix with 11270

linear relations. Now the solution of (6.2) is ǎmin,3 = −0.0312, which up to floating

point precision agrees with − 1
32 . Since ǎmin,3 is a lower bound for the solution of

(6.1) and is attained by the 2 × 2 projections above, we conclude that − 1
32 is the

solution of (6.1).

Similar optimization problem can be used for detecting quantum entanglement

[HHH01, BCS20]. Namely, trace polynomials are in correspondence with invari-

ant operators [Hub21], and pure trace polynomials, positive subject to certain

constraints, then relate to invariant operators positive on separable Werner states

[Wer89, EW01]. Pure trace polynomial optimization can be thus used to efficiently

produce entanglement witnesses for Werner states, which is a work in preparation.

6.2. Polynomial Bell inequalities. In this section we connect trace polynomial

optimization to violations of nonlinear Bell inequalities, outline a few examples and

prove the optimal bound on maximal violation of the covariance Bell inequality

considered in [PHBB17], see Example 6.2.2 below.

As a prelude, the classical Bell inequality states that

(6.3) ψ∗(A1 ⊗B1 +A1 ⊗B2 +A2 ⊗B1 −A2 ⊗B2)ψ

is at most 2 for all separable states ψ ∈ Ck ⊗ Ck and Aj , Bj ∈ Mk satisfying

A∗j = Aj , A
2
j = I, B∗j = Bj , B

2
j = I. Tsirelson’s bound implies that (6.3) is at

most 2
√

2 when arbitrary states are allowed. Moreover, the maximal value 2
√

2

is attained when k = 2 and ψ = 1√
2
(e1 ⊗ e1 + e2 ⊗ e2). In general, if ψk is the

generalized Bell state,

ψk =
1√
k

k∑
j=1

ej ⊗ ej ∈ Rk ⊗ Rk,
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which is a maximally entangled bipartite state on Ck ⊗ Ck, unique up to bipartite

unitary equivalence, then

(6.4) ψ∗k(X ⊗ Y )ψk = tr(XY )

for all X,Y ∈ Sk. Therefore Tsirelson’s bound for (6.3) on maximally entangled

states can be recovered as a pure trace polynomial optimization problem

sup tr(x1y1) + tr(x1y2) + tr(x2y1)− tr(x2y2) s.t. x2
j = 1, y2

j = 1.

Note that for finding the maximal violation for arbitrary k ∈ N, there is no loss

of generality if only symmetric matrices are considered instead of hermitian ones,

since

ψ∗k(Z ⊗W )ψk = tr(ZW ) = tr

((
Z+Z

2
Z−Z

2i
Z−Z

2i
Z+Z

2

)(
W+W

2
W−W

2i
W−W

2i
W+W

2

))
for all hermitian k × k matrices Z,W .

Upper bounds on quantum violations of linear Bell inequalities can be found

using the NPA hierarchy [NPA08] for eigenvalue optimization of noncommutative

polynomials; for example, one can get Tsirelson’s bound on violations of (6.3)

by eigenvalue-optimizing a1b1 + a1b2 + a2b1 − a2b2 subject to a2
j = b2j = 1 and

[ai, bj ] = 0.

On the other hand, bilocal models [BRGP12, Cha16], covariance of quantum

correlations [PHBB17] and detection of partial separability [Uff02] lead to more

general polynomial Bell inequalities. While linear Bell inequalities are linear in

expectation values of (products of) observables, polynomial Bell inequalities contain

multivariate polynomials in expectation values of (products of) observables. For

this reason, noncommutative polynomial optimization is not suitable for studying

violations of nonlinear Bell inequalities. In contrast, trace polynomial optimization

gives upper bounds on violations of polynomial Bell inequalities, at least for certain

families of states, e.g. the maximally entangled bipartite states via (6.4). We

demonstrate this with the following examples.

