
TRACE-POSITIVE POLYNOMIALS
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Abstract. In this paper positivity of polynomials in free noncommuting
variables in a dimension-dependent setting is considered. That is, the images
of a polynomial under finite-dimensional representations of a fixed dimension
are investigated. It is shown that unlike in the dimension-free case, every
trace-positive polynomial is (after multiplication with a suitable denomina-
tor - a hermitian square of a central polynomial) a sum of a positive semi-
definite polynomial and commutators. Together with our previous results
this yields the following Positivstellensatz: every trace-positive polynomial
is modulo sums of commutators and polynomial identities a sum of hermit-
ian squares with weights and denominators. Understanding trace-positive
polynomials is one of the approaches to Connes’ embedding conjecture.

1. Introduction

Interest in positivity questions involving noncommutative polynomials has
been recently revived by Helton’s seminal paper [He], in which he proved that a
polynomial is a sum of squares if and only if its values in matrices of any size are
positive semidefinite. Considering polynomials with positive trace, Schweighofer
and the author [KS, Theorem 1.6] observed that Connes’ embedding conjecture
[Co, §V, pp. 105–107] on type II1 von Neumann algebras is equivalent to a
problem of describing polynomials whose values at tuples of self-adjoint d × d
matrices (of norm at most 1) have nonnegative trace for every d ≥ 1. This result
is the motivation for the present work. Here we investigate polynomials whose
values at tuples of d× d matrices have nonnegative trace for a fixed d ≥ 1. We
show that such a polynomial is (after multiplication with a hermitian square
of a suitable central polynomial) a sum of commutators and of a polynomial
whose values at tuples of d × d matrices are positive semidefinite. The latter
were characterized in [KU] leading us to the following Positivstellensatz: every
polynomial with nonnegative trace on d×d matrices is modulo sums of commu-
tators and polynomial identities for d× d matrices a sum of hermitian squares
with weights and denominators; see §4 for the precise formulation.
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The organization of this paper is follows: §2 introduces main notions and
interprets them in full matrix algebras, in §3 these notions are considered for
free algebras, while our main results are presented in §4.

2. Basic notions and a motivating example

Let R be an associative ring with 1 and involution a 7→ a∗ (i.e., (a + b)∗ =
a∗ + b∗, (ab)∗ = b∗a∗ and a∗∗ = a for all a, b ∈ R). Then we denote by
SymR := {a ∈ R | a = a∗} its set of symmetric elements. Elements of the
form a∗a and ab− ba (a, b ∈ A) are called hermitian squares and commutators,
respectively. We introduce an equivalence relation (cyclic equivalence) on R

by declaring a
cyc∼ b if and only if a − b is a sum of commutators in R. For

notational convenience we write

Σ2R :=
{∑

a∗i ai | ai ∈ R
}
⊆ SymR, Θ2R :=

{
a ∈ R | ∃b ∈ Σ2R : a

cyc∼ b
}

for the sets of (finite) sums of hermitian squares, and sums of hermitian squares
and commutators in R, respectively.

Throughout this paper k will denote R or C.

2.1. Matrices. For a concrete example of these notions consider the ring R =
Md(k) of real or complex square matrices of a fixed size d ≥ 1 endowed with
the usual (complex conjugate) transposition of matrices, denoted here by ∗.
Using � to denote the Löwner partial order (i.e., A � B iff A − B is positive
semidefinite), it is easy to see that for A ∈ Md(k), we have

(A) A � 0 if and only if A ∈ Σ2 Md(k);

(B) tr(A) = 0 if and only if A
cyc∼ 0 in Md(k);

(C) tr(A) ≥ 0 if and only if A ∈ Θ2 Md(k).

Let us determine multiplication by which matrices respects these properties.

Lemma 2.1. Suppose A ∈ Md(k) is such that for all B ∈ Md(k),

B � 0 ⇒ AB � 0. (1)

Then A = λ for some λ ∈ R≥0.

Proof. Using (1) with B = 1, we obtain A � 0. In particular, A = A∗.
Again by (1), A commutes with all positive semidefinite matrices, hence

with all symmetric matrices, which are differences of two positive semidefinite
matrices by

B =
1

4
(B + 1)2 − 1

4
(B − 1)2.

