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Abstract. We survey some of the latest developments on the geometry of poly-
nomials in noncommuting variables, focusing on various Nullstellensätze both
in the dimension-free and the dimension-dependent setting. After a brief re-
view of Amitsur’s and Bergman’s Nullstellensatz, we focus on the trace. For
instance, we show that a polynomial all of whose evaluations at d× d matrices
have trace zero, is a sum of commutators and a polynomial identity of d × d
matrices. The main new contribution is a dimension-free tracial Nullstellensatz
with multilinear constraints.
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1. Introduction

Hilbert’s Nullstellensatz is a classical result in algebraic geometry. Over an alge-
braically closed field it characterizes polynomials vanishing on an algebraic set (i.e.,
zero set of a set of polynomials):

Theorem 1.1 (Hilbert’s Nullstellensatz). Let f, g1, . . . , gs ∈ C[X] and

Z := {a ∈ Cn | g1(a) = · · · = gs(a) = 0}.

If f |Z = 0, then for some r ∈ N, fr belongs to the ideal (g1, . . . , gs).

Due to its importance it has been generalized and extended in many different
directions. In this expository article we will focus on free noncommutative Nullstel-
lensätze describing vanishing in free algebras.

In Section 2 we briefly introduce the central notions used in the paper. Then
our starting point is Amitsur’s Nullstellensatz [Ami1] which is a direct generalization
of Hilbert’s Nullstellensatz. It describes noncommutative polynomials vanishing on
the vanishing set of a given finite set of polynomials in a full matrix algebra. We then
move to directional zeros of noncommutative polynomials and the Nullstellensatz of
Bergman [HM]. Finally, the trace is thoroughly analyzed in Section 5. For instance,
our tracial Nullstellensatz shows that a polynomial all of whose evaluations at d×d
matrices have trace zero, is a sum of commutators and a polynomial identity of d×d
matrices. Most of this material is taken from [BK1]. The main new contribution in
this paper is a dimension-free tracial Nullstellensatz with multilinear constraints,
see Section 5.5.
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nian Research Agency (Program No. P1-0222 and Project No. J1-3608).
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It is our hope this note will be of interest to a wider audience with various
backgrounds, so we have included several proofs exhibiting different circles of ideas
and the main techniques currently used in the area, to serve as a gentle introduction.

2. Notation and set-up

In this section we fix the basic notation we will be using throughout the paper. By
F we denote a field, which we shall assume, for the sake of convenience, to be of
characteristic 0.

2.1. The free algebra

By F〈X〉 we denote the free algebra generated by X = {X1, X2, . . .}, i.e., the algebra
of all polynomials in noncommuting variablesXi. We write 〈X〉 for the monoid freely
generated by X, i.e., 〈X〉 consists of words in the letters X1, X2, . . . (including the
empty word denoted by 1). An element of the form aw where 0 6= a ∈ F and
w ∈ 〈X〉 is called a monomial and a its coefficient. Hence words are monomials
whose coefficient is 1. Write F〈X〉k for the vector space consisting of the polynomials
of degree at most k and 〈X〉k for the set of words w ∈ 〈X〉 of length at most k.

2.2. The free ∗-algebra

For dealing with matrices and their transposes, we introduce the analogue of a
free algebra in the category of algebras with involution. Let F be a field with
an involution ∗. By F〈X,X∗〉 we denote the free ∗-algebra over F generated by
X = {X1, X2, . . .}, i.e., the F-algebra of all polynomials in noncommuting vari-
ables Xi, X

∗
j . Further, by SymF〈X,X∗〉 we denote the set of all symmetric, and by

SkewF〈X,X∗〉 we denote the set of all skew-symmetric polynomials in F〈X,X∗〉
(with respect to the canonical involution, of course).

2.3. Evaluations and representations

In contrast to classical representation theory, we are interested in the image of a
fixed element of a free algebra under all representations in a suitably chosen class.
Our focus will be mainly on finite dimensional representations of a free algebra with
an occasional foray into bounded operators on infinite dimensional Hilbert spaces.
This forces the theory into two branches. The dimension-free (in the sense that the
we are considering evaluations at tuples of matrices of all sizes or even bounded
operator on Hilbert spaces) setting is developed much better due to the works of
Helton with coauthors [Hel, HP] and the authors [KS, BK1, BK2]. This branch of
the theory has a certain operator-algebraic flavor. On the other hand, a mixture of
central simple algebras, and the theory of polynomial identities forms the dimension
dependent branch of the theory, initiated by the seminal paper [PS] of Procesi and
Schacher. They studied the Albert-Weil notion of positive involutions and orderings
on central simple algebras. How this relates to dimension-dependent positivity in
free algebras is explored in some detail in [KU, K].

3. Amitsur’s Nullstellensatz

In this section we fix the number n of variables X. An n-tuple of matrices A ∈
Md(F)n gives rise to the evaluation representation

evA : F〈X〉 →Md(F), p 7→ p(A).

Amitsur’s Nullstellensatz [Ami1, Theorem 1] is our first noncommutative Null-
stellensatz in a dimension-dependent setting as it works over a fixed matrix size. It
is a generalization of Hilbert’s Nullstellensatz which can be recovered from Theorem
3.1 by setting d = 1.
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Theorem 3.1 (Amitsur’s Nullstellensatz). Fix d ∈ N and let f, g1, . . . , gs ∈ C〈X〉,

Z(d) := {A ∈Md(C)n | g1(A) = · · · = gs(A) = 0}.

If f |Z(d) = 0, then for some r ∈ N,

fr ∈ Td + (g1, . . . , gs). (3.1)

Here (g1, . . . , gs) is the two sided ideal generated by the gj , and Td denotes
the ideal of all polynomial identities h ∈ C〈X〉 for d × d matrices. That is, h ∈ Td
if and only if for all tuples A ∈Md(C)n, h(A) = 0.

Proof. We give only a sketch of the proof. Let

Qd := Td + (g1, . . . , gs), Jd :=
⋂
{P | P ⊇ Qd primitive ideal}.

In the first step we prove f ∈ Jd. Assume otherwise and let P ⊇ Qd be a

primitive ideal avoiding f . Then D := C〈X〉/P is a primitive ring satisfying all

identities of d × d matrices, so is by Kaplansky’s theorem ([Row, §1.5] or [Pro,

Theorem II.1.1]) a central simple algebra. Furthermore, its degree is ≤ d.

Let Z be the center of D and construct D ⊗Z Z̄ ∼= Mk(Z̄), where k ≤ d and

Z̄ denotes the algebraic closure of Z. Consider the following first order sentence:

ϕ : ∃d× d matrices A1, . . . , An : g1(A) = · · · = gs(A) = 0 6= f(A).

By assumption, this statement is true in Z̄, i.e., Z̄ |= ϕ. By the model completeness

of the theory of algebraically closed fields [Hod, Theorem A.5.1], this implies C |= ϕ.

Hence there are matrices A = (A1, . . . , An) ∈ Md(C)n satisfying g1(A) = · · · =

gs(A) = 0 6= f(A). But this obviously contradicts f |Z(d) = 0.

The second and final step of the proof now invokes Amitsur’s result [Lam,

Theorem 4.20] stating that the Jacobson radical of a finitely generated algebra over

an uncountable field is nil. In particular, this yields fr ∈ Qd for some r ∈ N.

It is tempting to guess an adaptation of Theorem 3.1 to hold in a dimension-
free setting (e.g. no Td in (3.1)). However, this fails due to scarceness of finite
dimensional representations.