6.2.1. Example. Consider a simple quadratic Bell inequality

(6.5)
(
ψ∗(A1 ⊗B2 +A2 ⊗B1)ψ

)2
+
(
ψ∗(A2 ⊗B1 −A2 ⊗B2)ψ

)2 ≤ 4

given in [Uff02], where it is shown that (6.5) holds for all separable states ψ, and for

all 2-dimensional states (i.e. all states when k = 2). In [NKI02], (6.5) is shown to

hold for arbitrary states, meaning it admits no quantum violations. An alternative

automatized proof of (6.5) for maximally entangled states of arbitrary dimension

can be obtained by solving the optimization problem

(6.6) sup (tr(x1y2 + x2y1))
2
+(tr(x1y1 − x2y2))

2
s.t. x2

j = 1, y2
j = 1 for j = 1, 2

Let S = {±(1− x2
j ),±(1− y2

j ) : j = 1, 2}. The relaxation of (6.6) with d = 2 as in

Section 5.3,

(6.7) inf µ s.t. µ− (tr(x1y2 + x2y1))
2 − (tr(x1y1 − x2y2))

2 ∈M(S(1))d
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outputs 4, which coincides with the classical value in (6.5). The concrete implemen-

tation of (6.7) encodes the relations x2
j = y2

j = 1 directly in the SDP using reduced

words analogously as in the toy Example 6.1 (where projections were considered).

6.2.2. Example. Another class of polynomial Bell inequalities arises from covari-

ances of quantum correlations. Let

covψ(X,Y ) = ψ∗(X ⊗ Y )ψ − ψ∗(X ⊗ I)ψ · ψ∗(I ⊗ Y )ψ

In [PHBB17] it is shown that while

covψ(A1, B1) + covψ(A1, B2) + covψ(A1, B3)

+ covψ(A2, B1) + covψ(A2, B2)− covψ(A2, B3)

+ covψ(A3, B1)− covψ(A3, B2)

(6.8)

is at most 9
2 for separable states ψ, it attains the value 5 with the Bell state ψ2.

The authors also performed extensive numerical search within entangled states for

local dimensions k ≤ 5, but no higher value of (6.8) was found. They leave it as

an open question whether higher dimensional entangled states could lead to larger

violations [PHBB17, Appendix D.1(b)].

Let

a = tr(x1y1)− tr(x1) tr(y1) + tr(x1y2)− tr(x1) tr(y2) + tr(x1y3)− tr(x1) tr(y3)

+ tr(x2y1)− tr(x2) tr(y1) + tr(x2y2)− tr(x2) tr(y2)− tr(x2y3) + tr(x2) tr(y3)

+ tr(x3y1)− tr(x3) tr(y1)− tr(x3y2) + tr(x3) tr(y2) .

The relaxation of

(6.9) sup a s.t. x2
j = 1, y2

j = 1 for j = 1, 2, 3

with d = 2 returns 5. Therefore the value of (6.8) is at most 5 for every maximally

entangled state, regardless of the local dimension k.

6.2.3. Example. A family of eight quadratic Bell inequalities (arising from linear

ones via elimination) corresponding to a bilocal model for three parties A,B,C is

given in [Cha16]:

(6.10) − 1

8
(J1 ± J2)2 − (±J1 ± J2 + 2) ≤ 0 ,

where

J1 =

2∑
i,j=1

ψ′
∗
(Ai ⊗B′1)ψ′ · ψ′′∗(B′′1 ⊗ Cj)ψ′′ ,

J2 =

2∑
i,j=1

(−1)i+jψ′
∗
(Ai ⊗B′2)ψ′ · ψ′′∗(B′′2 ⊗ Cj)ψ′′ ,

and Ai, B
′
j , B

′′
j , Cj are projections. Inequalities (6.10) are valid for every pair of

separable states ψ′, ψ′′, and are equivalent to
√
|J1| +

√
|J2| ≤ 1 as derived in

[BRGP12]. An upper bound on violations of (6.10) for maximally entangled shared

states ψ′, ψ′′ is given by

(6.11) sup a s.t. x2
j = xj , y

′2
j = y′j , y

′′2
j = y′′j , z

2
j = zj for j = 1, 2
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where

a =− 1

8

∑
i,j

tr(xiy
′
1) tr(y′′1 zj)±

∑
i,j

(−1)i+j tr(xiy
′
2) tr(y′′2 zj)