So A is scalar and the desired conclusion follows.

Lemma 2.2. Suppose A ∈ Md(k) is such that for all B ∈ Md(k),

tr(B) = 0 ⇒ tr(AB) = 0. (2)

Then A = λ for some λ ∈ k.
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Proof. Write A = [aij ]
d
i,j=1. Let i 6= j. Then B = λEij has zero trace for every

λ ∈ k. (Here Eij denotes the d× d matrix unit with a one in the (i, j)-position
and zeros elsewhere.) By (2), this implies

λaij = tr(AB) = 0.

Since λ ∈ k was arbitrary, aij = 0.
Now let B = λ(Eii − Ejj). Clearly, tr(B) = 0 and hence

λ(aii − ajj) = tr(AB) = 0.

As before, this gives aii = ajj .

Lemma 2.3. Suppose A ∈ Md(k) is such that for all B ∈ Md(k),

tr(B) ≥ 0 ⇒ tr(AB) ≥ 0. (3)

Then A = λ for some λ ∈ R≥0.

Proof. By Lemma 2.2, A is scalar. In addition to that, aii = tr(AEii) ≥ 0 by
(3), showing that A must be a nonnegative multiple of the identity.

Likewise we can characterize matrices which map positive semidefinite ma-
trices into matrices with nonnegative trace:

Lemma 2.4. Suppose A ∈ Md(k) is such that for all B ∈ Md(k),

B � 0 ⇒ tr(AB) ≥ 0. (4)

In the case k = R, assume moreover that A = A∗. Then A � 0.

Proof. This is just a restatement of the well-known self-duality of the cone of
all positive semidefinite matrices. For v ∈ kd let B = vv∗ � 0. Then

0 ≤ tr(AB) = tr(Avv∗) = tr(v∗Av) = 〈Av, v〉

showing A is positive semidefinite.

We remark that converses of Lemmas 2.1 - 2.4 hold as well.

3. Positivity in free algebras

3.1. Words and polynomials. Fix n ∈ N. Let X := (X1, . . . , Xn) and
X∗ := (X∗1 , . . . , X

∗
n) denote tuples of n distinct variables (or letters). By

〈X,X∗〉 we denote the free monoid on {X,X∗} (consisting of words in X,X∗)
and let k〈X,X∗〉 be the semigroup algebra of 〈X,X∗〉 over k (consisting of
polynomials in noncommuting variables X and X∗ with coefficients in k). We
endow k〈X,X∗〉 with the involution p 7→ p∗ mapping Xj 7→ X∗j and extending

complex conjugation on k. Thus k〈X,X∗〉 is the free ∗-algebra on X over k.
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3.2. Cyclic equivalence. It is well-known and easy to see that trace-zero ma-
trices are sums of commutators, i.e., cyclically equivalent to 0. Cyclic equiva-
lence can also be easily tested in k〈X,X∗〉:
(a) For v, w ∈ 〈X,X∗〉, we have v

cyc∼ w if and only if there are v1, v2 ∈ 〈X,X∗〉
such that v = v1v2 and w = v2v1. That is, v

cyc∼ w if and only if w is a
cyclic permutation of v.

(b) Polynomials f =
∑

w∈〈X,X∗〉 aww and g =
∑

w∈〈X,X∗〉 bww (aw, bw ∈ k) are

cyclically equivalent if and only if for each v ∈ 〈X,X∗〉,∑
w∈〈X,X∗〉

w
cyc
∼ v

aw =
∑

w∈〈X,X∗〉

w
cyc
∼ v

bw. (5)

3.3. Evaluations and representations. Let d ∈ N. An n-tuple of matrices
A ∈ (Md(k))n gives rise to a ∗-representation

evA : k〈X,X∗〉 → Md(k), p 7→ p(A,A∗). (6)

We are interested in the values of a fixed element f ∈ k〈X,X∗〉 under all
these ∗-representations. If the size d of the matrices Ai is free, we talk about
dimension-free properties, otherwise we call them dimension-dependent. We
are mostly interested in the latter, but briefly review the former for the sake of
completeness.

3.4. Dimension-freeness. Free analogs of properties (A) and (B) have been
established, while a free version of (C) is closely related to an important open
problem on operator algebras due to Connes; see below for further details.