Example 3.2. Let n = 2 and

g := X1X2 −X2X1 − 1 ∈ C〈X〉.

Then Z(d) = ∅ for every d, since C〈X〉/(g) is the first Weyl algebra A1(C), well-

known not to have any finite dimensional or bounded infinite dimensional represen-

tations.

Consider f = 1. Then f |Z(d) = 0, but 1 = fr 6∈ (g) ( C〈X〉 for all r ∈ N.

For a suitable non-finite dimensional version of Theorem 3.1, we need to work
with primitive rings [Lam, Chapter 4]. This is [Ami1, Theorem 2]:

Theorem 3.3 (Amitsur). Let f, g1, . . . , gs ∈ C〈X〉 and

Z(∞) := {A ∈ Rn | R primitive, g1(A) = · · · = gs(A) = 0}.

If f |Z(∞) = 0, then for some r ∈ N,

fr ∈ (g1, . . . , gs). (3.2)

The proof of Theorem 3.3 is similar to the proof of the previous theorem, so
is omitted. For details we refer to [Ami1].
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4. Directional Nullstellensatz

A relaxation of the notion of vanishing in the free algebra is given by directional
zeros. A directional zero of p ∈ F〈X〉 is a pair (A, v), where A is a tuple of linear
operators on an F-vector space H, and v ∈ H, satisfying

p(A)v = 0. (4.1)

Similarly, one introduces directional zeros in a free ∗-algebra. Directional zeros are
important in understanding boundaries of noncommutative sets, cf. [HP, HKMS,
HKM].

4.1. Bergman’s Nullstellensatz

The first result in this setting is the dimension-free Nullstellensatz due to Bergman-
Helton-McCullough [HM, Theorem 6.3]:

Theorem 4.1 (Bergman-Helton-McCullough). Let f, g1, . . . , gs ∈ F〈X〉 and

d := max{deg gi, deg f}.

Let V be an F-vector space of dimension
∑d
j=0 n

j, and

Z := {(A, v) ∈ End(V )n × V | g1(A)v = · · · = gs(A)v = 0}.

If for all (A, v) ∈ Z we have f(A)v = 0, then f is in the left ideal

Q := F〈X〉g1 + · · ·+ F〈X〉gs

generated by the gi.

Proof. Consider the vector space V := F〈X〉d/(Q ∩ F〈X〉d), where F〈X〉d denotes

the set of all polynomials of degree ≤ d. We use p 7→ p̄ to denote the quotient

mapping. Let W denote the subspace

{p̄ | p ∈ F〈X〉d−1},

and choose a basis {f̄1, . . . , f̄m} for W . Extend it to a basis

{f̄1, . . . , f̄m, f̄m+1, . . . , f̄m+`}

of V . Without loss of generality, deg fj < d for j = 1, . . . ,m.

Define

X̂i : V → V, f̄k 7→

{
Xifk 1 ≤ k ≤ m
0 otherwise.

Then for every polynomial p of degree ≤ d,

p(X̂)1̄ = p̄.

Clearly, gj(X̂)1̄ = ḡj = 0 since gj ∈ Q. Hence by assumption,

f̄ = f(X̂)1̄ = 0,

so f ∈ Q.

The above theorem and its proof readily generalize to noncommutative poly-
nomials with matrix coefficients [HKMS, Theorem 6.8].
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4.2. The Helton-McCullough-Putinar directional Nullstellensatz

Let us now consider directional Nullstellensätze in a free ∗-algebra. Here the situa-
tion is somewhat more complicated, as observed by Helton and McCullough [HM,
Example 6.1].

Example 4.2. Let q = (X∗X + XX∗)2 and p = X + X∗ where X is a single

variable. Then, for every matrix A and vector v (belonging to the space where A

acts), q(A)v = 0 implies p(A)v = 0. However, there does not exist a positive integer

m and r, rj ∈ R〈X,X∗〉, so that

p2m +
∑

r∗j rj = qr + r∗q. (4.2)

Nevertheless, a clear result can be derived for a special kind of polynomials.
Polynomials in F〈X〉 ⊆ F〈X,X∗〉 are called analytic polynomials (they contain no
variables X∗j ).

Theorem 4.3 (Helton-McCullough-Putinar). Let g1, . . . , gs ∈ R〈X〉 be analytic po-

lynomials, and let p ∈ R〈X,X∗〉. Assume that for every n-tuple A of linear operators

acting on a finite dimensional Hilbert space H, and every vector v ∈ H, we have:

(qj(A)v = 0, 1 ≤ j ≤ s) ⇒ p(A,A∗)v = 0. (4.3)

Then p belongs to the left ideal R〈X,X∗〉g1 + · · ·+ R〈X,X∗〉gs.

The proof of Theorem 4.3 is similar to the proof of the Bergman-Helton-
McCullough Nullstellensatz in that it uses well chosen, separating, ∗-representations
of the free ∗-algebra. However, this proof is more involved, as it depends on a
different “dilation type” argument. We will not give the full proof here, for that
we refer the reader to [HMP, Theorem 2]. Let us instead say a few words about
the intuition behind it. Assume (4.3) holds. On a very large vector space if A is
determined on a small number of vectors, then A∗ is not heavily constrained; it is
almost like being able to take A∗ to be a completely independent tuple B. If it were
independent, we would have

(qj(A)v = 0, 1 ≤ j ≤ s) ⇒ p(A,B)v = 0.

In this case Theorem 4.1 would yield the desired conclusion. Since A∗ is dependent
on A, an operator extension with certain properties is needed to make the above
argument work. For details see [HMP].

We finish this section by referring the reader to the preprint [CHMN] for a
more detailed study of ideals on which such kind of Nullstellensätze hold.

5. Tracial Nullstellensätze

Let us now turn to our last type of vanishing in the free algebra. That is, to the
trace. We shall give a global Nullstellensatz in both the dimension-dependent, and
as a consequence, also in the dimension-free case. In the last subsection we give a
new result, a Nullstellensatz for multilinear polynomials with constraints.

Fix d ∈ N. One of the results we shall describe is the following: A polynomial
has zero trace when evaluated at d × d matrices if and only if it is a sum of com-
mutators and a polynomial identity of d× d matrices (see Corollaries 5.8 and 5.20
below).

The zero trace problem motivates one to consider the following more general
topic: What is the linear span of all the values of a polynomial on a given algebra
A? Studying this question has turned out to be quite fruitful. Its answer yields the
tracial Nullstellensatz described in the previous paragraph, and, on the other hand,
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it is interesting in its own right because of its connections to certain Lie structure
topics and also to polynomial identities.

Our crucial observation is that the linear span of values of a polynomial is a Lie
ideal of the algebra A in question (Theorem 5.2). This paves the way for the precise
description of the linear span of all the values of a polynomial on certain algebras.
A glance at Theorem 5.7 below shows a type of results that can be obtained.

Another line of results deals with algebras with involution. The consideration in
this context is similar, but more involved. We consider noncommutative polynomials
in F〈X,X∗〉 and observe that the linear span of values of such a polynomial need
not be a Lie ideal, but it is always closed under Lie products with skew-symmetric
elements (Theorem 5.11). We call subspaces having this property Lie skew-ideals
and classify them for full matrix algebras (Theorems 5.15 and 5.16). This enables
us to categorize polynomials into classes depending on their evaluations on a full
matrix algebra (Theorems 5.18 and 5.19).

