TRACE-POSITIVE POLYNOMIALS

IGOR KLEP

Abstract. In this paper positivity of polynomials in free noncommuting variables in a dimension-dependent setting is considered. That is, the images of a polynomial under finite-dimensional representations of a fixed dimension are investigated. It is shown that unlike in the dimension-free case, every trace-positive polynomial is (after multiplication with a suitable denominator - a hermitian square of a central polynomial) a sum of a positive semidefinite polynomial and commutators. Together with our previous results this yields the following Positivstellensatz: every trace-positive polynomial is modulo sums of commutators and polynomial identities a sum of hermitian squares with weights and denominators. Understanding trace-positive polynomials is one of the approaches to Connes' embedding conjecture.

1. INTRODUCTION

Interest in positivity questions involving noncommutative polynomials has been recently revived by Helton's seminal paper [\[He\]](#page-10-0), in which he proved that a polynomial is a sum of squares if and only if its values in matrices of any size are positive semidefinite. Considering polynomials with positive trace, Schweighofer and the author [\[KS,](#page-10-1) Theorem 1.6] observed that Connes' embedding conjecture [\[Co,](#page-10-2) γ], pp. 105–107] on type II₁ von Neumann algebras is equivalent to a problem of describing polynomials whose values at tuples of self-adjoint $d \times d$ matrices (of norm at most 1) have nonnegative trace for every $d \geq 1$. This result is the motivation for the present work. Here we investigate polynomials whose values at tuples of $d \times d$ matrices have nonnegative trace for a fixed $d \geq 1$. We show that such a polynomial is (after multiplication with a hermitian square of a suitable central polynomial) a sum of commutators and of a polynomial whose values at tuples of $d \times d$ matrices are positive semidefinite. The latter were characterized in [\[KU\]](#page-11-0) leading us to the following Positivstellensatz: every polynomial with nonnegative trace on $d \times d$ matrices is modulo sums of commutators and polynomial identities for $d \times d$ matrices a sum of hermitian squares with weights and denominators; see $\S 4$ $\S 4$ for the precise formulation.

Date: 10 February 2011.

²⁰¹⁰ Mathematics Subject Classification. Primary 16W10, 13J30; Secondary 11E25, 16R50. Key words and phrases. free algebra, noncommutative polynomial, central simple algebra, (reduced) trace, polynomial identity, involution, central polynomial, quadratic form, free positivity.

¹Supported by the Slovenian Research Agency (project no. J1-3608 and program no. P1- 0222).

The organization of this paper is follows: §[2](#page-1-0) introduces main notions and interprets them in full matrix algebras, in §[3](#page-2-0) these notions are considered for free algebras, while our main results are presented in §[4.](#page-4-0)

2. Basic notions and a motivating example

Let R be an associative ring with 1 and *involution* $a \mapsto a^*$ (i.e., $(a + b)^* =$ $a^* + b^*$, $(ab)^* = b^*a^*$ and $a^{**} = a$ for all $a, b \in R$). Then we denote by Sym $R := \{a \in R \mid a = a^*\}$ its set of *symmetric* elements. Elements of the form a^*a and $ab - ba$ $(a, b \in A)$ are called *hermitian squares* and *commutators*, respectively. We introduce an equivalence relation (cyclic equivalence) on R by declaring $a \stackrel{\text{cyc}}{\sim} b$ if and only if $a - b$ is a sum of commutators in R. For notational convenience we write

$$
\Sigma^2 R := \left\{ \sum a_i^* a_i \mid a_i \in R \right\} \subseteq \text{Sym} \, R, \quad \Theta^2 R := \left\{ a \in R \mid \exists b \in \Sigma^2 R : a \stackrel{\text{cyc}}{\sim} b \right\}
$$

for the sets of (finite) sums of hermitian squares, and sums of hermitian squares and commutators in R, respectively.

Throughout this paper k will denote $\mathbb R$ or $\mathbb C$.

2.1. **Matrices.** For a concrete example of these notions consider the ring $R =$ $M_d(k)$ of real or complex square matrices of a fixed size $d \geq 1$ endowed with the usual (complex conjugate) transposition of matrices, denoted here by ∗. Using \succeq to denote the Löwner partial order (i.e., $A \succeq B$ iff $A - B$ is positive semidefinite), it is easy to see that for $A \in M_d(k)$, we have

- (A) $A \succeq 0$ if and only if $A \in \Sigma^2 M_d(k)$;
- (B) $tr(A) = 0$ if and only if $A \stackrel{\text{cyc}}{\thicksim} 0$ in $M_d(k)$;
- (C) tr(A) > 0 if and only if $A \in \Theta^2 M_d(k)$.

Let us determine multiplication by which matrices respects these properties.

Lemma 2.1. Suppose $A \in M_d(k)$ is such that for all $B \in M_d(k)$,

$$
B \succeq 0 \quad \Rightarrow \quad AB \succeq 0. \tag{1}
$$

Then $A = \lambda$ for some $\lambda \in \mathbb{R}_{\geq 0}$.

Proof. Using [\(1\)](#page-1-1) with $B = 1$, we obtain $A \succeq 0$. In particular, $A = A^*$.

Again by [\(1\)](#page-1-1), A commutes with all positive semidefinite matrices, hence with all symmetric matrices, which are differences of two positive semidefinite matrices by

$$
B = \frac{1}{4}(B+1)^2 - \frac{1}{4}(B-1)^2.
$$

So A is scalar and the desired conclusion follows.