2

±
∑
i,j

tr(xiy
′
1) tr(y′′1 zj)±

∑
i,j

(−1)i+j tr(xiy
′
2) tr(y′′2 zj)− 2 .

While (6.11) fits in the trace polynomial optimization scheme presented in this

paper, SDPs arising from (6.11) are very large because a is a pure trace polynomial

of degree 8 in 8 variables. For computing upper bounds on (6.11) to become viable,

the sizes of SDPs will need to be reduced using sparsity and symmetry techniques,

which we plan to develop later.

7. Conclusion and perspectives

We have derived several novel Positivstellensätze for trace polynomials positive

on tracial semialgebraic sets. Our tracial analog of Putinar’s Positivstellensatz

yields a converging hierarchy of semidefinite relaxations for optimizing pure trace

polynomials under pure trace polynomial inequality constraints. We also provide

an algorithm to extract minimizers of such problems, thanks to a finite-dimensional

Gelfand-Naimark-Segal construction.

A topic of future research is to derive a hierarchy of primal-dual SDP programs

converging to the minimal eigenvalue of a trace polynomial under trace polynomial

inequality constraints. A short-term research investigation track is to rely on this

hierarchy to tackle trace polynomial problems arising from quantum information

theory. Sharing the same computational drawbacks as the classical Lasserre’s hi-

erarchy, our tracial framework will be limited to optimization problems involving

a modest number of variables. To overcome this scalability issue, we intend to

focus on exploiting structural properties of the input data. One possibility is to ex-

tend the framework from [KMP19] to optimization problems involving sparse trace

polynomials or the one from [RTAL13] to problems involving symmetries.

Acknowledgments. The authors thank anonymous referees for their valuable

comments and suggestions, which greatly improved presentation of the paper and

demonstration of the main results.

A. Alternative proof of Theorem 4.4

Proof of (i)⇒(iii). Assume a + ε /∈ Mcyc for some ε > 0. Let U = {p ∈ SymT |
tr(p) = 0}. Then Mcyc + U is a convex cone in SymT. Since a is a pure trace

polynomial, we have a + ε /∈ Mcyc + U . Since Mcyc is archimedean, for every

p ∈ SymT there exists δ > 0 such that 1 ± δp ∈ Mcyc, which in terms of [Bar02,

Definition III.1.6] means that 1 is an algebraic interior point of the coneMcyc +U

in SymT. By the Eidelheit-Kakutani separation theorem [Bar02, Corollary III.1.7]

there is a nonzero R-linear functional L0 : SymT→ R satisfying L0(Mcyc + U) ⊆
R≥0 and L0(a+ ε) ≤ 0. In particular, L0(U) = {0}. Moreover, L0(1) > 0 because
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Mcyc is archimedean, so after rescaling we can assume L0(1) = 1. Let L : T → R
be the symmetric extension of L0, i.e., L(p) = 1

2L0(p+ p?) for p ∈ T. Note that

(A.1) L(p) = L(tr(p))

for all p ∈ T, and in particular L(pq) = L(qp) for all p, q ∈ T.

Now consider the set C of all symmetric linear functionals L′ : T→ R satisfying

L′(Mcyc + U) ⊆ R≥0 and L′(1) = 1. This set is nonempty because L ∈ C. Endow

T with the norm

‖p‖ = max
{
‖p(X)‖ | n ∈ N, X ∈ Skn, ‖Xj‖ ≤ 1

}
.