After a brief notational section, we survey the results from our paper [BK1]
in the subsequent two sections. We will present them in a simpler context than in
the original paper. Still, some of the proofs are almost identical. We have selected
these proofs from [BK1] in hope that they will be of interest to a wider audience,
because of their connections to other mathematical areas (such as Lie theory and
polynomial identities).

5.1. More notation

Let us fix the notation that will be used in this section. By F we denote a field of
characteristic 0, and all our algebras will be algebras over F. Let A be an (associa-
tive) algebra. By Z we denote its center. If A is a ∗-algebra, i.e., an algebra with
involution ∗, then by S (resp. K) we denote the set of all symmetric (resp. skew-
symmetric) elements in A:

S = {a ∈ A | a∗ = a}, K = {a ∈ A | a∗ = −a}.

The advantage of this notation is brevity, but the reader should be warned against
possible confusion. Let us point out that S and K depend on the involution.

5.2. Involution-free case

Let A be an algebra over F, and let f = f(X1, . . . , Xn) ∈ F〈X〉. If L1, . . . ,Ln are
subsets of A, then by f(L1, . . . ,Ln) we denote the set of all values f(a1, . . . , an)
with ai ∈ Li, i = 1, . . . , n. If all Li are equal to A, then we simplify the notation and
write f(A) instead of f(A, . . . ,A). If U is a subset of A, then by spanU we denote
the linear span of U . One of the goals of this section is to describe span f(A) for all
polynomials f and certain algebras A. Of course it can happen that span f(A) = 0
even when f 6= 0; such a polynomial f is called a (polynomial) identity of A.
Algebras satisfying (nontrivial) polynomial identities are called PI algebras. This
class of algebras includes all finite dimensional algebras.

We say that a polynomial f = f(X1, . . . , Xn) ∈ F〈X〉 is homogeneous in Xi if
each monomial of f has the same degree with respect to Xi; if this degree is 1, then
we say that f is linear in Xi. Further, we say that f is multihomogeneous if it is
homogeneous in every Xi, i = 1, . . . , n. Every polynomial is a sum of multihomoge-
neous polynomials. A polynomial is said to be multilinear if it is linear in every Xi,
i = 1, . . . , n. Thus, a multilinear polynomial in X1, . . . , Xn is a linear combination
of monomials of the form Xσ(1) . . . Xσ(n) where σ is a permutation of {1, . . . , n}.

5.2.1. Image of a polynomial and Lie theory. We recall that an associative algebra
A becomes a Lie algebra when replacing the ordinary product in A by the Lie
product

[x, y] := xy − yx for x, y ∈ A.
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Ideals of A with respect to this product are called Lie ideals of A. Thus, a Lie ideal
of A is a linear subspace L of A such that [L,A] ⊆ L.

Let us now indicate the connection of polynomial values to Lie theory. From
the identity

[Xσ(1) . . . Xσ(n), Xn+1] = [Xσ(1), Xn+1]Xσ(2) . . . Xσ(n)

+Xσ(1)[Xσ(2), Xn+1]Xσ(3) . . . Xσ(n) + . . .+Xσ(1) . . . Xσ(n−1)[Xσ(n), Xn+1]

it follows easily that every multilinear polynomial h satisfies (cf. [BCM, p. 170])

[h(X1, . . . , Xn), Xn+1] = h([X1, Xn+1], X2, . . . , Xn)

+ h(X1, [X2, Xn+1], X3, . . . , Xn) + . . .+ h(X1, . . . , Xn−1, [Xn, Xn+1]).
(5.1)

This clearly implies that spanh(A) is a Lie ideal of A. As we will now show, a
considerably more general result holds. In its proof we shall need the following
simple lemma. It can be proved by a standard Vandermonde-type argument. We
omit details; a proof is given in [BK1, Lemma 2.2].

Lemma 5.1. Let V be a linear space over F, and let U be a subspace. Suppose that

c0, c1, . . . , cn ∈ V are such that
n∑
i=0

λici ∈ U (5.2)

holds for at least n+ 1 different scalars λ. Then each ci ∈ U .

Theorem 5.2. Let A be an F-algebra, and let L1, . . . ,Ln be Lie ideals of A. Then

for every f = f(X1, . . . , Xn) ∈ F〈X〉, span f(L1, . . . ,Ln) is again a Lie ideal of A.

Proof. We can write f = f0 + f1 + . . .+ fm where fi is the sum of all monomials of

f that have degree i in X1. Note that

f(λa1, a2, . . . , an) =

m∑
i=0

λifi(a1, . . . , an) ∈ span f(L1, . . . ,Ln)

for all λ ∈ F and all ai ∈ Li, and so fi(a1, . . . , an) ∈ span f(L1, . . . ,Ln) by Lemma

5.1. Repeating the same argument with respect to other variables we see that values

of each of the multihomogeneous components of f lie in span f(L1, . . . ,Ln). But

then there is no loss of generality in assuming that f itself is multihomogeneous.

Accordingly, we can write

f = h(X1, . . . , X1, X2, . . . , X2, . . . , Xn, . . . , Xn)

where h ∈ F〈X〉 is multilinear, X1 appears k1 times, X2 appears k2 times, etc.

Considering f(a1 + λa′1, a2, . . . , an) we thus arrive at the relation

k1∑
i=0

λici ∈ span f(L1, . . . ,Ln),

where, in particular,

c1 = h(a′1, a1, . . . , a1, a2, . . . , a2, . . . , an, . . . , an)

+ h(a1, a
′
1, a1, . . . , a1, a2, . . . , a2, . . . , an, . . . , an)

+ . . .+ h(a1, . . . , a1, a
′
1, a2, . . . , a2, . . . , an, . . . , an).

By Lemma 5.1, each ci, including of course c1, belongs to span f(L1, . . . ,Ln); here,

a1, a
′
1 ∈ L1 a2 ∈ L2, . . . , an ∈ Ln are arbitrary elements. Similar statements can be

established with respect to other variables.
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Now, using (5.1) we see that for all ai ∈ Li and b ∈ A we have

[f(a1, . . . , an), b] = h([a1, b], a1, . . . , a1, a2, . . . , a2, . . . , an, . . . , an)

+ . . .+ h(a1, . . . , a1, [a1, b], a2, . . . , a2, . . . , an, . . . , an)

+ . . .+ h(a1, . . . , a1, [a2, b], a2, . . . , a2, . . . , an, . . . , an)

+ . . .+ h(a1, . . . , a1, a2, . . . , a2, [a2, b], . . . , an, . . . , an)

+ . . .+ h(a1, . . . , a1, a2, . . . , a2, . . . , [an, b], an . . . , an)

+ . . .+ h(a1, . . . , a1, a2, . . . , a2, . . . , an . . . , an, [an, b]).

Let us point out that [ai, b] ∈ Li since Li is a Lie ideal of A. In view of the

above observation c1 ∈ span f(L1, . . . ,Ln) it follows that the sum of the first

k1 summands that involve [a1, b] lies in span f(L1, . . . ,Ln). Similarly we see that

the sum of summands involving [a2, b] lies in span f(L1, . . . ,Ln), etc. Accordingly,

[f(a1, . . . , an), b] ∈ span f(L1, . . . ,Ln), proving that span f(L1, . . . ,Ln) is a Lie ideal

of A.

The following result is folklore.

Lemma 5.3. Let A = Md(F), d ≥ 2. Then A contains exactly four Lie ideals: 0, Z,

[A,A] and A.