Lemma 2.2. Suppose $A \in M_d(k)$ is such that for all $B \in M_d(k)$,

$$
tr(B) = 0 \Rightarrow tr(AB) = 0.
$$
 (2)

Then $A = \lambda$ for some $\lambda \in k$.

Proof. Write $A = [a_{ij}]_{i,j=1}^d$. Let $i \neq j$. Then $B = \lambda E_{ij}$ has zero trace for every $\lambda \in k$. (Here E_{ij} denotes the $d \times d$ matrix unit with a one in the (i, j) -position and zeros elsewhere.) By [\(2\)](#page-1-2), this implies

$$
\lambda a_{ij} = \text{tr}(AB) = 0.
$$

Since $\lambda \in k$ was arbitrary, $a_{ij} = 0$.

Now let $B = \lambda (E_{ii} - E_{jj})$. Clearly, $\text{tr}(B) = 0$ and hence

$$
\lambda(a_{ii} - a_{jj}) = \text{tr}(AB) = 0.
$$

As before, this gives $a_{ii} = a_{jj}$.

Lemma 2.3. Suppose $A \in M_d(k)$ is such that for all $B \in M_d(k)$,

$$
\text{tr}(B) \ge 0 \quad \Rightarrow \quad \text{tr}(AB) \ge 0. \tag{3}
$$

Then $A = \lambda$ for some $\lambda \in \mathbb{R}_{\geq 0}$.

Proof. By Lemma [2.2,](#page-1-3) A is scalar. In addition to that, $a_{ii} = \text{tr}(AE_{ii}) \geq 0$ by [\(3\)](#page-2-1), showing that A must be a nonnegative multiple of the identity.

Likewise we can characterize matrices which map positive semidefinite matrices into matrices with nonnegative trace:

Lemma 2.4. Suppose $A \in M_d(k)$ is such that for all $B \in M_d(k)$,

$$
B \succeq 0 \quad \Rightarrow \quad \text{tr}(AB) \ge 0. \tag{4}
$$

In the case $k = \mathbb{R}$, assume moreover that $A = A^*$. Then $A \succeq 0$.

Proof. This is just a restatement of the well-known self-duality of the cone of all positive semidefinite matrices. For $v \in k^d$ let $B = vv^* \succeq 0$. Then

$$
0 \le \text{tr}(AB) = \text{tr}(Avv^*) = \text{tr}(v^*Av) = \langle Av, v \rangle
$$

showing A is positive semidefinite.

We remark that converses of Lemmas [2.1](#page-1-4) - [2.4](#page-2-2) hold as well.

3. Positivity in free algebras

3.1. Words and polynomials. Fix $n \in \mathbb{N}$. Let $\underline{X} := (X_1, \ldots, X_n)$ and $\underline{X}^* := (X_1^*, \ldots, X_n^*)$ denote tuples of *n* distinct variables (or letters). By $\langle \underline{X}, \underline{X}^* \rangle$ we denote the free monoid on $\{\underline{X}, \underline{X}^*\}$ (consisting of words in $\underline{X}, \underline{X}^*$) and let $k\langle \underline{X}, \underline{X}^* \rangle$ be the semigroup algebra of $\langle \underline{X}, \underline{X}^* \rangle$ over k (consisting of polynomials in noncommuting variables \underline{X} and \underline{X}^* with coefficients in k). We endow $k\langle \underline{X}, \underline{X}^* \rangle$ with the involution $p \mapsto p^*$ mapping $X_j \mapsto X_j^*$ and extending complex conjugation on k. Thus $k\langle X, X^*\rangle$ is the free *-algebra on X over k.

3.2. Cyclic equivalence. It is well-known and easy to see that trace-zero matrices are sums of commutators, i.e., cyclically equivalent to 0. Cyclic equivalence can also be easily tested in $k\langle X, X^* \rangle$:

- (a) For $v, w \in \langle \underline{X}, \underline{X}^* \rangle$, we have $v \stackrel{\text{cyc}}{\sim} w$ if and only if there are $v_1, v_2 \in \langle \underline{X}, \underline{X}^* \rangle$ such that $v = v_1v_2$ and $w = v_2v_1$. That is, $v \stackrel{\text{cyc}}{\sim} w$ if and only if w is a cyclic permutation of v.
- (b) Polynomials $f = \sum_{w \in \langle X, X^* \rangle} a_w w$ and $g = \sum_{w \in \langle X, X^* \rangle} b_w w$ $(a_w, b_w \in k)$ are cyclically equivalent if and only if for each $v \in \langle \overline{X}, \overline{X}^* \rangle$,

$$
\sum_{\substack{w \in \langle \underline{X}, \underline{X}^* \rangle \\ w \subset \Sigma^c \\ w \subset \Sigma}} a_w = \sum_{\substack{w \in \langle \underline{X}, \underline{X}^* \rangle \\ w \subset \Sigma^c \\ w \subset \Sigma^c}} b_w.
$$
 (5)

3.3. Evaluations and representations. Let $d \in \mathbb{N}$. An *n*-tuple of matrices $A \in (\mathcal{M}_d(k))^n$ gives rise to a **-representation*

$$
\mathrm{ev}_{\underline{A}} : k \langle \underline{X}, \underline{X}^* \rangle \to \mathrm{M}_d(k), \quad p \mapsto p(\underline{A}, \underline{A}^*). \tag{6}
$$

We are interested in the values of a fixed element $f \in k\langle X, X^*\rangle$ under all these $*$ -representations. If the size d of the matrices A_i is free, we talk about dimension-free properties, otherwise we call them dimension-dependent. We are mostly interested in the latter, but briefly review the former for the sake of completeness.

