TRACE-POSITIVE POLYNOMIALS

IGOR KLEP

ABSTRACT. In this paper positivity of polynomials in free noncommuting
variables in a dimension-dependent setting is considered. That is, the images
of a polynomial under finite-dimensional representations of a fixed dimension
are investigated. It is shown that unlike in the dimension-free case, every
trace-positive polynomial is (after multiplication with a suitable denomina-
tor - a hermitian square of a central polynomial) a sum of a positive semi-
definite polynomial and commutators. Together with our previous results
this yields the following Positivstellensatz: every trace-positive polynomial
is modulo sums of commutators and polynomial identities a sum of hermit-
ian squares with weights and denominators. Understanding trace-positive
polynomials is one of the approaches to Connes’ embedding conjecture.

1. INTRODUCTION

Interest in positivity questions involving noncommutative polynomials has
been recently revived by Helton’s seminal paper [He], in which he proved that a
polynomial is a sum of squares if and only if its values in matrices of any size are
positive semidefinite. Considering polynomials with positive trace, Schweighofer
and the author [KS| Theorem 1.6] observed that Connes’ embedding conjecture
[Col, §V, pp. 105-107] on type II; von Neumann algebras is equivalent to a
problem of describing polynomials whose values at tuples of self-adjoint d x d
matrices (of norm at most 1) have nonnegative trace for every d > 1. This result
is the motivation for the present work. Here we investigate polynomials whose
values at tuples of d x d matrices have nonnegative trace for a fized d > 1. We
show that such a polynomial is (after multiplication with a hermitian square
of a suitable central polynomial) a sum of commutators and of a polynomial
whose values at tuples of d x d matrices are positive semidefinite. The latter
were characterized in [KU] leading us to the following Positivstellensatz: every
polynomial with nonnegative trace on d x d matrices is modulo sums of commu-
tators and polynomial identities for d x d matrices a sum of hermitian squares
with weights and denominators; see 4] for the precise formulation.
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The organization of this paper is follows: introduces main notions and
interprets them in full matrix algebras, in §3] these notions are considered for
free algebras, while our main results are presented in §4]

2. BASIC NOTIONS AND A MOTIVATING EXAMPLE

Let R be an associative ring with 1 and involution a — a* (i.e., (a + b)* =
a* 4+ b*, (ab)* = b*a* and a™ = a for all a,b € R). Then we denote by
SymR = {a € R | a = a*} its set of symmetric elements. Elements of the
form a*a and ab—ba (a,b € A) are called hermitian squares and commutators,
respectively. We introduce an equivalence relation (cyclic equivalence) on R

by declaring a X b if and only if @ — b is a sum of commutators in R. For
notational convenience we write

EQR::{Zafa”aiER} CSymR, ©%’R:= {a€R|EIb622R:a%Cb}

for the sets of (finite) sums of hermitian squares, and sums of hermitian squares
and commutators in R, respectively.

Throughout this paper k will denote R or C.

2.1. Matrices. For a concrete example of these notions consider the ring R =
My(k) of real or complex square matrices of a fixed size d > 1 endowed with
the usual (complex conjugate) transposition of matrices, denoted here by .
Using > to denote the Lowner partial order (i.e., A = B iff A — B is positive
semidefinite), it is easy to see that for A € My(k), we have

(A) A =0if and only if A € %2 My(k);

(B)  tr(A) =0 if and only if A L 0 in Mg(k);

(C)  tr(A) > 0if and only if A € ©2My(k).

Let us determine multiplication by which matrices respects these properties.
Lemma 2.1. Suppose A € M;(k) is such that for all B € Mgy(k),
B~0 = AB>O0. (1)
Then A = ) for some A € Rx>g.

Proof. Using (1) with B = 1, we obtain A > 0. In particular, A = A*.

Again by , A commutes with all positive semidefinite matrices, hence
with all symmetric matrices, which are differences of two positive semidefinite
matrices by

1 1
B=>(B+1)?>—->(B-1)72
(B - (B 1)
So A is scalar and the desired conclusion follows. n

Lemma 2.2. Suppose A € M,(k) is such that for all B € Mgy(k),
tr(B)=0 = tr(AB)=0. (2)
Then A = )\ for some \ € k.
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Proof. Write A = [aij]?,j:r Let ¢ # j. Then B = AE;; has zero trace for every

A € k. (Here Ej; denotes the d x d matriz unit with a one in the (4, j)-position
and zeros elsewhere.) By (2)), this implies
)\al-j = tr(AB) =0.