Here, the center Z is equal to F, the set of all scalar matrices, and [A,A] is
the set of all commutators [A,B], A,B ∈ A, or equivalently, the set of all matrices
with zero trace.

A general remark about notation: if U and V are subspaces of an algebra A,
then by [U ,V] we denote the linear span of all commutators [u, v], u ∈ U , v ∈ V.
By chance in the case of A = Md(F) the linear space [A,A] coincides with the set
of all commutators [A,B], but in general this is not true.

One can prove Lemma 5.3 by a direct computation. On the other hand, the
lemma follows immediately from a substantially more general result by Herstein
[Her, Theorem 1.5] stating that under very mild assumptions a Lie ideal of a simple
algebra A either contains [A,A] or is contained in Z.

Our next goal is to classify the polynomials in F〈X〉 according to their values
on full matrix algebras, and then as corollaries of these classification results derive
what we call “tracial Nullstellensätze”.

The following notion was introduced in [KS].

Definition 5.4. We say that polynomials f, g in F〈X〉 are cyclically equivalent (no-

tation f
cyc∼ g) if f − g is a sum of commutators in F〈X〉.

The next remark shows that cyclic equivalence can be checked easily and that
it is “stable” under scalar extensions in the following sense: Given a field extension

F ⊆ K and f, g ∈ F〈X〉, then f
cyc∼ g in F〈X〉 if and only if f

cyc∼ g in K〈X〉.

Remark 5.5.

(a) Two words v, w ∈ 〈X〉 are cyclically equivalent if and only if there are words

v1, v2 ∈ 〈X〉 such that v = v1v2 and w = v2v1.

(b) Two polynomials f =
∑
w∈〈X〉 aww and g =

∑
w∈〈X〉 bww (aw, bw ∈ F) are

cyclically equivalent if and only if for each v ∈ 〈X〉,∑
w

cyc∼ v

aw =
∑
w

cyc∼ v

bw.

The next lemma is simple, but will be of fundamental importance in the sequel.
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Lemma 5.6. Let f = f(X1, . . . , Xn) ∈ F〈X〉. If f is linear in Xn, then there exists

g = g(X1, . . . , Xn−1) ∈ F〈X〉 such that f
cyc∼ gXn.

Proof. It suffices to treat the case when f is a monomial, that is f = mXnm
′ where

m and m′ are monomials in X1, . . . , Xn−1. But then the result follows immediately

from the identity mXnm
′ −m′mXn = [mXn,m

′].

Consider now A = Md(F). Let f ∈ F〈X〉. Theorem 5.2 and Lemma 5.3 imply
that span f(A) can be either 0, Z, [A,A] or A. Each of the four possibilities indeed
occurs. Finding polynomials f such that span f(A) is either [A,A] or A is trivial
(say, take X1X2 −X2X1 and X1). Since A is a PI algebra, we can find (nonzero)
polynomials f such that span f(A) = 0. The existence of polynomials f such that
span f(A) = Z is nontrivial; cf. [Row, Appendix A] or [Pro]. These are the so-called
central polynomials, i.e., polynomials which are not identities on A but all their
values lie in Z.

Theorem 5.7. Let A = Md(F), let f ∈ F〈X〉, and let us write L := span f(A). Then

exactly one of the following four possibilities holds:

(i) f is an identity of A; in this case L = 0;

(ii) f is a central polynomial of A; in this case L = Z;

(iii) f is not an identity of A, but is cyclically equivalent to an identity of A; in

this case L = [A,A];

(iv) f is not a central polynomial of A and is not cyclically equivalent to an identity

of A; in this case L = A.

Proof. As just mentioned, Theorem 5.2 and Lemma 5.3 tell us that L is either 0,

Z, [A,A] or A. It is clear that Z ∩ [A,A] = 0, since Z is the set of scalar matrices,

and [A,A] is the set of all trace-zero matrices.

Suppose first that f is cyclically equivalent to an identity. Then f(A) ⊆ [A,A]

and hence L ⊆ [A,A]. Since Z ∩ [A,A] = 0, there are only two possibilities: either

L = 0 or L = [A,A]. If f itself is an identity, then of course (i) holds. If f is not an

identity, then L 6= 0 and so (iii) must hold.

Assume now that f is not cyclically equivalent to an identity. If f is a central

polynomial, then (ii) holds. Assume therefore that f is not a central polynomial.

We must show that L = A. Obviously, L 6= 0 and L 6= Z. We still have to eliminate

the possibility that L = [A,A]. Assume that this possibility actually occurs, so in

particular f(A) ⊆ [A,A]. Writing f as a sum of multihomogeneous polynomials,

and then arguing as at the beginning of the proof of Theorem 5.2 we see that

each of these homogeneous components has the same property that its values lie in

[A,A]. It is obvious that at least one of these summands is not cyclically equivalent

to an identity. Thus, there exists a multihomogeneous polynomial, let us call it

h = h(X1, . . . , Xn), which is not cyclically equivalent to an identity and has the

property h(A) ⊆ [A,A]. We will show that this is impossible by induction on

the degree of h with respect to Xn. Let us denote this degree by k. If k = 1,

then we can use Lemma 5.6 to find a polynomial g = g(X1, . . . , Xn−1) such that

h
cyc∼ gXn. Consequently, (gXn)(A) ⊆ [A,A]. Pick a1, . . . , an−1 ∈ A and write

w = g(a1, . . . , an−1). Then wx ∈ [A,A] for every x ∈ A, which clearly implies that

the same is true for every x ∈ A. If w 6= 0, then because of the simplicity of A there

exist ui, vi ∈ A such that 1 =
∑
i uiwvi. But then

1 =
∑
i

[ui, wvi] + w
∑
i

viui ∈ [A,A],
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contradicting Z ∩ [A,A] = 0. Thus w = 0, i.e., g(a1, . . . , an−1) = 0 for all ai ∈ A.

That is, g, and hence also gXn, is an identity of A. This contradicts our assumption

that h is not cyclically equivalent to an identity. Now let k > 1 and consider the

polynomial

h′(X1, . . . , Xn, Xn+1) = h(X1, . . . , Xn−1, Xn +Xn+1)

− h(X1, . . . , Xn−1, Xn)− h(X1, . . . , Xn−1, Xn+1).

Obviously the values of h′ also lie in [A,A], and so the same is true for each of

multihomogeneous components of h′. Since the degree in Xn of each of these com-

ponents is smaller than k, the induction assumption implies that each of them is

cyclically equivalent to an identity. But then h′ itself is cyclically equivalent to an

identity. However, since

h(X1, . . . , Xn) =
1

2k − 2
h(X1, . . . , Xn, Xn)

it follows that h is also cyclically equivalent to an identity - a contradiction.

Theorem 5.7 works at a greater level of generality - it can be proved for finite
dimensional central simple algebras (and a version even holds for prime PI algebras),
see [BK1].

5.2.2. Tracial Nullstellensätze. We record the following two easily obtained corol-
laries related to [KS, Theorem 2.1]. We call them tracial Nullstellensätze; the first
one deals with the dimension-dependent setting and the second one is dimension-
free.

Corollary 5.8. Let d ≥ 2, and let f = f(X1, . . . , Xn) ∈ F〈X〉. Then tr(f(A)) = 0

for all A ∈Md(F)n if and only if f is cyclically equivalent to an identity of Md(F).

Proof. Note tr(f(A)) = 0 for all A ∈Md(F)n if and only if span f(Md(F)) equals 0

or [Md(F),Md(F)]. Hence the conclusion follows easily from Theorem 5.7.