3.4. Dimension-freeness. Free analogs of properties (A) and (B) have been established, while a free version of (C) is closely related to an important open problem on operator algebras due to Connes; see below for further details.

Let $f \in \text{Sym } k\langle \underline{X}, \underline{X}^* \rangle$.

- (A) ^{free} $f(\underline{A}, \underline{A}^*) \succeq 0$ for all $d \in \mathbb{N}$ and all $\underline{A} \in M_d(k)^n$ if and only if $f \in$ $\Sigma^2\,k\langle \underline{X},\underline{X}^*\rangle;$
- (B) free $f(\underline{A}, \underline{A}^*)$ = 0 for all $d \in \mathbb{N}$ and all $\underline{A} \in M_d(k)^n$ if and only if $f \stackrel{\mathrm{cyc}}{\thicksim} 0$ in $k\langle \underline{X}, \underline{X}^* \rangle$.

Here, (A) ^{free} is due to Helton [\[He\]](#page-10-0) (see also [\[Mc,](#page-11-1) [MP\]](#page-11-2)), and (B) ^{free} was given by the author and Schweighofer in [\[KS,](#page-10-1) Theorem 2.1]; see also [\[CD,](#page-10-3) Lemma 2.9] for a proof inspired by free probability. For a recent study of trace-positive polynomials in a dimension-free setting see also [\[NT\]](#page-11-3).

The obvious extension of (C) fails: there are $f \in \text{Sym } k\langle X, X^* \rangle$ with positive trace everywhere, but still not cyclically equivalent to a sum of hermitian squares. The following is a variant of the noncommutative Motzkin polynomial [\[KS,](#page-10-1) Example 4.4] given in free (nonsymmetric) variables.

Example 3.1. Let X denote a single free variable and

$$
M_0 := 3X^4 - 3(XX^*)^2 - 4X^5X^* - 2X^3(X^*)^3
$$

+ 2X²X^{*}X(X^{*})² + 2X²(X^{*})²X X^{*} + 2(XX^{*})³.

Then the noncommutative Motzkin polynomial is

$$
M := 1 + M_0 + M_0^* \in \operatorname{Sym} k \langle X, X^* \rangle.
$$

It is trace-nonnegative everywhere since

$$
M':= YZ^4Y+ZY^4Z-3YZ^2Y+1 \stackrel{\mathrm{cyc}}{\thicksim} M\left(\frac{Y+\mathrm{i}Z}{2},\frac{Y-\mathrm{i}Z}{2}\right) \in k\langle Y,Z\rangle
$$

is trace-nonnegative on symmetric matrices [\[KS,](#page-10-1) Example 4.4]. Alternatively, $M(X^3,(X^*)^3) \in \Theta^2 k \langle X,X^* \rangle$. On the other hand, $M \notin \Theta^2 k \langle X,X^* \rangle$.

Connes' embedding conjecture [\[Co,](#page-10-2) §V, pp. 105–107] states that every separable II_1 -factor is embeddable in an ultrapower of the hyperfinite II_1 -factor. As shown in [\[KS\]](#page-10-1), understanding trace-positive polynomials in the dimension-free setting is the key to this problem as it is equivalent [\[KS,](#page-10-1) Theorem 1.6] to the following:

Conjecture 3.2 (Algebraic version of Connes' conjecture [\[KS,](#page-10-1) Conjecture 1.5]). For $f \in \text{Sym } k\langle \underline{X}, \underline{X}^* \rangle$ the following are equivalent:

(i) $\text{tr}(f(\underline{A}, \underline{A}^*)) \geq 0$ for all $d \in \mathbb{N}$ and all tuples of contractions $\underline{A} \in M_d(k)^n$; (ii) for every $\varepsilon \in \mathbb{R}_{>0}$, $f + \varepsilon$ is cyclically equivalent to an element of the form

$$
\sum_{j} s_j^* s_j + \sum_{i,j} p_{ij}^* (1 - X_i^* X_i) p_{ij},
$$

where $s_j, p_{ij} \in k\langle \underline{X}, \underline{X}^* \rangle$.

In the sequel we indicate an approach to this problem "from below". That is, we abandon the dimension-free setting and solve a Hilbert 17-type problem characterizing polynomials with nonnegative trace in a dimension-dependent setting. It is our belief that this might constitute an important step towards (a positive or negative resolution of) Connes' embedding conjecture.

4. Dimension-dependent positivity

The properties (A) and (B) for free algebras in a dimension-dependent setting are well understood due to our previous work [\[BK,](#page-10-4) [KU\]](#page-11-0). Roughly speaking, a trace-zero polynomial is cyclically equivalent to a polynomial identity [\[BK,](#page-10-4) §4], and a positive semidefinite polynomial is a sum of hermitian squares with denominators and weights $[KU, §5]$ $[KU, §5]$. In this section property (C) is explored and we present our main result, a Positivstellensatz characterizing polynomials with nonnegative trace on all tuples of $d \times d$ matrices for fixed d. This is done in §[4.3.](#page-8-0) Before that we recall generic matrices and universal division algebras with involution in §[4.1](#page-4-2) and take a look at polynomial preservers of the various notions of positivity in §[4.2.](#page-5-0)

4.1. Generic matrices and universal division algebras. We assume the reader is familiar with the theory of polynomial identities as presented e.g. in [\[Pr1,](#page-11-4) [Ro\]](#page-11-5). We review the notion of generic matrices and universal division algebras with involution and refer the reader to [\[Pr2,](#page-11-6) [PS\]](#page-11-7) for details.