Let f ∈ Sym k〈X,X∗〉.
(A)free f(A,A∗) � 0 for all d ∈ N and all A ∈ Md(k)n if and only if f ∈

Σ2 k〈X,X∗〉;
(B)free tr

(
f(A,A∗)

)
= 0 for all d ∈ N and all A ∈ Md(k)n if and only if

f
cyc∼ 0 in k〈X,X∗〉.

Here, (A)free is due to Helton [He] (see also [Mc, MP]), and (B)free was given
by the author and Schweighofer in [KS, Theorem 2.1]; see also [CD, Lemma
2.9] for a proof inspired by free probability. For a recent study of trace-positive
polynomials in a dimension-free setting see also [NT].

The obvious extension of (C) fails: there are f ∈ Sym k〈X,X∗〉 with posi-
tive trace everywhere, but still not cyclically equivalent to a sum of hermitian
squares. The following is a variant of the noncommutative Motzkin polynomial
[KS, Example 4.4] given in free (nonsymmetric) variables.

Example 3.1. Let X denote a single free variable and

M0 := 3X4 − 3(XX∗)2 − 4X5X∗ − 2X3(X∗)3

+ 2X2X∗X(X∗)2 + 2X2(X∗)2XX∗ + 2(XX∗)3.

Then the noncommutative Motzkin polynomial is

M := 1 +M0 +M∗0 ∈ Sym k〈X,X∗〉.
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It is trace-nonnegative everywhere since

M ′ := Y Z4Y + ZY 4Z − 3Y Z2Y + 1
cyc∼ M

(
Y + iZ

2
,
Y − iZ

2

)
∈ k〈Y, Z〉

is trace-nonnegative on symmetric matrices [KS, Example 4.4]. Alternatively,
M(X3, (X∗)3) ∈ Θ2k〈X,X∗〉. On the other hand, M 6∈ Θ2k〈X,X∗〉.1

Connes’ embedding conjecture [Co, §V, pp. 105–107] states that every sepa-
rable II1-factor is embeddable in an ultrapower of the hyperfinite II1-factor. As
shown in [KS], understanding trace-positive polynomials in the dimension-free
setting is the key to this problem as it is equivalent [KS, Theorem 1.6] to the
following:

Conjecture 3.2 (Algebraic version of Connes’ conjecture [KS, Conjecture 1.5]).
For f ∈ Sym k〈X,X∗〉 the following are equivalent:

(i) tr
(
f(A,A∗)

)
≥ 0 for all d ∈ N and all tuples of contractions A ∈ Md(k)n;

(ii) for every ε ∈ R>0, f + ε is cyclically equivalent to an element of the form∑
j

s∗jsj +
∑
i,j

p∗ij(1−X∗iXi)pij ,

where sj , pij ∈ k〈X,X∗〉.

In the sequel we indicate an approach to this problem “from below”. That
is, we abandon the dimension-free setting and solve a Hilbert 17-type problem
characterizing polynomials with nonnegative trace in a dimension-dependent
setting. It is our belief that this might constitute an important step towards (a
positive or negative resolution of) Connes’ embedding conjecture.

4. Dimension-dependent positivity

The properties (A) and (B) for free algebras in a dimension-dependent setting
are well understood due to our previous work [BK, KU]. Roughly speaking,
a trace-zero polynomial is cyclically equivalent to a polynomial identity [BK,
§4], and a positive semidefinite polynomial is a sum of hermitian squares with
denominators and weights [KU, §5]. In this section property (C) is explored
and we present our main result, a Positivstellensatz characterizing polynomials
with nonnegative trace on all tuples of d× d matrices for fixed d. This is done
in §4.3. Before that we recall generic matrices and universal division algebras
with involution in §4.1 and take a look at polynomial preservers of the various
notions of positivity in §4.2.

4.1. Generic matrices and universal division algebras. We assume the
reader is familiar with the theory of polynomial identities as presented e.g. in
[Pr1, Ro]. We review the notion of generic matrices and universal division
algebras with involution and refer the reader to [Pr2, PS] for details.