Corollary 5.9. Let f = f(X1, . . . , Xn) ∈ F〈X〉. Then tr(f(A)) = 0 for all A ∈
Md(F)n and all d ≥ 2 if and only if f

cyc∼ 0.

5.3. Involution case

In this section we present the results of the previous section in the setting of algebras
with involution.

Let F be a field of characteristic 0 with an involution ∗. Recall by F〈X,X∗〉 we
denote the free ∗-algebra over F generated by X = {X1, X2, . . .}. By the degree of
Xi in a monomial M ∈ F〈X,X∗〉 we shall mean the number of appearances of Xi

or X∗i in M . For example, both X2
1 and X1X

∗
1 have degree 2 in X1. The concepts

of (multi)homogeneity and (multi)linearity of polynomials in F〈X,X∗〉 are defined
accordingly. For example, X1X2X

∗
1 +X∗2X

2
1 is multihomogeneous and linear in X2.

LetA be an algebra with involution ∗ and let f = f(X1, . . . , Xn, X
∗
1 , . . . , X

∗
n) ∈

F〈X,X∗〉. If L1, . . . ,Ln are subsets of A, then by f(L1, . . . ,Ln) we denote the set
of all values f(a1, . . . , an, a

∗
1, . . . , a

∗
n) with ai ∈ Li, i = 1, . . . , n. Again, if Li = A

for every i, then we simply write f(A) instead of f(A, . . . ,A).

5.3.1. ∗-images of polynomials and Lie theory. Theorem 5.2 does not hold for poly-
nomials in F〈X,X∗〉. For example, if f = X1+X∗1 , then f(A) = S and so span f(A)
is only exceptionally a Lie ideal of A. However, it does satisfy a weaker version of
the definition of a Lie ideal: while it is, in general, not closed under commutation
with elements from S, it is certainly closed under commutation with elements from
K since [S,K] ⊆ S. Subspaces satisfying this property will be one of the central
topics of this section.
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Definition 5.10. A linear subspace L of an algebra A with involution will be called

a Lie skew-ideal of A if [L,K] ⊆ L.

Theorem 5.11. Let A be an F-algebra with involution, and let L1, . . . ,Ln be Lie

skew-ideals of A. Then for every f = f(X1, . . . , Xn, X
∗
1 , . . . , X

∗
n) ∈ F〈X,X∗〉,

span f(L1, . . . ,Ln) is again a Lie skew-ideal of A.

Proof. The proof is almost the same as the proof of Theorem 5.2, so is omitted.

Let A be a ∗-algebra over F. Every Lie ideal of A is also a Lie skew-ideal of A,
while the converse is not true in general. For example, S and K are Lie skew-ideals,
which are only rarely Lie ideals. Obviously, Lie skew-ideals are closed under sums
and intersections. Further, if L1 and L2 are Lie skew-ideals, then [L1,L2] is also a
Lie skew-ideal. This can be easily checked by using the Jacobi identity.

Let us mention eight examples of Lie skew-ideals: 0, Z, K, [S,K], S, Z + K,
[A,A], and A. As indicated above, there are other natural examples. The reasons
for pointing out these eight examples will become clear shortly.

Let A = Md(F) be a full matrix ∗-algebra. Then ∗ is called orthogonal if

dimF S = d(d+1)
2 and symplectic if dimF S = d(d−1)

2 . Symplectic involutions only
exist for even d. For a full account on algebras with involutions we refer the reader
to [KMRT].

The basic example of an orthogonal involution on the algebra A = Md(F) is
the transpose involution, A 7→ At. The usual symplectic involution on A = Md(F)
is defined when d is even, d = 2d0, as follows:[

A B
C D

]∗
=

[
Dt −Bt
−Ct At

]
where A,B,C,D ∈Md0(F).

An involution on an algebra A is said to be of the first kind if it fixes its
center Z pointwise and of the second kind otherwise. Involutions of the second kind
are also called unitary involutions. Both the transpose and the usual symplectic
involution are of course involutions of the first kind.

Lemma 5.12. Let A = Md(F) be endowed with the transpose involution. If d 6= 2, 4,

then 0, Z, K, [S,K], S, Z + K, [A,A], and A are the only Lie skew-ideals of A.

Proof. Let us begin by noting that Z consists of all scalar matrices, [S,K] consists

of all symmetric matrices with trace 0, and [A,A] consists of all matrices with trace

0.

Since d 6= 2, 4, K is a simple Lie algebra. This is well-known and easy to see

(see for example [BMM, p. 443]). Given a Lie skew-ideal L of A, we have that L∩K
is a Lie ideal of K, and hence either L ∩ K = 0 or L ∩ K = K. That is,

L ∩ K = 0 or K ⊆ L. (5.3)

Let us first consider the case where L ⊆ Z+K. If L ⊆ Z, then of course either

L = 0 or L = Z. If L 6⊆ Z, then L contains a matrix λI + K0 where λ ∈ F and

0 6= K0 ∈ K. Picking K1 ∈ K which does not commute with K0 it follows that

0 6= [K0,K1] = [λI + K0,K1] ∈ L ∩ K. Therefore K ⊆ L by (5.3). But then either

L = K or L = Z +K.

Assume from now on that L 6⊆ Z + K. Therefore there exists A = (aij) ∈ L
such that for some i 6= j, either α = ajj − aii 6= 0 or β = aij + aji 6= 0. Since for

every K ∈ K also K3 ∈ K, we have

K2AK −KAK2 =
1

3

(
[[[A,K],K],K]− [A,K3]

)
∈ L.
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For K = Eij − Eji we get

α(Eij + Eji) + β(Eii − Ejj) ∈ L. (5.4)

Pick k different from i and j (recall that d 6= 2!). Since Ejk − Ekj ∈ L, it follows

that L contains

[[α(Eij+Eji)+β(Eii−Ejj), Ejk−Ekj ], Ejk−Ekj ] = −α(Eij+Eji)+2β(Ejj−Ekk).

Using this together with (5.4) it follows that β(Eii + Ejj − 2Ekk) ∈ L, and hence

also

β(Eik + Eki) =
1

3
[β(Eii + Ejj − 2Ekk), Eik − Eki] ∈ L.

If β 6= 0, then this yields Eik + Eki ∈ L. If, however, β = 0, then α 6= 0 and

hence Eij + Eji ∈ L by (5.4). Thus, in any case L contains a matrix of the form

Euv + Evu with u 6= v. We claim that this implies that L contains all matrices of

the form Epq +Eqp with p 6= q. Indeed, if {p, q}∩{u, v} = ∅, then this follows from

Epq + Eqp = [[Euv + Evu, Evp − Epv], Euq − Equ], and if {p, q} ∩ {u, v} 6= ∅, then

the proof is even easier. Consequently, Eqq − Epp = 1
2 [Epq + Eqp, Epq − Eqp] ∈ L.

Note that all these relations can be summarized as

[S,K] ⊆ L. (5.5)

Suppose that L ∩ K = 0. We claim that in this case L ⊆ S. Indeed, if this

was not true, then L would contain a matrix K0 + S0 with 0 6= K0 ∈ K and

S0 ∈ S. Picking K1 ∈ K that does not commute with K0 it then follows from

(5.5) that 0 6= [K0,K1] = [K0 + S0,K1] − [S0,K1] ∈ L ∩ K, a contradiction. Thus

[S,K] ⊆ L ⊆ S and so either L = [S,K] or L = S.