Let $\zeta := (\zeta_{ij}^{(\ell)} \mid 1 \leq i, j \leq d, 1 \leq \ell \leq n)$ and $\bar{\zeta} := (\bar{\zeta}_{ij}^{(\ell)} \mid 1 \leq i, j \leq$ $d, 1 \leq \ell \leq n$ denote commuting variables. To keep the notation uniform, let

¹Some of these computations were done with the aid of two computer algebra systems: [NCSOStools](http://ncsostools.fis.unm.si) [\[CKP\]](#page-10-5) and [NCAlgebra](http://www.math.ucsd.edu/~ncalg) [\[HOMS\]](#page-10-6).

 $\zeta := \zeta$ if $k = \mathbb{R}$ and $\zeta := (\zeta, \overline{\zeta})$ otherwise. Form the polynomial *-algebra $k[\zeta]$ endowed with the involution extending complex conjugation on k and fixing $\zeta_{ij}^{(\ell)}$ pointwise (if $k = \mathbb{R}$), respectively sending $\zeta_{ij}^{(\ell)} \mapsto \bar{\zeta}_{ij}^{(\ell)}$ (if $k = \mathbb{C}$). Consider the $d \times d$ matrices $Y_{\ell} := \left[\zeta_{ij}^{(\ell)} \right]_{1 \le i,j \le d} \in M_d(k[\underline{\zeta}]), \ \ell \in \mathbb{N}$. Each Y_{ℓ} is called a *generic matrix*. The (unital) k-subalgebra of $M_d(k[\zeta])$ generated by the Y_ℓ and their (complex conjugate) transposes is the ring of generic matrices with *involution* GM $_d(k)$. Equivalently, GM $_d(k) \cong k\langle X, X^*\rangle / t_d$, where $t_d \subseteq k\langle X, X^*\rangle$ is the T-ideal of polynomial identities for $d \times d$ matrices.

For $d \geq 2$, $GM_d(k)$ is a prime PI algebra and a domain (cf. [\[PS,](#page-11-7) §II]). Hence its central localization is a central simple algebra $\mathrm{UD}_d(k)$ with involution, which we call (by an abuse of notation) the *universal division algebra*. Relating these notions to ∗-representations of the free ∗-algebra is the following commutative diagram: for $d \in \mathbb{N}$ and $\underline{A} \in M_d(k)^n$ let $R_{\underline{A}}$ denote all the elements of $\mathrm{UD}_d(k)$ which are regular at \underline{A} . Then:

For a more geometric viewpoint of the ring of generic matrices and the universal division algebra we refer the reader to [\[Pr2,](#page-11-6) [Sa\]](#page-11-8). The standard textbook on central simple algebras with involution is [\[KMRT\]](#page-11-9).

4.2. Polynomial preservers. In this subsection we present versions of Lemmas [2.1](#page-1-4) - [2.4](#page-2-2) in the context of free ∗-algebras. To avoid trivialities, we assume throughout that $d \geq 2$.

Lemma 4.1. Suppose $f \in k\langle \underline{X}, \underline{X}^* \rangle$ is such that for all $g \in k\langle \underline{X}, \underline{X}^* \rangle$, $q \succeq 0$ on $d \times d$ matrices $\Rightarrow fg \succeq 0$ on $d \times d$ matrices. (7)

Then f is a central polynomial positive semidefinite on $d \times d$ matrices.

Proof. Using [\(7\)](#page-5-1) with $g = 1$, we see f is positive semidefinite on $d \times d$ matrices. Thus there is no harm in assuming $f = f^*$.

Again by [\(7\)](#page-5-1), $fg - gf$ vanishes on all $d \times d$ matrices for all polynomials g of the form $g = h^*h$. That is, $[f, g]$ is a polynomial identity of $d \times d$ matrices. Now the same holds true for all symmetric g as

$$
2[f, g] + [f, g2] = [f, (1+g)2]
$$

is a polynomial identity by the above. Hence f commutes (modulo the T-ideal of identities) with all symmetric polynomials.

Every element of $\text{UD}_d(k)$ can be represented as rs^{-1} for some $r, s \in \text{GM}_d(k)$ with $s = s^* \in Z(\text{GM}_d(k))$. Such an element is symmetric iff $r = r^*$. So $\pi(f)$ commutes with all symmetric elements of $\mathrm{UD}_d(k)$. By Dieudonné's theorem [\[Di,](#page-10-7) Lemma 1], the latter generate $UD_d(k)$. Hence $\pi(f) \in Z(UD_d(k))$ and f is indeed a central polynomial.

(Note: once we have established that f commutes with all symmetric polynomials, an easier argument is available if $k = \mathbb{C}$. In this case one immediately obtains that f also commutes with all skew symmetric polynomials as these are all of the form ig for symmetric q .)

Lemma 4.2. Suppose $f \in k\langle \underline{X}, \underline{X}^* \rangle$ is such that for all $g \in k\langle \underline{X}, \underline{X}^* \rangle$,

 $tr(g) = 0$ on $d \times d$ matrices $\Rightarrow tr(fg) = 0$ on $d \times d$ matrices. (8)

Then f is a central polynomial.