Let ζ := (ζ
(`)
ij | 1 ≤ i, j ≤ d, 1 ≤ ` ≤ n) and ζ̄ := (ζ̄

(`)
ij | 1 ≤ i, j ≤

d, 1 ≤ ` ≤ n) denote commuting variables. To keep the notation uniform, let

1Some of these computations were done with the aid of two computer algebra systems:
NCSOStools [CKP] and NCAlgebra [HOMS].

http://ncsostools.fis.unm.si
http://www.math.ucsd.edu/~ncalg
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ζ := ζ if k = R and ζ := (ζ, ζ̄) otherwise. Form the polynomial ∗-algebra k[ζ]
endowed with the involution extending complex conjugation on k and fixing

ζ
(`)
ij pointwise (if k = R), respectively sending ζ

(`)
ij 7→ ζ̄

(`)
ij (if k = C). Consider

the d × d matrices Y` :=
[
ζ
(`)
ij

]
1≤i,j≤d ∈ Md(k[ζ]), ` ∈ N. Each Y` is called

a generic matrix. The (unital) k-subalgebra of Md(k[ζ]) generated by the Y`
and their (complex conjugate) transposes is the ring of generic matrices with
involution GMd(k). Equivalently, GMd(k) ∼= k〈X,X∗〉/td, where td ⊆ k〈X,X∗〉
is the T-ideal of polynomial identities for d× d matrices.

For d ≥ 2, GMd(k) is a prime PI algebra and a domain (cf. [PS, §II]). Hence
its central localization is a central simple algebra UDd(k) with involution, which
we call (by an abuse of notation) the universal division algebra. Relating these
notions to ∗-representations of the free ∗-algebra is the following commutative
diagram: for d ∈ N and A ∈ Md(k)n let RA denote all the elements of UDd(k)
which are regular at A. Then:

k〈X,X∗〉
evA

//

π

����

Md(k)

RA

OO

� _

��
GMd(k)

( �

66

� � ι // UDd(k)

For a more geometric viewpoint of the ring of generic matrices and the uni-
versal division algebra we refer the reader to [Pr2, Sa]. The standard textbook
on central simple algebras with involution is [KMRT].

4.2. Polynomial preservers. In this subsection we present versions of Lem-
mas 2.1 - 2.4 in the context of free ∗-algebras. To avoid trivialities, we assume
throughout that d ≥ 2.

Lemma 4.1. Suppose f ∈ k〈X,X∗〉 is such that for all g ∈ k〈X,X∗〉,
g � 0 on d× d matrices ⇒ fg � 0 on d× d matrices. (7)

Then f is a central polynomial positive semidefinite on d× d matrices.

Proof. Using (7) with g = 1, we see f is positive semidefinite on d×d matrices.
Thus there is no harm in assuming f = f∗.

Again by (7), fg − gf vanishes on all d × d matrices for all polynomials g
of the form g = h∗h. That is, [f, g] is a polynomial identity of d × d matrices.
Now the same holds true for all symmetric g as

2[f, g] + [f, g2] = [f, (1 + g)2]

is a polynomial identity by the above. Hence f commutes (modulo the T-ideal
of identities) with all symmetric polynomials.

Every element of UDd(k) can be represented as rs−1 for some r, s ∈ GMd(k)
with s = s∗ ∈ Z(GMd(k)). Such an element is symmetric iff r = r∗. So π(f)
commutes with all symmetric elements of UDd(k). By Dieudonné’s theorem
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[Di, Lemma 1], the latter generate UDd(k). Hence π(f) ∈ Z(UDd(k)) and f is
indeed a central polynomial.

(Note: once we have established that f commutes with all symmetric poly-
nomials, an easier argument is available if k = C. In this case one immediately
obtains that f also commutes with all skew symmetric polynomials as these are
all of the form ig for symmetric g.)

Lemma 4.2. Suppose f ∈ k〈X,X∗〉 is such that for all g ∈ k〈X,X∗〉,
tr(g) = 0 on d× d matrices ⇒ tr(fg) = 0 on d× d matrices. (8)

Then f is a central polynomial.

Proof. Let g = [h1, h2] for some hi ∈ k〈X,X∗〉. Then

fg = f [h1, h2] = [f, h1h2] + [h1, fh2] + h1[h2, f ]. (9)

Since tr(g) = 0 on all d × d matrices, this implies tr(h1[h2, f ]) = 0 on d × d
matrices. Fix h2 and denote r := [h2, f ]. Then r satisfies the following:

tr(pr) = 0 on d× d matrices

for all p ∈ k〈X,X∗〉. Taking p = −r∗ leads to − tr(r∗r) = 0 and hence, r = 0
on all d× d matrices. That is, r is an identity of d× d matrices. As r = [h2, f ]
and h2 was arbitrary, this implies f is a central polynomial.