Since A € k was arbitrary, a;; = 0.
Now let B = A(E;; — Ejj). Clearly, tr(B) = 0 and hence

Maii — aj;) = tr(AB) = 0.
As before, this gives a;; = a;j;. [ ]
Lemma 2.3. Suppose A € My(k) is such that for all B € My(k),
tr(B) >0 = tr(AB)>0. (3)
Then A = )\ for some A € Rx>g.

Proof. By Lemma A is scalar. In addition to that, a; = tr(AE;) > 0 by
, showing that A must be a nonnegative multiple of the identity. |

Likewise we can characterize matrices which map positive semidefinite ma-
trices into matrices with nonnegative trace:

Lemma 2.4. Suppose A € My(k) is such that for all B € My(k),
B»0 = tr(AB)>0. (4)
In the case k = R, assume moreover that A = A*. Then A = 0.

Proof. This is just a restatement of the well-known self-duality of the cone of
all positive semidefinite matrices. For v € k% let B = vv* = 0. Then

0 < tr(AB) = tr(Avv*) = tr(v*Av) = (Av, v)
showing A is positive semidefinite. [

We remark that converses of Lemmas 2.1] - 2.4] hold as well.

3. POSITIVITY IN FREE ALGEBRAS

3.1. Words and polynomials. Fix n € N. Let X = (Xj,...,X,) and
X* = (X{,...,X}) denote tuples of n distinct variables (or letters). By
(X, X*) we denote the free monoid on {X, X*} (consisting of words in X, X*)
and let k(X, X*) be the semigroup algebra of (X, X™*) over k (consisting of
polynomials in noncommuting variables X and X* with coefficients in k). We
endow k(X, X*) with the involution p — p* mapping X; — X7 and extending
complex conjugation on k. Thus k(X, X*) is the free x-algebra on X over k.
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3.2. Cyclic equivalence. It is well-known and easy to see that trace-zero ma-
trices are sums of commutators, i.e., cyclically equivalent to 0. Cyclic equiva-
lence can also be easily tested in k(X, X*):

(a) For v,w € (X, X*), we have v X w if and only if there are vy, vy € (X, X*)
such that v = vjv9 and w = wvyvy. That is, v X w if and only if w is a
cyclic permutation of v.

(b) Polynomials f = 3", ¢/ x x+ @ww and g = >, cx y+ buw (aw, bw € k) are
cyclically equivalent if and only if for each v € (X, X*),

Z Aoy = Z bw- (5)

we(X,X*) we(X,X*)

cyc cyc
w N~ v w A v

3.3. Evaluations and representations. Let d € N. An n-tuple of matrices
A € (Mg(k))™ gives rise to a x-representation

eva  k(X, X™) = My(k), p— p(4, A7) (6)

We are interested in the values of a fized element f € k(X, X™*) under all
these x-representations. If the size d of the matrices A; is free, we talk about
dimension-free properties, otherwise we call them dimension-dependent. We
are mostly interested in the latter, but briefly review the former for the sake of
completeness.

3.4. Dimension-freeness. Free analogs of properties (A) and (B) have been
established, while a free version of (C) is closely related to an important open
problem on operator algebras due to Connes; see below for further details.

Let f € Symk(X, X*).

(A)free f(A,A*) = 0 for all d € N and all A € My(k)" if and only if f €
22 E(X, X*);

(B)free  tr(f(A4,A4%)) = 0 for all d € N and all A € My(k)" if and only if
FX0in kX, X*).

Here, (A)fe¢ is due to Helton [He] (see also [Md, MP]), and (B)™*® was given
by the author and Schweighofer in [KS, Theorem 2.1]; see also [CD, Lemma
2.9] for a proof inspired by free probability. For a recent study of trace-positive
polynomials in a dimension-free setting see also [NTJ.

The obvious extension of (C) fails: there are f € Symk(X, X*) with posi-
tive trace everywhere, but still not cyclically equivalent to a sum of hermitian
squares. The following is a variant of the noncommutative Motzkin polynomial
[KS| Example 4.4] given in free (nonsymmetric) variables.