Proof. Let
$$
g = [h_1, h_2]
$$
 for some $h_i \in k \langle \underline{X}, \underline{X}^* \rangle$. Then
\n
$$
fg = f[h_1, h_2] = [f, h_1 h_2] + [h_1, fh_2] + h_1[h_2, f].
$$
\n(9)

Since $tr(g) = 0$ on all $d \times d$ matrices, this implies $tr(h_1[h_2, f]) = 0$ on $d \times d$ matrices. Fix h_2 and denote $r := [h_2, f]$. Then r satisfies the following:

 $tr(pr) = 0$ on $d \times d$ matrices

for all $p \in k\langle \underline{X}, \underline{X}^* \rangle$. Taking $p = -r^*$ leads to $-\text{tr}(r^*r) = 0$ and hence, $r = 0$ on all $d \times d$ matrices. That is, r is an identity of $d \times d$ matrices. As $r = [h_2, f]$ and h_2 was arbitrary, this implies f is a central polynomial.

Lemma 4.3. Suppose $f \in k\langle \underline{X}, \underline{X}^* \rangle$ is such that for all $g \in k\langle \underline{X}, \underline{X}^* \rangle$,

 $tr(g) \geq 0$ on $d \times d$ matrices $\Rightarrow tr(fg) \geq 0$ on $d \times d$ matrices. (10)

Then f is a central polynomial positive semidefinite on $d \times d$ matrices.

Proof. If $tr(g) = 0$, then by [\(10\)](#page-6-0), $tr(fg) \ge 0$ and $tr(-fg) \ge 0$ on $d \times d$ matrices. That is, $tr(fg) = 0$. Now by Lemma [4.2,](#page-6-1) f is a central polynomial.

Applying [\(10\)](#page-6-0) with $g = 1$ yields $f(\underline{A}, \underline{A}^*) = \text{tr}(f(\underline{A}, \underline{A}^*)) \geq 0$ for all $\underline{A} \in$ $\mathrm{M}_d(k)^n$ showing f is positive semidefinite on $d \times d$ matrices.

Likewise we can characterize polynomials which map positive semidefinite polynomials into trace-nonnegative ones. At the same time this indicates how to build examples of trace-nonnegative polynomials. As we shall see in the next subsection, the procedure is essentially exhaustive.

Lemma 4.4. Suppose $f \in \text{Sym } k\langle X, X^* \rangle$ is such that for all $g \in k\langle X, X^* \rangle$,

 $q \geq 0$ on $d \times d$ matrices \Rightarrow $tr(fq) \geq 0$ on $d \times d$ matrices. (11)

Then f is positive semidefinite on $d \times d$ matrices.

Proof. Assume f is not positive semidefinite on $d \times d$ matrices. Then there exists an *n*-tuple $\underline{A} = (A_1, \ldots, A_n) \in M_d(k)^n$ with

$$
f(\underline{A}, \underline{A}^*) \not\succeq 0. \tag{12}
$$

Let $A \subseteq M_d(k)$ denote the *-subalgebra generated by the A_1, \ldots, A_n . Since the hermitian square of a nonzero matrix is not nilpotent, A is semisimple. By the Artin-Wedderburn theorem, $\mathcal A$ is $*$ -isomorphic to a direct sum of full matrix algebras. We distinguish two cases.

CASE 1: if $k = \mathbb{C}$, then there is a \ast -isomorphism

$$
\mathcal{A} \cong \bigoplus_{j=1}^{s} M_{d_j}(\mathbb{C})
$$
\n(13)

for some $d_j \in \mathbb{C}$, and $\sum_j d_j \leq d$. This induces a block diagonalization of the A_i as follows:

$$
A_j = \begin{bmatrix} A_{j,1} & & \\ & \ddots & \\ & & A_{j,s} \end{bmatrix}, \quad A_{j,k} \in M_{d_k}(\mathbb{C}).
$$

By [\(12\)](#page-6-2), there is a j such that $\underline{A}_{(j)} = (A_{1,j}, \ldots, A_{n,j}) \in M_{d_j}(\mathbb{C})^n$ satisfies $f(\underline{A}_{(j)}, \underline{A}_{(j)}^*) \not\succeq 0$. Choose $u \in \mathbb{C}^{d_j}$ with

$$
\langle f(\underline{A}_{(j)}, \underline{A}_{(j)}^*)u, u \rangle < 0. \tag{14}
$$

There is a $B \in M_{d_j}(\mathbb{C})$ with $Be_{i,d_j} = u$ for all $i = 1, \ldots d_j$. (Here e_{i,d_j} are the standard basis vectors for \mathbb{C}^{d_j} .) By the construction of A and [\(13\)](#page-7-0), there is a $h \in \mathbb{C}\langle \underline{X}, \underline{X}^* \rangle$ with $h(\underline{A}_{(j)}, \underline{A}_{(j)}^*) = B$. Let $g = hh^*$. Then

$$
tr((fg)(\underline{A}_{(j)}, \underline{A}_{(j)}^*)) = tr((h^*fh)(\underline{A}_{(j)}, \underline{A}_{(j)}^*))
$$

\n
$$
= \sum_{i=1}^{d_j} \langle h^*(\underline{A}_{(j)}, \underline{A}_{(j)}^*) f(\underline{A}_{(j)}, \underline{A}_{(j)}^*) h(\underline{A}_{(j)}, \underline{A}_{(j)}^*) e_{i,d_j}, e_{i,d_j} \rangle
$$

\n
$$
= \sum_{i=1}^{d_j} \langle f(\underline{A}_{(j)}, \underline{A}_{(j)}^*) B e_{i,d_j}, B e_{i,d_j} \rangle
$$

\n
$$
= \sum_{i=1}^{d_j} \langle f(\underline{A}_{(j)}, \underline{A}_{(j)}^*) u, u \rangle < 0.
$$
\n(15)

As this contradicts our assumption [\(11\)](#page-6-3), we conclude $f \succeq 0$ on $d \times d$ matrices.