Lemma 4.3. Suppose f ∈ k〈X,X∗〉 is such that for all g ∈ k〈X,X∗〉,
tr(g) ≥ 0 on d× d matrices ⇒ tr(fg) ≥ 0 on d× d matrices. (10)

Then f is a central polynomial positive semidefinite on d× d matrices.

Proof. If tr(g) = 0, then by (10), tr(fg) ≥ 0 and tr(−fg) ≥ 0 on d×d matrices.
That is, tr(fg) = 0. Now by Lemma 4.2, f is a central polynomial.

Applying (10) with g = 1 yields f(A,A∗) = tr
(
f(A,A∗)

)
≥ 0 for all A ∈

Md(k)n showing f is positive semidefinite on d× d matrices.

Likewise we can characterize polynomials which map positive semidefinite
polynomials into trace-nonnegative ones. At the same time this indicates how
to build examples of trace-nonnegative polynomials. As we shall see in the next
subsection, the procedure is essentially exhaustive.

Lemma 4.4. Suppose f ∈ Sym k〈X,X∗〉 is such that for all g ∈ k〈X,X∗〉,
g � 0 on d× d matrices ⇒ tr(fg) ≥ 0 on d× d matrices. (11)

Then f is positive semidefinite on d× d matrices.

Proof. Assume f is not positive semidefinite on d × d matrices. Then there
exists an n-tuple A = (A1, . . . , An) ∈ Md(k)n with

f(A,A∗) 6� 0. (12)

Let A ⊆ Md(k) denote the ∗-subalgebra generated by the A1, . . . , An. Since the
hermitian square of a nonzero matrix is not nilpotent, A is semisimple. By the
Artin-Wedderburn theorem, A is ∗-isomorphic to a direct sum of full matrix
algebras. We distinguish two cases.



TRACE-POSITIVE POLYNOMIALS 8

Case 1: if k = C, then there is a ∗-isomorphism

A ∼=
s⊕
j=1

Mdj (C) (13)

for some dj ∈ C, and
∑

j dj ≤ d. This induces a block diagonalization of the
Aj as follows:

Aj =

Aj,1 . . .

Aj,s

 , Aj,k ∈ Mdk(C).

By (12), there is a j such that A(j) = (A1,j , . . . , An,j) ∈ Mdj (C)n satisfies

f(A(j), A
∗
(j)) 6� 0. Choose u ∈ Cdj with

〈f(A(j), A
∗
(j))u, u〉 < 0. (14)

There is a B ∈ Mdj (C) with Bei,dj = u for all i = 1, . . . dj . (Here ei,dj are the

standard basis vectors for Cdj .) By the construction of A and (13), there is a
h ∈ C〈X,X∗〉 with h(A(j), A

∗
(j)) = B. Let g = hh∗. Then

tr
(
(fg)(A(j), A

∗
(j))
)

= tr
(
(h∗fh)(A(j), A

∗
(j))
)

=

dj∑
i=1

〈h∗(A(j), A
∗
(j))f(A(j), A

∗
(j))h(A(j), A

∗
(j))ei,dj , ei,dj 〉

=

dj∑
i=1

〈f(A(j), A
∗
(j))Bei,dj , Bei,dj 〉 (15)

=

dj∑
i=1

〈f(A(j), A
∗
(j))u, u〉 < 0.