Example 3.1. Let X denote a single free variable and
My :=3X* = 3(XX*)2 —4X5X* — 2X3(X*)3
+2X2X*X(X*)2 42X (X2 X X* + 2(X X*)3.
Then the noncommutative Motzkin polynomial is

M :=1+ My + M € Symk(X, X*).
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It is trace-nonnegative everywhere since

Y +iZ Y —iZ
M’::YZ4Y+ZY4Z—3YZQY+1“?3M< J;n , 2]1 >€k<KZ>

is trace-nonnegative on symmetric matrices [KS, Example 4.4]. Alternatively,
M(X3,(X*)3) € ©2k(X, X*). On the other hand, M ¢ @2k<X,X*)E|

Connes’ embedding conjecture [Col, §V, pp. 105-107] states that every sepa-
rable IT;-factor is embeddable in an ultrapower of the hyperfinite I1;-factor. As
shown in [KS], understanding trace-positive polynomials in the dimension-free
setting is the key to this problem as it is equivalent [KS| Theorem 1.6] to the
following:

Conjecture 3.2 (Algebraic version of Connes’ conjecture [KS, Conjecture 1.5]).
For f € Symk(X, X*) the following are equivalent:
(i) tr (f(A4,A%)) >0 for all d € N and all tuples of contractions A € Mq(k)";
(ii) for every e € Rsg, f+ ¢ is cyclically equivalent to an element of the form
D sysi+ Y vyl = X! Xy,
J i
where sj,p;; € k(X, X¥).

In the sequel we indicate an approach to this problem “from below”. That
is, we abandon the dimension-free setting and solve a Hilbert 17-type problem
characterizing polynomials with nonnegative trace in a dimension-dependent
setting. It is our belief that this might constitute an important step towards (a
positive or negative resolution of) Connes’ embedding conjecture.

4. DIMENSION-DEPENDENT POSITIVITY

The properties (A) and (B) for free algebras in a dimension-dependent setting
are well understood due to our previous work [BKl [KUJ]. Roughly speaking,
a trace-zero polynomial is cyclically equivalent to a polynomial identity [BK,
§4], and a positive semidefinite polynomial is a sum of hermitian squares with
denominators and weights [KU, §5]. In this section property (C) is explored
and we present our main result, a Positivstellensatz characterizing polynomials
with nonnegative trace on all tuples of d x d matrices for fixed d. This is done
in §4.3] Before that we recall generic matrices and universal division algebras
with involution in and take a look at polynomial preservers of the various
notions of positivity in §4.2]

4.1. Generic matrices and universal division algebras. We assume the
reader is familiar with the theory of polynomial identities as presented e.g. in
[Pr1l Ro]. We review the notion of generic matrices and universal division
algebras with involution and refer the reader to [Pr2] [PS] for details.
Let ¢ = (W 1 <ij<di<t<nmandl:=(CP|1<ij<
d, 1 < ¢ < n) denote commuting variables. To keep the notation uniform, let

LSome of these computations were done with the aid of two computer algebra systems:
NCS0Stools| [CKP| and NCAlgebra [HOMS].


http://ncsostools.fis.unm.si
http://www.math.ucsd.edu/~ncalg
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¢:=(if k=Rand ¢ := (C, ¢) otherwise. Form the polynomial x-algebra k[¢]
endowed with the involution extending complex conjugatlon on k and fixing

CZ(j) pointwise (if £ = R), respectively sending (ij — Ci(f (if £ = C). Consider
the d x d matrices Y, := [gi(f)]lgi,jgd € My(k[¢]), £ € N. Each Y} is called
a generic matriz. The (unital) k-subalgebra of My(k[(]) generated by the Y
and their (complex conjugate) transposes is the ring of generic matrices with
involution GMg4(k). Equivalently, GMg(k) = k(X, X™*)/t4, where t; C k(X, X*)
is the T-ideal of polynomial identities for d x d matrices.

For d > 2, GMy4(k) is a prime PI algebra and a domain (cf. [PS, §I1]). Hence
its central localization is a central simple algebra UD4(k) with involution, which
we call (by an abuse of notation) the universal division algebra. Relating these
notions to *-representations of the free x-algebra is the following commutative
diagram: for d € N and A € My(k)"™ let R4 denote all the elements of UDg4(k)
which are regular at A. Then:

ev A

k(X, X™) Mq(k)

!
| 5

GMy(k)e—~"—— UDy4(k

For a more geometric viewpoint of the ring of generic matrices and the uni-
versal division algebra we refer the reader to [Pr2, [Sa]. The standard textbook
on central simple algebras with involution is [KMRT].