CASE 2: if $k = \mathbb{R}$, the reasoning is the same with a minor technical modification. Let

$$
\mathcal{A} \cong \bigoplus_{j=1}^{s} M_{d_j}(\mathbb{R}) \oplus \bigoplus_{k=1}^{r} M_{e_k}(\mathbb{C}) \oplus \bigoplus_{\ell=1}^{p} M_{f_{\ell}}(\mathbb{H})
$$
(16)

for some $d_j, e_k, f_\ell \in \mathbb{N}$. If there is a tuple $\underline{A} \in M_{d_j}(\mathbb{R})^n$ with $f(\underline{A}, \underline{A}^*) \not\succeq 0$, we proceed as in Case 1. If there is a $\underline{A} \in M_{e_k}(\mathbb{C})^n$ with $0 \not\preceq f(\underline{A}, \underline{A}^*) \in M_{e_k}(\mathbb{C}),$ we proceed as follows. Let V be the invariant subspace of \mathbb{R}^d corresponding to the action of $M_{e_k}(\mathbb{C})$. There is a $u \in V$ with $\langle \hat{f}(\underline{A}, \underline{A}^*)u, u \rangle < 0$. Pick a basis (over \mathbb{C}) $\{v_1, \ldots, v_{e_k}\}\$ of V and let $B \in M_{e_k}(\mathbb{C})$ satisfy $Bv_j = u$ for all j. Choose $h \in \mathbb{R}\langle X, X^*\rangle$ with $h(\underline{A}, \underline{A}^*) = B$ and $g = hh^*$. Then the complex trace z of $(fg)(\underline{A}, \underline{A}^*)$ is negative by the same computation as in [\(15\)](#page-7-1). Hence the real trace satisfies

$$
\operatorname{tr}\left((fg)(\underline{A},\underline{A}^*)\right) = \frac{z+\bar{z}}{2} < 0.
$$

The remaining case of quaternion matrices is dealt with similarly. We leave this as an exercise for the reader.

It is clear that converses of Lemmas [4.1](#page-5-2) - [4.4](#page-6-4) hold true. Also, with the exception of (11) which is satisfied when f is a sum of hermitian squares, there are no nonconstant dimension-free polynomial preservers.

4.3. The dimension-dependent tracial Positivstellensatz. Our main tool for describing trace-nonnegative polynomials is the following proposition de-duced from the properties of the reduced trace [\[KMRT,](#page-11-9) $\S1$] on $UD_{d}(k)$.

Proposition 4.5. For every $f \in k\langle X, X^*\rangle$ and $d \in \mathbb{N}$ there exists a nonvanishing central polynomial for $d \times d$ matrices $c \in k\langle \underline{X}, \underline{X}^* \rangle$ such that cf is cyclically equivalent to a central polynomial. That is,

$$
cf \stackrel{\text{cyc}}{\thicksim} c' \tag{17}
$$

for some central polynomial c' .

Proof. Consider $F := \iota(\pi(f)) \in UD_d(k)$. So $Trd(F) \in Z(UD_d(k))$ and there is a nonvanishing central polynomial $c_0 \in k\langle \underline{X}, \underline{X}^* \rangle$ and a central polynomial c'_0 with

$$
Trd(F) = \pi(c'_0)\pi(c_0)^{-1}.
$$
\n(18)

Since Trd is $Z(\text{UD}_d(k))$ -linear, this yields Trd $(\pi(c_0f - c'_0)) = 0$. By the Amitsur-Rowen result [\[AR,](#page-10-8) Theorem 2.4], $\pi(c_0f - c'_0) \stackrel{cyc}{\sim} 0$ in $UD_d(k)$. Clearing denominators shows

$$
\pi(cf - c'') \stackrel{\text{cyc}}{\sim} 0 \tag{19}
$$

in $GM_d(k)$ for a nonvanishing central polynomial c and a central polynomial c''. Lifting [\(19\)](#page-8-1) to $k\langle X, X^*\rangle$ gives the desired conclusion: $cf \stackrel{\text{cyc}}{\sim} c'$.

Remark 4.6. Instead of the Amitsur-Rowen result used in this proof, we can apply the tracial Nullstellensatz [\[BK,](#page-10-4) Theorem 5.2]: once $\text{Trd}(\pi(c_o f - c_o')) = 0$ has been established, by clearing denominators we obtain $\text{tr}(\pi(c_0c''f - c'_0c'')) = 0$ for some nonvanishing central polynomial c''. Hence $\pi (c_0 c'' f - c' c'') \stackrel{\text{cyc}}{\sim} 0$ in $GM_d(k)$ by [\[BK,](#page-10-4) Theorem 5.2]. As before, lifting this relation to $k\langle X, X^*\rangle$ yields the desired conclusion.

We are now ready to give our main results characterizing trace-nonnegative polynomials.