It remains to consider the case where L ∩ K 6= 0. In this case K ⊆ L by

(5.3). Since L also contains [S,K] and since [S,K] + K = [A,A], it follows that

[A,A] ⊆ L ⊆ A. But then either L = [A,A] or L = A.

The cases where d = 2 or d = 4 are indeed exceptional (see [BK1] for details).
Our next aim is to prove a version of Lemma 5.12 for the usual symplectic

involution. For this we need the following lemma which describes the structure of
certain subspaces of Md(F) that are in particular Lie skew-ideals of Md(F) with
respect to the transpose involution. Since the restriction d 6= 2, 4 is unnecessary in
this situation, we cannot apply Lemma 5.12. In any case a direct computational
proof could be easily given. However, a result by Montgomery [Mon, Corollary
1] describing additive subgroups M of simple rings A with involution satisfying
aMa∗ ⊆M for all a ∈ A will make it possible for us to use a shortcut. This result
implies that if A is a simple algebra over F, the involution ∗ is of the first kind, and
M is such a linear subspace of A, then M must be either 0, K, S, or A.

Lemma 5.13. Let A = Md(F) be endowed with the transpose involution. If M is a

linear subspace of A such that MAt + AM ∈ M for all M ∈ M and A ∈ A, then

M is either 0, K, S, or A.

Proof. From the identity

AMAt =
1

2

((
(MAt +AM)At +A(MAt +AM)

)
−
(
M(A2)t +A2M

))
it follows that AMAt ∈M for all A ∈ A and M ∈M. Therefore the result follows

immediately from [Mon, Corollary 1].

Lemma 5.14. Let A = M2d0(F), let ∗ be the usual symplectic involution on A. Then

0, Z, K, [S,K], S, Z + K, [A,A], and A are the only Lie skew-ideals of A.
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Proof. Set A0 = Md0(F) and let K0 and S0 denote the sets of symmetric and skew-

symmetric matrices in A0 with respect to the transpose involution. Note that K
consists of all matrices of the form[

A S

T −At
]

where A ∈ A0, S, T ∈ S0,

and S consists of all matrices of the form[
A K

L At

]
where A ∈ A0, K,L ∈ K0.

Let L be a Lie skew-ideal of A, and let

[
A B

C D

]
∈ L. Commuting this matrix

with

[
I 0

0 −I

]
∈ K it follows that

[
0 −B
C 0

]
∈ L. Furthermore, commuting the

latter matrix with

[
I 0

0 −I

]
one easily shows that actually both

[
0 B

0 0

]
and

[
0 0

C 0

]
belong to L. Thus, we have[

A B

C D

]
∈ L ⇒

[
A 0

0 D

]
,

[
0 B

0 0

]
,

[
0 0

C 0

]
∈ L. (5.6)

Let M0 be the set of all M ∈ A0 such that

[
0 M

0 0

]
∈ L. Commuting this

matrix with

[
A 0

0 −At
]
∈ K it follows that M0, considered as a subspace of A0,

satisfies the condition of Lemma 5.13. Therefore M0 is 0, K0, S0, or A0. Each of

these four cases shall be considered separately.

Assume that M0 = 0. From (5.6) we see that then any matrix in L is of the

form

[
A 0

C D

]
. Commuting such a matrix with

[
0 S

0 0

]
∈ K it follows that AS = SD

for all S ∈ S0. It is easy to see that this is possible only if A = D is a scalar matrix.

Consequently, commuting

[
0 0

C 0

]
with

[
0 I

0 0

]
it follows that C = −C, i.e., C = 0.

Therefore L consists only of scalar matrices. There are just two possibilities: either

L = 0 or L = Z.

Next we consider the case where M0 = K0. Pick K ∈ K0 and S ∈ S0. Com-

muting

[
0 K

0 0

]
∈ L with

[
0 0

S 0

]
∈ K it follows that

[
KS 0

0 −SK

]
∈ L. It is easy

to see that every matrix in A0 of the form KS has trace 0, and conversely, every

matrix in A0 with trace 0 is a linear span of matrices of the form KS. Therefore

L contains all matrices

[
A 0

0 At

]
with A ∈ [A0, A0]. Now take any matrix in L of

the form

[
A 0

0 D

]
. Its commutator with

[
0 0

S 0

]
∈ K is

[
0 AS − SD
0 0

]
. Since this

matrix must be in L it follows that AS−SD ∈ K0 for every S ∈ S0. This condition

can be rewritten as S(At −D) + (At −D)tS = 0 for every S ∈ S0. It is easy to see

that this forces At = D. Therefore the “diagonal part” of L consists only of ma-

trices of the form

[
A 0

0 At

]
, and there are two possibilities: either all such matrices

with an arbitrary A ∈ A0 are in L, or only all such matrices with the restriction

that A has trace 0, i.e., A ∈ [A0,A0]. It remains to examine the “lower corner”

part. Pick

[
0 0

C 0

]
∈ L. Commuting it with

[
0 I

0 0

]
∈ K we get

[
−C 0

0 C

]
∈ L.
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But then C must lie in K0. Conversely, as the commutator of

[
A 0

0 At

]
∈ L with[

0 0

I 0

]
∈ K is

[
0 0

At −A 0

]
, and since every K ∈ K0 can be written as K = At−A

with A ∈ [A0,A0], it follows that L contains all matrices

[
0 0

K 0

]
with K ∈ K0.

We can now gather all the information derived in the following conclusion: L either

consists of all matrices

[
A K

L At

]
with A ∈ A0, S, T ∈ K0 or of all such matrices with

A ∈ [A0, A0], S, T ∈ K0. In the first case L = S and in the second case L = [S,K].

The cases where M0 = S0 or M0 = A0 can be treated similarly as the

M0 = K0 case. One can show thatM0 = S0 implies that L = K or L = Z+K, and

M0 = A0 implies that L = [A,A] or L = A. There are some differences compared

to the case just treated, but the necessary modifications are quite obvious. Therefore

we omit the details.

The above results make it possible for us to describe Lie skew-ideals in full
matrix algebras with involution. The description depends on the kind of an involu-
tion.

Theorem 5.15. Let A be a full matrix algebra with involution of the first kind, and

let L be a Lie skew-ideal of A. If dimFA 6= 4, 16, then L is either 0, Z, K, [S,K],

S, Z + K, [A,A] or A.

We omit details of the proof. Let us just mention that using the description
of involutions on a full matrix algebra over an algebraically closed field, a scalar
extension argument reduces the general situation to the two cases considered in
Lemmas 5.12 and 5.14.

Theorem 5.16. Let A be a full matrix algebra with involution of the second kind,

and let L be a Lie skew-ideal of A. Then L is either 0, Z, [A,A] or A.

Proof. Since ∗ is of the second kind, there exists z ∈ Z = F such that w = z−z∗ 6= 0.

Thus w is nonzero skew-symmetric element in Z. Pick x ∈ L and a ∈ A. We can

write a = s + k where s ∈ S and k ∈ K; indeed, we take s = a+a∗

2 , k = a−a∗
2 .

Clearly, ws ∈ K and so [x,ws] ∈ L, and of course also [x, k] ∈ L. But then [x, a] =

w−1[x,ws] + [x, k] ∈ L. This proves that [L,A] ⊆ L; that is, L is a Lie ideal of A.

Now apply Lemma 5.3.