As this contradicts our assumption (11), we conclude f � 0 on d× d matrices.
Case 2: if k = R, the reasoning is the same with a minor technical modifi-

cation. Let

A ∼=
s⊕
j=1

Mdj (R)⊕
r⊕

k=1

Mek(C)⊕
p⊕
`=1

Mf`(H) (16)

for some dj , ek, f` ∈ N. If there is a tuple A ∈ Mdj (R)n with f(A,A∗) 6� 0, we
proceed as in Case 1. If there is a A ∈ Mek(C)n with 0 6� f(A,A∗) ∈ Mek(C),
we proceed as follows. Let V be the invariant subspace of Rd corresponding
to the action of Mek(C). There is a u ∈ V with 〈f(A,A∗)u, u〉 < 0. Pick a
basis (over C) {v1, . . . , vek} of V and let B ∈ Mek(C) satisfy Bvj = u for all
j. Choose h ∈ R〈X,X∗〉 with h(A,A∗) = B and g = hh∗. Then the complex
trace z of (fg)(A,A∗) is negative by the same computation as in (15). Hence
the real trace satisfies

tr
(
(fg)(A,A∗)

)
=
z + z̄

2
< 0.

The remaining case of quaternion matrices is dealt with similarly. We leave
this as an exercise for the reader.
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It is clear that converses of Lemmas 4.1 - 4.4 hold true. Also, with the
exception of (11) which is satisfied when f is a sum of hermitian squares, there
are no nonconstant dimension-free polynomial preservers.

4.3. The dimension-dependent tracial Positivstellensatz. Our main tool
for describing trace-nonnegative polynomials is the following proposition de-
duced from the properties of the reduced trace [KMRT, §1] on UDd(k).

Proposition 4.5. For every f ∈ k〈X,X∗〉 and d ∈ N there exists a nonvanish-
ing central polynomial for d×d matrices c ∈ k〈X,X∗〉 such that cf is cyclically
equivalent to a central polynomial. That is,

cf
cyc∼ c′ (17)

for some central polynomial c′.

Proof. Consider F := ι(π(f)) ∈ UDd(k). So Trd(F ) ∈ Z(UDd(k)) and there is
a nonvanishing central polynomial c0 ∈ k〈X,X∗〉 and a central polynomial c′0
with

Trd(F ) = π(c′0)π(c0)
−1. (18)

Since Trd is Z(UDd(k))-linear, this yields Trd(π(c0f−c′0)) = 0. By the Amitsur-

Rowen result [AR, Theorem 2.4], π(c0f − c′0)
cyc∼ 0 in UDd(k). Clearing denom-

inators shows
π(cf − c′′) cyc∼ 0 (19)

in GMd(k) for a nonvanishing central polynomial c and a central polynomial

c′′. Lifting (19) to k〈X,X∗〉 gives the desired conclusion: cf
cyc∼ c′.

Remark 4.6. Instead of the Amitsur-Rowen result used in this proof, we can
apply the tracial Nullstellensatz [BK, Theorem 5.2]: once Trd(π(cof − c′0)) = 0
has been established, by clearing denominators we obtain tr(π(c0c

′′f−c′0c′′)) = 0

for some nonvanishing central polynomial c′′. Hence π(c0c
′′f − c′c′′) cyc∼ 0 in

GMd(k) by [BK, Theorem 5.2]. As before, lifting this relation to k〈X,X∗〉
yields the desired conclusion.

We are now ready to give our main results characterizing trace-nonnegative
polynomials.

Theorem 4.7. Let k ∈ {R,C} and suppose f ∈ Sym k〈X,X∗〉 satisfies

tr
(
f(A,A∗)

)
≥ 0 (20)

for all A ∈ Md(k)n. Then there is a nonvanishing central polynomial for d× d
matrices c ∈ k〈X,X∗〉 such that cfc∗ is cyclically equivalent to a polynomial
g ∈ k〈X,X∗〉 that is positive semidefinite on d× d matrices, i.e.,

cfc∗
cyc∼ g and g � 0 on d× d matrices. (21)

Proof. This is a consequence of Proposition 4.5. Indeed, there is a nonvanishing
central polynomial c with

cf
cyc∼ c′ (22)

for a central polynomial c′. Multiplying (22) with c∗ (from the right) shows

cfc∗
cyc∼ c′c∗. (23)
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For any A ∈ Md(k)n,

0 ≤ tr(c(A,A∗)f(A,A∗)c(A,A∗)∗) = tr(c′(A,A∗)c(A,A∗)∗)

= tr((c′c∗)(A,A∗)) = (c′c∗)(A,A∗).
(24)

So g := c′c∗ is a (central) polynomial positive semidefinite on d × d matrices
satisfying

cfc∗
cyc∼ g.

Remark 4.8. The proof shows that g in Theorem 4.7 can actually be taken to
be a central polynomial.