4.2. Polynomial preservers. In this subsection we present versions of Lem-
mas [2.1] - 2.4 in the context of free x-algebras. To avoid trivialities, we assume
throughout that d > 2.

Lemma 4.1. Suppose f € k(X, X*) is such that for all g € k(X, X*),
g = 0ondxdmatrices = fg > 0ond X d matrices. (7)

Then f is a central polynomial positive semidefinite on d x d matrices.

Proof. Using with g = 1, we see f is positive semidefinite on d x d matrices.
Thus there is no harm in assuming f = f*.

Again by , fg — gf vanishes on all d x d matrices for all polynomials g
of the form g = h*h. That is, [f, g] is a polynomial identity of d x d matrices.
Now the same holds true for all symmetric g as

2[f, 91+ [f, 9%l = [f, 1 + 9)]

is a polynomial identity by the above. Hence f commutes (modulo the T-ideal
of identities) with all symmetric polynomials.

Every element of UD4(k) can be represented as rs~! for some r, s € GMg4(k)
with s = s* € Z(GMy(k)). Such an element is symmetric iff » = r*. So 7(f)
commutes with all symmetric elements of UDg4(k). By Dieudonné’s theorem
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[Di, Lemma 1], the latter generate UDg4(k). Hence w(f) € Z(UDy(k)) and f is
indeed a central polynomial.

(Note: once we have established that f commutes with all symmetric poly-
nomials, an easier argument is available if £ = C. In this case one immediately
obtains that f also commutes with all skew symmetric polynomials as these are
all of the form 1g for symmetric g.) [

Lemma 4.2. Suppose f € k(X, X*) is such that for all g € k(X, X*),
tr(g) =0 on d x d matrices = tr(fg) =0 on d X d matrices.  (8)
Then f is a central polynomial.

Proof. Let g = [hy, ho] for some h; € k(X, X*). Then

fg = flhi, ha] = [f, hiha] + [ha, fha] + halhe, f]. 9)
Since tr(g) = 0 on all d x d matrices, this implies tr(hi[hs, f]) = 0 on d x d
matrices. Fix he and denote r := [hg, f]. Then r satisfies the following:

tr(pr) = 0 on d x d matrices

for all p € k(X, X™*). Taking p = —r* leads to — tr(r*r) = 0 and hence, r = 0
on all d x d matrices. That is, r is an identity of d x d matrices. As r = [ha, f]
and ho was arbitrary, this implies f is a central polynomial. ]

Lemma 4.3. Suppose f € k(X, X*) is such that for all g € k(X, X*),
tr(g) > 0 on d x d matrices = tr(fg) > 0 on d x d matrices. (10)

Then f is a central polynomial positive semidefinite on d x d matrices.

Proof. If tr(g) = 0, then by (10), tr(fg) > 0 and tr(—fg) > 0 on d x d matrices.
That is, tr(fg) = 0. Now by Lemma f is a central polynomial.

Applying with g = 1 yields f(A4,A*) = tr (f(A,A4%)) > 0 for all 4 €
M (k)™ showing f is positive semidefinite on d x d matrices. (]

Likewise we can characterize polynomials which map positive semidefinite
polynomials into trace-nonnegative ones. At the same time this indicates how
to build examples of trace-nonnegative polynomials. As we shall see in the next
subsection, the procedure is essentially exhaustive.

Lemma 4.4. Suppose f € Sym k(X, X*) is such that for all g € k(X, X*),
g >~ 0ondxdmatrices = tr(fg) >0 on d x d matrices. (11)

Then f is positive semidefinite on d X d matrices.