This is indeed a norm because no nonzero trace polynomial vanishes on matrices of

all finite sizes. By the Banach-Alaoglu theorem [Bar02, Theorem III.2.9], the convex

set C is weak*-compact. Thus by the Krein-Milman theorem [Bar02, Theorem

III.4.1] we may assume that our separating functional L is an extreme point of C.
On T we define a semi-scalar product 〈p, q〉 = L(pq?). By the Cauchy-Schwarz

inequality for semi-scalar products,

N = {q ∈ T | L(qq?) = 0}

is a linear subspace of T. Let p, q ∈ T. Since Mcyc is archimedean, there exists

δ > 0 such that 1− δpp? ∈Mcyc and therefore

(A.2) 0 ≤ L(q(1− δpp?)q?) = L(qq?)− δL(qpp?q?) ≤ L(qq?).

In particular, q ∈ N implies qp ∈ N , so N is a left ideal. Furthermore, L(N ) = {0}:
if L(qq?) = 0, then for every δ > 0,

0 ≤ L((δ ± q)(δ ± q)?) = δ(δ ± 2L(q))

and hence L(q) = 0. Let p = p + N denote the residue class of p ∈ T in T/N .

Because N is a left ideal, we can define linear maps

χp : T/N → T/N , q 7→ pq

for p ∈ T, which are bounded by (A.2).

Now

(A.3) 〈p, q〉 = L(pq?)

is a scalar product on T/N , and we let H denote the completion of T/N with

respect to this scalar product. Each χp extends to a bounded operator χ̂p on H,

and the map

(A.4) π : T→ B(H), p 7→ χ̂p

is clearly a ?-representation with kerπ = N . Let F be the closure of π(T) in B(H)

with respect to the weak operator topology. The map

τ : π(T)→ R, χ̂p 7→ L(p)

is a faithful tracial state on π(T) by L(N ) = {0} and (A.1). Since

τ(χ̂p) = 〈p, 1〉,

τ extends uniquely to a faithful normal tracial state on F .
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Next we claim that π(T) = R. Observe that 1 ∈ H is a cyclic vector for π

by construction and L(p) = 〈π(p)1, 1〉. Suppose π(T) 6= R. If E denotes the weak

closure of π(T) in F , then E is a central von Neumann subalgebra of F ; since E 6= R
and all the elements of E are self-adjoint, there is a nontrivial projection P ∈ E .

Since 1 is cyclic for π, we have P1 6= 0 and (1 − P )1 6= 0. Hence we can define

linear functionals Li on T by

L1(p) =
〈π(p)P1, P1〉
‖P1‖2

and L2(p) =
〈π(p)(1− P )1, (1− P )1〉

‖(1− P )1‖2

for all p ∈ T. One easily checks that L is a convex combination of L1 and L2,

Li(1) = 1 and Li(Mcyc) = R≥0. Furthermore, since P is a weak limit of {π(sn)}n
for some sn ∈ T and

〈π(p− tr(p))π(sn)1, 1〉 = L(sn(p− tr(p))) = L(snp− tr(snp))) = 0,

we also have

〈π(p− tr(p))P1, P1〉 = 〈π(p− tr(p))P1, 1〉 = 0

so Li(U) = {0}. Therefore Li ∈ C, so L = L1 = L2 by the extreme property of L.

Then for λ = ‖P1‖2,

〈π(p)1, λ1〉 = λ〈π(p)1, 1〉 = 〈π(p)P1, P1〉 = 〈Pπ(p)1, P1〉 = 〈π(p)1, P1〉

for all p ∈ T. Therefore P1 = λ1 since 1 is a cyclic vector for π. So λ ∈ {0, 1} since

P is a projection, a contradiction.