Combining Theorem 4.7 with the dimension-dependent Positivstellensatz for
positive semidefinite polynomials ([PS, Theorem 5.4] or [KU, Theorem 5.4])
yields:

Corollary 4.9. Choose α1, . . . , αm ∈ k〈X,X∗〉 whose images in GMd(k) form
a diagonalization of the quadratic form Trd(x∗x) on UDd(k). Then for f ∈
Sym k〈X,X∗〉 the following are equivalent:

(i) tr(f(A,A∗)) ≥ 0 for every A ∈ Md(k)n;
(ii) there exists a nonvanishing central polynomial c ∈ k〈X,X∗〉, a polynomial

identity h ∈ k〈X,X∗〉 for d× d matrices, and pi,ε ∈ k〈X,X∗〉 with

cfc∗
cyc∼ h+

∑
ε∈{0,1}m

αε
∑
i

p∗i,εpi,ε. (25)

Remark 4.10. For experts we mention that (by applying the reduced trace to
(25)) we can reformulate (25) as follows:

cfc∗
cyc∼ h+ t, (26)

where c, h are as above, and t belongs to the preordering in Z(UDd(k)) gener-
ated by the αj .

If d = 2 the weights αj are superfluous since the reduced trace of a hermitian
square is a sum of hermitian squares in this case (cf. [PS, p. 405] or [KU, §4])
and Corollary 4.9 simplifies as follows:

Corollary 4.11. For f ∈ Sym k〈X,X∗〉 the following are equivalent:

(i) tr(f(A,A∗)) ≥ 0 for every A ∈ M2(k)n;
(ii) there exists a nonvanishing central polynomial c ∈ k〈X,X∗〉, and a poly-

nomial identity h ∈ k〈X,X∗〉 for 2× 2 matrices, such that

cfc∗ ∈ h+ Θ2 k〈X,X∗〉. (27)

Example 4.12. We finish this presentation with an example showing denom-
inators are necessary for these results to hold. First of all, the Motzkin poly-
nomial M from Example 3.1 is not cyclically equivalent to a sum of hermitian
squares modulo a T-ideal of identities. Indeed, if

M
cyc∼ h+

∑
g∗j gj (28)
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for some gj ∈ k〈X,X∗〉 and a polynomial identity h ∈ k〈X,X∗〉 for d × d
matrices (d ≥ 2), then

Mcc = tr

(
M

([
Y/2 Z/2
−Z/2 Y/2

]))
=
∑

tr

(
(g∗j gj)

([
Y/2 Z/2
−Z/2 Y/2

]))
,

whereMcc ∈ R[Y,Z] denotes the commutative collapse Y 4Z2+Y 2Z4−3Y 2Z2+1
of the noncommutative variant M ′ of the Motzkin polynomial (in symmetric
variables). Since Mcc is not a sum of squares in R[Y,Z], and the trace of a
hermitian square is a sum of squares, M does not satisfy a relation of the form
(28). Hence a denominator is needed in Corollaries 4.9 and 4.11.

A little more work is required to show the necessity of the denominator in
Theorem 4.7. Let d ∈ N be sufficiently large (any d ≥ 127 = the dimension of
the vector space of all polynomials in X,X∗ of degree ≤ 6 will do). Suppose
M is cyclically equivalent to a polynomial g that is positive semidefinite on
d × d matrices. Without loss of generality, g ∈ Sym k〈X,X∗〉. Choose g of
smallest possible degree. If this degree is > 6, then the highest homogeneous
component g(∞) of g is positive semidefinite on d × d matrices and at the

same time g(∞) cyc∼ 0. Hence tr
(
g(∞)

)
= 0 on d× d matrices implying g(∞) is a

polynomial identity. Then M
cyc∼ (g−g(∞)), g−g(∞) is positive semidefinite and

of degree smaller than g. This contradicts the minimality of g, so deg(g) ≤ 6.
Now g is positive semidefinite on d×d matrices for some d ≥ 127 and is thus

a sum of hermitian squares by Helton’s sum of squares theorem [He]. But M is
not cyclically equivalent to a sum of hermitian squares by the first part of this
example.

Acknowledgments. The author thanks Matej Brešar for enlightening conversations

and insightful comments.
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