Proof. Assume [ is not positive semidefinite on d x d matrices. Then there
exists an n-tuple A = (Ay, ..., A4,) € Mg(k)" with

f(A,A%) 0. (12)

Let A C My(k) denote the x-subalgebra generated by the A4y, ..., A,. Since the
hermitian square of a nonzero matrix is not nilpotent, A is semisimple. By the
Artin-Wedderburn theorem, A is *-isomorphic to a direct sum of full matrix
algebras. We distinguish two cases.
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Cask 1: if k = C, then there is a *-isomorphism
A= @My (©) (13)
j=1

for some d; € C, and Zj d; < d. This induces a block diagonalization of the
A; as follows:

Aj = s AjJC S Mdk ((C)
Ajs
By (12), there is a j such that A¢y = (Aij,...,An;) € Mg, (C)" satisfies
f(A(j),AE‘j)) % 0. Choose u € C% with

(f(Ay), AGjyu,uw) <0. (14)
There is a B € Mg, (C) with Be; g, = u for all i = 1,...d;. (Here e; 4, are the
standard basis vectors for C%.) By the construction of A and (I3), there is a

h € C(X, X*) with h(A(;), Af;)) = B. Let g = hh*. Then

tr ((f9)(Ag), A7) = (B FR)(Ay), A7)

dj

= Y WAy, AL F(AG), A)h(AG), Alj)eid; €id;)
i=1
dj

= > (f(Ay), Af;) Beig,, Beig,) (15)
i=1
dj
i=1

As this contradicts our assumption , we conclude f > 0 on d x d matrices.
CASE 2: if £ = R, the reasoning is the same with a minor technical modifi-

cation. Let .
A= PMy,(R) © P M., (C) & @ My, (H) (16)
j=1 k=1 =1

for some dj, ey, fr € N. If there is a tuple A € Mgy, (R)" with f(4, A*) % 0, we
proceed as in Case 1. If there is a A € M, (C)" with 0 A f(4,A4%) € M, (C),
we proceed as follows. Let V' be the invariant subspace of R% corresponding
to the action of M, (C). There is a u € V with (f(A4,A*)u,u) < 0. Pick a
basis (over C) {v1,...,v¢,} of V and let B € M, (C) satisfy Bv; = u for all
j. Choose h € R(X, X*) with h(A,A*) = B and g = hh*. Then the complex
trace z of (fg)(A, A*) is negative by the same computation as in (15]). Hence
the real trace satisfies
r ((f9)(4,47) = 1=

The remaining case of quaternion matrices is dealt with similarly. We leave
this as an exercise for the reader. ]

< 0.
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It is clear that converses of Lemmas - A4 hold true. Also, with the
exception of (|11)) which is satisfied when f is a sum of hermitian squares, there
are no nonconstant dimension-free polynomial preservers.

4.3. The dimension-dependent tracial Positivstellensatz. Our main tool
for describing trace-nonnegative polynomials is the following proposition de-
duced from the properties of the reduced trace [KMRT, §1] on UD4(k).

Proposition 4.5. For every f € k(X, X*) and d € N there exists a nonvanish-
ing central polynomial for d x d matrices ¢ € k(X, X™*) such that cf is cyclically
equivalent to a central polynomial. That is,

cf T (17)
for some central polynomial c.
Proof. Consider F := «(m(f)) € UD4(k). So Trd(F') € Z(UDy(k)) and there is

a nonvanishing central polynomial ¢y € k(X, X*) and a central polynomial
with

Trd(F) = 7(cp)m(co) L. (18)
Since Trd is Z(UDg(k))-linear, this yields Trd(7(co f—cj)) = 0. By the Amitsur-
cyc

Rowen result [AR, Theorem 2.4], w(cof — ¢;) ~ 0in UDg4(k). Clearing denom-
inators shows

m(ef =) L0 (19)
in GMy(k) for a nonvanishing central polynomial ¢ and a central polynomial
. Lifting to k(X, X*) gives the desired conclusion: ¢f X ¢/ [

Remark 4.6. Instead of the Amitsur-Rowen result used in this proof, we can
apply the tracial Nullstellensatz [BK| Theorem 5.2]: once Trd(m(cof —¢f))) =0

has been established, by clearing denominators we obtain tr(m(coc” f—cyc”)) = 0

Cq. . cyc .
for some nonvanishing central polynomial ¢””. Hence 7(cocd” f — /¢”’) ~ 0 in

GMgy(k) by [BKlL Theorem 5.2]. As before, lifting this relation to (X, X™)
yields the desired conclusion.

We are now ready to give our main results characterizing trace-nonnegative
polynomials.