Let X := (χ̂x1
, . . . , χ̂xn). This is a tuple of self-adjoint operators in F , and

π(T) = R implies p(X) = χ̂p for all p ∈ T. Therefore X ∈ DF,τMcyc by (A.3) and

L(Mcyc) ⊆ R≥0. Finally a(X) = τ(χ̂a) = L(a) < 0. �
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[CF98] Raúl E. Curto and Lawrence A. Fialkow. Flat extensions of positive moment matrices:

recursively generated relations. Mem. Amer. Math. Soc., 136(648):x+56, 1998. 17

[Cha16] Rafael Chaves. Polynomial Bell inequalities. Phys. Rev. Lett., 116(1):010402, 6, 2016.

24, 25

[CHSH69] John F. Clauser, Michael A. Horne, Abner Shimony, and Richard A. Holt. Proposed

experiment to test local hidden-variable theories. Phys. rev. lett., 23(15):880, 1969.

2

[CKP11] Kristijan Cafuta, Igor Klep, and Janez Povh. NCSOStools: a computer algebra sys-

tem for symbolic and numerical computation with noncommutative polynomials.

Optim. Methods Softw., 26(3):363–380, 2011. 2

[CKP12] Kristijan Cafuta, Igor Klep, and Janez Povh. Constrained polynomial optimization

problems with noncommuting variables. SIAM J. Optim., 22(2):363–383, 2012. 2, 16

[DLTW08] Andrew C. Doherty, Yeong-Cherng Liang, Ben Toner, and Stephanie Wehner. The

quantum moment problem and bounds on entangled multi-prover games. In 2008

23rd Annual IEEE Conference on Computational Complexity, pages 199–210. IEEE,

2008. 2

[dOHMP09] Mauricio C. de Oliveira, J. William Helton, Scott A. McCullough, and Mihai Putinar.

Engineering systems and free semi-algebraic geometry. In Emerging applications of

algebraic geometry, volume 149 of IMA Vol. Math. Appl., pages 17–61. Springer,

New York, 2009. 1

[Dyk94] Kenneth J. Dykema. Factoriality and Connes’ invariant T (M) for free products of

von Neumann algebras. J. Reine Angew. Math., 450:159–180, 1994. 7

[EW01] Tilo Eggeling and Reinhard F. Werner. Separability properties of tripartite states

with U ⊗ U ⊗ U symmetry. Phys. Rev. A (3), 63(4):042111, 15, 2001. 23

[FN14] Motohisa Fukuda and Ion Nechita. Asymptotically well-behaved input states do not

violate additivity for conjugate pairs of random quantum channels. Comm. Math.

Phys., 328(3):995–1021, 2014. 3

[GdLL18] Sander Gribling, David de Laat, and Monique Laurent. Bounds on entanglement

dimensions and quantum graph parameters via noncommutative polynomial opti-

mization. Math. Program., 170(1, Ser. B):5–42, 2018. 1

[GdLL19] Sander Gribling, David de Laat, and Monique Laurent. Lower bounds on matrix

factorization ranks via noncommutative polynomial optimization. Found. Comput.

Math., to appear 2019. 1

[Had01] Don Hadwin. A noncommutative moment problem. Proc. Amer. Math. Soc.,

129(6):1785–1791, 2001. 7, 8

[Hel02] J. William Helton. “Positive” noncommutative polynomials are sums of squares. Ann.

of Math. (2), 156(2):675–694, 2002. 2

[HHH01] Micha l Horodecki, Pawe l Horodecki, and Ryszard Horodecki. Separability of n-

particle mixed states: necessary and sufficient conditions in terms of linear maps.

Physics Letters A, 283(1):1–7, 2001. 23

[HKM11] J. William Helton, Igor Klep, and Scott McCullough. Proper analytic free maps. J.

Funct. Anal., 260(5):1476–1490, 2011. 6

[HKT17] Fumio Hiai, Robert König, and Marco Tomamichel. Generalized log-majorization

and multivariate trace inequalities. Ann. Henri Poincaré, 18(7):2499–2521, 2017. 1
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