5.3.2. Classification of polynomials according to their ∗-images. We now turn to the
classification problem for polynomials in F〈X,X∗〉. Note that the notion of cyclic
equivalence extends readily to the free ∗-algebra.

Lemma 5.17. Let f = f(X1, . . . , Xn, X
∗
1 , . . . , X

∗
n) ∈ F〈X,X∗〉. If f is linear in Xn,

then there exist polynomials g = g(X1, . . . , Xn−1, X
∗
1 , . . . , X

∗
n−1) ∈ F〈X,X∗〉 and

g′ = g′(X1, . . . , Xn−1, X
∗
1 , . . . , X

∗
n−1) ∈ F〈X,X∗〉 such that f

cyc∼ gXn +X∗ng
′.

Proof. The proof is basically the same as the proof of Lemma 5.6. It suffices to con-

sider the case where f is a monomial. If f = mXnm
′ then use mXnm

′−m′mXn =

[mXn,m
′], and if f = mX∗nm

′ then use mX∗nm
′ −X∗nm′m = [m,X∗nm

′].

Our aim now is to obtain versions of Theorem 5.7 for polynomials in F〈X,X∗〉.
The situation is easier for involutions of the second kind, where Lie skew ideals
coincide with Lie ideals.
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Theorem 5.18. Let A be a full matrix algebra with involution of the second kind, let

f ∈ F〈X,X∗〉, and let us write L := span f(A). Then exactly one of the following

four possibilities holds:

(i) f is an identity of A; in this case L = 0;

(ii) f is a central polynomial of A; in this case L = Z;

(iii) f is not an identity of A, but is cyclically equivalent to an identity of A; in

this case L = [A,A];

(iv) f is not a central polynomial of A and is not cyclically equivalent to an identity

of A; in this case L = A.

For an involution of the first kind the situation is somewhat more complicated
since Theorem 5.15 yields eight possible classes.

For the ease of exposition we introduce some notation to be used in the next
theorem. Let A be an algebra endowed with a (fixed) involution ∗. By Id(A) we
denote the set of all polynomial identities of A in F〈X,X∗〉. At this point it seems
appropriate to mention that if an algebra satisfies a nontrivial identity in F〈X,X∗〉,
then it also satisfies a nontrivial identity in F〈X〉 [Ami2]; this is why in the ∗-algebra
context we confine ourselves to the (usual) PI algebras. Next, by Cen(A) we denote
the set of all central polynomials of A in F〈X,X∗〉. Note that Id(A) and Cen(A)
depend on the involution chosen.

Theorem 5.19. Let A be a full matrix algebra with involution of the first kind, let

f ∈ F〈X,X∗〉, and let us write L := span f(A). If dimFA 6= 1, 4, 16, then exactly

one of the following eight possibilities holds:

(i) f ∈ Id(A); in this case L = 0;

(ii) f ∈ Cen(A); in this case L = Z;

(iii) f ∈ SkewF〈X,X∗〉+ Id(A) and f 6∈ Id(A); in this case L = K;

(iv) f ∈ SkewF〈X,X∗〉+ Cen(A) and f 6∈ Cen(A); in this case L = Z +K;

(v) f ∈ SymF〈X,X∗〉 + Id(A), f 6∈ Id(A) and f is cyclically equivalent to an

element of Id(A); in this case L = [S,K];

(vi) f ∈ SymF〈X,X∗〉 + Id(A), f 6∈ Cen(A) and f is not cyclically equivalent to

an element of Id(A); in this case L = S;

(vii) f 6∈ SymF〈X,X∗〉+Id(A), f 6∈ SkewF〈X,X∗〉+Id(A), and f+f∗ is cyclically

equivalent to an element of Id(A); in this case L = [A,A];

(viii) f 6∈ SymF〈X,X∗〉+ Id(A), f 6∈ SkewF〈X,X∗〉+ Id(A), f 6∈ SkewF〈X,X∗〉+
Cen(A) and f + f∗ is not cyclically equivalent to an element of Id(A); in this

case L = A.

Proof. We start by remarking that L is a Lie skew-ideal of A by Theorem 5.11.

Therefore L is either 0, Z, K, [S,K], S, Z + K, [A,A] or A by Theorem 5.15.

We divide the proof into two parts, (a) and (b), depending on whether or not

f + f∗ is cyclically equivalent to an element of Id(A).

(a) Assume that f+f∗ is cyclically equivalent to an identity. Then f = f+f∗

2 +
f−f∗

2 is a sum of an identity, commutators, and a skew-symmetric polynomial, and

hence f(A) ⊆ [A,A] + K ⊆ [A,A] + K. The reader can easily verify K = [K,K].

This forces f(A) ⊆ [A,A], and consequently L ⊆ [A,A].

Recall from the proof of Theorem 5.7 that Z∩[A,A] = 0. Therefore L is neither

Z, Z +K, S nor A. Thus L ∈ {0,K, [S,K], [A,A]}. If f itself is an identity, then of

course (i) holds. Now suppose f is not an identity. If f ∈ SkewF〈X,X∗〉 + Id(A),

then (iii) holds. If f ∈ SymF〈X,X∗〉+ Id(A), then (v) holds. Otherwise (vii) holds.

Let us also point out that f cannot belong to SkewF〈X,X∗〉 + Cen(A) if (vii)

occurs.
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(b) Now assume that f + f∗ is not cyclically equivalent to an identity. Let us

first show that L 6⊆ [A,A]. Suppose this is not true, that is, suppose f(A) ⊆ [A,A].

As a skew-symmetric polynomial, f − f∗ automatically satisfies (f − f∗)(A) ⊆
K ⊆ [A,A]. But then s = f + f∗ = 2f − (f − f∗) has the same property, i.e.,

s(A) ⊆ [A,A]. Suppose that s is linear in Xn. Then Lemma 5.17 tells us that there

exist g = g(X1, . . . , Xn−1, X
∗
1 , . . . , X

∗
n−1) and g′ = g′(X1, . . . , Xn−1, X

∗
1 , . . . , X

∗
n−1)

in F〈X,X∗〉 such that s
cyc∼ gXn + X∗ng

′. It is clear that then (gXn + X∗ng
′)(A) ⊆

[A,A]. Pick a1, . . . , an−1 ∈ A and set

b = g(a1, . . . , an−1, a
∗
1, . . . , a

∗
n−1),

c = g′(a1, . . . , an−1, a
∗
1, . . . , a

∗
n−1).

Then bx+ x∗c ∈ [A,A] for all x ∈ A, and hence also for all x ∈ A. Consequently,

(b+ c∗)x = (bx+ x∗c) + (c∗x− x∗c) ∈ [A,A] +K = [A,A].

Thus wA ⊆ [A,A] where w = b + c∗. As in the proof of Theorem 5.7 we see that

this yields w = 0, i.e.,

g(a1, . . . , an−1, a
∗
1, . . . , a

∗
n−1) + g′(a1, . . . , an−1, a

∗
1, . . . , a

∗
n−1)∗ = 0.

Since the ai’s are arbitrary elements in A, this means that g + g′∗ ∈ Id(A). Thus

s
cyc∼ gXn +X∗ng

′ = (−h∗Xn +X∗ng
′) + (g + g′∗)Xn ∈ SkewF〈X,X∗〉+ Id(A).

Since s = f + f∗ ∈ SymF〈X,X∗〉 and since both SkewF〈X,X∗〉 and Id(A) are

invariant under ∗, we now arrive at the contradiction that s is cyclically equivalent

to an element in Id(A). Recall that this was derived under the assumption that s

is linear in Xn. The general case can be reduced to this one in the same way as in

the proof of Theorem 5.7. Therefore we have indeed L 6⊆ [A,A].