Theorem 4.7. Let k € {R,C} and suppose f € Symk(X, X*) satisfies
tr (f(4,4%)) >0 (20)

for all A € My(k)"™. Then there is a nonvanishing central polynomial for d x d
matrices ¢ € k(X,X*) such that cfc* is cyclically equivalent to a polynomial
g € k(X, X™) that is positive semidefinite on d x d matrices, i.e.,

cfe* L g and g0 ondxd matrices. (21)

Proof. This is a consequence of Proposition Indeed, there is a nonvanishing
central polynomial ¢ with

cf T (22)
for a central polynomial ¢’. Multiplying with ¢* (from the right) shows

cfet X der. (23)
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For any A € My(k)™,
(c(A, A7) f(A, A)c(A, A7)") = tr(c (A, A%)c(4, A7)")
((de)(4,A7)) = (<) (4, A).

So g := d¢* is a (central) polynomial positive semidefinite on d x d matrices
satisfying

| /\

tr
N 24)

cyc
cfc® ~ g. [

Remark 4.8. The proof shows that g in Theorem [£.7] can actually be taken to
be a central polynomial.

Combining Theorem [4.7| with the dimension-dependent Positivstellensatz for
positive semidefinite polynomials ([PS, Theorem 5.4] or [KU, Theorem 5.4])
yields:

Corollary 4.9. Choose ai,...,an € (X, X*) whose images in GMq4(k) form
a diagonalization of the quadratic form Trd(z*z) on UDy(k). Then for f €
Sym k(X, X*) the following are equivalent:
(i) tr(f(A, 4)) > 0 for every A € My(k)";
(ii) there exists a nonvanishing central polynomial ¢ € k(X, X*), a polynomial
identity h € k(X, X*) for d x d matrices, and p;. € k(X,X*) with

cfes Tht Y o> plpie. (25)
ee{0,1}m i
Remark 4.10. For experts we mention that (by applying the reduced trace to
(25)) we can reformulate as follows:
cfe LT h+t, (26)
where ¢, h are as above, and ¢ belongs to the preordering in Z(UDy(k)) gener-
ated by the «;.

If d = 2 the weights «; are superfluous since the reduced trace of a hermitian
square is a sum of hermitian squares in this case (cf. [PS p. 405] or [KUl §4])
and Corollary [4.9] simplifies as follows:

Corollary 4.11. For f € Symk(X, X*) the following are equivalent:
(i) tr(f(A,A%)) =0 for every A € Ma(k)";

(ii) there exists a monvanishing central polynomial ¢ € k(X, X*), and a poly-
nomial identity h € k(X, X™*) for 2 x 2 matrices, such that

cfc* € h+ 0% k(X, X™"). (27)

Example 4.12. We finish this presentation with an example showing denom-
inators are necessary for these results to hold. First of all, the Motzkin poly-
nomial M from Example is not cyclically equivalent to a sum of hermitian
squares modulo a T-ideal of identities. Indeed, if

M h+> gig (28)
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for some g; € k(X,X*) and a polynomial identity h € k(X, X*) for d x d
matrices (d > 2), then

e ([0 73))) - S (o ([ 2 7))

where M. € R[Y, Z] denotes the commutative collapse Y4Z2+Y?27Z4-3Y2 7241
of the noncommutative variant M’ of the Motzkin polynomial (in symmetric
variables). Since M, is not a sum of squares in R[Y, Z], and the trace of a
hermitian square is a sum of squares, M does not satisfy a relation of the form
(28). Hence a denominator is needed in Corollaries and

A little more work is required to show the necessity of the denominator in
Theorem Let d € N be sufficiently large (any d > 127 = the dimension of
the vector space of all polynomials in X, X* of degree < 6 will do). Suppose
M is cyclically equivalent to a polynomial g that is positive semidefinite on
d x d matrices. Without loss of generality, g € Symk(X, X*). Choose g of
smallest possible degree. If this degree is > 6, then the highest homogeneous
component ¢(>) of ¢ is positive semidefinite on d x d matrices and at the
same time ¢(>) 0. Hence tr (g(oo)) = 0 on d x d matrices implying ¢(*) is a
polynomial identity. Then M X (g— g("o)), g—g(®) is positive semidefinite and
of degree smaller than g. This contradicts the minimality of g, so deg(g) < 6.

Now g is positive semidefinite on d X d matrices for some d > 127 and is thus
a sum of hermitian squares by Helton’s sum of squares theorem [He|. But M is
not cyclically equivalent to a sum of hermitian squares by the first part of this
example.

Acknowledgments. The author thanks Matej Bresar for enlightening conversations
and insightful comments.
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