Theorem 4.7. Let
$$
k \in \{\mathbb{R}, \mathbb{C}\}
$$
 and suppose $f \in \text{Sym } k\langle \underline{X}, \underline{X}^* \rangle$ satisfies
tr $(f(\underline{A}, \underline{A}^*)) \ge 0$ (20)

for all $\underline{A} \in M_d(k)^n$. Then there is a nonvanishing central polynomial for $d \times d$ matrices $c \in k\langle \underline{X}, \underline{X}^* \rangle$ such that cfc^* is cyclically equivalent to a polynomial $g \in k\langle \underline{X}, \underline{X}^* \rangle$ that is positive semidefinite on $d \times d$ matrices, i.e.,

 $cf c^* \stackrel{\text{cyc}}{\thicksim} g$ and $g \succeq 0$ on $d \times d$ matrices. (21)

Proof. This is a consequence of Proposition [4.5.](#page-8-2) Indeed, there is a nonvanishing central polynomial c with

$$
cf \stackrel{\text{cyc}}{\sim} c' \tag{22}
$$

for a central polynomial c' . Multiplying [\(22\)](#page-8-3) with c^* (from the right) shows

$$
cfc^* \stackrel{\text{cyc}}{\sim} c'c^*.
$$
 (23)

For any $\underline{A} \in M_d(k)^n$,

$$
0 \le \text{tr}(c(\underline{A}, \underline{A}^*)f(\underline{A}, \underline{A}^*)c(\underline{A}, \underline{A}^*)^*) = \text{tr}(c'(\underline{A}, \underline{A}^*)c(\underline{A}, \underline{A}^*)^*)
$$

= tr((c'c^*)(\underline{A}, \underline{A}^*)) = (c'c^*)(\underline{A}, \underline{A}^*). (24)

So $g := c'c^*$ is a (central) polynomial positive semidefinite on $d \times d$ matrices satisfying

$$
cfc^* \stackrel{\text{cyc}}{\thicksim} g.
$$

Remark 4.8. The proof shows that g in Theorem [4.7](#page-8-4) can actually be taken to be a central polynomial.

Combining Theorem [4.7](#page-8-4) with the dimension-dependent Positivstellensatz for positive semidefinite polynomials ([\[PS,](#page-11-7) Theorem 5.4] or [\[KU,](#page-11-0) Theorem 5.4]) yields:

Corollary 4.9. Choose $\alpha_1, \ldots, \alpha_m \in k\langle \underline{X}, \underline{X}^* \rangle$ whose images in $\text{GM}_d(k)$ form a diagonalization of the quadratic form $\text{Trd}(x^*x)$ on $\text{UD}_d(k)$. Then for $f \in$ Sym $k\langle X, X^*\rangle$ the following are equivalent:

- (i) $\text{tr}(f(\underline{A}, \underline{A}^*)) \geq 0$ for every $\underline{A} \in M_d(k)^n$;
- (ii) there exists a nonvanishing central polynomial $c \in k\langle \underline{X}, \underline{X}^*\rangle$, a polynomial *identity* $h \in k\langle \underline{X}, \underline{X}^* \rangle$ for $d \times d$ matrices, and $p_{i,\varepsilon} \in k\langle \underline{X}, \underline{X}^* \rangle$ with

$$
cfc^* \stackrel{\text{cyc}}{\sim} h + \sum_{\varepsilon \in \{0,1\}^m} \underline{\alpha}^{\varepsilon} \sum_i p_{i,\varepsilon}^* p_{i,\varepsilon}.
$$
 (25)

Remark 4.10. For experts we mention that (by applying the reduced trace to [\(25\)](#page-9-0)) we can reformulate [\(25\)](#page-9-0) as follows:

$$
cfc^* \stackrel{\text{cyc}}{\sim} h + t,\tag{26}
$$

where c, h are as above, and t belongs to the preordering in $Z(\text{UD}_d(k))$ generated by the α_i .

If $d = 2$ the weights α_j are superfluous since the reduced trace of a hermitian square is a sum of hermitian squares in this case (cf. $[PS, p. 405]$ $[PS, p. 405]$ or $[KU, \S4]$ $[KU, \S4]$) and Corollary [4.9](#page-9-1) simplifies as follows:

Corollary 4.11. For $f \in \text{Sym } k\langle X, X^*\rangle$ the following are equivalent:

- (i) $\text{tr}(f(\underline{A}, \underline{A}^*)) \geq 0$ for every $\underline{A} \in M_2(k)^n$;
- (ii) there exists a nonvanishing central polynomial $c \in k\langle \underline{X}, \underline{X}^*\rangle$, and a polynomial identity $h \in k\langle \underline{X}, \underline{X}^* \rangle$ for 2×2 matrices, such that

$$
cfc^* \in h + \Theta^2 \, k \langle \underline{X}, \underline{X}^* \rangle. \tag{27}
$$

Example 4.12. We finish this presentation with an example showing denominators are necessary for these results to hold. First of all, the Motzkin polynomial M from Example [3.1](#page-3-0) is not cyclically equivalent to a sum of hermitian squares modulo a T-ideal of identities. Indeed, if

$$
M \stackrel{\text{cyc}}{\sim} h + \sum g_j^* g_j \tag{28}
$$

for some $g_j \in k\langle X, \underline{X^*}\rangle$ and a polynomial identity $h \in k\langle \underline{X}, \underline{X^*}\rangle$ for $d \times d$ matrices $(d \geq 2)$, then

$$
M_{\rm cc} = \text{tr}\left(M\left(\begin{bmatrix} Y/2 & Z/2 \\ -Z/2 & Y/2 \end{bmatrix}\right)\right) = \sum \text{tr}\left((g_j^*g_j)\left(\begin{bmatrix} Y/2 & Z/2 \\ -Z/2 & Y/2 \end{bmatrix}\right)\right),\,
$$

where $M_{\text{cc}} \in \mathbb{R}[Y, Z]$ denotes the commutative collapse $Y^4 Z^2 + Y^2 Z^4 - 3Y^2 Z^2 + 1$ of the noncommutative variant M' of the Motzkin polynomial (in symmetric variables). Since $M_{\rm cc}$ is not a sum of squares in $\mathbb{R}[Y, Z]$, and the trace of a hermitian square is a sum of squares, M does not satisfy a relation of the form [\(28\)](#page-9-2). Hence a denominator is needed in Corollaries [4.9](#page-9-1) and [4.11.](#page-9-3)