We now know that L ∈ {Z,S,Z + K,A}. If f ∈ Cen(A), then (ii) holds.

Suppose now that f is not a central polynomial. If f ∈ SkewF〈X,X∗〉 + Cen(A),

then (iv) holds. If f ∈ SymF〈X,X∗〉 + Id(A), then (vi) must hold. Otherwise we

have (viii).

Due to the construction of the cases (i) - (viii) it is clear that they are exhaus-

tive and mutually exclusive.

5.3.3. Tracial ∗-Nullstellensätze. We are now in a position to give the tracial Null-
stellensätze for free ∗-algebras:

Corollary 5.20. Let d 6= 1, 2, 4, and let f ∈ F〈X,X∗〉 be a polynomial in n vari-

ables. Fix an involution ∗ on Md(F). If it is of the first kind, assume that f ∈
SymF〈X,X∗〉. Then tr(f(A1, . . . , An, A

∗
1, . . . , A

∗
n)) = 0 for all Ai ∈ Md(F) if and

only if f is cyclically equivalent to an identity of Md(F).

Corollary 5.21 (cf. Theorem 2.1 in [KS]). Let f ∈ F〈X,X∗〉 be a polynomial in

n variables. Fix an involution ∗ on Md(F). If it is of the first kind, assume that

f ∈ SymF〈X,X∗〉. Then tr(f(A1, . . . , An, A
∗
1, . . . , A

∗
n)) = 0 for all Ai ∈Md(F) and

all d ≥ 2 if and only if f
cyc∼ 0.

5.4. Bounded operators on a Hilbert space

Using a similar line of ideas we were able to determine the span of values of poly-
nomials in certain algebras appearing in operator theory in [BK2]. As a sample let
us give the result for bounded operators B(H) and compact operators K(H) on an
infinite dimensional Hilbert space.
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Theorem 5.22. Let H be an infinite dimensional Hilbert space. Then

span f(B(H)) = B(H)

for every nonconstant polynomial f ∈ C〈X〉.

Theorem 5.23. Let H be an infinite dimensional Hilbert space. Then

span f(K(H)) = K(H)

for every nonzero polynomial f ∈ C〈X〉 with zero constant term.

The main new ingredients needed for these proofs are:

• the algebras B(H) and K(H) are isomorphic to the tensor product of them-
selves with an arbitrary full matrix algebra;
• in B(H) and K(H) every element is a sum of commutators;
• if L is both a noncentral Lie ideal and a subalgebra of a simple algebra A,

then L = A.

The first fact is folklore. The second one is not obvious; for B(H) this is a result of
Halmos [Hal], and for K(H) this is due to Pearcy and Topping [PT]. The third one
is a result by Herstein [Her, Theorem 1.2].

5.5. The multilinear tracial Nullstellensatz

This subsection contains our new result, a multilinear tracial Nullstellensatz with
constraints. It is, in our view, a surprising result, in that it uses the theory of
polynomial identities (inherently dimension-dependent) to prove a dimension-free
statement.

Important elements in F〈X〉 are Capelli polynomials C2n−1 defined by

C2n−1(X1, . . . , X2n−1) =
∑
σ∈Sn

(−1)σXσ(1)Xn+1Xσ(2)Xn+2 . . . Xσ(n−1)X2n−1Xσ(n).

They can be used to characterize linear dependence of elements in algebras. The
following result, originally due to Razmyslov, is a special case of [BMM, Theorem
2.3.7].

Theorem 5.24. Let A be a centrally closed prime algebra. Then a1, . . . , an are lin-

early dependent if and only if C2n−1(a1, . . . , an, r1, . . . , rn−1) = 0 for all ri ∈ A.

We refer the reader to [BMM] for the notion of a centrally closed prime algebra.
The only important fact for us, however, is that F〈X〉 is such an algebra. This
follows, for example, from [BMM, Theorem 2.4.4]. Let us also remark that the
“only if” part of Theorem 5.24 actually holds for every algebra. The “if” part is the
nontrivial one.

Theorem 5.25. Let f, f1, . . . , fm ∈ F〈X〉 be multilinear polynomials in the same

variables X1, . . . , Xn. Suppose that for all d ≥ 1 and all A ∈ Md(F)n the following

holds:

tr(f1(A)) = . . . = tr(fm(A)) = 0 ⇒ tr(f(A)) = 0. (5.7)

Then f is cyclically equivalent to a linear combination of f1, . . . , fm.

Proof. By Lemma 5.6, every multilinear polynomial in variables X1, . . . , Xn is cycli-

cally equivalent to a polynomial of the form gXn where g is a multilinear polynomial

in X1, . . . , Xn−1. Therefore there is no loss of generality in assuming that f is ac-

tually equal to gXn, and fi is equal to giXn for every i, where g, g1, . . . , gm are

multilinear polynomials in X1, . . . , Xn−1. Under this assumption we will actually

show that f is a linear combination of f1, . . . , fm. Without loss of generality we may

also assume that f1, . . . , fm are linearly independent.
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We temporarily fix d ≥ 1 and A1, . . . , An−1 ∈Md(F). Let us set

B = g(A1, . . . , An−1), Bi = gi(A1, . . . , An−1).

According to our assumption we see that for every T ∈Md(F),

tr(B1T ) = . . . = tr(BmT ) = 0 ⇒ tr(BT ) = 0.

This shows that if T is orthogonal to B1, . . . , Bm with respect to the inner product

〈S, T 〉 = tr(ST ∗), then T is orthogonal to B. Hence it follows that B lies in the linear

span of B1, . . . , Bm. Applying the “only if” part of Theorem 5.24 for A = Md(F) it

follows that

C2m+1(B,B1, . . . , Bm, R1, . . . , Rm) = 0

for all R1, . . . , Rm ∈Md(F). Recalling the definition of B,Bi we see that this actu-

ally means that

C2m+1(f, f1, . . . , fm, Xn+1, . . . , Xn+m)

is an identity of Md(F) for any d ≥ 1. It is well known that a nonzero polynomial

cannot be an identity of Md(F) for every d ≥ 1. Therefore

C2m+1(f, f1, . . . , fm, Xn+1, . . . , Xn+m) = 0.

As this is an identity in the free algebra, we may replace Xi by any other member

in F〈X〉. Accordingly,

C2m+1(f, f1, . . . , fm, h1, . . . , hm) = 0

for all h1, . . . , hm ∈ F〈X〉. We may now use the “if” part of Theorem 5.24 for

A = F〈X〉, and conclude that f, f1, . . . , fm are linearly dependent. As f1, . . . , fm
are linearly independent by assumption, this yields the desired result.

Example 5.26. An obvious attempt at a strengthening of Theorem 5.25 fails. Let

f1 = X1X2 −X2X1 − 1.

For every d ∈ N and A1, A2 ∈ Md(F), tr(f1(A1, B1)) = d 6= 0. Thus (5.7) holds for

all f ∈ F〈X〉. However not every f is cyclically equivalent to a multiple of f1. For

instance, consider f = X1. If

f =
∑
i

[pi, qi] + λf1 (5.8)

for some p1, qi ∈ F〈X〉 and λ ∈ F, then setting all variables but X1 to 0, (5.8) yields

X1 = f = −λ ∈ F, a contradiction.
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