A little more work is required to show the necessity of the denominator in Theorem [4.7.](#page-8-4) Let $d \in \mathbb{N}$ be sufficiently large (any $d \geq 127$ = the dimension of the vector space of all polynomials in X, X^* of degree ≤ 6 will do). Suppose M is cyclically equivalent to a polynomial q that is positive semidefinite on $d \times d$ matrices. Without loss of generality, $g \in \text{Sym } k\langle X, X^* \rangle$. Choose g of smallest possible degree. If this degree is > 6 , then the highest homogeneous component $g^{(\infty)}$ of g is positive semidefinite on $d \times d$ matrices and at the same time $g^{(\infty)} \stackrel{\text{cyc}}{\sim} 0$. Hence tr $(g^{(\infty)}) = 0$ on $d \times d$ matrices implying $g^{(\infty)}$ is a polynomial identity. Then $M \stackrel{\text{cyc}}{\sim} (g - g^{(\infty)}), g - g^{(\infty)}$ is positive semidefinite and of degree smaller than g. This contradicts the minimality of g, so $deg(g) \leq 6$.

Now g is positive semidefinite on $d \times d$ matrices for some $d \geq 127$ and is thus a sum of hermitian squares by Helton's sum of squares theorem [\[He\]](#page-10-0). But M is not cyclically equivalent to a sum of hermitian squares by the first part of this example.

Acknowledgments. The author thanks Matej Brešar for enlightening conversations and insightful comments.

REFERENCES

- [AR] S. A. Amitsur, L. H. Rowen: Elements of reduced trace 0, *Israel J. Math.* 87 (1994) 161–179.
- [BK] M. Brešar, I. Klep: Values of Noncommutative Polynomials, Lie Skew-Ideals and Tracial Nullstellensätze, Math. Res. Lett. 16 (2009) 605–626.
- [CKP] K. Cafuta, I. Klep, J. Povh: [NCSOStools](http://ncsostools.fis.unm.si): a computer algebra system for symbolic and numerical computation with noncommutative polynomials, to appear in Optim. Methods Softw. Available from <http://ncsostools.fis.unm.si>
- [CD] B. Collins, K. Dykema: A linearization of Connes' embedding problem, New York J. Math. 14 (2008) 617–641.
- [Co] A. Connes: Classification of injective factors. Cases II₁, II_{∞}, III_{λ}, $\lambda \neq 1$, Ann. of Math. (2) 104 (1976) 73–115.
- [Di] J. Dieudonné: On the structure of unitary groups, Trans. Amer. Math. Soc. 72 (1952) 367–385.
- [He] J.W. Helton: "Positive" noncommutative polynomials are sums of squares, Ann. of Math. (2) **156** (2002) 675-694.
- [HOMS] J.W. Helton, M.C. de Oliveira, R.L. Miller, M. Stankus: [NCAlgebra](http://www.math.ucsd.edu/~ncalg): A Mathematica Package for Doing Non-Commuting Algebra. Available from <http://www.math.ucsd.edu/~ncalg>
- [KS] I. Klep, M. Schweighofer: Connes' embedding conjecture and sums of hermitian squares, Adv. Math. 217 (2008) 1816–1837.
- [KU] I. Klep, T. Unger: The Procesi-Schacher conjecture and Hilbert's 17th problem for algebras with involution, J. Algebra 324 (2010) 256–268.
- [KMRT] M.-A. Knus, A.S. Merkurjev, M. Rost, J.-P. Tignol: The Book of Involutions, Coll. Pub. 44, Amer. Math. Soc., Providence, RI (1998).
- [Mc] S. McCullough: Factorization of operator-valued polynomials in several noncommuting variables, Linear Algebra Appl. 326 (2001) 193–203.
- [MP] S. McCullough, M. Putinar: Non-commutative sums of squares, Pacific J. Math. 218 (2005) 167–171.
- [NT] T. Netzer, A. Thom: Tracial algebras and an embedding problem, J. Funct. Anal. 259 (2010) 2939–2960.
- [Pr1] C. Procesi: Rings with polynomial identities, Marcel Dekker, Inc., New York (1973).
- [Pr2] C. Procesi: The invariant theory of $n \times n$ matrices, Adv. Math. 19 (1976) 306–381.
- [PS] C. Procesi, M. Schacher: A non-commutative real Nullstellensatz and Hilbert's 17th problem, Ann. of Math. (2) 104 (1976) 395–406.
- [Ro] L.H. Rowen: Polynomial identities in ring theory, Pure and Applied Mathematics, 84, Academic Press, Inc., New York-London (1980).
- [Sa] D.J. Saltman: Lectures on division algebras, CBMS Regional Conference Series in Mathematics, 94, Amer. Math. Soc., Providence, RI (1999).

Igor Klep, Univerza v Ljubljani, Fakulteta za matematiko in fiziko, Jadranska 21, SI-1111 Ljubljana, and Univerza v Mariboru, Fakulteta za naravoslovje in matematiko, Koroška 160, SI-2000 Maribor, Slovenia

E-mail address: igor.klep@fmf.uni-lj.si

${\bf TRACE-POSITIVE~POLYNOMIALS} \tag{13}$

NOT FOR PUBLICATION

CONTENTS

